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1. Introduction

In this paper, we provide an empirical test of the continuous
time intertemporal capital asset pricing model, first proposed
by Mertonfi19711]. The model ac clarified by Breedenl1979] implies
that an asset will be priced so that the expected return required
will increase with its covariability with per capita consumption
growth. Frevious tests of this theory (e.g. Grossman-~Shiller[19801],
Hansen—-Singletonl1983]) have examined discrete time versions
of the model under the assumption that the timing interval of
the model matches exactly the sampling interval for available
data on per capita consumption. That is, if we have data on
quarterly consumption, then the time period is assumed to be
l-guarter of a year. We show that if the true model is a continuous
time model, and time averaged data (such as quarterly consumption)
is used to test it, then substantial biases may be introduced
unless the estimation proceQure is corrected to take account
of the effects of time averaging. We provide a procedure for
obtaining consistent estimates with time averaged data. We
then estimate and test the model using data on per capita
consumption and the cumulated real returne to holding portfolios
of stocks, bonds, and short-term paper.

II The Model

It is useful to review the Merton model. Our discussion
follows closely the exposition of its generalization in
Groesman-Shiller[1982]. In a discrete time model, each consumer
is assumed to maximize a time-additive utility function over

a single consumption good
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(2. 1) u =2 sNuicinn
§=0
where T is his time horizom, c(t) is consumptior at time t and
&N is the discount factor between utility at time t and t+h.
For the purposes of this paper, we assume that the period utility
function is of the constant relative risk aversion (or isoelastic)
form
(2.2) ute) = cl P/ 1-A) .
Let v, (t) denote the value of asset i at time t including
any accrued cash disbursements (such as dividends or coupons)
earned between t—-h and t. Assume that asset i is freely tradeable.

A standard argument shows that

(Z.7) E¢ 8Nu (c(t+h) vy (k+h) = u’ (c(t))dvy (1)

where the expectation is conditioned on all the information
possessed by the trader at time t. Using (2.2) and iterating
2.3), we can write

(2. 4) Ey (c(7), "
c(t)

(1 = (1,77t for 7 = t+h,t+2h,...
: 3

v
v, (t)

i
i
If we take the limit to continuous time and apply Ito's Lemma,

we obtain

(2.9 Etgli + 1*A(A+1)*Var (dc) - A*Eth + 1lnédt
Vs 2 c c
i

= Ax*Cov(dc,dv;)
c Vv

i
where Var and Cov denote the variance and covariance operators.

Note that (2.5) holds for an individual. Under wvarious

assumptions about heterogeneity of information and wealth, (2.35)



can be aggregated over individuals so that c can be interpreted
as per capita consumption and A is replaced by & particular
weighted average of the individual consumer ‘s A (see
Grossman—-Shiller(19821). Clearly (2.5) holde for all tradeable
assets. If R? is defined as the excess rate of return of asset
i over say short-term paper, then (2.5) can be used for these
two assets to yield

(2.6) ER] = AxCov(R§,dc/c) .

The agagregate parameter of relative risk aversion can be
computed by (Z.6) given data on mean excess returns and the
covariances between excess returns and per capita consumption
growth. Table 1 provides some estimates of A based on the
descriptive statistics from Table 3. The various data sets
and variable definitions are described more fully in Section
III. At this point, we simply wish to draw attention to one
of the important empirical anomalies associated with the model
and the potential role for time averaging as an explanation.
The table shows that the mean excess return on stocks i1s associated
with a relatively small covariance with consumption changes.
Therefore this can be justified only by an implausibly high
estimate of the risk aversion parameter. Similiar conclusions
are reached by examining the excess returns orn bonds.

One explanation for this is based on the idea that a time
averaged variable is smoother than the same point sampled variable.
In particular, if the true model holds in continuous time then

the instantaneous rates of change in consumption can be more
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variable (and also covariable with returns) than is the average

consumption change across years or guarters.

fAn example

To understand this effect, consider the following very

simple process for v?, the value of asset i1 in excess of asset
1, and consumption:

(2. 7&) de = pdt + de

(2.7b)  dv§ = p;dt + dwy
where ,n; are correlated Erownian motions with Cov(de,dn;)=0;dt.
Let c(t) and V?(t) be the time averaged values of c(t) and
vf(t);i.e.,

cy = T7iL citeenrds 7€ = 17150 vE(t+srds .

We will show that

(2.B) Cov(T,v])

E[(E(t)—E(t—T))(U?(t)——?(t—T))] - pTy T
If we normalize T=1, then the covariance of time averaged
consumptions charnges and price changes is 2/3 of the instantaneous
value o;. Roughly speaking, this would lead us to overestimate
A by SOU.
To understand (Z2.8) just note that

(2.9) Et) - Et-T) = sl pds + T 445 1 de(mids

= 4T + T30, 1 detmids

+ 771 8S decmids

pT + T71sE o (T-t+s)de(s)

+ T7I1*T (t+T-s)dets) .
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A similiar expression may be derived for V?(t)—??(t-T). Hence,
(2.10) E[(E(t)—E(t—T))(V?(t)—?f(t—T))J
=pTwy T + T2ELsf 1 (T-t+s)%dedn; + sE+T (£+7-5) Zdedn, 3.
Equation (2Z.8) is easily derived from the last expression.

The purpose of this example is to give the reader a relatively
simple view of the effect of time averaging in generating a
stochastic process which is "smoother" thanm the instantaneous
process. This suggests the possibility that assets appear to
have & low risk (i.e. low covariance with consumption changes)
because measured consumption changes are less variable than
instantaneous consumption changes. Since it is the covariance
with instantaneous consumption changes that is the relevant
measure of an asset’'s risk, this leads us to overestimate A.

In our simple example, A is overestimated by S50%. As we shall
see below, for certain processes, the bias can be arbitrarily
large.

Multivariate Model

In ow empirical work, we postulate & slightly more complicated
stochastic process for consumption and asset values. Define

Y(t) according to

In c(t) = kg — gct N ct) 1
(2.11) Yi(t) = In vy(t) - ky = gyt = Vy ()

In V"_)(t) - ‘57 - g:t V:(t)

ln vz(t) - kx - gzt vty J.

We assume that Y(t) satisfies the stochastic differential
equation

(2.12) dY = EBydt + 21/247
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where B and 2 are (4x4) matrices and Z(t) is a vector of standard
independent Wiener processes. 2 ie assumed to be symmetric
and positive definite. Without any loss of generality, /2
can be taken to be lower triangular with positive diagonal
elements. Let o denote the vector of nontrivial parameters
in 21/%,

Switching to logarithms and applying Ito’'s Lemma we can
rewrite (2.9) in terms of the Y(t) process as

(2.13) Ey [dV (B) - AxdC (Yl + (g

, — A*g_ + In&)dt

+ 1/2%A%*¥Var (dC) - AxCov (dC,dV;) + 1/2%Var (dV;} = O.
If this is to hold at all points in time in m.s., then
(2.14) Ey[dV; (B) — A*dC(E)]1 = O.
The reason is that, according to our assumptions, the remaining
terms in the expression are not functions of information. Since
the model is homogeneous, the only way this sum can be constant
is if it 1s zero.

Therefore (2.5) imposes the following restrictions on our

model :

(2.15a) J,;B =0

(2.15b) gy - A¥g. + 1/2%3;23{ + 1n§ = 0 i=1,2,3
where J;=(-A e;) and ei€R3 is the vector with umity in component

i and zero elsewhere.

Suppose that the process Y(t) is sampled at regular intervals.
It is straightforward (see Bergstrom[19841) to show that the
point sampled proceses has the representation

(2.16) Y(t) = g¥(t—-1) + u(t)
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where @ = eB, the matrix exponential of E, and u(t) ie the random
variable f%_l eB(t—S)Zl/EdZ(S). Let Y(t) denote the time average
of the Y(t) process, i.e. ?(t)=f§_1 Y(s)ds. Upon integrating
both sides of (Z.16) we obtain

(2.17) Yty = g¥V(t-1) + u(t)
where d(t) i=s the random variable f%—lf:—l eB(T-8) 4z (s)d.

Let f and g denote two "smooth" real-valued functions and
z(s) a univariate Wiener process. Using the definition of the
Ito integral, the following two results can be establisted:

(2.18) & sl aterdzsradt = slisletrdtigesrdz (s

(2.19) ECsEf feeddz(2 3082 a(mdz(m 1 = 5y Fisigisids

where M = [t;,t-100tz,t,]

and where the equality is understood in the mean square sense.
Applying (2.18) element by element and other standard properties

of the Ito integral allow us to write

¢

hy

2oy Gty = sEZA T P OUTSd g7y + st st B TSV grdz (s,
Define 0, = E G()U(t-7) and F(r,w) = eF"ZeF 'YW, applying (2.1

and standard change of variable rules, we obtain

(2.21a) ng = sdsLlsl For,widrdwds + sA/858 Fr,w)drdwds
(2.21b) 0, = s&sLs8 Fer,widrdwds
(2.21c) , = 0 T2,

We conclude that Y(t) is a vector ARMA(1,1) process. Fhillipsl19783]
and Bergstrom[1984] develop similiar results although the latter
only considers the case where B is invertible. We can therefore
write

(2.22) Yt) = gV(t-1) + e(t) + @e(t-1)
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where the innovations =(t) have mean zero and covariance matrix
S, and € is & matrix with spectral radius not exceeding unity.
Define y(t) = (ln c(t) In vy (t) In vo(t) 1n vz(t)) ',
and let y(t) be its unit average. Eqg (2.22) can be rewritten

as

2.23 yit) = v + Ylf + gy (t—=1) + e(t) + Be(t-1)
where v = (I-p)k+gg, vy = (I-@)g, and T = f% (t+s)ds. The
restrictions (2.135) are easily shown to imply J;vy = J; (I-g)

= 0, In particular, it also follows that the vector k cannot
be identified uniqguely. We therefore impose the identitfication
restriction k; = A¥k_ in our estimation. A tedious argument
also shows that

(2.24) (Ji—Jj)(V(t)—§(t—1)) = (Jj=d)¥g + (J3-J;)e(t)

+ .268*(Ji—Jj)e(t—1)
so that the time averaged excess returns on asset i over j follows
an MA(1l) process with coefficient .268.

To gain further intuition about the possible consequences
of time averaging suppose B = diag(Xy,An,Az,2g). Then it can
be shown that 0,(i,J) = h(xi,xj)'Z(i,j) , where

hirng, A0 = AT + eM¥A - ey Tha-eM A,

+ 1+ et a - Mg a v eMia - e /g
and equal to the obvious limits as A; or Xj goes to ©O. Our
simple example corresponds to the case h(0,0) = 2/3,. I+ the
process were stationary around trend, the eigenvalues of B would
have negative real parts. GSampling a few values, we see that

h(—.1,-.1) = .60, h(-.5,~.5) = .45, h(-1,-1) = .28, and h goes
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to zero as A; and kj both go to minus infinity. The bias in
the estimate of A using time averaged data and (2.5) can therefore

be arbitrarily large.1

III DATA ANALYSIS

Data Description

The data are fully described in an appendix to this paper
which is available from the authors. Here we shall give only
a broad description of the data to indicate how they were assembled
and to show that they correspond as much as possible to the
toncepts represented in the model above.

Six separate data sets were prepared, each intended to
represent & series of observations on the four—-element vector
Y. The data sets differ in sample period, sources and assumptions
about taxation. Table 2 summarizes the important differences.

Data sets one and two are long historical annual time series
beginning in the year 18%0. These data sets are based on those
used i1n Grossman and Shiller[198131 and described also in
Shiller[19821. Data sets three through six are quarterly time
series. Data sete three and four begin in the second quarter
of 195%Z. Data sets five and six begin in the second quarter

of 1947. The use of annual and quarterly time series was dictated

In more relevant comparicson might be the ratio of A that would
be obtained using time averaged data to that using point sampled
data. Although details differ, it is easily shown that this
ratio also can be arbitrarily large.
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by the existing consumption data. |L.ong time series data on
consumption are available only on an annual basis. Quarterly
consumption data are available only for the post-war period.
Monthly consumption data are available starting in 1959. We
did not use those data here because of some concern as to the
accuracy of the monthly data and because of the somewhat shorter
csample period that such data would impose.

In all data sets, the first element of y is the loag of
real per capita seasonally-adjusted consumption or nondurables
and services. For years beginning with 1929 these data are
from the National Income and Froduct Accounts of the United
States. Earlier data are the Kuznets-—-tendrick series. Since
the published consumption series are total consumption over
the period, the first element of ¢ departs somewhat from that
hypothesized in the paper: it is the log of the integral rather
than the imtegral of the log.2 Note that we use a physical
measure of consumption directly and do not deflate nominal
consumption by & price index that is averaged over the year,
which would have introduced another departure from the assumptions
of our model.

In all data sets the second element of ¥y is a measure of
the interval averaged log cumulated real return on corporate
stocks, the third element is a measure of the interval averaged

log cumulated real return on short debt and the fourth element

2Some Monte Carlo simulations indicate that the biases introduced
by using the log of the average instead of the average of the
log are extremely small, at least for our data.
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is & measure of the interval averaged log cumulated real return
orn long-term bonds. The even—numbered data sets are based on
after—tax returns. In comstructing these series, the (after—-tax
in even—numbered cases) nominal returns were first computed
on & monthly basis. At that point, & choice had to be made
whether to use the consumption deflator to convert nominal returns
to real returns or tou use one of the monthly price indices for
this purpose. The consumption deflator has the advantage that
it corresponds to the measure of consumption that is supposed
to enter the utility function. The monthly price indices have
the advantages that we can uée them to produce a monthly real
series, so that our interval average will correspond more closely
to the integral of the log of the real portfolio value as
represented in our model. It was decided to use the consumption
deflator for data sets one through four and the monthly consumer
price index for data sets five and siy. Thus, for example,
the second through fourth elements of the ¥ vector in data
set two were constructed by first producing monthly series
representing the cumulated after—tax nominal returns of the
assets. Each series represented the nominal value of the portfolio
of an individual who reinvests all after-tax income from the
asset in the same asset.- The average for the year of the log
of the monthly portfolio values was used to construct an annual

series. Finally, the log of the consumption deflator was subtracted

et (1+4r; ) denote the monthly after—tax rominal return on asset
i, and let V?L denote the cumulated after-tax returrn in month L.
We set V| = (1+4r ) (1+r o) = (14 ).
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from each series to convert to a real series. With data set
five, the first step in the construction of the second through
fourth elements of Vy was essentially the same. We first produced
a monthly series of cumulated returns of the assets. However,
in data set five, this monthly series was subsequently deflated
by dividing by the consumer price index, and a gquarterly series
was produced as the average for the three months of the quarter
of the log of this monthly real series.

Bith date sets five and six another adjustment was also
made before the average log cumulated real portfolio value was
entered intoc the vector y. In constructing the series, there
was great concern that the data be aligned properly. The
Ibbotson-Sinquefield returns data for each month are measured
from the end of the preceding month to the end of the current
month. This provides four point sampled observations on the
log cumulated real portfolio for each quarter. These were connected
by straight lines and the integral under the straight line
interpolation was used to estimate the corresponding component
of ¥.

For deta sets one and two, the return on corporate stocks
is computed from the Standard and Foor ‘s Composite Stock Frice
Index and associated dividend series. The return on short—-term
debt is computed from the prime commercial paper rate and the
return on long-term debt is computed using the Macaulay railroad
bond yield data for the first part of the sample and the Moody

Aaa bond yield average for the years after 1936.
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For data sets three and four, all return data come from
series on the CITIBASE data library. Stock returns are again
computed using the monthly Standard and Foor ‘s Composite Stock
Frice Index, while the return on short debt is taken from the
returrn on three—month treasury bills and the return on long
debt is based on yields of twenty-year treasury notes.

For data sets five and six, return data come from Ibbotson
and Sinque%ieldil?SZ]. The stock return series is their series
common stocks, total return=s:; the short debt series is their
series U.5. Treasury bills, total returns: the long debt return
series ie their series long-term corporate bonds, total returns.

For after—-tax series, the assumed marginal income tax rate
for 1918 to 1980 was that implicit in the spread between municipal
and corporate bond yields. Before 1918, the marginal income
tax rate was set ta zero. Since the Ibbotson and Sinquefield
data do not allow a decomposition of returns into capital gains
and income components, it was assumed for data set six that
all returns were taxed each month as income. For data sets
two and four, however, capital gains were assumed taxed each
month at a long-term capital gains rate. For the years 1946
to 1978, the effective rate on long~term capital gains was one-half
the marginal income tax rate. For earlier years, the effective
rate on long-term capital gains was computed from the marginal

income tax rate using tax rate data in Seltzer(19511].
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Freliminaries

Before concsidering formal estimation and testing, 1t is
vgeful to review some of the broad features of the six data
sete which our model must explain. Some descriptive statistics
are provided in Table 3.

For all six data sets, we observe that stock portfolios
gave the highest average real return, approximately &% p.a. on
a pre—tax basis or 4% after—tax. Short-term paper yielde averaged
about 2% p.a. on a pre-ta: basis over our longest historical
sample, but the average yield fell to about zero in the post-
war period. After—tax real returns to holding short-term paper
have been slightly negative. Long-term bonds, by contrast,
have averaged essentially a zerc real return over the last century,
on both a pre- and atter-tax basis. During the post-war period,
however, pre—-tax returns have been slightly negative. On an
atter—-tax basis, bondholders have seen the real values of their
portfolios shrink by over 2% p.a.

ficcording to the consumption based asset pricing model,
these persistent differences in average yields must be accounted
for by the insurance provided by the different portfolios against
events which impinge adversely on consumption. Useful evidence
about this hypothesis is obtained by looking at the covariance
structure of measured portfolio yields and changes in consumption.
Some caution is necessary since the model ‘s predictions pertain

to the covariance structure of the instantaneous returns and
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our data are constructed +from differences of unit averaged values.
However, if EX(0, the latter can provide a reliable guide to
the sign and order of magnitude of the instantaneous covariance
matri:x.

Several empirical regularities emerge. As measured by
the variance, the change in consumption is the smoothest series,
followed closely by the yield on short-term paper. Long-term
bond vyields have been fairly stable over our longest sample,
whereas the variance of returns to holding a portfolio of stocks
has been several orders of magnitude larger. In the post—war
period, real returne to holding long—-term bonds have been much
more volatile with a variance almost as large as the return
to holding common stocks.

Df more interest are the covariance properties. According
to our model, it is not the variance but the covariance with
consumption that ie the relevant measure of a portfolio’'s risk.
We find, uniformly across the six data sets, that stock yields
have the largest covariance with changes in consumption, followed
by short—-term paper yields and then yields on long-term bonds.
flualitatively, this is exactly what the model requires given
the ordering of the average yields. It indicates that the basic
idea that insurance against adverse movements in consumption
can account for observed yield differentials has some empirical
promise.

Evidence of potential difficulties is provided by the

autocovariance structure of excess returns on bonds and stocks
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over short-term paper. Given our assumptions about the
probabilistic structure of consumption and portfolio values
and the form of preferences, we expect the point sampled difference
in vields between any two portfolios to be serially uncorrelated.
As equation (2.24) shows, the time averaged difference in vields
should have arn MA(l) compornent with coefficient about .Z268.
Thig particular prediction is independent of the mean or covariance
of returns or the degree of relative ricsk aversion.

Table = shows that it is important to take into account
the conseguences of time averaging. The Eox-Ljung statistics
clearly indicate that the excess yields that are constructed
from our data are not white noise. The adjusted excess returns
referred to in Table 3 are filtered to remove the time dependence
that is induced by unit averaging. Judging from the Eox-Ljung
statistics, the adjusted excess returns are indeed less serially
correlated . Nonetheless, the autocorrelations of the adjusted
ercese returns to stocks remain statistically significant from

zero in four of the six data sets.

Some Econometric Issues

It is demonstrated above that the vector of time averaged
observations has a representation of the form
(Z.1) y(t) = Yole) + Y3 (0 + plo)y(t-1) + €(t) + 6(a)e(t-1)
where the disturbances e(t) are distributed independently

and identically as MVUN{(O,S(e)). In our application, we can
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set a’E(kC,gC,A,S,Bl.,c), where By denotes the first row of
the B matrisx.

Linear BGaussian processes have been studied extensively
by econometricians and statisticians. Nonetheless, there are
several features of our model which put it outside of the standard
assumptions in the literature used to prove laws of large numbers
or central limit theorems. First, the model contains a time
trend so that sample autocovariances of the exogenous variables,
i.e. T llxy%(_; where X{ = (1 t), do not converge to well
defined limits. Secondly, the model imposes restrictions not
only across the autoregressive and moving average matrices,
but across these and the contemporaneous covariance matrix as
well. Finally, our model imposes the restriction that E be
of rank one, so that (o) will have three eigenvalues on the
uriit circle. To our krnowledge, there are no laws of large numbers
or central limit theorems that cover all three of these features.
Application of the standard large sample procedures to estimate
and test our model must be considered tentative.

Although all the features of our model have not been treated
together in the literature, we can use available results to
form a reasonable guess about the sampling properties of the
approximate (conditional) maximum likelihood estimator described
below. For example, it appears that a law of large numbers
which would allow for all three of the features noted above
would be a modest extension of the literature. Hannan et al.[19801

provide a law of large numbers for vector ARMAX models allowing
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for very general restrictions and, in particular, dependence
across the covariance matrix of innovations and the‘other parameters
of the model. Their assumptions about the error process are
clearly satisfied by our model, but they rule out time trends
as regressors and require all roots of the autoregressive polynomial
to be outside the umit circle. In the absence of complicated
restrictions or unit roots, the assumption that sample covariances
converge to well defined limits can be replaced by the weaker
Grenander conditions (see Hannanll1%711) which do allow for time
trends as regressors. Similarly, in the absence of time trends
and other restrictions, strong laws of large numbers can be
established even if the autoregressive process is explosive.
Individually, therefore, each of the three features of the model
highlighted above is mot an impediment to establishing a law
of large numbers.

It is well krnown that unrestricted estimates of @ will
not be asymptotically normal if there are unit roots in the
autoregressive polynomial. A case for a central limit theorem
can be made only if the estimation procedure exploits the prior
knowledge of the structure of g. Our restrictions imply that
7t is & co-integrated process (see Granger-Englell1982]). These
processes have had a long history in applied empirical research
under the name of "error—-correction” models. However, only
recently has there been any serious investigation of the sampling
properties of the MLE or its approrimants. Available theorems

do not allow for a time trend or moving average terms but these



ie

complications do not appear to present any conceptual difficulties.
The main result is that the integrating factor? is estimated
consistently by ML with a sampling error that is op(T—l/z).
The ML estimators for the remaining parameters are consistent
and asymptotically normal with a covariance matrix that is estimated
consistently by the usual formula. In our model, the integrating
factor is just By., appropriately scaled. Since we are never
concerned with testing restrictions on the components of By.,
the rapid convergence of the estimated integrating factor does
not appear to present a problem.

We will proceed formally as if the standard large sample
procedures for inference are valid under the maintained nhypothesis
that B is of rank one. As the preceding discussion makes

clear, however, come scepticism is in order.

Estimation Strategy

Several strategies for the estimation of models with MA
errors have been proposed.5 In the time domain, it is natural
to consider the maximum likelihood estimator, or one of its
Various approximants.

Fut e(1)=0 and for any admissable « define e(t)

recursively according to

4A nonstochastic vector c such that C'Vt is stationary is called
an integrating factor. In our application, it is any normalized
basis vector for the row space of I-g.

Sgee Osborne (1977) for a survey of the unconstrained case.
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(2.2 e(t) = yt) = Y5(ed = v4F - slo)y(t-1) — 6lm)e(t-1).
Following Wilson (1973), we choose as our estimator &a,

the admissable vector o which maximizes the approximate

(conditional) log likelihood function

tr 571 (om

L, (oo - 11;1) 1n|8(u)! -

P

1
2

where M = e(t)e(t) '.

t

i t~1-

-
al

Since @ has unit roots, we have little choice but to condition
on the first observation ¥y(1). The assumption that e(l)=0,

by contrast, is made solely out of convenience. I+ E=0, the
spectral radius of © is about .268, so the sampling distribution
ot &a will rnot be very sensitive to this assumption about

the initial innovation. Futting e(l)=0 does simplify the
computations somewhat. In particular, analytic derivatives

can be easily and gquickly computed using the method of adjoints
and a straightforward application of the chain rule.

Several features of L_,(c) make the evaluation of &a
challenging. As with any model with MA errors, it is not possible
to reduce the data through sufficient statistice and we have
to deal with a likelihood function that is not guaranteed to
be globally concave. Our model poses several difficulties in
addition to these standard ones. For example, it is not possible
to concentrate out the covariance matrix, since § is functionally

related to the regression parameters of (3.1). Also, some effort

is required to evaluate (g(o),S(m) ,6(x)). Details are provided



in Melinol1983]1, sc we will give only a brief overview here.
Define the matrices

- T = -
Z.4) C = i 0O -BE L 0 ] e® = { 0 F. Ga Ho
0 O 0 I J 0 0 F B=
L o O O R’ O 0 o Fal .
Fut C = -C and derote the blocks of eC by El s 51 etc. It can

be shown that
(Z.5) n- = FAHI + HiF4 - HIFI' - F1

(2.6} Q1 HIG3 + HlFi + Fi

It is also useful to note that @ = FA. Although the expressions
appear to be unappetizing, they are straightforward to implement
given an algorithm for computing the matrix exponential. We
used a routine based on a diagonal Fadé approximation that has
very nice numerical properties.6

Solving for (5,6) given (05,04) turned out to be much easier
than conjectured by Bergstrom{1984]1. Wilson[1972] provides
a general algorithm for factoring the autocovariance function
of a multivariate MA process. We adapted his suggestion to
our special case and applied Newton’'s method to find the matrix
€ with spectral radius no greater than unity which is a root
of the polynomial

(Z.7) 4 = 80, + 006" = 0,

Given an initial guess, €@(0), this leads to the iterative

scheme

6Ne would like to thank Dr. R.C. Ward of the Union Carbide Laboratory
in Oak Ridge for kindly providing us with this code.
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(.82 SN+ I0H—06° (N ] —- 8N N8 (n+l) = Oy - BN D67 (N).
This scheme exhibits quadratic convergence and turns out to
be guite fast. On average, less thanm three iterations were
required to find € given (Q4,04). In fact, we found that this
scheme rarely required more than S iterations. Given 6, 1t
is straightforward to solve for & using & = ), - Q4@°.

Evaluation of L (e) and its analytic derivatives is fairly
guick and easvy. The main difficulty in computing &a turned

out to be the extraordinary large number of iterations required

to refine ites location.

Farameter Estimatecs

Table 4 presente the estimated parameters of the constrained

7 The estimates obtained

model for each of the the six data sets.
using before— and our constructed after-tax yields are remarkably
similiar, but there are considerable differences in the estimates
across the three different sample periocods.

Consider first the estimates of Z, the covariance matrix
of the instantaneous innovations. Once again, correlations
are displayed above the diagonal, and the lower triangular elements

are covariances. The estimates of 2 from the quarterly data

sets are all similiar. However, there are some sharp contrasts

’Estimates were obtained using the GROFTZ package provided by
Frofessor Quandt of Frinceton University. Various algorithms

were required to refine the location of «,. The reported standard
errors, however, are always calculated by inverting the matrix

of second derivatives evaluated at the optimum. The Hessian

was computed using symmetrical numerical differences of analytic
first derivatives.
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with the estimates from the annual samples which cast doubt
on our assumption that Z has been constant over time. Consumption
innovations appear to have had a much smaller variance in the
post—war period, as have had the innovations to the value of
short—~term paper. By contrast, the innovations to stock market
values have been slightly smoother, and those for long—term
bonds are roughly comparable. The covariances of the innovations
to portfolio values with consumption have the same ranking in
all six data sets, but they are much smaller in the post-war
period.

All six data sets vield small estimates of By., the first
row of the B matrix. This indicates that the change in consumption
has only a very small predictable component, aside from trend.

The trend in consumption is estimated to be about 3% p.a. wusing
the two long historical samples, about 2.5% using data sets

three and four, and about 1.6% p.a. using data sets five and

Six. The corresponding point estimates for & indicate,
respectively, a substantial preference for present consumption,

& substantial preference for future consumptiorn, and indifference.
These apparent differences can‘t be taken too seriously since

the estimated standard errors indicate substantial uncertainty.

The differences in the estimated parameters of relative
risk aversion are extremely interesting. Using our two longest
historical samples, we obtain estimates of A of just over 20.

This is too large to be plausible. Nonetheless, as anticipated,
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accounting for unit averaging of consumption results in a
substantial reduction.®

Data sets five and siu produce a very plausible estimate
of A of just over 2. By contrast, data sets three and four
produce an estimate of A over 150! The difference of the parameter
estimates obtained using these very similiar post—war guarterly
data sets is very large, and some clarification is in order.

The estimates of A presented in Table 1 are derived from
restrictions which relate the unconditional means to the covariances
of consumption changes and portfolio returns. However, the
model provides us with further sources of information about
A Equation (2.14) tells us that the predictable change in
the value of any portfolio is equal to a multiple of the predictable
change in consumption, up to & constant. Since the multiple
is just the parameter of relative risk aversion, this gives
us another estimate of A based on the conditional information
in the sample. The maximum likelihood estimator is usefully
viewed as suitably pooling the disparate estimates based on
conditiornal and unconditional in{ofmation.

It turned out that the predictable change in consumption
around itse mean using the lagged information in data sets 1-4
was essentially zero. As a result, the maximum likelihood estimate
of A closely reflects the estimates in Table 1 adjusted for

unit averaging. In data sets S5 and &, however, the predictable

8For data set 1, we also estimated the model as if the data was
actually point sampled. We obtained an estimate A = 27.24,
with a standard error of about 11.2.
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charnge in consumption about its mean, while still small, was
large enough to provide a fairly accurate estimate of A. The
maximum likelihood estimate reported for these data sets reflects
the conditionsl information in the sample.q
Ouwr model imposes restrictions on the time averaged
representation of vy. In turn, the time averaged representation
imposes additional structure on the parameters of the ARMA(1,1)
representation. Table 5 contains the leog likelihoods, denoted
Lys Lo, and Ly respectively, for the fully restricted time averaged
estimates (Model 1), the unconstrained time averaged estimates
(Model 2), and the unconstrained ARMA(1,1) estimates (Model ).
For the reasons discussed above, Models 2 and = were estimated
under the maintained hypothesis that B ic of rank one and @
is the sum of the identity and a rank one matrisx. For completeness,
the log likelihoods for the totally unconstrained time averaged
and ARMA(1,1) models, Ly and L3 respectively, are also reported.
The tests of the overidentifying restrictions imposed by
the model are rejected with very high confidence whern compared

against either Model 2 or Model 3. Curiously, data sets three

and four which produced the least plausible parameter estimates,

qlmposing only the restrictions implied by (2.14), we obtained
for the six data sets:

A = 66Z.54 - 949.8B6 439.67 98%.73 2.07 2.60
(s.e.) (370.56) (Z70.56) ( * ) ( = ) (0.92) (1.21)

Because the Hessian was singular, we are unable to provide standard

errors for the estimates from data sets three and four.
Hansen—-5ingleton{ 19831 also report a very sharp difference

in the estimate of A depending upon whether or not conditioning

information is used. (See their Table )
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provide the weakest evidence against the overidentifying
restrictions. Finally, a comparison of LE and Lx indicates
that there is some difficulty in accounting for the autocovariances

cf ¥y by time averaging a first order process.

Why is the model rejected™

There are strong & priori reasone for linking consumption
and portfelio choices. Moreover, the sample means and cova-—
riances of portfolio yields and changes in consumption lend
qualitative support to the notion of assets being priced in
accordance with the imsurance they afford against adver=se movements
in consumption. Yet the various goodness of fit tests reported
above as well as the implausibly high estimates of relative
risk aversion from data sets one through four appear to constitute
an overwhelming rejection of the model. What should we conclude?
A response that cannot be dismissed is that the assumed
distribution of the goodness of fit tests is =imply misleading.
As we noted above, we cannot rely on the standard central limit
theorems to establish the asymptotic distribution. Moreover,
even i1+ the large sample results obtain, as we conjecture, there
is no guarantee that the asymptotic distribution provides a
close approximation for samples of the size we have examined.
Unfortunately, establishing the small sample distribution either

analytically or by Monte Carlo methods is infeasible. We choose
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to take the evidence against the model seriously and to focus
attention on the specific sources of predictive failure.

One is naturally led to examine more closely the various
auwxiliary assumptions that are being tested jointly alongside
the hypothesis that agents behave as described by (Z.7). The
two most obvious are the stochastic procese assumed to describe
the evolution of consumption and portfolio values and the specific
form of preferences. We will concentrate on the former.

The stochastic differential eguation (Z.12) imposes many
overidentiftying restrictions. One of them is that the time
averaged vector has an ARMA(p,q) representation with p=g=1.

To test this, the autocorrelations of the prediction errors
from Model 2 were calculated. EBEox-Ljung tests did not indicate
any need for concsidering a higher order process.

Although the evidence suggests that an ARMA(1,1) representation
for vy is a reasonable approximation, there are problems in accepting
the restrictions that time averaging a first-order process imposes
on this representation. Fhillips(1978) shows that i+ BXO then
YI+E and @X.268(I+(E-2E 2" 1)/4). Our unconstrained ARMA(1,1)
estimates of @ suggest that B is indeed small. There is little
difficulty in accepting the restrictions which a small B matrisx
and time averaging impose on g. However, this combination imposes
a great deal of structure on @ which is at odds with the data.

For all six data sets, we found that both the constrained and
unconstrained time averaged models produced estimates of €. 2Z6BI.

The unconstrained ARMA(1,1) estimates of & differed from .268I1
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in several respects. The most noticeable discrepancy was that
the unrestricted estimate of the row of the moving average matrix
pertaining tq the consumpton egquation was escsentially zero,
in all six data sets. In fact, in data sets 1-2 and 5-6, the
MA coefficient for the imnovation in consumption was more than
two standard deviations below .268. Failure to explain the
M& component of consumption in and of itself would lead to rejection
of the model at the 54 level for these data sets.

Ore possible explanation for the apparent absence of a
moving average component in the consumption equation is measurement
error. Suppose the unit average of consumption is measured
with amn error that is serially uncorrelated and independent
of the true consumption process. I+ the flow of consumption
is truly a random walk, the measured consumption series will
be am AFRMA(1,1) process but with an MA coefficient less than
- 268. If orne half of the variance of the change in measured
consumption is due to measurement error, the MA coefficient
would be predicted to fall to just .127.

As pointed out earlier, our model predicts that the excess
returns of stocks and bonds over the yield on short-term paper
should be unpredictable. The time averaged excess returns should
therefore have an MA(1l) structure with a coefficient of about
.26B. These overidentifying predictions can be tested regardless
of the gquality of the consumption data by simply regressing
the adjusted excess returns on various information sets. Moreover,

there is no problem in justifying the standard procedures to
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test these orthogonality restrictions. The results are reported
in Table 6. The likelihood ratio test statistic, A, and the
R< for each of the individual regressions is alec reported.
The individual R< are remarkably high and the orthogonality
restrictions are rejected with very high confidence. Since
yield data that are point sampled are readily available, we
also tested these restrictions using the monthly point sampled
vields corresponding to data sets 1-4. Because & monthly price
inde: was not available for our longest samples, we used the
log cumulated nominal returns, V?t! in the information set.
.These results are reported in the lower half of Table 6. Al though
the individual R< are much lower, as we would expect, the rejection
of the orthogonality restrictions is even more pronounced.
These results are very similiar to those reported in Hansen
and Singletonf{19831.

One explanation for this predictive failure is simply that
the covariance matrix of the instantaneous innovations is not
constant but is state dependent. This seems extremely plausible
and could also account for the noted differences in the estimates
of L from different sample periods. However, taking account
of state dependent variarnces would make estimatiorn and testing
of the model practically impossible. Eecause our model imposes
restrictions across the drift and diffusion parameters, making
the latter state dependent would force us to abandon the linear
constant coeftficient model of the drift as well. We would be

led to the more general stochastic process that solves



0
(Z.9) dy = E(t,y)dt + 21/<(t,y>dz.
The restrictions across the drift and diffusion‘effectively
rule out any of the convenient functional forms for EB(") and
2('), arnd the solution of the likelitood for everr the point
sampled process is difficult to implement. Computing the likelihood

function for the unit averaged process that solves (Z.9) seems

unimaginable, with current technology.

IV Conclusions

The notion of insurance against events which impinge unfavourably
on consumption choices can be used to rationalize, at least
qualitatively, the systematic differences in average yields
afforded by portfolios of stocks, bonds, and short-term paper.

The sample means and covariances of portfolio returns and per
capita consumption growth indicate that the quantitative differences
in average yields can be rationalized only by implausibly high
aversion to risk. Taking account of the fact that measured
consumption is wunit averaged substantially reduces the degree
of relative risk aversion required to rationalize the data.
Nonetheless, there remains considerable evidence that
casts doubt on this view of the world. In particular, it is
difficult to reconcile the importance of unit averaging of the
cbnsumption flow with the fact that the measured logarithm of
detrended real per capita consumption has essentially no moving

average component. Also, although the model allows the average



Z1
return on different portfolios to diverge due to different insurance
characteristics, the particular specification that we examined
requires that expected excess returns should be time invariant.
This orthogonality property is forcefully rejected by the data.
Addressing these particular predictive failures while taking
account of unit averaging constitutes a formidable challenge

for future research.
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