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ABSTRACT

The consumption based asset pricing model predicts that excess

yields are determined in a fairly simple way by the market's degree of

relative risk aversion and by the pattern of covariances between per

capita consumption growth and asset returns. Estimation and testing

is complicated by the fact that the model's predictions relate to the

instantaneous flow of consumption and point—in—time asset values, but

only data on the integral or unit average of the consumption flow is

available. In our paper, we show how to estimate the parameters of

interest consistently from the available data by maximum likelihood.

We estimate the market's degree of relative risk aversion and the

instantaneous covariances of asset yields and consumption using six

different data sets. We also test the model's overidentifying

restrictions.
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I. JrodLtction
In this paper, we provide an empirical test of the continuous

time intertemporal capital asset pricing model, first proposed

by Merton[1971]. The model as clarified by Breederi[1979] implies

that an asset will be priced so that the expected return required

will increase with its covariability with per capita consumption

growth. Previous tests of this theory (e.g. Grossman—ShillerEl9BOJ,

Harsen—SincUetorE19833) have examined discrete time versions

a-F the model under the assumption that the timing interval of

the model matches exactly the sampling interval for available
data on per capita consumption. That is, if we have data on

quarter1 y consumpt i on, then the time period is assumed to be

1—quarter of a year. We show that if the true model is a continuous

time model, and time averaged data (such as quarterly consumption)

is used to test it, then substantial biases may be introduced

unless the estimation procedure is corrected to take account
of the effects of time averaging. We provide a procedure for

obtainiri consistent estimates with time averaged data. We

then estimate and test the model using data on per capita
consumption and the cumulated real returns to holding portfolios
o-f stocks, bonds, and short—term paper.

II The Model

It is useful to review the Merton model. Our discussion

follows closely the exposition of its generalization in

Grossman—Shiller[1982J. In a discrete time model, each consumer

is assumed to maximize a time—additive utility function over

a single consumption good
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(2.1) U
.j =0

where T is his time horizon. c(t) is consumption at time t and

is the discount •factor between utility at time t arid t+h.

For the purposes of this paper, we assume that the period utility

functior, is o-f the constant relative risk aversion (or isoelastic)

-f or ir

(2.2> Lt(C) c'/(1—Pi)
Let v (t) denote the value o-f asset i at time t including

any accrued cash disbursements (such as dividends or coupons)

earned between t—h and t. Assume that asset i is freely tradeable.

A standard argument shows that

(2.3) Etu' (c (t+h> )v (t+h) = u Cc (t) )v1 Ct)

where the expectation is conditioned on all the information

possessed by the trader at time t. Using (2.2> arid iterating

(2.3) , we can write

(2.4> Et(c(7)) vi(T) = (l)t for 7 = t+h.t+2h,...
c(t) v(t)

I-f we take the limit to continuous time and apply Ito's Lemma,

we obtain

(2.5) Etdv1 + 1*A(A+1)*Var(dc) — A*Etdc + lndt
2 c c

= A*Cov(dc,dv)
c v

where Var and Coy denote the variance and covariance operators.

Note that (2.5) holds for an individual. Under various

assumptions about heterogeneity of information and wealth. (2.5)



can be aqregated over individuals so that c can be interpreted

as per capita cortsumption and A is replaced by a particular

weighted averaqe of the individual consumer's A (see

Grossmart—ShillerEl982)). Clearly (2.5) holds for all tradeable

assets. If is defined as the excess rate of return of asset

i over say short—term paper, then (2.5) can be used for these

two assets to yield

(2.6) ER A*Cov(R,dc/c)

The aggregate parameter of relative r i sk aversi or, can be

computed by (2.6) given data or mean excess returns and the

covariances between excess returns and per capita consumption

growth. Table I provides some estimates of A based on the

descriptive statistics from Table 7. The various data sets

and variable definitions are described more fully in Section

III. At this point, we simply wish to draw attention to one

of the important empirical anomalies associated with the model

and the potential role for- time averaging as an explanation.

The table shows that the mean excess return on stocks is associated

with a relatively small covariance with consumption changes.

Therefore this can be justified only by an implausibly high

estimate of the risk aversion parameter. Similiar conclusions

are reached by examining the excess returns on bonds.

One explanation for this is based on the idea that a time

averaged variable is smoother than the same point sampled variable.

In particular, if the true model holds in continuous time then

the instantaneous rates of change in consumption can be more
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var-iahi e (and also covari able with returns) than is the averaue

consumption chariqe across years or quarters.

Art emp1e

To understand this e-ffect, consider the following very

simple process for v, the value of asset i in excess of asset

1, and consumption:

(2.7a) dc = pdt + d€

(2..7b) dv = J1dt + d'ri
where are correlated Brownian motions with Cov(d€,d)Thdt.

Let E(t) and (t) be the time averaged values of c(t) and

v(t) ,i.e..,

E(t) = T1j c(t+s)ds = T'f v(t+s)ds -

We will show that

(2.8> Cov(E,) EE(E(t)—E(t—T))((t)—(t—T))] — pT.LT
— —, i'"r— _l._)I O••

If we normalize T=1, then the covariance of time averaged

consurnptions changes and price changes is 2/3 of the instantaneous

value o Roughly speaking, this would lead us to overestimate

A by

To understand (2.8) just note that

(2.9) E(t) — E(t—T) = pds + T'14_T d€(7)ds
= pT + T1f4+ST dE(7)ds

+ T1f45 dE(7)ds

= pT + T'ft_T (T—t+s)d€(s)

+ Tl4±T (t+T_s)d(s)
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A similiar expression may be derived for (t)—(t—T). Hence,

(2.10> E[(E(t)—E(t—T))((t)—(t—-T))]

=pTu1T + T2E[4_T(T—t+s>2d€d +

Equation (2.8) is easily derived from the last expression.

The purpose of this example is to give the reader a relatively

simple view of the effect of time averaging in generatinq a

stochastic process which is " smoother" than the instantaneous

process. This suggests the possibility that assets appear to
have a low risk (i.e. low covariaruce with consumption changes)

because measured consumption changes are less van able than

instantaneous consumpti on changes. Since it i s the coven ance

with instantaneous consumption changes that is the relevant

measure of an assets risk, this leads us to overestimate A.
In our simple example, A is overestimated by SOY.. As we shall

see below, for certain processes, the bias can be arbitrarily
large.

Multivariate Model

In our empirical work, we postulate a slightly more complicated
stochastic process for consumption and asset values. Define

Y(t) according to

in c(t) — kc — gt — C(t)
1

(2.11) Y(t) = in v1 (t) k1 — g1t = V1 (t)
In v(t) — k, — g.t V9(t)
In v-.(t) — k3 — gt V-.(t)

We assume that Y(t) satisfies the stochastic differential

equation

(2.12) dY = BYdt + Eh/'2dZ
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where B and 2.. are (4x4) matrices and Z(t) is a vector o-f standard

independent Wiener processes. is assumed to be symmetric

and positive definite. Without any loss of Qenerality,

can be taken to be I ower tn anqul ar with positive diagonal

elements. Let a denote the vector of nontrivial parameters

—'4 1,—sin

Switching to logarithms and applying Ito's Lemma we can

rewrite (2.5) in terms of the V(t) process as

(2.13) EEdVj(t) — *dC(t)) + — *g + lnS)dt

+ 1/2*P2*Var(dC) — *Cov(dC.dV) + 1/2*Var(dV) = 0.

If this is to hold at all points in time in m.s.. then

(2.14) EtEdV(t) — *dC(t)) = C).

The reason is that, according to our assumptions, the remaining

terms in the expression are not functions of information. Since

the model is homogeneous, the only way this sum can be constant

is if it is zero.

Therefore (2.5) imposes the following restrictions on our

nodel

(2.lSa) J1B = 0

(2.15b) — + 1/2*J1L3 + lru = 0 i=1,2,3

where e) and is the vector with unity in component

i and zero elsewhere.

Suppose that the process Y(t) is sampled at regular intervals.

It is straightforward (see BergstromEl984)) to show that the

point sampled process has the representation

(2.16) Y(t) = ØY(t—1) + u(t)
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where = eB, the matrix exponential of B, and u(t) is the random

variable 4_ et5l2dZs. Let 7(t) denote the time average

of the Y(t) process, i.e. V(t)=4_1 Y(s)ds. Upon integrating

both sides of (2.16) we obtain

(2.17) 7(t) = ØV(t—1) + (t)

where (t) is the random variable 4_1x_1 eB)dZs>dl.
Let + and q denote two 'smooth" real—valued functions and

(s) a univariate Wiener process. Using the definition of the

Ito integral, the following two results can be established:

(2.18) f f(t)Ef g(s)d(s))dt = JE4f(t)dt](s)d(s)
(2.19) ECftf(s)d(s)]Efq(7)d(7)J = Jf(s)g(s)ds

where M Et1,t2]fl[t-.,t4J

and where the equality is understood in the mean square sense.

Applying (2.18) element by element and other standard properties

of the Ito integral allow us to write

(2.20) [(t) = 4:4' e d'rdZ(s + il-.iil ed7dZs.
Define E (t)(t—'r) and F(r,w) eB'ZeB'W. Applying (2.19)

and standard change of variable rules, we obtain
(2.21a) fl() 444 F(r,w)drdwds + fJJ F(r,w)drdwds
(2.21b) = x4i F(r,w)drdwds
(2.21c) = 0 'r2.

We conclude that '7(t) is a vector ARFIA(1,1) process. PhillipsEl97B]

and BergstromCl984] develop similiar results although the latter

only considers the case where B is invertible. We can therefore

write

(2.22) 7t = ?(t—1) + €(t) + E€(t—1)
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where the innovations €(t) have mean zero and covariance matrix

S. and e is a matrix with spectral radius not exceedinq unity.

Define y(t) (In c(t) in v1(t) in v2(t) in v.(t))'.

and let t) be its unit averaQe. Eq (2.22) can be rewritten

(2.23) (t) = + + s(t—1) + €(t) + $€(t—1)

where = (IS)k+Øq. '( = (I—ø)g, and t = (t+s)ds. The

restrictions (2.15) are easily shown to imply 3i1 = J(I—ø)
= 0. In particular, it also follows that the vector k cannot

be identified uniquely. Je therefore impose the identification

restriction k1 = A*kc in our estimation. tedious arqument

also shows that

(2.24) (J—J) ((t)—(t—1)) = 3i3jO + (J—J)€(t)

+

so that the time averaaed excess returns on asset i over j follows

an M(1) process with coefficient .268.

To gain further intuition about the possible consequences

of time averaqing suppose B = diag()1,?2,?,X4). Then it can

be shown that �:>(,j) = h(,2)Z(i,i) , where

= ()E1 + — 2*(?+7)(1_eM3>
+ (1 + e>(1 — + (1 + e)(1 — e)/X)

and equal to the obvious limits as or X goes to 0. Our

simple example corresponds to the case h(0,0) = 2/3. If the

process were stationary around trend, the elgenvalues of B would

have negative real parts. Sampling a few values, we see that

h(—. 1,—. 1) = .60, h(—.5,—.5) = .45, h(—1,—1) = .28, and h goes
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to zero as arid both go to minus infinity. The bias in
the estimate of A using time averaged data and (2.5) car therefore
be arbitrarily larqei

III DATA ANALYSIS

Data Description

The data are fully described in an appendix to this paper

which is available from the authors. Here we shall give only

a broad description of the data to indicate how they were assembled

and to show that they correspond as much as possible to the

concepts represented in the model above.

Six separate data sets were prepared, each intended to

represent a series of observations on the four—element vector

. The data sets differ in sample period, sources and assumptions

about taxation. Table 2 summarizes the important differences.

Data sets ore and two are long historical annual time series

beginning in the year l89O These data sets are based on those

used in Grossman and Shiller[1981] and described also in

ShillerEl9B2J Data sets three through six are quarterly time

series. Data sets three an.d four begin in the second quarter

of 1953. Data sets five and six begin in the second quarter

of 1947. The use of annual and quarterly time series was dictated

more relevant comparison might be the ratio of A that would
be obtained using time averaged data to that using point sampled
data. Although details differ, it is easily shown that this
ratio also can be arbitrarily large.
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by the existinQ consumption data. Long time series data or

consLtmption are available only on an annual basis. Quarterly

consumption data are available only for the post—war period.

Monthly consumption data are available startinQ in l99. We

did not use those data here because of some concern as to the

accuracy of the monthly data and because of the somewhat shorter

sample period that such data would impose.

In all data sets, the first element o-f 9 is the log of

real per capita seasonally—adjusted consumption on nondurables

and services. For years beginning with 1929 these data are

from the National Income and Product Accounts of the United

States. Earlier data are the Kuznets—Kendrick series. Since

the published consumption series are total consumption over

the period, the first element of 9 departs somewhat from that

hypothesized in the paper: it is the log of the integral rather

than the integral of the 1og Note that we use a physical

measure of consumption directly and do not deflate nominal

consumption by a price index that is averaged over the year,

which would have introduced another departure from the assumptions

of our model.

In all data sets the second element of 9 is a measure of

the interval averaged log cumulated real return on corporate

stocks, the third element is a measure of the interval averaged

log cumulated real return on short debt and the fourth element

Some Monte Carlo simulations indicate that the biases introduced
by using the log of the average instead of the average of the
log are extremely small, at least for our data
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i s a measure of the interval averaged log cumul ated real return

or long—term bonds. The even—numbered data sets are based on

after—tax returns. In constructing these series, the (after—tax
in even—numbered cases) nominal returns were first computed

on a monthly basis. At that point, a choice had to be made
whether to use the consumption deflator to convert nominal returns
to real returns or to use one of the monthly price indices for
this purpose. The consumption deflator has the advantace that

it corresponds to the measure of consumption that is supposed

to enter the utility function. The monthly price indices have
the advantage that we can use them to produce a monthly real

series, so that our interval average will correspond more closely

to the integral of the log of the real portfolio value as
represented in our model. It was decided to use the consumption

deflator for data sets one through four and the monthly consumer

price index for data sets five and six. ThUS, for example,

the second through fourth elements o-f the vector in data

set two were constructed by first producing monthly series
representing the cumulated after—tax nominal returns of the

assets. Each series represented the nominal value of the portfolio
of an individual who reinvests all after—tax income from the

asset in the same asset.- The average for the year of the log

of the monthly portfolio values was used to construct an annual

series. Finally, the log of the consumption deflator was subtracted

Let (l+rjm) denote the monthly after—tax nominal return on asset
i, and let ViL denote the cumulated after—tax return in month L.
We set VIL = (l+rj)(l+r2)"(1+rL).
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from each series to convert to a real series. With data set

five, the first step in the construction of the second through

fourth elements of was essentially the same. We first produced

a monthly series of cumulated returns of the assets. However,

jr data set five, this monthly series was subsequently deflated

by dividing by the consumer price index, and a quarterly series

was produced as the average for the three months of the quarter

o-f the ion o-F this monthly real series.

With data sets five and six another adjustment was also

made before the average log cumulated real portfolio value was

entered into the vector . In constructing the series, there
was great concern that the data be aligned properly. The
Ibbotson—Sinquefiel d returns data for each month are measured

from the end of the preceding month to the end of the current

month. This provides four point sampled observations on the

log cumulated real portfolio for each quarter. These were connected

by straight lines and the integral under the straight line

interpolation was used to estimate the corresponding component

of .
For data sets one and two, the return on corporate stocks

is computed from the Standard and Poors Composite Stock Price

Index and associated dividend series. The return on short—term

debt is computed from the prime commercial paper rate and the

reEurn on long—term debt is computed using the Macaulay railroad

bond yield data for the first part of the sample and the Moody

Aaa bond yield average for the years after l93.
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For data sets three and four, all return data come from

series on the CITIESE data library. Stock returns are aqain

computed usinq the monthly Standard and Poor's Composite Stock

Price Index, while the return on short debt is taken from the
return on three—month treasury bills and the return on long

debt is based on yields of twenty—year treasury notes.

For data sets five and six, return data come from Ibbotson

and Sinquefieid[1982]. The stock return series is their series
common stocks, total returns; the short debt series is their
series U.S. Treasury bills, total returns the lona debt return

series is their series loriq—term corporate bonds, total returns.
For after—tax series, the assumed marginal income tax rate

for 1918 to 1980 was that implicit in the spread between municipal

and corporate bond yields.. Before 1918, the marginal income

tax rate was set to zero. Since the Ibbotson and Sinquefield

data do not allow a decomposition of returns into capital gains

and income components, it was assumed for data set six that

all returns were taxed each month as income. For data sets

two and four, however, capital gains were assumed taxed each

month at a long—term capital gains rate. For the years l94
to 1978, the effective rate on long—term capital gains was one—half

the marginal income tax rate. For earlier years, the effective
rate on long—term capital gains was computed from the marginal

income tax rate using tax rate data in Seltzer[l951J.
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Frel iminarie

Be-fore considering formal estimation and testing, it is

useful to review some of the broad features o-f the six data

sets which our model must eXplain. Some descriptive statistics

are provided in Table 3.

For all six data sets, we observe that stock portfolios

gave the highest average real return, approximately 6 p.8. on

a pre—tax basis or 47. a-fter—tax. Short—term paper viel ds averaged

about 27. p.a. on a pre—tax basis over our longest historical
sample, but. the average yield fell to about zero in the post-
war period. After—tax real returns to holding short—term paper

have beers slightly negative. Long—term bonds, by contrast,
have averaged essentially a zero real return over the last century,

on both a pre— and after—tax basis. During the post—war period,

however, pre—tax returns have been slightly negative. On an
after—tax basis • bondhol ders have seen the real value of their

portfolios shrink by over 27. p.a.

According to the consumption based asset pricing model,

these persistent differences in average yields must be accounted

for by the insurance provided by the different portfolios against

events which impinge adversely on consumption. Useful evidence

about this hypothesis is obtained by looking at the covariance

structure of measured portfolio yields and changes in consumption.

Some caution is necessary since the model 's predictions pertain

to the covari ance structure of the instantaneous returns and
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our data are constructed from di-ffererices of unit averaged values.

However, if BQ. the latter can provide a reliable guide to

the sign and order of magnitude of the instantaneous covariance

matrix.

Several empirical regularities emerge. As measured by

the variance, the change in consumption is the smoothest series,

followed closely by the yield on short—term paper. Long—term

bond yields have been fairly stable over our longest sample,

whereas the variance of returns to holding a portf ol i o of stocks
has been several orders of magnitude larger. In the post—war
period, real returns to holding long—term bonds have been much

more volatile with a variance almost as large as the return

to holding common stocks.

Of more interest are the covariarce properties. According

to our model, it is not the variance but the covariance with

consumption that is the relevant measure of a portfolio's risk.

We find, uniformly across the six data sets, that stock yields

have the largest covariance with changes in consumption, followed

by short—term paper yields and then yields on long—term bonds.

£ualitatively, this is exactly what the model requires given

the ordering of the average yields. It indicates that the basic

idea that insurance against adverse movements in consumption

can account for observed yield differentials has some empirical

promi se.

Evidence of potential difficulties is provided by the

autocovariance structure of excess returns on bonds and stocks
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over short—term paper. Given our assumptions about the

probabilistic structure o-f consumption arid portfolio values

arid the -form o-f preferences, we expect the point sampled difference

in vi ci ds between any two portfol ios to he serially uncorrel ated.

As equation (2.24) shows, the time averaged difference in yields
shoul d have an MA ( 1) component with coefficient about .268.

This particular prediction is independent of the mean or covariance

of returns or the deree of relative risk aversion.

Table 3 shows that it is important to take into account

the consequences, of time averaging. The Box—Ljung statistics

clearly indicate that the excess yields that are constructed

from our data are not white noise. The adjusted excess returns

referred to in Table 3 are filtered to remove the time dependence

that is induced by unit averaging. Judging from the Box—Ljung

statistics, the adjusted excess returns are indeed less serially

correlated . Nonetheless, the autocorrelations of the adjusted

excess returns to stocks remain statistically significant from

zero in four of the six data sets.

Some Econometric Issues

It is demonstrated above that the vector of time averaged

observations has a representation of the form
(3.1) (t) = Y0(u) + + Ø(c)(t—l) + €(t) + $()€(t—l)
where the disturbances €(t) are distributed independently

and identically as MVN(O,S(o)). In our application, we can
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set ,a) , where B1 denotes the first row of

the B matrix.

Linear Gaussian processes have been studied extensively

by econornetricians arid statisticians. Nonetheless, there are

several features of our model which put it outside of the standard

assumptions in the literature used to prove laws of large numbers
or central limit theorems. First, the model contains a time
trend so that sample autocovariances of the exogenous variabLes,

i.e. T1LXtXt_ where X. = (1 t), do riot converge to well

defined limits. Secondly, the model imposes restrictions not

only across the autoregressive and moving average matrices,
but across these and the contemporaneous covariance matrix as

well. Finally, our model imposes the restriction that B be

of rank one, so that Ø() will have three eiaenvalues on the

unit circle. To our knowledge, there are no laws of large numbers

or central limit theorems that cover all three of these features.

Application of the standard large sample procedures to estimate

and test our model must be considered tentative.

Although all the features of our model have not been treated

together in the literature, we can use available results to

form a reasonable guess about the sampling properties of the

approximate (conditional) maximum likelihood estimator described

below. For example, it appears that a law of large numbers

which would allow for all three of the features noted above

would be a modest extension of the literature. Hannan et al. El980]
provide a law of large numbers for vector ARMAX models allowing
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for very general restrictions and, in particular, dependence

across the covari ance matrix of innovati oris and the other parameters

of the model. Their assumptions about the error process are

clearly satisfied by our model, but they rule out time trends

as regressors and require all roots of the autoregressive polynomial

to be outside the unit circle. In the absence of complicated

restrictions or unit roots, the assumption that sample covariances

convergE to well defined limits can be replaced by the weaker

Grenander conditions (see HannanEl97l J) which do allow for time

trends as regressors. Similarly, in the absence of time trends

and other restrictions, strong laws of large numbers can be

established even i-f the autoregressive process is explosive.

Individually, therefore, each o-f the three features of the model

highlighted above is not an impediment to establishing a law

o-f large numbers.

It is well known that unrestricted estimates o-f 0 will
not be asymptotically normal if there are unit roots in the

autoregressive polynomial. A case for a central limit theorem

can be made only if the estimation procedure exploits the prior

knowledge o-f the structure of 0. Our restrictions imply that
is a co—integrated process (see Granger—Engletl9B2J>. These

processes have had a long history in applied empirical research

under the name of "error—correction" models. However, only

recently has there been any serious investigation o-f the sampling

properties of the MLE or its approxirnants. Available theorems

do not allow for a time trend or moving average terms but these
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complications do not appear to present any conceptual difficulties.

The main result is that the inteqrating factor4 is estimated
consistently by ML with a sampling error that is o(T'2).
The ML estimators for the remaininq parameters are consistent

and asymptotically normal with a covariance matrix that is estimated

consistently by the usual formula. In our model, the integrating

-factor is just B1. , appropriately scaled. Since we are never

concerned with testing restrictions on the components of B1

the rapid convergence of the estimated integrating factor does

not appear to present a problem.

We will proceed formally as if the standard large sample

procedures for in-fererice are valid under the maintained hypothesis

that B is of rank one. s the preceding di scussi on makes

clear, however, some scepticism is in order.

Estimation Strategy

Several strategies for the estimation of models with M

errors have been proposed.5 In the time domain, it is natural

to consider the maximum likelihood estimator, or one of its

various approximants.

Put e(l)O and -For any admissable o define e(t)

recursively according to

4A nonstochastic vector c such that c't is stationary is called
an integrating factor. In our application, it is any normalized
basis vector for the row space o-f 1—0.

See Osborne (1977) for a survey of the unconstrained case.
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(3.2) e(t) = (t) — iç)(LY.) — — Ø(i(t—1) — E(c.)e(t—l).

Following Wilson (1973), we choose as our estimator

the adrnissable vector which maximizes the approximate

(conditional) ion likelihood function

L(c) (T—i) lnIS(cv)j — 1 tr S(cM

T
where M L e(t)e(t)'.

t=2

Since 0 bets unit roots, we have little choice but to condition

on the first observation (1).. The assumption that e(l)0.

by contrast, is made solely out of convenience. If B=0, the

spectral radius of E) is about .268, so the sampling distribution
o-F will not be very sensitive to this assumption about

the initial innovation. Putting e(1)=0 does simplify the

computations somewhat. In particular, analytic derivatives

can be easily and quickly computed using the method of adjoints

and a straightforward application of the chain rule..

Several features of La('.) make the evaluation of
cl.a

challenging.. As with any model with MA errors, it is not possible

to reduce the data through sufficient statistics and we have

to deal with a likelihood function that is not guaranteed to

be globally concave. Our model poses several difficulties in
addition to these standard ones. For example, it is not possible

to concentrate out the covariance matrix, since S is functionally

related to the regression parameters of (3.1). Also, some effort

is required to evaluate (Ø(.>,S(.),$(ci). Details are provided
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in MelinoEl985J, so we will give only a brief overview here.

Define the matrices

—B 1 0 0 F 6 H K(3.4) C 0 —B L ol e 0 F.-)GH-,
o o o i 0 0 F- G—

L ) C) B J C) C) C)
— F -

Put C = —C and denote the blocks of eC by ' etc. it can

be shown that

(3.5) = F4K1 + KjF4 — K11 —

= H163 + K1F1 + F1Kj.
It is also useful to note that 0 F4 Although the expressions

appear to be unappetiinq, they are straightforward to implement

given an algorithm for computing the matrix exponential. We

used a routine based on a diagonal Fade approximation that has

very nice numerical properties.6

Solving for (S.E3) given turned out to be much easier

than conjectured by Bergstromtl9B4j. WilsonEl972J provides

a general algorithm for factoring the autocovariance function

of a multivariate MA process. We adapted his suggestion to

our special case and applied Newtons method to find the matrix

E with spectral radius no greater than unity which is a root

of the polynomial

(3.7) 0 + (ft1e = 0.

Given an initial guess, E3(0), this leads to the iterative

scheme

6We would like to thank Dr. R.C. Ward of the Union Carbide Laboratory
in Oak Ridge for kindly providing us with this code.
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(.8) (fl+l)[fl>_ç1*- (n)] — E(n)fl1E3'(n+1> = n)fl1E3' (ri>.

This scheme exhibits quadratic convergence and turns out to

be quite fast. On average, less than three iterations were
required to find E3 given (fl-).fl1). In fact, we found that this
scheme rarely required more than 5 iterations. Siven E, it
is straightforward to solve for S Using S — -

Evaluation of La(cY.) and its analytic derivatives is fairly

quick and easy. The main difficulty in computing ca turned
out to be the extraordinary large number of iterations required

to refine its location.

Par ameter Esti mates

Table 4 presents the estimated parameters o-f the constrained

model for each o-f the the six data sets.7 The estimates obtained

using be-fore— and our constructed after—tax yields are remarkably

sirniliar, but there are considerable differences in the estimates

across the three different sample periods.

Consider first the estimates of L, the covariarce matrix

of the instantaneous innovations. Once again, correlations

are displayed above the diagonal, and the lower triangular elements

are covariances. The estimates of from the quarterly data

sets are all similiar. However, there are some sharp contrasts

7Estimates were obtained using the GQOPT3 package provided by
Professor Ouandt o-f Princeton University. Various algorithms
were required to refine the location of The reported standard
errors, however, are always calculated by inverting the matrix
o-f second derivatives evaluated at the optimum. The Hessian
was computed using symmetrical numerical differences of analytic
-first derivatives.
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with the estimates from the annual samples which cast doubt

on our assumption that L has been constant over time. Consumption

innovations appear to have had a much smaller variance in the

post—war period, as have had the innovations to the value of

short—term paper. By contrast, the innovations to stock market

Values have been slightly smoother, and those for long—term

bonds are roughly comparable. The covariances of the innovations

to portfolio values with consumpti on have the same ranki rig in

all six data sets, but they are much smaller in thepost—war

period.

ll six data sets yield small estimates o-f B1. , the first
row o-F the B matrix. This indicates that the change in consumption

has only a very small predictable component, aside from trend.

The trend in consumption is estimated to be about 3% p.a. using
the two long historical samples, about 2.5% using data sets

three and four, and about 1.6% pa. using data sets five and
six. The corresponding point estimates for indicate,

respectively, a substantial preference for present consumption,

a substantial preference for future consumption, and indifference.

These apparent differences can't be taken too seriously since

the estimated standard errors indicate substantial uncertainty.

The differences in the estimated parameters o-f relative
risk aversion are extremely interesting. Using our two longest

historical samples, we obtain estimates of A of just over 20.

This is too large to be plausible. Nonetheless, as anticipated,
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accountinc -for unit averaQiriq of consumption results in a

substantial reduction.8
Data sets -five and six produce a very plausible estimate

of A of just over 2. Ey contrast, data sets three and four

produce an estimate of A over 150! The difference of the parameter

estimates obtained using these very simiuiar post—war quarterly

data sets is very large, and some clarification is in order.

The estimates of A presented in Table 1 are derived from

restrictions which relate the unconditional means to the covariances

of consumption changes and portfolio returns. However, the
model provides us with further sources of information about

A.. Equation (2.14) tells us that the predictable change in

the value o-f any portfolio is equal to a multiple of the predictable

change in consumption, up to a constant. Since the multiple

is just the parameter of relative risk aversion, this gives

us another estimate a-f A based on the conditional information

in the sample. The maximum likelihood estimator is usefully
viewed as suitably pooling the disparate estimates based on

conditional and unconditional information..

It turned out that the predictable change in consumption

around its mean using the lagged information in data sets 1—4

was essentially zero. As a result, the maximum likelihood estimate

of A closely reflects the estimates in Table 1 adjusted for

unit averaging.. In data sets 5 and 6, however, the predictable

8For data set 1, we also estimated the model as if the data was
actually point sampled. tie obtained an estimate A = 27.24,
with a standard error of about 11.2.
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chariqe in consumption about its mean, while still small, was

larqe enouqh to provide a fairly accurate estimate of . The

maximum likelihood estimate reported for these data sets reflects

the conditional irforrratior in the sample.9

Our model imposes restrictions or the time averaged

representation of . In turn, the time averaged representation

imposes additional structure on the parameters of the ARM(1,1)

representation. Table 5 contains the lo likelihoods, denoted

L1, L,, arid L- respectively, for the fully restricted time averaged

estimates (Model 1) , the unconstrained time averaged estimates

(Model 2), and the unconstrained ARMA(1,1> estimates (Model 3).

For the reasons discussed above, Models 2 and 3 were estimated

under the maintained hypothesis that B is of rank one and 0

is the sum of the identity and a rank one matrix. For completeness,

the log likelihoods for the totally unconstrained time averaged

and ARM(1,1) models, L and L respectively, are also reported.

The tests of the overidentifying restrictions imposed by

the model are rejected with very high confidence when compared

against either Model 2 or Model 3. Curiously, data sets three

and four which produced the least plausible parameter estimates,

9lmposing only the restrictions implied by (2.14), we obtained
for the six data sets:

A = 663.54 949.86 439.67 983.73 2.07 2.60
(s.e. ) (370.56) (370.56) ( * ) ( * ) (0.92) (1.21)

Because the Hessian was singular, we are unable to provide standard
errors for the estimates from data sets three and four.

Hansen—Singleton[1983] also report a very sharp difference
in the estimate of A depending upon whether or not conditioning
information is used. (See their Table 5)



26

provide the weakest evi. derce against the oven deriti fyi nq

restrictions. Finally a comparison of L2 and L- indicates
that there is some di-fficulty in accounting for the autocovariances
o-f by time averaqing a first order process.

Why is the model rejected?

There are strona a priori reasons for linking consumption
and portfolio choices. Moreover, the sample means and cova—

riances of portfolio yields and changes in consumption lend

quaiitatve support to the notion of assets being priced in

accordance with the insurance they afford against adverse movements

in consumptort. Yet the various goodness of fit tests reported

above as well as the implausibly high estimates of relative

risk aversion from data sets one through four appear to constitute

an overwhelming rejection of the model. What should we conclude?

A response that cannot be dismissed is that the assumed

distribution of the goodness o-f fit tests is simply misleading.

As we noted above, we cannot rely on the standard central limit

theorems to establish the asymptotic distribution. Moreover,

even if the large sample results obtain, as we conjecture, there

is no guarantee that the asymptotic distribution provides a

close approximation for samples of the size we have examined.

Unfortunately, establishing the small sample distribution either

analytically or by Monte Carlo methods is infeasible. We choose
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to take the evidence against the model seriously and to focus

attention on the specific sources of predictive failure.

One is naturally led to examine more closely the various

auxiliary assumptions that are being tested joi riti y alongside
the hypothesis that agents behave as described by (2.3). The

two most obvious are the stochastic process assumed to descri be

the evolution o-f consumption and portfolio values and the specific
form o-f pr€ferences. We will concentrat.e on the former.

The stochastic differential equation (2.12) imposes many

overidentifying restrictions. One o-f them is that the time

averaged vector has an RMA(pq) representation with pq=1.

To test this, the autoc:orrelatioris of the prediction errors
from Model 3 were calculated. Box—Liung tests did not indicate

any need for considering a higher order process.

lthoucih the evidence suggests that an ARMA(1,1) representation

for ' is a reasonable approximation, there are problems in accepting

the restrictions that time averaging a first—order process imposes

on this representation. Fhillips(1978) shows that if BO then

ØI+B and E3.26B(I+(B—XBZ1)/4). Our unconstrained F<MPi(1 , 1)

estimates of suggest that B is indeed small. There is little

difficulty in accepting the restrictions which a small B matrix

and time averaging impose on . However, this combination imposes

a great deal o-f structure on E3 which is at odds with the data.

Fr all six data sets, we found that both the constrained and

unconstrained time averaged models produced estimates of E3.2681.

The unconstrained ARMc(1,1) estimates of E3 differed from .2681
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in LE-veral respects. The most noticeable discrepancy was that

the unrestricted estimate of the row of the moving averaqe matrix

pErtainin to the consumpton equation was essentially zero.

in all six dat.a sets. In fact, in data sets 1—2 and 5—6, the

MA coef-ficierit for the innovation in consumption was more than

two standard deviations below .268. Failure to explain the

MA component o-F consumption in arid of itself would lead to rejecti on
of the model at the 5/. level for these data sets.

One possible explanation for the apparent absence of a

moving average component in the consumption equation is measurement

error. Suppose the unit average o-f consumption is measured

with an error that is serially uncorrelated and independent

of the true consumption process. I-f the flow-of consumption

is truly a random walk, the measured consumption series will

be an ARMA(1.1) process but with an MA coe-f-ficiènt less than

.268. If one half of the variance of the change in measured

consumption is due to measurement error, the MA coefficient

would be predicted to fall to just .127.

As pointed out earlier, our model predicts that the excess
returns of stocks and bonds over the yield on short—term paper

should be unpredictable. The time averaged excess returns should

therefore have an MA(1) structure with a coefficient of about

.268. These overidentifying predictions can be tested regardless

of the quality of the consumption data by simply regressing
the adjusted excess returns on various information sets. Moreover,

there is no problem in justifying the standard procedures to
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test these orthoqonality restrictions. The results ar-c reported
in Table 6. The likelihood ratio test statisticq X, and the

R -for each of the i nudi vi dual rearessi ons is also reported.

The individual F are remarkably hih and the orthoqonality
restrictions are rejected with very high confidence. Since
yield data that are point sampled are readily available, we
also tested these restrictions using the monthly point sampled

yields corresponding to data sets 1—6. Because a monthly price
index was not available for our longest samples, we used the
log cumulated nominal returns, vt. in the information set.
These results are reported in the lower half of Table 6. Although
the individual R2 are much lower, as we would expect, the rejection

a-f the orthogonality restrictions is even more pronounced.
These results are very similiar to those reported in Hansen

and Sinaleton[1983J.

One explanation for this predictive failure is simply that

the covariance matrix c-f the instantaneous innovations is not

constant but is state dependent. This seems extremely plausible
and could also account for the noted differences in the estimates

of Z -from different sample periods. However, taking account

c-f state dependent variances would make estimation and testing

o-f the model practically impossible. Because our model imposes

restrictions across the drift and diffusion parameters, making

the latter state dependent would force us to abandon the linear

constant coefficient model of the drift as well. We would be

led to the more general stochastic process that solves
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(3.9) dy = B(t,y)dt + 1(t,y)dZ.
The restrictions across the drift and diffusion effectively

rule out any 0+ the convenient functional forms -for B() arid

and the solution of the likelihood for even the point

sampled process is difficult to implement. Computing the likelihood

-function for the unit averaged process that solves (3.9) seems

unimaginable, with current technology.

IV Conclusions

The notion of insurance against events which impinge unfavourably

on consumption choices can be used to rationalize, at least

qualitatively, the systematic differences in average yields

a-fforded by portfolios of stocks, bonds, and short—term paper.

The sample means and covariances of portfolio returns and per

capita consumption growth indicate that the quantitative dif-ferences

in averace yields can be rationalized only by implausibly high

aversion to risk. Taking account of the fact that measured

consumption is unit averaged substantially reduces the degree

of relative risk aversion required to rationalize the data.

Nonetheless, there remains considerable evidence that

casts doubt on this view o-F the world. In particular, it is

difficult to reconcile the importance of unit averaging of the

consumption flow with the fact that the measured logarithm of

detrended real per capita consumption has essentially no moving

average component. lso, although the model allows the average
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return on different portfolios to diverge due to different insurance

characteristics, the particular specification that we examined

requires that expected excess returns should be time invariant.

This orthogoriality property is forcefully rejected by the data.

Addressing these particular predictive failures while taking

account of unit averaging constitutes a formidable challenge

for future research.
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