
NBER WORKING PAPER SERIES

ESTIMATING THE MARKET-PERCEIVED MONETARY POLICY RULE

James D. Hamilton
Seth Pruitt

Scott Borger

Working Paper 16412
http://www.nber.org/papers/w16412

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
September 2010

We thank Michele Cavallo, Steve Davis, Joseph Gruber, John Leahy, Elmar Mertens, Ricardo Nunes,
Robert Vigfusson, anonymous referees, and participants of the International Finance Workshop, Midwest
Macro Meetings 2009, North American Econometric Society Meetings 2009, and NBER Monetary
Group Fall 2009 Meeting for helpful comments, and Michael Reynolds for research assistance. The
views in this paper are solely the responsibility of the authors and should not be interpreted as reflecting
the views of the Board of Governors of the Federal Reserve System, any other person associated with
the Federal Reserve System, or the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-
reviewed or been subject to the review by the NBER Board of Directors that accompanies official
NBER publications.

© 2010 by James D. Hamilton, Seth Pruitt, and Scott Borger. All rights reserved. Short sections of
text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit,
including © notice, is given to the source.



Estimating the Market-Perceived Monetary Policy Rule
James D. Hamilton, Seth Pruitt, and Scott Borger
NBER Working Paper No. 16412
September 2010
JEL No. E44,E52

ABSTRACT

We introduce a novel method for estimating a monetary policy rule using macroeconomic news. We
estimate directly the policy rule agents use to form their expectations by linking news' effects on forecasts
of both economic conditions and monetary policy. Evidence between 1994 and 2007 indicates that
the market-perceived Federal Reserve policy rule changed: the output response vanished, and the inflation
response path became more gradual but larger in long-run magnitude. These response coefficient estimates
are robust to measurement and theoretical issues with both potential output and the inflation target.

James D. Hamilton
Department of Economics, 0508
University of California, San Diego
9500 Gilman Drive
La Jolla, CA 92093-0508
and NBER
jhamilton@ucsd.edu

Seth Pruitt
Federal Reserve Board
20th St & Constitution Ave NW
Washington, DC 20551
seth.j.pruitt@frb.gov

Scott Borger
Office of Immigration Statistics
800 K Street, NW
Washington, DC 20528
Scott.Borger@dhs.gov



1 Introduction

A large literature estimates monetary policy rules of the form proposed by John B. Taylor (1993)

that relate the realized fed funds rate to past or expected future indicators of output and inflation.

Examples include Charles L. Evans (1998), Richard Clarida, Jordi Gali, and Mark Gertler (2000),

Glenn D. Rudebusch (2002), Michael T. Owyang and Garey Ramey (2004), Jean Boivin (2006),

Andrew Ang, Sen Dong, and Monika Piazzesi (2007) and Josephine Smith and John B. Taylor

(2009). That kind of estimation is well suited to describe what policy rule the Fed has actually

followed.

However, there is also considerable interest in what market participants expect the Fed to do.

Expectations of future monetary policy are a key part of the monetary transmission mechanism in

virtually any macroeconomic model. The Federal Reserve’s expected future policy rate influences

current interest rates immediately upon the market learning about the Federal Reserve’s intentions

to stimulate or curtail economic behavior (see James D. Hamilton 2008). Moreover, Federal Open

Market Committee (FOMC) statements provide guidance for the direction of future policy rates

and are responded to instantaneously by the market upon their public release (see Donald L. Kohn

and Brian P. Sack 2004).

This paper proposes a novel method that enables us to uncover the market’s perceived monetary

policy rule. Like many previous researchers (e.g., Refet S. Gürkaynak, Brian P. Sack, and Eric T.

Swanson 2005, Jon Faust, et. al 2007, Leonardo Bartolini, Linda Goldberg, and Adam Sacarny

2008, and John B. Taylor 2010), we identify news by the difference between a macroeconomic data

release value and the value expected beforehand by the market. On this news day, we measure the

news’ effects on forecasts of both economic fundamentals and monetary policy, the latter coming

from the change in market prices for fed funds futures contracts. Our contribution is to use a

Taylor-Rule structure to link the fundamentals forecast updates with the policy forecast updates

in order to estimate the market-perceived parameters for a Taylor Rule.1

Our methodology opens up to researchers the use of daily data, which offers an opportunity to
1Others have also used news responses to study monetary policy, but in very different ways from that proposed

here. Steven Strongin and Vega Tarhan (1990) looked at the response of interest rates at different maturities to
market forecast errors of M1 to try to determine whether the response of interest rates to news represented inflation
or liquidity effects. Aditi Thapar (2008) related the market’s n-month-ahead forecast error to the current month’s
fed funds rate innovation as measured by a recursive VAR. By contrast, our approach relates today’s change in an
n-month-ahead fed funds futures contract to today’s market error in forecasting current output and inflation.
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avoid estimation problems engendered by potential output and the inflation target. Potential output

is tricky to define and measure in real time (see Athanasios Oprhanides and Simon van Norden

2002), and Athanasios Orphanides (2001) argues that this can confound policy rule estimation.

On the other hand, the Fed’s inflation target is unobservable, and moreover a growing literature,

including Peter N. Ireland (2007) and Timothy Cogley and Argia M. Sbordone (2008) among others,

has postulated an important historical role for low-frequency variation in the Fed’s inflation target.

The latency of potential output and the inflation target poses a problem for standard policy rule

estimation methods because their values are necessary for measuring the explanatory variables. Our

method uses daily data to difference out these slowly moving latent variables from the estimation

equations. Moreover, our approach offers a cleaner answer for how to handle real-time versus

revised data sets, by focusing on market expectations formed on the basis of the information as it

had actually been publicly released as of a particular calendar date.

By looking at the response of fed funds futures prices for contracts of different horizons to a new

data release, we are also able to measure how long the market believes it will take the Fed to adjust

interest rates in response to changing fundamentals. We can thereby obtain new measures of the

nature of monetary policy inertia, something that is difficult for traditional methods to estimate.

A related idea using the difference between 3-month and 6-month T-bills has been explored by

Glenn D. Rudebusch (2002, 2006). We expand on Rudebusch’s idea using the detailed structure

of a dynamic Taylor Rule formulated at the monthly level to interpret the range of responses of

1-month through 6-month fed funds futures contracts to news events isolated at the daily level.

Our estimates imply a change in the market’s perception of the Fed’s policy rule in terms of

both the magnitude of the ultimate response and in the degree of inertia. Since 2000, the market-

perceived monetary policy rule involves an eventual response to inflation that is bigger than that

associated with perceived pre-2000 behavior. On the other hand, the market also believes that the

Fed is more sluggish in making its intended adjustments. We show in simulations with a simple

new-Keynesian model that the first feature would tend to stabilize output, whereas the second

feature would be destabilizing. These simulations suggest that the “measured pace” of monetary

tightening during 2004-2006 may have been counterproductive.

The remainder of the paper is structured as follows: Section 2 introduces our framework and

its testable implications. Section 3 discusses the empirical strategy based on these implications
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and describes the data. Section 4 presents our full-sample results, and then shows evidence of time

variation in perceived policy response and estimates parameters on subsamples. Section 5 general-

izes the approach to estimation of a Taylor Rule with lagged adjustment dynamics and discusses

the economic significance of those dynamics. We investigate the sensitivity of our conclusions to

various assumptions and variable decisions in Section 6. Section 7 concludes.

2 Framework

We begin with a standard Taylor Rule that is assumed by the market to characterize Federal

Reserve decisions. Let t represent a particular month and rt the average daily effective fed funds

rate for that month. The market assumes that the Fed sets the funds rate in response to the Taylor

Rule variables πt − π∗t , the deviation from target of cumulative inflation between t− 12 and t, and

Yt − Y ∗t , a measure of the level of the real output gap in t:

rt = r + β (πt − π∗t ) + δ (Yt − Y ∗t ) + ut (2.1)

where Yt is the log of real output and Y ∗t is the log of potential real output.

Note that our baseline specification (2.1) follows the original formulation of Taylor (1993) and

does not include the partial-adjustment terms that have become popular in the subsequent litera-

ture. The reason is that we will be using proxies for direct market forecasts of the variables in (2.1)

at various future horizons, and will show that by comparing the differences across different horizons

we can obtain direct estimates of the market-perceived adjustment lags. To explain the nature of

the evidence in the data for such lags, we will first describe estimation under the assumption that

no lagged terms belong in (2.1) and there is no serial correlation in ut. Specifically, the initial

maintained assumption is that ut in (2.1) is uncorrelated with news that the market receives on a

particular day i in month t−h, as detailed below. In Section 5.2 we will generalize to a specification

in which the market perceives a dynamic path for the Fed’s response to output and inflation in the

form of lagged terms appearing in (2.1). For both the static and dynamic Taylor Rules we will also

be assuming that market forecasts of of the inflation target π∗t and potential output Y ∗t are little

changed by news arriving on day i of month t− h, an assumption explored further in Section 6.2.

We will be keeping careful track in this analysis of exactly when data of different sorts arrives.

Let Ωi,t denote the information set that is actually available to market participants as of the ith day
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Table 1: Notation

Symbol Meaning

rt Fed funds rate during month t
πt inflation rate (12-month ended) during month t (π∗ is inflation target)
Yt real output in month t (yt is 12-month ended growth rate; Y ∗ is potential output)
β parameter controlling policy response to inflation
δ parameter controlling policy response to real output

Ωi,t market information on day i of month t

f
(h)
i,t Fed funds futures contract implied rate in month t+ h, quoted on day i of month t

wk,t economic indicator k, pertaining to month t
τ a month h months prior to month t (τ = t− h)

i(k, t) the day in month t on which wk,t−1 is released (also i(k) when t is otherwise clear)
w̃k,t−1 market expectation of wk,t−1 as of day i(k, t)− 1 of month t as measured by MMS estimate
xk,t variables useful in forecasting π and y that are known as of day i(k, t)− 1 of month t
γπ,k parameter controlling how wk forecasts π (y analogous)
ξπ,k parameter controlling how w̃k forecasts π (y analogous)
ζπ,k parameter controlling how xk,t forecasts π (y analogous)

of month t; let Ω̃i,t denote the Fed’s information set at that time. The formulation (2.1) assumes

that the Fed knows the values of πt − π∗t and Yt − Y ∗t at the time it sets rt, even though πt and

Yt would not be known to market participants until some later time. The framework is readily

generalizable to a case where the Fed instead sets rt on the basis of information available as of

some day j within month t:

rt = r + βE
(
πt
∣∣Ω̃j,t

)
− βE

(
π∗t
∣∣Ω̃j,t

)
+ δE

(
Yt
∣∣Ω̃j,t

)
− δE

(
Y ∗t
∣∣Ω̃j,t

)
+ ut. (2.2)

Consider the expectation of (2.1) conditional on information available to the market as of the

ith day of an earlier month τ = t− h:

E
(
rt
∣∣Ωi,τ

)
= r + βE

(
πt
∣∣Ωi,τ

)
− βE

(
π∗t
∣∣Ωi,τ

)
+ δE

(
Yt
∣∣Ωi,τ

)
− δE

(
Y ∗t
∣∣Ωi,τ

)
+ E

(
ut
∣∣Ωi,τ

)
. (2.3)

Alternatively, if we take expectations of (2.2) conditional on the information set Ωi,τ , the identical

equation (2.3) follows due to the Law of Iterated Expectations.2 In either case, we obtain the

following expression for the change in expectations between the ith day and the previous day
2We assume that Ωi,τ ⊆ Ω̃j,t.
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(i− 1) of month τ :

E
(
rt
∣∣Ωi,τ

)
− E

(
rt
∣∣Ωi−1,τ

)
(2.4)

= β
[
E
(
πt
∣∣Ωi,τ

)
− E

(
πt
∣∣Ωi−1,τ

)]
+ δ

[
E
(
Yt
∣∣Ωi,τ

)
− E

(
Yt
∣∣Ωi−1,τ

)]
−β
[
E
(
π∗t
∣∣Ωi,τ

)
− E

(
π∗t
∣∣Ωi−1,τ

)]
− δ

[
E
(
Y ∗t
∣∣Ωi,τ

)
− E

(
Y ∗t
∣∣Ωi−1,τ

)]
+
[
E
(
ut
∣∣Ωi,τ

)
− E

(
ut
∣∣Ωi−1,τ

)]
.

Equation (2.4) is the key to what follows, stating that updates to the market forecast of future policy

are linked to updates to the market forecast of future economic conditions via the market-perceived

monetary policy rule. Table 1 summarizes some of the notation used in the paper.

We will consider a set of k = 1, 2, ...,K different days within month τ on which particular

information becomes available. Consider first k = 1, which we associate with the release of, say,

the CPI. Let i(1, τ) denote the day in month τ on which a new inflation number (namely, the value

of πτ−1) is released. For example, for τ = December 2008, the CPI number reported on December

16 (i(1, τ) = 16) was the value for November 2008 (so that πτ−1 became known on i(1, τ)). Consider

then the initial report of the value of πτ−1 on day i(1, τ). We propose to capture the news content

of this report by comparing the value actually reported on day i(1, τ) with the value that had been

expected by the market, which we denote π̃τ−1:

E
(
πτ−1

∣∣Ωi(1,τ),τ

)
− E

(
πτ−1

∣∣Ωi(1,τ)−1,τ

)
= πτ−1 − π̃τ−1.

Our empirical estimates below will replace (πτ−1 − π̃τ−1) by the difference between the initially

reported value on day i(1, τ) and the median forecast from the Money Market Survey.

The CPI announcement of πτ−1 (arriving on i(1, τ)) triggers an update to market participants’

expectation of πt. We assume that the expectation process is well captured by the linear projection

of πt on the basis of πτ−1, π̃τ−1, and x1,τ , where x1,τ denotes a vector of other variables that would

have been known to market participants prior to the day i(1, τ) of month τ :

πt = γπ,1πτ−1 + ξπ,1π̃τ−1 + ζ′π,1x1,τ + vπ,1,t. (2.5)

The first subscript (π) on the coefficients indicates that this is a coefficient used to forecast sub-

sequent inflation, and the second subscript (1) indicates that the forecast is formed on the day on

which the first information variable (the CPI) is released. Note that the coefficients in equation
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(2.5) are defined as linear projection coefficients, so that vπ,1,t is uncorrelated with πτ−1, π̃τ−1, and

x1,τ by the definition of γπ,1, ξπ,1, and ζ′π,1. The consequences of the month τ , day i(1, τ) news

release about πτ−1 for market expectations of πt are then given by

E
(
πt
∣∣Ωi(1),τ

)
− E

(
πt
∣∣Ωi(1)−1,τ

)
= γπ,1(πτ−1 − π̃τ−1) (2.6)

where we will subsume the dependence of i(1, τ) on τ when it is clear from the context.

The announcement of πτ−1 may also hold implications for market expectations about real output

Yt. We assume that output exhibits a unit root, and that the market forms a forecast of the level

of output Yt by forecasting the 12-month growth rate yt = Yt − Yt−12:

E
(
Yt
∣∣Ωi(1),τ

)
= E

(
yt
∣∣Ωi(1),τ

)
+ Yt−12

Thus if the market forecasts output growth using a rule of the form

yt = γy,1πτ−1 + ξy,1π̃τ−1 + ζ′y,1x1,τ + vy,1,t

then the update in the forecast of the level of real output is

E
(
Yt
∣∣Ωi(1),τ

)
− E

(
Yt
∣∣Ωi(1)−1,τ

)
= γy,1(πτ−1 − π̃τ−1). (2.7)

Note that certain elements of ζ′π,1 and ζ′y,1 may be set to zero, depending on what elements of x1,τ

forecast πt or yt.

Let f (h)
j,τ denote the futures interest rate on day j of month τ for a fed funds futures contract

based on rt, the effective fed funds rate h months ahead. We propose that these fed funds futures

offer us a direct observation on how the market expectation of rt changed on day i(1):

f
(h)
i(1),τ − f

(h)
i(1)−1,τ = E

(
rt
∣∣Ωi(1),τ

)
− E

(
rt
∣∣Ωi(1)−1,τ

)
+ ηr,1 + qr,1,τ . (2.8)

Here ηr,1 captures the average change in the risk premium on fed funds futures contracts and qr,1,τ

any change in the risk premium relative to that average. In the absence of risk aversion in the

fed funds futures markets, the terms ηr,1 and qr,1,τ would be identically zero. There is certainly

good evidence for supposing the contribution of risk aversion to daily changes in fed funds prices

to be small; see Monika Piazzesi and Eric T. Swanson (2008) and James D. Hamilton (2009).3 In
3Our method works if either the risk premium is constant, as implied by the common “expectations hypothesis”

or under the implication of consumption-based asset pricing models that the risk premium would change little on
a daily basis. Piazzesi and Swanson’s (2008) results indicate that “[these] risk premia seem to change primarily at
business-cycle frequencies.”
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the estimation strategy adopted here, any changes in the risk premium, along with changes in the

market’s expectation of the residual in the Taylor Rule, changes in the market’s expectation of the

inflation target, and changes in the market’s expectation of potential output, are incorporated into

a specification error vr,1,τ ,

vr,1,τ = −δ
[
E
(
Y ∗t
∣∣Ωi(1),τ

)
− E

(
Y ∗t
∣∣Ωi(1)−1,τ

)]
− β

[
E
(
π∗t
∣∣Ωi(1),τ

)
− E

(
π∗t
∣∣Ωi(1)−1,τ

)]
(2.9)

+
[
E
(
ut
∣∣Ωi(1),τ

)
− E

(
ut
∣∣Ωi(1)−1,τ

)]
+ qr,1,τ .

Substituting (2.6), (2.7), (2.8), and (2.9) into (2.4), we have

f
(h)
i(1),τ − f

(h)
i(1)−1,τ = ηr,1 + (βγπ,1 + δγy,1)(πτ−1 − π̃τ−1) + vr,1,τ .

Consider next a second news release in month τ , namely the real activity indicator yτ−1 released

on day i(2). For these days we employ the auxiliary forecasting equations

πt = γπ,2yτ−1 + ξπ,2ỹτ−1 + ζ′π,2x2,τ + vπ,2,t

yt = γy,2yτ−1 + ξy,2ỹτ−1 + ζ′y,2x2,τ + vy,2,t

where x2,τ is known prior to day i(2, τ). From these we derive

f
(h)
i(2),τ − f

(h)
i(2)−1,τ = ηr,2 + (βγπ,2 + δγy,2)(yτ−1 − ỹτ−1) + vr,2,τ .

In general, if some indicator wk,τ−1 is released on day i(k, τ), we have the following three

equations:

πt = γπ,kwk,τ−1 + ξπ,kw̃k,τ−1 + ζ′π,kxk,τ + vπ,k,t (2.10)

yt = γy,kwk,τ−1 + ξy,kw̃k,τ−1 + ζ′y,kxk,τ + vy,k,t (2.11)

f
(h)
i(k),τ − f

(h)
i(k)−1,τ = ηr,k + (βγπ,k + δγy,k)(wk,τ−1 − w̃k,τ−1) + vr,k,τ . (2.12)

Let z1,τ = (1, πτ−1, π̃τ−1,x′1,τ )′ denote the vector including the day i(1) release of πτ−1 and the

information available as of the day before, where we assume that z1,τ is uncorrelated with vπ,1,t,

vy,1,t, and vr,1,τ . Similarly, we take zk,τ = (1, wk,τ−1, w̃k,τ−1,x′k,τ )′ to be uncorrelated with vπ,k,t,

vy,k,t, and vr,k,τ , for k = 1, 2, . . . ,K. Thus our identifying assumption is that the following vector
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has expectation zero:

(
πt − γπ,1w1,τ−1 − ξπ,1w̃1,τ−1 − ζ′π,1x1,τ

)
z1,τ(

yt − γy,1w1,τ−1 − ξy,1w̃1,τ−1 − ζ′y,1x1,τ

)
z1,τ[

f
(h)
i(1),τ − f

(h)
i(1)−1,τ − ηr,1 − (βγπ,1 + δγy,1)(w1,τ−1 − w̃1,τ−1)

]
z1,τ

...(
πt − γπ,KwK,τ−1 − ξπ,Kw̃K,τ−1 − ζ′π,KxK,τ

)
zK,τ(

yt − γy,KwK,τ−1 − ξy,Kw̃K,τ−1 − ζ′y,KxK,τ
)
zK,τ[

f
(h)
i(K),τ − f

(h)
i(K)−1,τ − ηr,k − (βγπ,K + δγy,K)(wK,τ−1 − w̃K,τ−1)

]
zK,τ


. (2.13)

Note that the ability to distinguish β from δ results from using at least K ≥ 2 different news

releases during month τ . A single release such as the inflation number could in principle have

implications both for future inflation (as captured by γπ,1) and future output (as captured by γy,1).

Hence any response of the fed funds futures prices to that news could come from either the policy

rule inflation coefficient (β) or output coefficient (δ). However, γπ,1 and γy,1 are each separately

observable (from the differing responses of πt and yt to πτ−1), so the change in the futures price

on i(1) tells us one linear combination (namely βγπ,1 + δγy,1) of the policy rule parameters β and

δ. But the separate response to the output release on day i(2) gives us a second linear combination

(βγπ,2 + δγy,2). Thus, the 3K equations above are sufficient to identify β and δ separately.

3 Estimation

We begin this section by describing the formal estimation strategy, which is Lars P. Hansen’s

(1982)Hansen’s (1982) generalized method of moments. Then we describe the data used.

3.1 Method

Recall that τ + h = t. Denoting

ζ
(h)
t =

(
1, πt, yt, f

(h)
i(1),τ , w1,τ−1, w̃1,τ−1,x′1,τ , z

′
1,τ , . . . , f

(h)
i(K),τ , wK,τ−1, w̃K,τ−1,x′K,τ , z

′
K,τ

)′
,

we rephrase (2.13) as the following population orthogonality condition for each θ(h), h = 1, 2, . . . ,

E
[
g
(
θ(h), ζ

(h)
t

)]
= 0, (3.1)

where θ(h) collects the auxiliary forecasting parameters (γ ′, ξ′, ζ′)′ along with the main parameters

of interest, the policy rule coefficients (β, δ,η′r)
′. Let Y(h)

T ≡
(
ζ

(h)′
T , ζ

(h)′
T−1, . . . , ζ

(h)′
1

)′
be the vector
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of all observations for each choice of horizon h. Then we have the sample average

g
(
θ(h);Y(h)

T

)
≡ T−1

T∑
t=1

g
(
θ(h), ζ

(h)
t

)
and the GMM estimator (see Hansen 1982) for each horizon h minimizes

Q
(
θ(h),Y(h)

T

)
= g

(
θ(h);Y(h)

T

)′
W(h)

T g
(
θ(h);Y(h)

T

)
. (3.2)

As usual, the optimal weighting matrix W(h)
T is given by the inverse of the asymptotic variance of

the sample mean of g
(
θ(h), ζ

(h)
t

)
. In turn, we calculate a heteroskedasticity and autocorrelation

robust estimate4 Ŝ(h)
T of this asymptotic variance, and the efficient GMM estimator uses the inverse

of this HAC estimate as the weighting matrix, with the following asymptotic approximations:

θ̂
(h) ≈ N

(
θ(h), T−1V̂(h)

T

)
, V̂(h)

T =
(

[D̂(h)
T ][Ŝ(h)

T ]−1[D̂(h)
T ]′

)−1

and [D̂(h)
T ]′ =

∂g
(
θ;Y(h)

T

)
∂θ′

∣∣∣∣
θ=θ̂

(h)
.

Since g(·) is nonlinear in θ(h), the minimization of (3.2) is achieved numerically. Our results

are calculated by two-step GMM starting from an initial guess provided by a simple two-stage OLS

procedure and with other initial conditions considered to obtain some assurance that the global

optimum has been found. The inconsistent two-stage OLS procedure would instead first estimate

the auxiliary forecasting equations independently, then use these forecast parameter estimates to

generate regressors for the Taylor Rule regression.5 Joint estimation by (nonlinear) two-step GMM

is consistent and efficient – see Whitney K. Newey and Daniel McFadden (1986). We estimate each

horizon h independently from the others so that nothing other than the original data links these

estimates to one another.

As mentioned, identification is achieved by considering at least two indicators w, in which case

the system (3.2) in general is just-identified. When we use more than two indicators, the system nat-

urally delivers overidentifying restrictions. Additionally, we can impose cross-equation restrictions

that create overidentification. Our baseline specification is overidentified for both reasons.
4Our HAC estimator is that of Whitney K. Newey and Kenneth D. West (1987) with 13 lags.
5Since our framework introduces a generated-regressor, the two-stage OLS procedure is inefficient – see Adrian

Pagan (1986).
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3.2 Data

Fed funds futures are accurate predictors of the effective fed funds rate, as documented in numerous

studies including Evans (1998), Refet S. Gürkaynak, Brian P. Sack, and Eric T. Swanson (2007),

Piazzesi and Swanson (2008), and Hamilton (2009). These contracts were first traded on the

Chicago Board of Trade in October of 1988, though volume, especially for the longer-horizon

contracts, was initially light. For example, there were no recorded trades in 6-month-ahead futures

contracts during the entire month of February 1990. Volume increased substantially after the

Federal Open Market Committee began announcing the fed funds target in 1994 (see Figure 1),

a policy change that may have also altered the way market participants formed expectations of

future Fed policy. For this reason, we follow Gürkaynak, Sack, and Swanson (2007) in beginning

our analysis in 1994. We end our sample in the summer of 2007 in order to avoid the period of

major financial disruptions that started following the fund freezes by BNP Paribas that August.

Our data set thus consists of K particular days for each month over the period 1994:M1 through

2007:M6.

We require measures of inflation and real activity as the dependent variables in our forecasting

equations. Note that it is the initial real-time inflation release that appears on the right side of

these regressions, and so we will use real-time values on the left. We measure inflation by the

year-over-year growth rate of the Core-PCE price index from the BEA. This has been the Federal

Reserve’s key inflation indicator over the sample we consider. We measure output growth by the

year-over-year growth rate of industrial production from the Federal Reserve Board. Both of these

series’ real-time values are obtained from the ALFRED collection maintained by the Federal Reserve

Bank of St. Louis. To use as much data as possible we stay at the monthly frequency and therefore

require a monthly output series. Industrial production growth has been used by previous studies to

proxy for overall output growth (e.g. James H. Stock and Mark W. Watson 2002) and is a natural

candidate for our baseline.

The economic indicators we consider are data releases from various government agencies that are

followed by the Money Market Survey (MMS).6 Following Gürkaynak, Sack, and Swanson (2005),
6In the middle of the 2000s, this survey was taken over by Action Economics.
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Figure 1: Trading Volume on Fed Funds Futures Contracts
Notes: Data from Chicago Board of Trade, 1992–2003. Trading volume in number of contracts, shown as 90-day
moving average.

the median forecast provides a proxy for each variable’s market expectation. MMS provides market

expectations for several candidate economic indicators. Our choice is guided by asking which

economic variables might be most helpful for forecasting output growth and core PCE inflation. It

is natural for this purpose to use core CPI inflation (CPIXFE) and industrial production (INDPRD)

themselves.7 In principle, all available indicators could be used, however so doing might well lead

to problems with weak instruments. With this and a desire for parsimony in mind, we look for a

few additional economic indicators to include which may provide a reasonable amount of variation

to our data. Previous literature has noted that financial market participants scrutinize and respond

strongly to nonfarm payroll employment: for instance, see Torben G. Andersen and Tim Bollerslev
7MMS does not survey forecasts for Core-PCE inflation, hence our reliance on Core-CPI inflation. Fortunately,

Core-CPI forecasts Core-PCE inflation well, as shown in the web appendix.
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(1998), Torben G. Anderson, et al. (2003), Gürkaynak, Sack, and Swanson (2005), Bartolini,

Goldberg, and Sacarny (2008), and Taylor (2010). Therefore, we include that indicator (NFPAY)

as well. We also find that the report of new home sales (NHOMES) provides good forecasting

power, and in particular is necessary when we rely on just the post-2000 data in some split-sample

estimates reported later. Thus the values we use for w̃k,τ−1 in equation (2.13) are the median MMS

forecasts of core CPI inflation, industrial production, nonfarm payrolls, and new home sales. The

values we use for wk,τ−1 are the actual values as released at the time (month τ).

In terms of the variables entering the auxiliary forecasting equations, we set

xk,τ =
(
πτ−2, yτ−2, f

(h)
i(k)−1,τ , 1

)′
.

The lagged values of inflation and output growth are included to control for their autoregressive

nature. For parsimony, we set to zero the first element of ζy,k, the coefficient on πτ−2 in indicator k’s

auxiliary forecasting equation for yt; likewise, we zero out the second element of ζπ,k, the coefficient

on yτ−2 in indicator k’s auxiliary forecasting equation for πt. The fed funds futures value for the

day before i(k) − 1 is included to control for the predictive content (vis-a-vis each Taylor Rule

variable) of the futures price that has already been priced into the contract.

4 Results

First we present our full sample results using four indicators. We then show that statistical tests of

our overidentifying restrictions reject our model, and so we run tests for breaks in the policy rule

parameters and find evidence of their variation over time. Placing the break around the beginning

of the year 2000, we present subsample estimates suggesting the market-perceived monetary policy

rule has changed over time, and repeat the overidentification tests on the separate subsamples.

4.1 Baseline

Our baseline results use four indicators – CPIXFE, INDPRD, NFPAY, and NHOMES – and impose

the cross-equation restriction that the average risk premium change is identical across indicators:

ηr,k = ηr, k = 1, 2, ...,K. (4.1)

This cross-equation restriction embodies the assumption that the different economic indicators

systematically affect the forecasted policy rate only through changes to forecasted inflation and

12



Table 2: Market-Perceived Monetary Policy Rule Estimates, baseline

h
1 2 3 4 5 6

β 0.345*** 0.817*** 1.134*** 1.090*** 1.633 1.687***
0.083 0.262 0.388 0.283 1.356 0.362

δ 0.046*** 0.057*** 0.098** 0.098** 0.067** 0.117**
0.009 0.021 0.041 0.046 0.032 0.046

Notes: The policy rule coefficient on inflation is β and on the output gap is δ. HAC standard errors in italics. The
markers *,** and *** denote significance at 10%, 5% and 1% levels, respectively. There are 160 observations for
h = 1, 159 for h = 2, etc. The indicators are CPIXFE, INDPRD, NFPAY and NHOMES. Point estimates and standard
errors from two-step nonlinear GMM. Data run over 1994:M1-2007:M7.

output, and it adds statistical precision to our estimates; we further discuss and test this restriction

in Section 6. The policy rule response coefficient estimates are presented in Table 2.8

All horizons but one exhibit inflation response coefficients that are significant at the 1% level.

The output response coefficient is statistically significant and positive at the 5% level for all horizons.

These results suggest that our empirical methodology effectively extracts information from market

forecast updates that occur in response to macroeconomic news.

Our results further suggest that the market does not expect the Fed to implement changes

immediately. The response coefficients at longer horizons tend to be larger than the response

coefficients at shorter horizons, and 95% confidence intervals for β or δ often exclude the point

estimates obtained for different h: we denote the response coefficients estimated for a certain

horizon h as β(h) or δ(h). To perform the most powerful tests of hypotheses comparing estimates

across different h we would need to estimate the system jointly, which due to the large number of

parameters we refrain from doing. However, some informative conservative calculations are easy to

perform despite the fact that we have estimated parameters for each horizon h separately. Notice

that for any estimates A and B,

Var(A−B) = σ2
A + σ2

B − 2ρABσAσB. (4.2)

Because ρAB, the correlation between A and B, cannot be less than −1, it follows that

Var(A−B) ≤ σ2
A + σ2

B + 2σAσB (4.3)
8Estimates of the constant are reported in the web appendix.
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with equality only if A and B are perfectly negatively correlated. One can thus obtain a very

conservative test of the null hypothesis that A and B are estimating the same object by dividing

A − B by the square root of the right-hand side of (4.3) and rejecting H0 if the result exceeds 2

in absolute value. The test is conservative in the sense that the asymptotic probability of rejecting

H0 when it is true is less than 5%. Using this test, we conclude that β(1) is statistically less than

β(4) or β(6).

In fact the estimates β(h) are almost surely positively rather than negatively correlated, since

the futures rates for contracts of different horizons h almost always move in the same direction each

day. If we are willing to assume that the correlation between A and B is strictly positive, then

equation (4.2) implies

Var(A−B) < σ2
A + σ2

B.

If we adopt this alternative conservative test, we find that β(1) is statistically significantly less than

β(3), β(4), and β(6).

We thus conclude that the market believes the Fed responds to inflation more aggressively at

longer horizons than it does over the next few months. The market perceives some sluggishness

or inertia in the Fed’s response to news – the news warrants an immediate increase in a rational

forecast of inflation and output, but the Fed is not going to respond fully to that news until several

months later. The fact that β and δ are estimated to be different when we base the estimation

on different horizons h implies that something in our original model was misspecified. We will

show in Section 5 below how the different estimates of β and δ for different h can be used to infer

parameters of a dynamic generalization of equation (2.1) representing the market’s perceived inertia

in the response of monetary policy to news. Before doing so, however, we first report some further

specification tests on the baseline static model.

4.2 Overidentification and Break Tests

This section conducts further tests of the assumptions motivating these estimates. We first inves-

tigate Hansen’s (1982) J-tests of overidentifying restrictions given by

TQ
(
θ̂

(h)
,Y(h)

T

)
≈ χ2(m) (4.4)

for m the number of overidentifying restrictions. The p-values for this test are presented in Table 3.

Recall that our baseline specification overidentifies the model both by using four indicators and by
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Table 3: Overidentification Tests, baseline

h
1 2 3 4 5 6

(1) Baseline 0.026 0.027 0.027 0.027 0.032 0.025
(2) Baseline, pre 0.316 0.331 0.314 0.339 0.313 0.318
(3) Baseline, post 0.204 0.194 0.192 0.220 0.200 0.165

Notes: p-values from Hansen’s (1982) J-test of overidentifying restrictions, for the baseline specifications. Baseline
is the baseline specification estimated over the full sample. Baseline, pre and Baseline, post are the baseline
specifications estimated over the pre-2000 and post-2000 subsamples, respectively.

imposing that the policy rule specification error means are identical for these indicators (equation

(4.1)). Row 1 displays the p-values associated with the J-statistics for the baseline specification.

We reject at the 5% level the overidentifying restrictions for every horizon h, causing some concern

that our basic framework is not consistent with the data.

A large literature has investigated changes over time in U.S. monetary policy. Clarida, Gali,

and Gertler (2000), Giorgio E. Primiceri (2006), and Boivin (2006) all documented a significant

increase in the Fed’s response to inflation after 1979. More recently, Andrew Ang et al. (2009)

found a sharp decline in the Fed’s immediate response to inflation after 2001, while John B. Taylor

(2007) has argued that the Fed deviated from its historical practice in waiting too long to raise

interest rates between 2002 and 2005. For this reason, it is of substantial interest to see whether

market participants’ perception of the monetary policy rule changed over our sample period.

To answer this question, we test for a break in the parameters of interest. Using Donald W.

K. Andrews’ (1993)(Andrews 1993) break test, we test the null hypothesis that all parameters are

constant against the alternative that the policy rule coefficients β, δ, and ηr experienced a break.9

Letting the policy rule coefficient vector be b = (β, δ, ηr)′, we test:

H0 : bt = b0 ∀t ≥ 1 for some b0 ∈ R3

H1($) : bt =
{

b1($) for t = 1, . . . , T$
b2($) for t = T$ + 1, . . . , T

}
for some constants b1($),b2($) ∈ R3

for values of $ in (0.25,0.75). We use the sup-Wald statistic and tabulated critical values in

Andrews (1993).
9The vector of parameters taken to be constant under both the null and the alternative is the vector of auxilliary

forecasting parameters (γ′, ξ′, ζ′)′.
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For each horizon considered, there is strong evidence of a break in the policy rule coefficients b.

In particular, for our application the 1% critical value is 16.6: the sup-Wald statistic is estimated

to be 24.9, 17.5, 29.0, 201.1, 17.1 and 258.2 for horizons 1 through 6, respectively. Moreover, each

horizon’s maximal statistic occurs at similar times, near the beginning of the year 2000. In light of

this evidence, we re-estimate our baseline model on the pre-2000 and post-2000 subsamples.

Returning to the overidentification test results of Table 3, rows 2 and 3 display the p-values for

the model estimated across horizons on each subsample. We now find that the model is readily

accepted for each subsample. Evidently, the break in the policy parameters was the major factor

in the low full-sample p-values in row 1. Once the parameters are allowed to differ by sub-period,

we find no evidence against our framework.

4.3 Time Variation

Table 4 displays the estimation results for the two subsamples. Note that these estimates were

obtained from completely separate estimation applied to each subsample. We thus allow all the

coefficients to change, including the forecasting parameters γ, ξ, and ζ. Hence the different esti-

mates are not attributable to changes in the way markets may have processed news between the two

samples. We now discuss the output and inflation response coefficients estimated in each subsample

and how they differ from one another.

Looking at the output response coefficients, the output response during the 1990s is moderate

but tightly estimated. At all horizons but one the point estimates are positive and significant at the

1% level. The response is around 0.14 in the first month, rising to 0.43 by the fourth month. By

the alternative test, δ(1) and δ(2) are statistically less than δ(3) or δ(4). Hence the policy response

exhibits signs of gradual adjustment. However, during the 2000s the response to output changes

dramatically. The output response is tightly estimated but economically insignificant. Taken

together, this evidence suggests that during the 1990s the market perceived a moderate output gap

response that essentially vanished during the 2000s.

Looking now at the inflation responses, we see that the estimates in both subsamples are

significant at conventional levels for all horizons but one. Moreover, two noteworthy distinctions

between the subsamples are apparent. In the 1990s the inflation response is quick: by the third

month the response coefficient adheres to the Taylor principle of being greater than one, and
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Table 4: Market-Perceived Monetary Policy Rule Estimates, baseline pre-2000 and
post-2000

h
1 2 3 4 5 6

Pre-2000 β 0.356* 0.830** 1.144** 1.285** 1.571*** 1.423**
0.191 0.373 0.508 0.647 0.610 0.637

δ 0.141*** 0.115*** 0.318*** 0.420*** 0.127* 0.275***
0.027 0.037 0.078 0.143 0.066 0.101

Post-2000 β –0.494** 0.554*** 0.405 0.420*** 1.057*** 2.031***
0.198 0.170 0.297 0.073 0.233 0.630

δ 0.267*** –0.066** 0.108*** –0.037** –0.053* –0.182***
0.056 0.026 0.022 0.017 0.031 0.051

Notes: The policy rule coefficient on inflation is β and on the output gap is δ. HAC standard errors in italics. The
markers *,** and *** denote significance at 10%, 5% and 1% levels, respectively. pre-2000, there are 69 observations
for h = 1, 68 for h = 2, etc.; post-2000, there are 88 observations for h = 1, etc. The indicators are CPIXFE,
INDPRD, NFPAY and NHOMES. Point estimates and standard errors from two-step nonlinear GMM. Data run over
1994:M1-2007:M7

thereafter stays in a range remarkably like the original Taylor rule value of 1.5. Indeed, we cannot

reject the hypothesis that these response coefficients are the same, using either the conservative or

alternative tests. On the other hand, in the 2000s the inflation response is gradual: it is only by

the fifth month that the response is barely greater than one. Moreover, we see that in the sixth

month the response jumps to 2.03, which is rather precisely estimated. This means that β(6) is

statistically greater than β(1), β(2), β(3) and β(4) by the alternative test.10

Together, these observations suggest that the market-perceived policy response to inflation

changed over time in two distinct ways: during the 1990s the response adjusted at a quicker pace

with a moderate long-run magnitude, while during the 2000s the response adjusted at a slower pace

with a larger long-run magnitude.

5 Dynamic Analysis of the Policy Response

Up to this point in the paper we have been investigating our baseline specification: a static Taylor

Rule of the form of equation (2.1). We found that the implied market expectations of how the Fed

would respond to news turned out to be a function of the horizon h. News that warrants a 1%
10β(1) and β(4) by the conservative test.
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increase in a forecast of output or inflation for h = 1 to 3 months ahead results in a smaller increase

in the expected fed funds rate for that horizon than would news that warrants a 1% increase in the

output or inflation forecast for h = 4 to 6 months ahead. This difference in the estimated values for

β or δ associated with different horizons h is inconsistent with the maintained hypothesis of a static

Taylor Rule, and suggests instead that the market perceives some inertia in the Fed’s response to

news about output and inflation. In this section we will postulate a dynamic Taylor Rule that

is consistent with this observed inertia. The essential property of a dynamic Taylor Rule is that

the future responses to current news vary with the horizon. Since we have already estimated that

fundamental object – future implications of current news as a function of the horizon – it turns

out that the set of estimates for different values of h that we have already obtained provide all the

information needed to infer parameters of a dynamic Taylor Rule. We now describe the details of

how this can be done.

5.1 Dynamic Forecasting Equations

We first modify the earlier notation to make the dependence on the horizon h explicit, rewriting

the h-period-ahead forecasting equations (2.11) and (2.10) as

yt = γ
(h)
y,kwk,t−h + ξ

(h)
y,kw̃k,t−h + ζ

(h)′
y,k xk,t−h+1 + v

(h)
y,k,t (5.1)

πt = γ
(h)
π,kwk,t−h + ξ

(h)
π,kw̃k,t−h + ζ

(h)′
π,k xk,t−h+1 + v

(h)
π,k,t. (5.2)

We will also now need a version of equations (5.1) and (5.2) for the case h = 0, in order to

keep track of the implication of the release of one indicator for the values of other indicators to be

released later that month. Suppose that the first indicator released in month t + 1 is NHOMES,

denoted here as w1,t, followed by NFPAY, denoted here as w2,t. These releases could cause us to

update our expectation of the values for INDPRD (yt = w3,t) and CPIXFE (πt = w4,t) that will be

reported later that same month t+ 1 according to

yt = γ
(0)
y,1w1,t + ξ

(0)
y,1w̃1,t + ζ

(0)′
y,1 x1,t+1 + v

(0)
y,1,t (5.3)

πt = γ
(0)
π,1w1,t + ξ

(0)
π,1w̃1,t + ζ

(0)′
π,1 x1,t+1 + v

(0)
π,1,t (5.4)

yt = γ
(0)
y,2w1,t + ξ

(0)
y,2w̃2,t + ζ

(0)′
y,2 x2,t+1 + v

(0)
y,2,t (5.5)

πt = γ
(0)
π,2w2,t + ξ

(0)
π,2w̃2,t + ζ

(0)′
π,2 x2,t+1 + v

(0)
π,2,t. (5.6)
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Thus for example estimates of γ(0)
y,1 and γ(0)

π,1 could be obtained by OLS estimation of (5.3) and (5.4),

and γ
(0)
y,2 and γ

(0)
π,2 could be obtained by OLS estimation of (5.5) and (5.6). Later in month t + 1

when the output indicator w3,t is released, that allows us to know the value of yt with certainty,

which to preserve the general notation we would represent by γ
(0)
y,3 = 1, and would also induce an

update to the forecast for w4,t (= πt),

πt = γ
(0)
π,3w3,t + ξ

(0)
π,3w̃3,t + ζ

(0)′
π,3 x3,t+1 + v

(0)
π,3,t (5.7)

When w4,t is finally released, it has no implications for w3,t which is already known (γ(0)
y,4 = 0) and

changes our forecast of inflation one-for-one (γ(0)
π,4 = 1).

5.2 A Dynamic Taylor Rule

Consider now the following dynamic generalization of (2.1):

rt = r+β1(πt−1−π∗t−1)+β2(πt−2−π∗t−2)+ · · · +δ1(Yt−1−Y ∗t−1)+δ2(Yt−2−Y ∗t−2)+ · · ·+ut. (5.8)

Unlike our earlier expression (2.2), equation (5.8) is strictly a backward-looking formulation, pre-

suming that the Fed responds dynamically to the history of available information; note that πt−1

and Yt−1 are the most recent values available as of the end of month t.

Recall that the value of wk,t−h−1 is released on day i(k, t − h), and let f (h)
i(k),t−h denote the

interest rate implied by a futures contract for settlement based on the value of rt, and quoted as of

the end of trading on day i(k, t−h). For example, f (0)
i(k),t would reflect an expectation of the current

month’s fed funds rate on the day that the indicator wk,t−1 is released. Take the expectation of (5.8)

conditional on market information available on day i(k, t−h) and subtract from it the expectation

formed the day before:

f
(h)
i(k),t−h − f

(h)
i(k)−1,t−h = η

(h)
r,k+ (5.9)[

β1γ
(h)
π,k + δ1γ

(h)
y,k + β2γ

(h−1)
π,k + δ2γ

(h−1)
y,k + · · ·+ βh+1γ

(0)
π,k + δh+1γ

(0)
y,k

]
(wk,t−h−1 − w̃k,t−h−1) + v

(h)
r,k,t−h.

For comparison, recalling that τ = t− h, we can rewrite equation (2.12) as

f
(h)
i(k),t−h − f

(h)
i(k)−1,t−h = η

(h)
r,k + (β(h)γ

(h+1)
π,k + δ(h)γ

(h+1)
y,k )(wk,t−h−1 − w̃k,t−h−1) + v

(h)
r,k,t−h (5.10)

where β(h) and δ(h) denote the original parameters whose estimates we reported in column h of

Tables 2 or 4. Comparing equations (5.9) and (5.10), the values of the dynamic parameters {βj , δj}
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in (5.8) are related to our baseline estimates {β(h), δ(h)} according to

β1γ
(h)
π,k + δ1γ

(h)
y,k +β2γ

(h−1)
π,k + δ2γ

(h−1)
y,k + · · ·+βh+1γ

(0)
π,k + δh+1γ

(0)
y,k = β(h)γ

(h+1)
π,k + δ(h)γ

(h+1)
y,k . (5.11)

To arrive at estimates of the dynamic parameters, we chose {βj , δj}6j=1 so as to minimize the

equally-weighted sum of squared differences between the LHS and RHS of (5.11) across indicators

k = 1, 2, 3, 4 and horizons h = 0, 1, 2, ..., 6. On the RHS, the values for {β(h), δ(h), γ
(h)
π,k, γ

(h)
y,k} for

h = 1, ..., 6 were taken from the earlier split-sample GMM estimation reported in Table 4, while

values for h = 0 were obtained from GMM estimation of β(0), δ(0), γ(0)
y,1, γ(0)

π,1, γ(0)
y,2, γ(0)

π,2, and γ
(0)
π,3

based on the moment conditions

(
yt − γ(0)

y,1w1,t − ξ(0)
y,1w̃1,t − ζ

(0)′
y,1 x1,t+1

)
z1,t+1(

πt − γ(0)
π,1w1,t − ξ(0)

π,1w̃1,t − ζ
(0)′
π,1 x1,t+1

)
z1,t+1[

f
(0)
i(1),t+1 − f

(0)
i(1)−1,t+1 − η

(0) − (β(0)γ
(0)
π,1 + δ(0)γ

(0)
y,1)(w1,t − w̃1,t)

]
z1,t+1(

yt − γ(0)
y,2w2,t − ξ(0)

y,2w̃2,t − ζ
(0)′
y,2 x2,t+1

)
z2,t+1(

πt − γ(0)
π,2w2,t − ξ(0)

π,2w̃2,t − ζ
(0)′
π,2 x2,t+1

)
z2,t+1[

f
(0)
i(2),t+1 − f

(0)
i(2)−1,t+1 − η

(0) − (β(0)γ
(0)
π,2 + δ(0)γ

(0)
y,2)(w2,t − w̃2,t)

]
z2,t+1(

πt − γ(0)
π,3w3,t − ξ(0)

π,3w̃3,t − ζ
(0)′
π,3 x3,t+1

)
z3,t+1[

f
(0)
i(3),t+1 − f

(0)
i(3)−1,t+1 − η

(0) − (β(0)γ
(0)
π,3 + δ(0)γ

(0)
y,3)(w3,t − w̃3,t)

]
z3,t+1[

f
(0)
i(4),t+1 − f

(0)
i(4)−1,t+1 − η

(0) − (β(0)γ
(0)
π,4 + δ(0)γ

(0)
y,4)(w4,t − w̃4,t)

]
z4,t+1



(5.12)

where as before zk,t+1 denotes information available the day prior to release of wk,t. This last

GMM estimation resulted in the estimates β̂
(0)

= 0.194, δ̂
(0)

= 0.113 for the pre-2000 subsample,

and β̂
(0)

= −.104, δ̂
(0)

= 0.002 after 2000. For all the above calculations, the values γ(0)
y,3 = 1,

γ
(0)
y,4 = 0, and γ

(0)
π,4 = 1 were imposed throughout.

The resulting values of βj and δj are reported in Table 5. In the last column is the sum of the

parameter values across all j, which gives the long-run response to the inflation or output pressure.

Recall from Section 3.1 that the parameter vector θ(h) for horizon h was estimated completely

independently from any other horizon. This approach of leaving the dynamics implied by {θ(h)}6h=0

completely unrestricted offers at least three benefits. First, nothing in our procedure requires that

the long-horizon responses should be bigger than the short-horizon responses. The fact that we

nonetheless find them to be increasing in h is strong evidence that the market perceives policy to

respond only gradually to changing conditions. Second, if we allowed only the policy parameters to

change but not those for the forecasting dynamics, it would be possible for changes in the forecasting
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Table 5: Dynamic Taylor Rule Parameters

j
1 2 3 4 5 6 7 sum

Pre-2000 βj 0.30 0.01 0.15 0.50 0.53 0.11 0.00 1.60
δj 0.17 –0.02 0.10 0.20 0.00 –0.10 0.10 0.45

post-2000 βj –0.63 0.70 0.26 0.35 0.00 0.46 1.05 2.19
δj 0.30 –0.22 0.00 –0.02 –0.05 –0.02 –0.02 –0.03

Notes: from minimum-distance method described in text, using subsample parameter estimates across all horizons.

dynamics to show up spuriously as policy rule changes. By allowing both to change together we

are able to estimate the changes in the policy dynamics alone. Third, our procedure allows the

adjustment to inflationary pressures to differ from the adjustment to real activity, similar to the

policy rules of Lawrence J. Christiano, Martin Eichenbaum, and Charles L. Evans (1996, 2005).

This flexibility in the rule’s process is greater than that permitted by including only lags of the

policy rate itself, and our estimates suggest this greater flexibility may be warranted by the data.

5.3 An example of the implication of rule changes

We now explore the economic implications of the estimated changes in the Taylor Rule in a simple

model. These results are particular to the parsimonious three equation model we choose, but

this model has been well-studied previously in the literature and therefore we consider it of some

interest.

Following Clarida, Gali, and Gertler (2000), we use a standard sticky-price, rational expectations

model whose equilibrium conditions, log-linearized around a zero inflation steady state, are

πt = λ1Et(πt+1) + λ2(Yt − zt) (5.13)

Yt = Et(Yt+1)− λ−1
3 (rt − Et (πt+1)) + gt (5.14)

rt = β(L)πt + δ(L)(Yt − zt) (5.15)

The first equation (5.13) says that inflation today is a function of the output gap and the expectation

of next period’s inflation, which in turn can be derived from an underlying Calvo pricing structure.

With relative risk aversion measured by λ3, equation (5.14) is an IS schedule where today’s output

depends on the ex ante real rate and the expectation of next period’s output gap. Equation (5.15)
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Table 6: Effects of Changing Inflation Policy Response on the Volatility of Output
Growth and Inflation

Inflation Coefficients
Variable Post-Path Pre-Path Post-Path

Pre-LR Post-LR Post-LR

Both Shocks
Inflation –6.0 –28.1 –32.1
Output 9.0 –12.6 –3.2

Supply Shocks Only
Inflation –6.0 –28.0 –32.0
Output –0.2 1.0 0.7

Demand Shocks Only
Inflation –6.0 –28.1 –32.0
Output 12.6 –18.8 –4.9

Notes: Differences in model-implied volatility of macro variables, caused by changing the inflation-response parameters
β(L), relative to the pre-2000 benchmark. We consider two possible changes: (1) a change in the Path, the shape of
the dynamic response; and (2) a change in the LR magnitude, the sum of the response coefficients. Output coefficients
δ(L) are held at pre-2000 values. See the text for further details.

is a dynamic Taylor Rule that closes the model. The model’s shocks are autocorrelated demand

shocks gt and supply shocks zt. We take parameter values from Clarida, Gali, and Gertler (2000)

and set λ1 = 0.9967, λ2 = 0.3, λ3 = 1, and the shocks’ autocorrelation to 0.9655 for our monthly

model. Clarida, Gali, and Gertler (2000) give supply and demand shocks the same unconditional

volatility, but we note the sensitivity of following this choice and so also report results for economies

that are only buffeted by only supply or only demand shocks, respectively.

Our goal is to characterize what difference the inflation-response parameters β(L) might make

for the volatility of macro variables according to this model. To do so, we fix δ(L) at the pre-

2000 values,11 and calculate the difference in volatilities using pre-2000 and post-2000 values for

β(L). We find that in the model the post-2000 dynamics imply a 32% reduction in the variance

of inflation, as reported in the last column of Table 6, regardless of the source of fluctuations in

the economy. The effect on output is small: if there are demand shocks, the volatility drops 3–5%

while if there are no demand shocks the volatility rises modestly.

We next wanted to see what it was about the post-2000 inflation response that helped stabilize

inflation. Was it the overall magnitude of the inflation response, as reflected in the sum of the βj

coefficients, or was it the more gradual post-2000 response, as reflected in the shape of the dynamic
11Very similar results were obtained if we instead fix δ(L) at the post-2000 values.
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response? To find out, we explored the consequences of changing just one of these two elements at

a time. Let βpre
j denote the pre-2000 inflation responses and βpost

j the post-2000 responses. We

calculated what would happen if the inflation responses were given by

βj = βpost
j

[βpre
0 + βpre

1 + . . .+ βpre
6 ]

[βpost
0 + βpost

1 + . . .+ βpost
6 ]

so that the sum of the coefficients βj was restricted to be the same as for the pre-2000 estimates,

while the shape of β(L) was that for the post-2000 estimates. These results are reported in the

column labeled “Post-Path, Pre-LR” in Table 6. Such a change would have modestly reduced

the volatility of inflation by 6%. If supply shocks are the only source of economic fluctuation, the

effect on output would have been negligible, but if there are demand shocks output volatility rises

9–13%.

On the other hand, if we change just the long-run response, but leave the dynamics the same

as for the pre-2000 rule,

βj = βpre
j

[βpost
0 + βpost

1 + . . .+ βpost
6 ]

[βpre
0 + βpre

1 + . . .+ βpre
6 ]

,

as reported in the “Pre-path, Post-LR” column of Table 6, inflation volatility would be reduced

about 28%. Output would have been stabilized by 12–19% if there are demand pressures, but

becomes 1% more volatile if there are supply shocks alone.

These calculations suggest that increasing the long-run magnitude of inflation response, as

the market perceives the Fed to have done, achieves the lion’s share of the reduction of inflation

volatility; making the inflation response more gradual, as the market also perceives the Fed to have

done, detracts from output’s stabilization. 12 We provide this example primarily to illustrate the

kinds of uses that could be made of the more detailed inference about dynamics that our estimation

approach makes possible, rather than to offer a definitive answer to the question of whether the

estimated changes in monetary policy subsequent to 2000 have been helpful for purposes of economic

stabilization.

It should also be acknowledged that a key source of the inertia we find is due to the limited

response in the immediate months following new economic information. Rudebusch (2006) ac-

knowledges the existence of this kind of short-run inertia in Fed decision-making but thinks it is
12Note, however, that the beneficial component of the post-2000 change is entirely attributed to the large estimated

value of β(6) in Table 4. If this were dropped from the analysis, there would be no perceived improvement in the
long-run inflation response.
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less interesting than longer adjustment delays:

Such short-term partial adjustment of the funds rate involves cutting the policy rate by

two 25-basis-point moves in fairly quick succession, rather than reducing the rate just

once by 50 basis points. This smoothing likely reflects various institutional rigidities,

such as a fixed monthly meeting schedule and perhaps certain sociological and political

factors. However, short-term partial adjustment within a quarter is essentially indepen-

dent of whether there is monetary policy inertia over the course of several quarters, and

this latter issue is the one that is relevant to the empirical monetary policy rules.

However, we would argue that the decision of the Greenspan Fed to increase the funds rate by only

25 basis points at each FOMC meeting over 2004-2006 is very much an issue deserving review and

likely part of the reason we estimate an increased sluggishness in the post-2000 period. Moreover,

our simple model uses exactly the inertia we find in the data to derive the result that this form of

gradual adjustment indeed can be counterproductive.

6 Sensitivity Analysis

We next test the cross-equation restrictions imposed, and look for corroboration of the identifying

assumptions from other data sources.

6.1 Tests of Cross-Equation Restrictions

In addition to the average change in the risk premium on fed funds futures contracts, the constant

term ηr,k in equation (2.12) would incorporate any non-zero mean for the specification error that

represented day-to-day changes in the market forecasts of potential output, the inflation target,

and the policy rule residual (see expression (2.9)). If this constant term turned out to be different

for different indicators k, that could be evidence of general mis-specification. For example, if the

indicators were in part providing signals about changes in potential output, and if the value of this

signal differed across indicators, that might show up as differences in ηr,k across different k.

It is easy to conduct tests of the restriction (4.1) that the policy rule constant is identical across

indicators based again on Hansen’s J-statistic

TQ
(
θ̂

(h)
R ,Y(h)

T

)
− TQ

(
θ̂

(h)
U ,Y(h)

T

)
≈ χ2(2)
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where θ̂R is the GMM parameter estimate subject to the cross-equation restriction ηr,1 = ηr,2 = ηr,3

and θ̂U is the unrestricted estimate. The resulting estimates are placed in the web appendix and

summarized here. The restrictions are quite consistent with the data.

The associated unrestricted policy parameter estimates suggest that nothing substantive is lost,

and statistical precision is noticeably gained, by imposing the cross-equation restriction that the

policy rule constant is identical across economic indicators. Estimating separate policy rule con-

stants reduces the statistical precision with which we estimate the policy rule response coefficients,

in particular the inflation response coefficients at longer horizons.

6.2 Potential Output and the Inflation Target

A challenge for standard methods of estimating monetary policy rules is the difficulty in measuring

potential output Y ∗t and the inflation target π∗t . We have argued that our approach can avoid these

problems to the extent that the daily news items of which we make use have negligible consequences

for Y ∗ or π∗. Here we provide additional evidence on why we believe that is a reasonable assumption.

To explore this issue empirically, we will be looking at the properties of the Congressional Budget

Office’s series for quarterly potential real GDP growth, denoted y∗q where q indexes quarters. If

one looks at the historical values of this series as reported in the January 2009 vintage, y∗q is an

extremely smooth and highly predictable series (see the top panel of Figure 2). However, over time

the CBO will make many revisions to its estimate of the value of y∗q for a given historical quarter q.

For example, on April 17, 1996, CBO estimated the growth rate of potential GDP for q = 1995:Q4

to be 1.98% (at an annual rate), whereas by January 8, 2009, they had revised the estimate for

y∗1995:Q4 up to 2.76%. Orphanides (2001) and Orphanides and van Norden (2002) demonstrated

that such revisions can pose a big problem for traditional Taylor Rule estimates. Is it reasonable

to assert that the daily news events exploited in our analysis had negligible implications for these

subsequent revisions of potential GDP?

Let Ω(q) denote the information set available to the public as of the 20th calendar day of

the first month of quarter q + 1. For example, for q = 1995:Q4, Ω(q) would represent information

publicly reported as of January 20, 1996. By this date, values for the percentage growth in nonfarm
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Figure 2: Potential GDP growth and long-run inflation expectations
Notes: Top panel: quarterly growth (at an annual rate) of potential GDP as estimated by the CBO as of January
2009. Bottom panel: average CPI inflation rate expected over the next 10 years according according to the median
response from professional forecasters surveyed in each individual quarter.

payrolls for each month of quarter q would have been reported, denoted x1q|Ω(q), x2q|Ω(q), and

x3q|Ω(q), though the actual GDP growth rate for quarter q would not yet be known. Thus for

example for q = 1995:Q4, x1q|Ω(q) would be the growth rate of seasonally adjusted nonfarm payroll

employment during the month of October 1995 as reported by the Bureau of Labor Statistics on

January 6, 1996, while x2q|Ω(q) would be the November 1995 growth rate as reported on January

6. Let {y∗q−1|Ω(q), . . . , y
∗
q−4|Ω(q)} denote the four most recent quarterly growth rates for potential

GDP as they would have been reported by CBO prior to date Ω(q); for example, for q = 1995:Q4,

y∗q−1|Ω(q) is the potential growth rate for 1995:Q3 as estimated by CBO on February 1, 1995 (the

most recent CBO estimate released prior to January 20, 1996). Finally, let y∗q|T denote the potential

GDP growth rate for quarter q as reported on January 8, 2009. Vintage values for xiq|Ω(q) and
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y∗q−j|Ω(q) were obtained from ALFRED, the real-time archived data set maintained by the Federal

Reserve Bank of St. Louis.

We then estimated the following regression by OLS for q = 1994:Q1 to 2007:Q3:

y∗q|T = α0 +
3∑
j=1

αjxjq|Ω(q) +
4∑
j=1

γjy
∗
q−j|Ω(q) + εq.

The coefficients αj can tell us the extent to which the values of nonfarm payroll growth that

arrive during quarter q could help predict the potential GDP growth rate for quarter q as it would

ultimately be reported, relative to information about potential GDP that had arrived prior to

the quarter’s actual GDP report. We fail to reject the null hypothesis that α1 = α2 = α3 = 0

(F (3, 46) = 0.27, p = 0.85). On the other hand, a parallel regression for predicting the actual real

GDP growth rates as eventually reported,

yq|T = α̃0 +
3∑
j=1

α̃jxjq|Ω(q) +
4∑
j=1

γ̃jyq−j|Ω(q) + ε̃q,

leads to rejection of H0 : α̃1 = α̃2 = α̃3 = 0 (F (3, 46) = 3.37, p = 0.03). Nonfarm payrolls contain

useful information about the current quarter’s actual GDP growth but little information about the

current quarter’s potential GDP growth.

We repeated the same calculations using monthly industrial production growth rates or monthly

core CPI inflation rates in place of nonfarm payroll employment growth.13 We again found that

industrial production is of no use in predicting potential GDP (F (3, 46) = 0.98, p = 0.41), but is

helpful for predicting actual GDP (F (3, 46) = 4.06, p = 0.01), while real-time core CPI releases do

not help predict either actual or potential GDP growth. Our maintained assumption that markets

are responding to news about near-term economic conditions Yt+h and not potential output Y ∗t+h

is thus fully consistent with these hypothesis tests.

In fact, even the actual growth of GDP itself as reported at the time has little correlation with

potential GDP growth as currently assessed by the CBO. In a regression of y∗q|T on the GDP rate

initially reported for quarter q, 4 lags of y∗q−j|Ω(q), 4 lags of yq−j|Ω(q), and a constant, one fails to

reject the hypothesis that the coefficient on initially reported GDP growth is zero (p = 0.92).

Alternatively, one might view the market’s perception of potential GDP as constructed mechan-

ically from some filtering algorithm on incoming data, which would imply that news of any sort
13Release of the December 1995 value for industrial production was delayed until January 24, 1996. We used this

January 24, 1996 release for q =1995:Q4. ALFRED’s real-time coverage of the core CPI begins in 1996:M12
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by definition has some impact on perceived potential GDP. The size of this impact would depend

on the particular filter used, though in general it should be small. For example, if one associates

potential GDP with the trend component of a Hodrick-Prescott filter, a choice of λ = 1600 implies

that a 1% increase in observed real GDP warrants a 0.2% increase in estimated potential GDP.14

Using λ = 129, 600 as recommended by Morten O. Ravn and Harald Uhlig (2002) for monthly data

would imply that an indicator that raised perceived monthly industrial production by 1% would

raise expected potential industrial production by 0.07%. If, for illustration, a 1% increase in E(Yt)

coincides with a 0.07% increase in E (Y ∗t ), our estimate of δ would be understated by a factor of

0.93. Although such a perspective might warrant small numerical changes in the interpretation of

our estimated coefficients, we do not think it materially affects our broad conclusions.

As far as the inflation target is concerned, Sharon Kozicki and P. A. Tinsley (2001) and

Gürkaynak, Sack, and Swanson (2005) have produced evidence that some of the response of inter-

est rates to daily news events represents a market belief that the Fed’s long-run inflation target is

poorly anchored. Nevertheless, the suggestion that the FOMC is changing its long-run inflation

target on a daily basis in response to the latest economic news would seem quite strange to those

who actually implemented recent U.S. monetary policy. Apart from the discrete effects of personnel

changes, some would argue that the Fed’s long-run inflation target should be by definition an even

smoother series than potential GDP, particularly over the period we study. Marvin Goodfriend

(2005) observed

a measure of inflation favored by the Fed, core PCE inflation, has remained in the 1 to

2 percent range since the mid-1990s. It is difficult to imagine circumstances that would

cause the Greenspan Fed to deliberately target core PCE inflation above 2 percent in

either the long run or the short run.... Likewise, it is hard to imagine any circum-

stances in which the Greenspan Fed would deliberately target core PCE inflation below

1 percent.
14Andrew C. Harvey and Albert Jaeger (1993) note that one can implement Hodrick-Prescott smoothing using

Kalman smoothing from a state-space model for which (in the notation of James D. Hamilton 1994).

F =

[
2 −1
1 0

]
Q =

[
1 0
0 0

]
H′ =

[
1 0

]
R = λ.

The limiting value for the Kalman gain vector Kt can be found by iterating on equations [13.2.22] and [13.2.23] in
Hamilton (1994) until convergence, which produce K′ =

[
0.201 0.178

]
for λ = 1600 and K′ =

[
0.072 0.069

]
for λ = 129, 600.

28



The 10-year expected CPI inflation rate reported by the median respondent in the Survey of

Professional Forecasters has certainly behaved in a way consistent with Goodfriend’s perception;

(see the bottom panel of Figure 2).

We investigated the extent to which changes in the expected inflation rate from the SPF might

be responding to the specific news events on which we focus in a similar exercise to that described

above. Let πq denote the 10-year expected CPI inflation rate that respondents reported in quarter

q and let xq|Ω(q) denote the most recent 12-month growth rate for nonfarm payrolls as it would

have been reported as of the middle of quarter q. We estimated the following by OLS:

πq = α0 + θ0xq|Ω(q) +
2∑
j=1

γjπq−j + εq.

The test of the null hypothesis that long-run inflation expectations did not respond to the most

recent nonfarm payroll numbers (θ0 = 0) fails to reject (p = 0.44). P -values for analogous tests

that inflation expectations did not respond to the most recent industrial production (p = 0.73) and

core CPI (p = 0.76) also fail to reject.

If it were the case that market participants did revise their perception of the long-run inflation

target π∗t in response to the daily news events we analyze, the implication would be that the market-

perceived increase in πt−π∗t would be smaller than that of πt, resulting in a potential underestimate

of β. If the nature of the revision is similar to that implied by a monthly Hodrick-Prescott filter,

the magnitude of the bias should be relatively minor for reasons of the algebra noted above.

7 Conclusion

It is important to be able to measure market participants’ beliefs, manifest through their behavior,

about how monetary policy is conducted. Previous work has found fed funds futures contracts to be

excellent predictors of future Federal Reserve policy. This paper proposed that market participants

forecast future policy along with future economic conditions, and linked the two by the Taylor

Rule. This enabled us to measure the market’s beliefs about how the Federal Reserve responds to

inflation and the output gap. Additionally, by focusing on daily forecast updates, we are able to

nearly eliminate the impact of potential output and the inflation target on our main focus: the

market-perceived monetary policy response to inflation and output.

Our baseline results for the 1994–2007 sample suggest the market perceives that the Federal

29



Reserve gradually responds to inflation and real activity. Similar to previous literature working on

post-Volcker data, we find the Federal Reserve follows the Taylor Principle, a greater than one-

for-one response to inflation. We also find evidence that the market-perceived monetary policy

rule changed over our sample: estimating response and forecasting coefficients separately for each

subsample leads to our baseline specification being readily accepted by the data. During the

1990s market-perceived policy responded robustly to output and quickly to inflation; during the

2000s market-perceived policy doesn’t respond to output and responds at a more measured pace to

inflation, though its long-run inflation response is greater than before. We quantify the importance

of the inflation response path and long-run magnitude in a standard model, and find that raising the

long-run magnitude is effective at lowering inflation volatility while making the path more gradual

is counterproductive.
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A Web Appendix– Not for Publication

Table A1: Policy Rule Constant Estimates

h
1 2 3 4 5 6

Baseline –0.421 –0.493 –0.578 –0.518 –0.547 –0.195
0.068 0.092 0.114 0.125 0.139 0.139

Baseline, pre –0.412 –0.489 –0.580 –0.492 –0.667 –0.624
0.109 0.091 0.080 0.199 0.132 0.186

Baseline, post –0.380 –0.469 –0.517 –0.448 –0.686 –0.644
0.070 0.082 0.119 0.124 0.200 0.145

Notes: ηr is the average risk premium change. HAC standard errors in italics. Point estimates and standard errors
from two-step nonlinear GMM. Data run over 1994:M1-2007:M7. Pre period is 1994–1999, Post period is 2000–2007.

Table A2: Tests of Cross-Equation Restriction

h
1 2 3 4 5 6

(4) Cross, pre 0.988 0.969 0.925 0.967 0.987 0.994
(5) Cross, post 0.999 0.997 0.996 0.957 0.999 0.976

Notes: p-values from Hansen’s (1982) J-test of cross-equation restriction that the average risk premium change is
identical across indicators. Pre period is 1994–1999, Post period is 2000–2007.

Table A3: Market-Perceived Monetary Policy Rule Estimates, No Cross-Equation
Restriction

h
1 2 3 4 5 6

(4) Cross, pre β 0.286 0.845 1.160 1.340 1.490 1.502
0.207 0.687 0.611 0.745 0.752 0.975

δ 0.137 0.128 0.348 0.434 0.130 0.305
0.046 0.049 0.248 0.354 0.085 0.112

(5) Cross, post β –0.499 0.603 0.398 0.445 1.023 2.196
0.365 0.457 0.376 0.397 0.680 0.854

δ 0.257 –0.101 0.088 0.002 –0.040 0.105
0.057 0.154 0.068 0.024 0.038 0.689

Notes: The policy rule coefficient on inflation is β and on the output gap is δ. HAC standard errors in italics.
See the notes for Table A2. Point estimates and standard errors are from two-step nonlinear GMM. Data run over
1994:M1-2007:M7. Pre period is 1994–1999, Post period is 2000–2007.
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Table A4: Core Inflation Predictability

h
1 2 3 4 5 6

R2 91.5% 90.7% 89.5% 88.0% 86.2% 84.1%
t-stat 60.9 58.9 55.9 52.8 49.8 47.0

Notes: R2 and slope coefficient t-stat (robust), from regressions of Core-PCE inflation on Core-CPI inflation, both
as annual logarithmic rates, monthly 1960–2007.
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