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1 Introduction

Over the last several decades, social scientists have identified a range of important violations

of Expected Utility Theory, the standard theory of choice under risk. Perhaps at the most

basic level, in both experimental situations and everyday life, people frequently exhibit

both risk loving and risk averse behavior, depending on the situation. As first stressed

by Friedman and Savage (1948), people participate in unfair gambles, pick highly risky

occupations (including entrepreneurship) over safer ones, and invest without diversification

in individual risky stocks, while simultaneously buying insurance. Attitudes towards risk are

unstable in this very basic sense.

This systematic instability underlies several paradoxes of choice under risk. As shown

by Allais (1953), people switch from risk loving to risk averse choices among two lotteries

after a common consequence is added to both, in contradiction to the independence axiom

of Expected Utility Theory. Another form of instability is preference reversals (Lichtenstein

and Slovic, 1971): in comparing two lotteries with a similar expected value, experimental

subjects choose the safer lottery but are willing to pay more for the riskier one. Camerer

(1995) reviews numerous attempts to amend the axioms of Expected Utility Theory to deal

with these findings, but these attempts have not been conclusive.

We propose a new psychologically founded model of choice under risk, which naturally

exhibits the systematic instability of risk preferences and accounts for the puzzles. In this

model, risk attitudes are driven by the salience of different lottery payoffs. Psychologists

view salience detection as a key attentional mechanism enabling humans to focus their lim-

ited cognitive resources on a relevant subset of the available sensory data. As Taylor and

Thompson (1982) put it: “Salience refers to the phenomenon that when one’s attention is dif-

ferentially directed to one portion of the environment rather than to others, the information

contained in that portion will receive disproportionate weighting in subsequent judgments.”

In line with this idea, in our model the decision maker focuses on salient payoffs. He is then

risk seeking when a lottery’s upside is salient and risk averse when its downside is salient.

To formalize this idea in a choice between lotteries, we define a state of the world to be

salient for a given lottery if, roughly speaking, the distance between that lottery’s payoffs



and the payoffs of other available lotteries is large. We thus follow Kahneman (2003), who

writes that “changes and differences are more accessible to a decision maker than absolute

values”. The model then describes how decision makers replace the objective probabilities

they face with decision weights that increase in the salience of payoffs. Through this process,

the decision maker develops a context-dependent representation of each lottery. Aside from

replacing objective probabilities with decision weights, the agent’s utility is standard.1

At a broad level, our approach is similar to that pursued by Gennaioli and Shleifer (2010)

in their study of the representativeness heuristic in probability judgments. The idea of both

studies is that decision makers do not take into account fully all the information available

to them, but rather over-emphasize the information their minds focus on.2 Gennaioli and

Shleifer (2010) call such decision makers local thinkers, because they neglect potentially

important but unrepresentative data. Here, analogously, in evaluating lotteries, decision

makers overweight states that draw their attention and neglect states that do not. We

continue to refer to such decision makers as local thinkers. In both models, the limiting case

in which all information is processed correctly is the standard economic agent.

Our model leads to an understanding of what encourages and discourages risk seeking,

but also to an explanation of the Allais paradoxes. The strongest departures from Expected

Utility Theory in our model occur in the presence of extreme payoffs, particularly when

these occur with a low probability. Due to this property, our model predicts that subjects in

the Allais experiments are risk loving when the common consequence is small and attention

is drawn to the highest lottery payoffs, and risk averse when the common consequence is

large and attention is drawn to the lowest payoffs. We explore the model’s predictions

by describing, and then experimentally testing, how Allais paradoxes can be turned on

and off. We also show that preference reversals can be seen as a consequence of lottery

evaluation in different contexts (that affect salience), rather than the result of a fundamental

difference between pricing and choosing. The model thus provides a unified explanation of

risk preferences and invariance violations based on a psychologically motivated mechanism

1In most of the paper, we assume a linear utility function. However, this functional form does not deal
with the phenomenon of loss aversion, i.e. the extreme risk aversion with respect to small positive expected
value bets. To deal with this phenomenon, we modify preferences around zero along the lines of Kahneman
and Tversky (1979) in Section 7.3.

2Other models in the same spirit are Mullainathan (2002), Schwartzstein (2009) and Gabaix (2011).
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of salience.

It is useful to compare our model to the gold standard of existing theories of choice under

risk, Kahneman and Tversky’s (KT, 1979) Prospect Theory. Prospect Theory incorporates

the assumption that the probability weights people use to make choices are different from

objective probabilities. But the idea that these weights depend on the actual payoffs and

their salience is new here. In some situations, our endogenously derived decision weights

look very similar to KT’s, but in other situations – for instance when small probabilities

are not attached to salient payoffs or when lotteries are correlated – they are very different.

We conduct multiple experiments, both of simple risk attitudes and of Allais paradoxes

with correlated states, that distinguish our predictions from KT’s, and uniformly find strong

support for our model of probability weighting.

The paper proceeds as follows. In Section 2, we present an experiment illustrating the

switch from risk averse to risk-loving behavior as lottery payoffs, and their salience, change.

In Section 3, we present a salience-based model of choice among two lotteries, and show how

changes in the structure of lotteries affect the endogenous decision weights. In Section 4, we

use this model to study risk attitudes, derive from first principles Prospect Theory’s weighting

function for a class of choice problems where it should apply, and provide experimental

evidence for our predictions. In Section 5 we show that our model accounts for Allais

paradoxes and preference reversals. We obtain new predictions concerning these paradoxes,

and test them. In Section 6, we extend the model to choice among many lotteries. We

then introduce salience into a standard asset pricing model, which may shed light on some

empirical puzzles in finance, such as the growth-value anomaly. In Section 7, we address

framing effects, failures of transitivity and mixed lotteries. Section 8 concludes.

2 A Simple Example

We begin by presenting the results of two experiments illustrating two central intuitions be-

hind our model: how the contrast between payoffs in different states makes some states more

salient to the decision maker than others, and how this process shapes risk attitudes. The

procedures for all experiments in the paper are described in the Appendix 2 (Supplementary
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Material). The two experiments are:

Experiment 1: Choose between the two options:

L1 =

 $1 with probability 95%

$381 with probability 5%
, L2 = {$20 for sure.

Experiment 2: Choose between the two options:

L1 =

 $301 with probability 95%

$681 with probability 5%
, L2 = {$320 for sure.

Three points are noteworthy. First, Experiment 2 simply adds $300 to all the payoffs in

Experiment 1. Second, in both experiments L1 and L2 have the same expected payoffs.

Third, in both experiments lottery L1 has the same relatively small (5%) probability of a

high payoff, and a high (95%) probability of a $19 loss relative to the sure outcome.

The same 120 subjects participated in the two experiments over the internet. In Exper-

iment 1, 83% of the subjects chose the safe option L2, whereas in Experiment 2, 67% of the

same subjects chose the risky option L1. Thus, there is a statistically significant switch from

a large majority of risk averse choices to a large majority of risk seeking choices. In fact,

over half the subjects who chose L2 in the first experiment switched to L1 in the second.

Although in each experiment the two options offer the same expected value, the same

subjects are risk averse in the first experiment and risk loving in the second. Expected Utility

Theory typically assumes risk aversion, and so would have trouble accounting for Experiment

2. Prospect Theory (both in its standard and cumulative versions) holds that the small 5%

probability of the high outcome is over-weighted by decision makers, creating a force toward

risk loving behavior in both experiments. To account for risk averse behavior in Experiment

1 and risk loving behavior in Experiment 2, Prospect Theory requires a combination of

probability weighting and declining absolute risk aversion in the value function.3

Our explanation of these findings does not rely on the shape of the value function. It

3This is only true if the reference point of a Prospect Theory agent is the status quo. If instead the
reference point is the sure prospect, then both problems are identical and Prospect Theory cannot account
for the switch from risk aversion in Experiment 1 to risk seeking in Experiment 2.
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goes roughly as follows. In Experiment 1, in the state where the lottery loses relative to the

sure payoff, the lottery’s payoff of $1 feels a lot lower than the sure payoff of $20. Because

this downside is more salient than winning $381, the subjects focus on it when making their

decisions. This focus triggers the risk averse choice. In Experiment 2, the lottery’s payoff

in the bad outcome state, $301, does not appear nearly as bad compared to the sure payoff

of $320. The upside of winning $681 is more salient and subjects focus on it when making

their decisions. This focus triggers the risk seeking choice. The analogy here is to sensory

perception: a lottery’s salient payoffs are those which differ most strongly from the payoffs of

alternative lotteries, and the decision maker’s mind focuses on salient payoffs when making

a choice. We now describe a model that formalizes this intuition.

3 The Model

A choice problem is described by: i) a set of states of the world S, where each state s ∈ S

occurs with objective and known probability πs such that
∑

s∈S πs = 1, and ii) a choice set

{L1, L2}, where the Li are risky prospects that yield monetary payoffs xis in each state s.

For convenience, we refer to Li as lotteries.4 Here we focus on choice between two lotteries,

leaving the general case of choice among N > 2 lotteries to Section 6.

The agent uses a value function5 v to evaluate lottery payoffs relative to the reference

point of zero.6 Absent distortions in decision weights, the agent evaluates Li as:

V (Li) =
∑
s∈S

πsv(xis). (1)

4Formally, Li are acts, or random variables, defined over the choice problem’s probability space (S, FS , π),
where S is assumed to be finite and FS is its canonical σ-algebra. However, as we will see in Equation (7),
the decision maker’s choice depends only on the Li’s joint distribution over payoffs and not on the exact
structure of the state space. Thus we use the term lotteries, in a slight abuse of nomenclature relative to
the usual definition of lotteries as probability distributions over payoffs.

5Throughout most of the paper, we illustrate the mechanism generating risk preferences in our model by
assuming a linear value function v. In section 7.3, when we focus on mixed lotteries, we consider a piece-wise
linear value function featuring loss aversion, as in Kahneman and Tversky (1979).

6This is a form of narrow framing, also used in Prospect Theory. Koszegi and Rabin (2006, 2007) build a
model of reference point formation and use it to explain shifts in risk attitudes in the real world. We instead
study risk attitudes in the lab holding reference points constant. These approaches are complementary, as
one could combine our model of decision weights with Koszegi and Rabin’s two part value function.
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The local thinker (LT) departs from Equation (1) by overweighting the lottery’s most salient

states in S. Salience distortions work in two steps. First, a salience ranking among the states

in S is established for each lottery Li. Second, based on this salience ranking the probability

πs in (1) is replaced by a transformed, lottery specific decision weight πis. To formally define

salience, let xs = (xis)i=1,2 be the vector listing the lotteries’ payoffs in state s and denote

by x−is the payoff in s of lottery Lj, j 6= i. Let xmin
s , xmax

s respectively denote the largest and

smallest payoffs in xs.

Definition 1 The salience of state s for lottery Li, i = 1, 2, is a continuous and bounded

function σ(xis, x
−i
s ) that satisfies three conditions:

1) Ordering. If for states s,s̃ ∈ S we have that [xmin
s , xmax

s ] is a subset of [xmin
s̃ , xmax

s̃ ], then

σ
(
xis, x

−i
s

)
< σ

(
xis̃, x

−i
s̃

)
2) Diminishing sensitivity. If xjs > 0 for j = 1, 2, then for any ε > 0,

σ(xis + ε, x−is + ε) < σ(xis, x
−i
s )

3) Reflection. For any two states s, s̃ ∈ S such that xjs, x
j
s̃ > 0 for j = 1, 2, we have

σ(xis, x
−i
s ) < σ(xis̃, x

−i
s̃ ) if and only if σ(−xis,−x−is ) < σ(−xis̃,−x−is̃ )

Section 3.1 discusses the connection between these properties and the cognitive notion of

salience. To illustrate Definition 1, consider the salience function:

σ(xis, x
−i
s ) =

|xis − x−is |
|xis|+ |x−is |+ θ

. (2)

According to the ordering property, the salience of a state for Li increases in the distance

between its payoff xis and the payoff x−is of the alternative lottery. In Equation (2), this is

captured by the numerator |xis−x−is |. Diminishing sensitivity implies that salience decreases

as a state’s average payoff gets farther from zero in either the positive or negative domains,

as captured by the denominator term |x1s| + |x2s| in (2). Finally, according to the reflection
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property, salience is shaped by the magnitude rather than the sign of payoffs: a state is

salient not only when the lotteries bring sharply different gains, but also when they bring

sharply different losses. In (2), reflection takes the strong form σ(xis, x
−i
s ) = σ(−xis,−x−is ).

These three properties are illustrated in Figure 1.

Figure 1: Properties of a salience function, Eq. (2)

The specification (2) exhibits two additional properties. The first is “symmetry”, namely

σ(x1s, x
2
s) = σ(x2s, x

1
s), which is a natural property in the case of two lotteries but which is

dropped in the N > 2 lottery case. The second property of (2) is “convexity”: salience falls

at a decreasing rate as payoffs become larger in absolute value. This latter property limits the

extent of diminishing sensitivity, implying that at large absolute payoff values the distance

between payoffs (the numerator) becomes the principal determinant of salience.7 Our main

results rely only on the properties in Definition 1, but we often use the tractable functional

form (2) to illustrate our model. The example of Section 2 follows from (2) evaluated at

θ ' 0. In this example, there are two states of the world: one in which the lottery yields its

upside, the other in which it yields its downside.8 In Experiment 1 the state (1, 20) where

7The convexity of (2) formally means that
∣∣σ(xis + ε, x−is + ε)− σ(xis, x

−i
s )
∣∣ (weakly) decreases as the

magnitude of payoffs (xis, x
−i
s ) goes up. Parameter θ in (2) captures the relative strength of ordering (the

numerator) vs. diminishing sensitivity (the denominator). If θ = 0, diminishing sensitivity is strong because
any state with a zero payoff has maximal salience: σ(0, x) = 1 regardless of the value of x. When θ > 0,
even a state with a zero payoff can be not very salient if x is small.

8In this example, constructing the state space from the alternatives of choice is straightforward. Section
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the lottery yields its downside of $1 is more salient than the state (381, 20) where the lottery

yields its upside $381, since σ(1, 20) ' 20−1
21

> σ(381, 20) ' 381−20
401

. However, in Experiment

2, where payoffs have been shifted up, the lottery’s upside $681 is more salient than its

downside $301, σ(301, 320) ' 320−301
621

< σ(681, 320) ' 681−320
1001

.

3.1 Salience, Decision Weights and Risk Attitudes

Given a salience function σ, for each lottery Li the local thinker ranks the states and distorts

their decision weights as follows:

Definition 2 Given states s, s̃ ∈ S, we say that for lottery Li state s is more salient than s̃

if σ(xis, x
−i
s ) > σ(xis̃, x

−i
s̃ ). Let kis ∈ {1, ..., |S|} be the salience ranking of state s for Li, with

lower kis indicating higher salience. States with the same salience obtain the same ranking.

Then, if s is more salient than s̃, namely if kis < kis̃, the local thinker transforms the odds

πs̃/πs of s̃ relative to s into the odds πis̃/π
i
s, given by:

πis̃
πis

= δk
i
s̃−k

i
s · πs̃
πs

(3)

where δ ∈ (0, 1]. By normalizing
∑

s π
i
s = 1 and defining ωis = δk

i
s/
(∑

r δ
kir · πr

)
, the

decision weight attached by the local thinker to a generic state s in the evaluation of Li is:

πis = πs · ωis. (4)

The agent evaluates a lottery by inflating the relative weights attached to the lottery’s

most salient states. Parameter δ measures the extent to which salience distorts decision

weights, capturing the degree of local thinking. When δ = 1, the decision maker is a

standard economic agent: his decision weights coincide with objective probabilities (i.e.,

ωis = 1). When δ < 1, the agent is a local thinker, namely he overweights the most salient

states and underweights the least salient ones. Specifically, s is overweighted if and only if it

is more salient than average (ωis > 1, or δk
i
s >

∑
r δ

kir · πr). The case where δ → 0 describes

the agent who focuses only on a lottery’s most salient payoffs.

3.2 describes how the state space S is derived in more complex cases.
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As show in Appendix 1, Definition 2 implies that the extent of overweighting also depends

on objective probabilities:

Proposition 1 If the probability of state s is increased by dπs = h ·πs, where h is a positive

constant, and the probabilities of other states are reduced while keeping their odds constant,

i.e. dπs̃ = − πs
1−πsh · πs̃ for all s̃ 6= s, then:

dωis
h

= − πs
1− πs

· ωis ·
(
ωis − 1

)
. (5)

This result states that an increase in a state’s probability πs reduces the distortion of the

decision weight in that state by driving ωis closer to 1. That is, low probability states are

subject to the strongest distortions: they are severely over-weighted if salient and severely

under-weighted otherwise. This stands in marked contrast to KT’s (1979,1992) assumption

that low probability, high rank payoffs are always overweighted. In our model, payoffs are

overweighted if and only if they are salient, regardless of probability. On the other hand, by

Proposition 1 our model also implies that the largest distortions of choice occur when salient

payoffs are relatively unlikely. This property plays a key role for explaining some important

findings such as the common ratio Allais Paradox in Section 5.1.

Given Definitions 1 and 2, the local thinker computes the value of lottery Li as:

V LT (Li) =
∑
s∈S

πisv(xis) =
∑
s∈S

πsω
i
sv(xis). (6)

Thus, Li’s evaluation always lies between its highest and lowest payoffs.

Since salience is defined on the state space S, one may wonder whether splitting states,

or generally considering a different state space compatible with the lotteries’ payoff distribu-

tions, may affect the local thinker’s evaluation (6). Denote by Sx the set of states in S where

the lotteries yield the same payoff combination x, formally Sx≡{s ∈ S |xs = x}. Clearly,

S = ∪x∈XSx where X denotes the set of distinct payoff combinations occurring in S. By

Definition 1, all states s in Sx are equally salient for either lottery, and thus have the same
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value of ωis, which for simplicity we denote ωix. Using (4) we can rewrite V LT (Li) in (6) as:

V LT (Li) =
∑
x∈X

(∑
s∈Sx

πs

)
ωixv(xix), (7)

where xix denotes Li’s payoff in x. Equation (7) says that the state space only influences

evaluation through the total probability of each distinct payoff combination x, namely πx =∑
s∈Sx

πs. This is because salience σ(., ) depends on payoffs, and not on the probabilities of

different states. Hence, splitting a given probability πx across different sets of states does

not affect evaluation (or choice) in our model. There is therefore no loss in generality from

viewing S as the “minimal” state space X identified by the set of distinct payoff combinations

that occur with positive probability. In the remainder of the paper, we keep the notation of

Equation (6), with the understanding that S is this “minimal” state space.

In a choice between two lotteries, Equation (6) implies that - due to the symmetry of the

salience function (i.e. k1s = k2s for all s) - the local thinker prefers L1 to L2 if and only if:

∑
s∈S

δksπs
[
v(x1s)− v(x2s)

]
> 0. (8)

For δ = 1, the agent’s decision coincides with that of an Expected Utility maximizer having

the same value function v(.). For δ < 1, local thinking favors L1 when it pays more than L2

in the more salient (and thus less discounted) states.

3.2 Discussion of Assumptions and Setup

We now discuss our formalization of salience and of the state space, the key ingredients of

our approach.

Salience and Decision Weights

In human perception, a sensorial stimulus gives rise to a subjective representation whose

intensity increases in the stimulus’ magnitude but also depends on context (Kandel et al,

1991). In our model, the strength of the stimulus is the payoff difference among lotteries in

a given state and the salience function σ(., .) captures the subjective intensity with which
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this stimulus is perceived. Through diminishing sensitivity and reflection, this subjective

intensity decreases with the distance of the state’s payoffs from the status quo of zero, which

is our measure of context. As in Weber’s law of diminishing sensitivity, whereby a change

in luminosity is perceived less intensely if it occurs at a higher luminosity level, the local

thinker perceives less intensely payoff differences occurring at high (absolute) payoff levels.9

Consistent with psychology of attention, we assume that the agent evaluates options

by focusing on (weighting more) their most salient states. The “local thinking” parameter

1/δ captures the agent’s focus on salient states, proxying for his ability to pay attention

to multiple aspects, cognitive load, or simply intelligence. Our assumption of rank-based

discounting buys us analytical tractability, but our main results also hold if the distortion of

the odds in (3) is a smooth function of salience differences, for instance δ[σ(x
i
s,x
−i
s )−σ(xis̃,x

−i
s̃

)].

The main restriction embodied in our model is that this function does not depend on a

state’s probability. The salience function in Equation (2) provides a tractable benchmark

characterized by only two parameters (θ, δ). This allows us to look for ranges of θ and δ that

are consistent with the observed choice patterns.

The State Space

Salience is a property of states of nature that depends on the lottery payoffs that occur

in each state, as they are presented to the decision maker. The assumption that payoffs

(rather than final wealth states) shape the perception of states is a form of narrow framing,

consistent with the fact that payoffs are perceived as gains and losses relative to the status

quo, as in Prospect Theory.

In our approach, the state space S and the states’ objective probabilities are a given of the

choice problem.10 In the lab, specifying a state space for a choice problem is straightforward

when the feasible payoff combinations – and their probabilities – are available, for instance

9Neurobiological evidence connects visual perception to risk taking. McCoy and Platt (2005) show in a
visual gambling task that when monkeys made risky choices neuronal activity increased in an area of the
brain (CGp, the posterior cingulate cortex) linked to visual orienting and reward processing. Crucially, the
activation of CGp was better predicted by the subjective salience of a risky option than by its actual value,
leading the authors to hypothesize that “enhanced neuronal activity associated with risky rewards biases
attention spatially, marking large payoffs as salient for guiding behavior (p. 1226).”

10In particular, we do not address choice problems where outcome probabilities are ambiguous, such as
the Ellsberg paradox. This is an important direction for future work. Similarly, the salience-based decision
weights are not to be understood as subjective probabilities.
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when lotteries are explicitly described as contingencies based on a randomizing device. For

example, L1 ≡ (10, 0.5; 5, 0.5) and L2 ≡ (7, 0.5; 9, 0.5) give rise to four payoff combinations

{(10, 7), (10, 9), (5, 7), (5, 9)} if they are played by flipping two separate coins, but only to

two payoff combinations if they are contingent on the same coin flip [e.g. {(10, 7), (5, 9)}]. In

our experiments, we nearly always describe the lotteries’ correlation structure by specifying

the state space. However, classic experiments such as the Allais paradoxes provide less

information: they involve a choice between (standard) lotteries, and the state space is not

explicitly described. In this case, we assume that our decision maker takes the lotteries

as independent, which implies that the state space is the product space induced by the

lotteries’ marginal distributions over payoffs.11 The intuition is that salience detects the

starkest (payoff) differences among lotteries unless some of these differences are explicitly

ruled out.

Our emphasis on the state space as a source of context dependence does not lead to

accurate predictions when lotteries are presented in a way that induces the decision maker to

neglect the state space. For example, suppose that the payoffs of two lotteries are determined

by the roll of the same dice. One lottery pays 1,2,3,4,5,6, according to the dice’s face; the

other lottery pays 2,3,4,5,6,1. The state in which the first lottery pays 6 and the second

pays 1 may appear most salient to the decision maker, leading him to prefer the first lottery.

But of course, a moment’s thought would lead him to realize that the lotteries are just

rearrangements of each other, and recognize them as identical. In the following, we assume

that, before evaluating lotteries, the decision maker edits the choice set by discarding lotteries

that are mere permutations of other lotteries. We also assume (see Section 6) that he discards

dominated lotteries from the choice set. Such editing is plausibly related to salience itself: in

these cases, before comparing payoffs, what is salient to the decision maker are the properties

of permutation or dominance of certain lotteries. To focus our study on the salience of

lottery payoffs, we do not formally model this editing process. However, endogenizing the

choice set is an important direction for future work. In a similar spirit, the model could be

generalized to take into account determinants of salience other than payoff values, such as

11In Appendix 2 (Supplementary Material) we provide experimental evidence consistent with this assump-
tion, as well as details on the information given in the experimental surveys.
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prior experiences and details of presentation, or even color of font. These may matter in

some situations but are not considered here.

Our theory of decision weights can be viewed as a way to endogeneize the probability

weighting function introduced by Edwards (1962), Fellner (1961) and later used by KT in

Prospect Theory. The various properties of this probability weighting function, such as

overweighting of small probabilities and subadditivity, allow KT to account for risk loving

behavior and the Allais paradoxes. Quiggin’s (1982) rank-dependent expected utility and

Tversky and Kahneman’s (1992) Cumulative Prospect Theory (CPT) develop weigthing

functions in which the rank order of a lottery’s payoffs affects probability weighting.12

Our theory exhibits two sharp differences from these works. First, in our model the

magnitude of payoffs, not only their rank, determines salience and probability weights: the

lottery upside may still be underweighted if the payoff associated with it is not sufficiently

large. As we show in Section 4, this feature is crucial to explaining shifts in risk attitudes.

Second, and more important, in our model decision weights depend on the choice context,

namely on the available alternatives as they are presented to the agent. In Section 5 we

exploit this feature to shed light on the psychological forces behind the Allais paradoxes and

preference reversals. We are not the first to propose a model of context dependent choice

among lotteries. Rubinstein (1988), followed by Aizpurua et al (1990) and Leland (1994),

builds a model of similarity-based preferences, in which agents simplify the choice among

two lotteries by pruning the dimension (probability or payoff, if any), along which lotteries

are similar. The working and predictions of our model are different from Rubinstein’s, even

though we share the idea that the common ratio Allais paradox (see Section 5.1.2) is due to

subjects’ focus on lottery payoffs. In Regret Theory (Loomes and Sugden 1982, Bell 1982,

Fishburn 1982), the choice set directly affects the agent’s utility via a regret/rejoice term

added to a standard utility function. In our model, instead, context affects decisions by

shaping the salience of payoffs and decision weights. By adopting a traditional utility the-

ory perspective, Regret Theory cannot capture framing effects and violations of procedural

invariance (Tversky et al. 1990).

12Prelec (1998) axiomatizes a set of theories of choice based on probability weighting, which include CPT.
For a recent attempt to estimate the probability weighting function, see Wu and Gonzalez (1996).
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We now show that our model provides an intuitive explanation for several well known

anomalies of choice under risk and deliver new predictions, which we experimentally test.

Section 6 then shows how our model can be used in relevant economic applications.

4 Salience and Attitudes Towards Risk

Consider the choice between a lottery L1 = (x1h, πh; x
1
l , 1 − πh) and a sure prospect L2 =

(x, 1) that have the same mean, namely Es(x
1
s) = x. Here we assume that all payoffs are

positive, and leave issues related to loss aversion to Section 7.3. This setup is often used

by experimenters to elicit risk attitudes, and illustrates in the starkest manner how salience

shapes risk attitudes. In state sh = (x1h, x) the lottery gains relative to the sure prospect,

while in state sl = (x1l , x) it loses. Since Es(x
1
s) = x, it is easy to see that Equation (8)

implies that for any δ < 1, a local thinker with linear utility chooses the lottery if and only if

the gain state sh is more salient than the loss state sl, i.e. when σ(x1h, x) > σ(x1l , x). Indeed,

in this case π1
h > πh and the local thinker perceives the expected value of L1 to be above

that of L2, behaving in a risk seeking manner. Using the salience function in Equation (2),

this occurs when: (
x+

θ

2

)
(1− 2πh) > (x− x1l )(1− πh), (9)

which uniquely identifies the parameter values for which the agent is risk seeking. Holding

the lottery loss (x− x1l ) constant at some value l̃ (as in the experiments of Section 2, where

l̃ = 19), the risk attitudes implied by Equation (9) are pictured in Figure 2. Recall that

x > l̃ so that x1l > 0. For convenience, we set θ/l̃ ' 0.

Two patterns stand out. First, as in Section 2, for a fixed πh < 1/2, a higher expected

value x fosters risk seeking by inducing a vertical move from the grey to the white region.

When x is low, the lottery’s downside x1l is close to zero. By diminishing sensitivity, the loss

is salient, inducing risk aversion. As x becomes large, the effect of diminishing sensitivity

weakens, due to the convexity of the salience function in (2). Since for πh < 1/2 the lottery

gain is larger than the loss, it eventually becomes salient, inducing risk seeking.13

13Besides the properties of Definition 1, to obtain Figure 2 it suffices for the salience function to be convex.
Indeed, define x1h(πh, x) as the upside at which the lottery’s expected value is equal to the sure prospect.
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Figure 2: Shifts in risk attitudes

Second, for a given expected value x, a higher probability πh of the gain reduces risk

seeking by inducing a horizontal move from the white to the grey region of Figure 2. As πh

increases, the lottery’s upside must fall for the expected value of L1 to stay constant. As a

consequence, the lottery gain becomes less salient, inducing risk aversion. Risk seeking never

occurs when πh ≥ 1/2: now the gain is weakly smaller than the loss in absolute terms. By

diminishing sensitivity, the loss is more salient.

Remarkably, in this context our model of decision weights recovers the key features

of Prospect Theory’s inverse S-shaped probability weighting function (KT 1979): over-

weighting of low probabilities, and under-weighting of high probabilities. To see how, fix

a value of x > l̃ in Figure 2 and increase the probability πh along the horizontal axis. Fig-

ure 3 shows the decision weight π1
h along this path, where π∗h(x) is the threshold at which

the agent switches from risk seeking to risk aversion in Figure 2. Low probabilities are

over-weighted because they are associated with salient upsides of longshot lotteries. High

probabilities are under-weighted as they occur in lotteries with a small, non salient, upside.

Note however that in our model the weighting function is context dependent. In contrast

The local thinker is risk seeking if σ(x1h(πh, x), x) > σ(x− l̃, x). Since x1h(πh, x) falls in πh, ordering implies
that for πh sufficiently large x − l becomes salient and the agent is risk averse. This is surely the case for
πh ≥ 1/2. On the other hand, since by convexity σ(x − l̃, x) decreases in x, as x becomes large the upside
eventually becomes salient, yielding Figure 2.
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Figure 3: Context dependent probability weighting function

to Prospect Theory, risk seeking behavior is no longer only associated with a low probability

of a gain. At high expected values x, the threshold π∗h(x) approaches 1/2 so risk seeking

occurs even at moderate probabilities. At low x the threshold is low, so risk aversion occurs

even at low probabilities. The salience of particular states can induce risk seeking behavior

in conditions that are far more common than those characterizing longshot bets.

We tested the predictions of Figure 2 by giving experimental subjects a series of binary

choices between a mean preserving spread L1 = (x1h, πh; x
1
l , 1−πh) and a sure prospect L2 =

(x, 1). We set the downside of L1 at (x− x1l ) = $20, yielding an upside (x1h− x) of $20 · (1−

πh)/πh. We varied x in {$20, $100, $400, $2100, $10500} and πh in {.01, .05, .2, .33, .4, .5, .67}.

For each of these 35 choice problems, we collected at least 70 responses. On average, each

subject made 5 choices, several of which held either πh or x constant. The observed propor-

tion of subjects choosing the lottery for every combination (x, πh) is reported in Table I; for

comparison with the predictions of Figure 2, the results are shown in Figure 4.

The patterns are qualitatively consistent with the predictions of Figure 2. For a given

expected value x, the proportion of risk takers falls as πh increases; for a given πh < 0.5,

the proportion of risk takers increases with the expected value x. The effect is statistically

significant: at πh = 0.05 a large majority of subjects (80%) are risk averse when x = $20, but

as x increases to $2100 a large majority (65%) becomes risk seeking. Finally, there is a large
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Table I: Proportion of Risk-Seeking Subjects

E
x
p

ec
te

d
va

lu
e
x $10500 0.83 0.65 0.50 0.48 0.46 0.33 0.23

$2100 0.83 0.65 0.48 0.43 0.48 0.38 0.21

$400 0.60 0.58 0.44 0.47 0.33 0.30 0.23

$100 0.58 0.54 0.40 0.32 0.22 0.30 0.13

$20 0.15 0.2 0.12 0.08 0.10 0.25 0.15

0.01 0.05 0.2 0.33 0.4 0.5 0.67

Probability of gain πh

Figure 4: Proportion of Risk-Seeking Subjects

drop in risk taking as πh crosses 0.5. Note that the increase in x raises the proportion of risk

takers from around 10% to 50% even for moderate probabilities in the range (0.2, 0.4). These

patterns are broadly consistent with the predictions of our model. The weighing function of

Prospect Theory and CPT can explain why risk seeking prevails at low πh, but not the shift

from risk aversion to risk seeking as x rises. To explain this finding, both theories need a

concave value function characterized by strong diminishing returns.14

In Appendix 2 (Supplementary Material) we show that parameter values δ ∼ 0.7 and

14In Appendix 2 we provide further support for these claims by showing that standard calibrations of
Prospect Theory cannot explain our experimental findings. For example, the calibration in KT(92) features
the value function v(x) = x0.88, which is insufficiently concave. Appendix 2 performs additional experiments
on longshot lotteries whose results are also consistent with out model but inconsistent with Prospect Theory
under standard calibrations of the value function.
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θ ∼ 0.1 are consistent with the above evidence on risk preferences, as well as with risk

preferences concerning longshot lotteries. These values are not a formal calibration, but we

employ them as a useful reference for discussing Allais paradoxes in the next section.

5 Local Thinking and Context Dependence

We now illustrate the distinctive implications of our model regarding the role of context

dependence in the Allais paradoxes and in preference reversals.

5.1 The Allais Paradoxes

5.1.1 The “common consequence ” Allais Paradox

The Allais paradoxes (1953) are the best known and most discussed instances of failure of the

independence axiom. Kahneman and Tversky’s (1979) version of the “common consequence”

paradox compares the choices:

Lz1 = (2500, 0.33; 0, 0.01; z, 0.66), Lz2 = (2400, 0.34; z, 0.66) (10)

for different values of the payoff z. By the independence axiom, an expected utility maximizer

should not change his choice as the “common consequence” z is varied, for the latter cancels

out in the comparison between Lz1 and Lz2.

In reality, experiments reveal that for z = 2400 most subjects are risk averse, preferring

L2400
2 = (2400, 1) to L2400

1 = (2500, 0.33; 0, 0.01; 2400, 0.66). When instead z = 0, most

subjects are risk seeking, preferring L0
1 = (2500, 0.33; 0, 0.67) to L0

2 = (2400, 0.34; 0, 0.66).

In violation of the independence axiom, z affects the experimental subjects’ choices.

Prospect Theory and CPT (KT 1979 and TK 1992) explain the switch from L2400
2 to L0

1

by the so called “certainty effect”, the idea that adding a downside risk to the sure prospect

L2400
2 undermines agents’ valuation much more than adding the same downside risk to the

already risky lottery L2400
1 . This effect is directly built into the probability weighting function

π(p) by the assumption of subcertainty, e.g. π(0.34)− π(0) < 1− π(0.66).15

15In CPT the mathematical condition on probability weights is slightly different but carries the same
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Our model endogenizes this feature of decision weights, and thus explains the Allais

paradox, because the common consequence z alters the salience of lottery outcomes. To

see this, consider the choice between L2400
1 and L2400

2 . The minimal state space is S =

{(2500, 2400), (0, 2400), (2400, 2400)} so there are three states of the world and the most

salient state is one where the risky lottery L2400
1 pays zero because:

σ(0, 2400) > σ(2500, 2400) > σ(2400, 2400). (11)

The inequalities follow from diminishing sensitivity and ordering, respectively, and can be

easily verified for the case of the salience function in Equation (2). By Equation (8), a local

thinker then prefers the riskless lottery L2400
2 provided:

−(0.01) · 2400 + δ · (0.33) · 100 < 0, (12)

which holds for δ < 0.73. Although the risky lottery L2400
1 has a higher expected value, it is

not chosen when local thinking is sufficiently severe, because its downside of 0 is very salient.

Consider now the choice between L0
1 and L0

2. Now both options are risky and, as discussed

in Section 3, the local thinker is assumed to see the lotteries as independent. The minimal

state space now has four states of the world, i.e. S = {(2500, 2400), (2500, 0), (0, 2400), (0, 0)},

whose salience ranking is:

σ(2500, 0) > σ(0, 2400) > σ(2500, 2400) > σ(0, 0). (13)

The first inequality follows from ordering, and the second from diminishing sensitivity. By

Equation (8), a local thinker prefers the risky lottery L0
1 provided:

(0.33) · (0.66) · 2500− δ · (0.67) · (0.34) · 2400 + δ2 · (0.33) · (0.34) · 100 > 0 (14)

which holds for δ ≥ 0. Any local thinker with linear utility chooses the risky lottery L0
1

because its upside is very salient.

intuition: the common consequence is more valuable when associated with a sure rather than a risky prospect.
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In sum, when δ < 0.73 – which holds in the parameterization δ = 0.7, θ = 0.1 – a local

thinker exhibits the Allais paradox. It is worth spelling out the exact intuition for this result.

When z = 2400, the lottery L2400
2 is safe, whereas the lottery L2400

1 has a salient downside

of zero. The agent focuses on this downside, leading to risk aversion. When instead z = 0,

the downside payoff of the safer lottery L0
2 is also 0. As a result, the lotteries’ upsides are

now crucial to determining salience. This induces the agent to overweight the larger upside

of L0
1, triggering risk seeking. The salience of payoffs endogeneizes the “certainty effect” as

a form of context dependence: when the same downside risk is added to the lotteries, the

sure prospect is particularly hurt because the common downside payoff induces the agent to

focus on the larger upside of the risky lottery, leading to risk seeking choices.

This role of context dependence invites the following test. Suppose that subjects are

presented the following correlated version of the lotteries Lz1 and Lz2 in Equation (10):

Probability 0.01 0.33 0.66

payoff of Lz1 0 2500 z

payoff of Lz2 2400 2400 z

(15)

where the table specifies the possible joint payoff outcomes of the two lotteries and their

respective probabilities. Correlation changes the state space but not a lottery’s distribution

over final outcomes, so it does not affect choice under either Expected Utility Theory or

Prospect Theory. Critically, this is not true for a local thinker: the context of this correlated

version makes clear that the state in which both lotteries pay z is the least salient one, and

also that it drops from evaluation in Equation (8), so that the value of z should not affect

the choice at all. That is, in our model – but not in Prospect Theory – the Allais paradox

should not occur when Lz1 and Lz2 are presented in the correlated form as in (15).

We tested this prediction by presenting experimental subjects correlated formats of lot-
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teries Lz1 and Lz2 for z = 0 and z = 2400. The observed choice pattern is the following:

L2400
1 L2400

2

L0
1 7% 9%

L0
2 11% 73%

The vast majority of subjects do not reverse their preferences (80% of choices lie on the

NW-SE diagonal), and most of them are risk averse, which in our model is also consistent with

the fact that (0, 2400) is the most salient state in the correlated choice problem (15). Among

the few subjects reversing their preference, no clear pattern is detectable. This contrasts

with the fact that our experimental subjects exhibit the Allais paradox when lotteries are

presented in an uncorrelated form (see Appendix 2, Supplementary Material). Thus, when

the lotteries pay the common consequence in the same state, choice is invariant to z and

the Allais paradox disappears. Our model accounts for this fact because, as the common

consequence z is made evident by correlation, it becomes non-salient. As a result, subjects

prune it and choose based on the remaining payoffs.16

This result captures Savage’s (1972, pg. 102) argument in defense of the normative char-

acter of the “sure thing principle”, and validates his thought experiment. Other experiments

in the literature are consistent with our results. Conlisk (1989) examines a related variation

of the Allais choice problem, in which each alternative is given in compound form involving

two simple lotteries, with one of the simple lotteries yielding the common consequence z.

Birnbaum and Schmidt (2010) present the Allais problem in split form, singling out the

common consequence z in each lottery. In both cases, the Allais resversals subside. See also

Harrison (1994) for related work on the common consequence paradox.

16We tested the robustness of the correlation result by changing the choice problem in several ways: 1) we
framed the correlations verbally (e.g. described how the throw of a common die determined both lotteries’
payoffs), 2) we repeated the experiment with uncertain real world events, instead of lotteries, and 3) we varied
the ordering of questions, the number of filler questions, and payoffs. As the Appendix shows, our results
are robust to all these variations. We also ran an experiment where subjects were explicitly presented the
lotteries of Equation (10) with z = 2400 as uncorrelated, with a state space consisting of the four possible
states. The choice pattern exhibited by subjects is: i) very similar to the one exhibited when the state
space is not explicitly presented, validating our basic assumption that an agent assumes the lotteries to be
uncorrelated when this is not specified otherwise, and ii) very different from the choice pattern exhibited
under correlation (with 35% of subjects changing their choice as predicted by our model, see Appendix 2).
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5.1.2 The “common ratio” Allais Paradox

We now turn to the “common ratio” paradox, which occurs in the choice between lotteries:

Lπ
′

1 = (6000, π′; 0, 1− π′), Lπ2 = (α · 6000, π; 0, 1− π), (16)

where Lπ
′

1 is riskier than Lπ1 in the sense that it pays a larger positive amount (α < 1) with

a smaller probability (π′ < π). By the independence axiom, an expected utility maximizer

with utility function v(·) chooses the safer lottery Lπ2 over Lπ
′

1 when:

v(α · 6000) ≥ π′

π
· v(6000) + v(0)

(
1− π′

π

)
. (17)

The choice should not vary as long as π′/π is kept constant. A stark case arises when

π′/π = α; now the two lotteries have the same expected value and a risk averse expected

utility maximizer always prefers the safer lottery Lπ2 to Lπ
′

1 for any π. Parameter α identifies

the “common ratio” between π′ and π at different levels of π.

It is well known (KT 1979) that, contrary to the Expected Utility Theory, the choices

of experimental subjects depend on the value of π: for fixed π′/π = α = 0.5, when π = 0.9

subjects prefer the safer lottery L0.9
2 = (3000, 0.9; 0, 0.1) to L0.45

1 = (6000, 0.45; 0, 0.55).

When instead π = 0.002, subjects prefer the riskier lottery L0.001
1 = (6000, 0.001; 0, 0.999)

to L0.002
2 = (3000, 0.002; 0, 0.998). This shift towards risk seeking as the probability of

winning falls has provided one of the main justifications for the introduction of the probability

weigthing function. In fact, KT (1979) account for this evidence by assuming that this

function grows slower than linearly for small π; hence, απ is overweighted relatively to π at

low values of π, inducing the choice of Lπ
′

1 when π = 0.002.

Consider the choice between Lπ
′

1 and Lπ2 in our model. For α = 1/2 there are four states

of the world, S = {(6000, 3000), (0, 3000), (6000, 0), (0, 0)}, and the salience ranking among

them is

σ(6000, 0) > σ(0, 3000) > σ(6000, 3000) > σ(0, 0), (18)

as implied by ordering and diminishing sensitivity. It is convenient to express the agent’s

decision as a function of the transformed probabilities of the lottery outcomes (as opposed
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to those of states of the world).17 Denoting these transformed probabilities by π̂′ and π̂,

we find that the local thinker evaluates the odds with which the riskier lottery Lπ
′

1 pays out

relative to the safer one Lπ2 as:

π̂′

π̂
=
π′

π
· (1− p) + pδ2

(1− π′)δ + π′2
. (19)

With a linear utility, the local thinker selects the safer lottery Lπ2 if and only if π̂′/π̂ ≤ 1/2.

This implies that the local thinker chooses the safer lottery when:

π ≥ 2(1− δ)
2− δ − δ2

. (20)

As in the common ratio effect, the local thinker is risk averse when π is sufficiently high and

risk seeking otherwise. In particular, for δ ∈ (0.22, 1), the local thinker switches from L0.9
2

to L0.01
1 just as experimental subjects do. The parameterization δ = 0.7, θ = 0.1 is thus

consistent also with the common ratio effect.

The intuition for this result (see Proposition 1) is that salience exerts a particularly

strong effect in low probability states. The upside of the riskier lottery Lπ
′

1 is salient at every

π, creating a force toward risk seeking. Crucially, however, this force is strong precisely

when π is low. In this case, the greater salience of the risky lottery’s upside blurs the small

probability difference π − π′ = (1− α)π between the two lotteries. When instead π is large,

the agent realizes that the risky lottery is much more likely to pay nothing, inducing him

to attach a large weight on the second most salient state (0, 3000). This is what drives the

choice of the safe lottery Lπ
′

2 .

Experimental evidence shows that this common ratio effect is also not robust to the

introduction of correlation. KT (1979) asked subjects to choose between two lotteries of the

type (18) in a two-stage game where in the first stage there is a 75% probability of the game

ending without any winnings and a 25% change of going to stage two. In stage two, the

lottery chosen at the outset is played out. The presence of the first stage is equivalent to

17From any vector of state-specific decision weights (πis)s∈S , the decision weight πi(x) attached to lottery
i’s payoff x is equal to the sum of the decision weights of all states where lottery i pays payoff x. Formally,
πi(x) =

∑
s∈Sxi

πis where Sxi is the set of states where i pays x.
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reducing by 75% the winning probability for both lotteries, so in terms of final outcomes this

setting is equivalent to the setting that leads to the common ratio effect above. Crucially,

however, KT document that in this formulation there is no violation of the independence

axiom.

In explaining this behavior, KT informally argue that individuals “edit out” the correlated

first stage state where both lotteries pay zero. Our model yields this editing as a consequence

of the low salience and cancellation of such state. Adding a correlated state where both

lotteries pay 0 neither affects the salience ranking in Equation (18) nor – more importantly

– the odds ratios between states. As a result, the local thinker chooses as if he disregards

the correlated state and its probability. This is what experimental subjects do.

In sum, our model explains the Allais paradoxes as the product of a specific form of

context dependence working though the salience of lottery payoffs. Adding a common payoff

to all lotteries changes risk preferences by changing the salience of lotteries’ upsides or down-

sides. Rescaling the lotteries’ probabilities shapes the importance of salience vs. likelihood

in determining decision weights, which also affects choice. Crucially, the presence of context

dependence implies that risk attitudes depend on how the lotteries are presented. Adding a

common payoff or rescaling probabilities by introducing in the lotteries a non-salient corre-

lated state does not affect choice: it is too enticing for subjects to disregard this state and

to abide by the independence axiom.

5.2 Preference Reversals

Context dependence in our model can also explain the phenomenon of preference reversal

described by Lichtenstein and Slovic (1971). They asked subjects to choose between a safer

lottery Lπ, which has a high probability of a low payoff, and a riskier lottery L$, which

has a low probability of a high payoff (we denote the lotteries using conventional notation).

Subjects may systematically choose the safer lottery Lπ and yet state a higher minimum

selling price for the riskier lottery L$. Preferences as revealed by choice are thus the opposite

of preferences as revealed by pricing. This phenomenon, confirmed also by Grether and Plott

(1979) and Tversky et al. (1990), is at odds with both standard Expected Utility Theory

and Prospect Theory, leading to claims that choosing and pricing follow two fundamentally
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different principles.

To study preference reversals in our model, consider how a local thinker prices a lottery.

As in Expected Utility Theory, the minimum selling price is the amount of money at which

the local thinker is indifferent between receiving that amount and playing the lottery, namely

the lottery’s certainty equivalent. For a local thinker, this price is found by replacing the

lottery’s probabilities with decision weights, which in turn depend on the agent’s perception

of the choice alternatives. Formally, when choosing between lotteries L1 and L2, a local

thinker with a value function v(·) prices L1 at:

P (L1 |L2 ) = v−1

[∑
s∈S

π1
sv(x1s)

]
, (21)

where π1
s is the decision weights of state s for lottery L1 in the context of its choice against

lottery L2. With a linear value function, the price P (L1|L2) is the expected value of L1

as perceived by the local thinker. If the agent is asked to price a lottery in isolation, we

naturally assume that he evaluates it in the context of a choice between the lottery and the

status quo of not having it L0 ≡ (0, 1), i.e. of getting zero for sure.

Consider now preference reversals in our model. In the experiments, subjects are first

asked to price in isolation, and then to choose among, the following two independent lotteries:

L$ =


x, with probability π′

0, with probability 1− π′
, Lπ =


αx, with probability π

0, with probability 1− π
, (22)

where typically π′/π = α = 1/2, as in the common ratio experiments. We know from (20)

that, with linear utility, the local thinker selects the safer lottery Lπ when π > 2(1− δ)/(2−

δ−δ2). In the literature, we typically have π > 3/4, so this constraint holds for any δ ≥ 2/3.

Thus, when asked to choose, a local thinker having linear utility and δ = 0.7 is risk averse

and prefers Lπ to L$, just as most experimental subjects do.

In contrast, when the local thinker is asked to price the lotteries in isolation, he evaluates

each lottery relative to L0 = (0, 1). In this comparison, each lottery’s upside is salient. As a
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consequence, since α = 1/2 the local thinker prices the lotteries as:

P (Lπ |L0 ) = x
2
· π
π+(1−π)δ , P (L$ |L0 ) = x · π/2

π/2+(1−π/2)δ .
(23)

For any δ < 1, the local thinker prices L$ higher than Lπ in isolation, i.e.

P (L$ |L0 ) > P (Lπ |L0 ).

Both lotteries are priced above their expected value, but L$ is more overpriced than Lπ

because it pays a higher gain with a smaller probability, and from Proposition 1 we know

that lower probabilities are relatively more distorted.18

Thus, while in a choice context the local thinker prefers the safer lottery Lπ, in isolation

he prices the risky lottery L$ higher, exhibiting a preference reversal. Crucially, this behavior

is not due to the fact that choosing and pricing are different operations. In fact, in our model

choosing and pricing are the same operation, as in standard economic theory. Preference

reversals occur because, unlike in standard theory, evaluation in our model is context depen-

dent. Pricing and choosing occur in different contexts because the alternatives of choice are

different in the two cases. One noteworthy feature of our model is that it generates preference

reversals through violations of “procedural invariance”, defined by Tversky et al. (1990) as

situations in which a subject prices a lottery above its expected value, P (L1|L0) > E(x1s),

and yet prefers the expected value to the lottery, L1 ≺ (E(x1s), 1). Tversky et al (1990)

show that the vast majority of observed reversals follow from the violations of procedural

invariance, as predicted by our model. Regret Theory can produce preference reversals by a

distinct mechanism, intransitivities in choice, but does not violate procedural invariance.

One distinctive implication of our context-based explanation is that reversals between

choice and pricing should only occur when pricing takes place in isolation but not if agents

price lotteries in the choice context itself. We tested this hypothesis by giving subjects a

choice between lotteries L$ = (16, 0.31; 0, 0.69) and Lπ = (4, 0.97; 0, 0.03), which Tversky et

18These predictions are borne out by the literature as well as by our own experimental data. Tversky
et al (1990) show that preference reversals follow from overpricing of L$ in isolation, and that Lπ is not
underpriced. Our model predicts that agents price Lπ close to its expected value because it offers an
extremely high probability of winning, which is hardly distorted.
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al (1990) found to lead to a high rate of preference reversals. Subjects stated their certainty

equivalents for the two lotteries, in isolation and in the context of choice.19 Our model then

predicts that preference reversal should occur between choice and pricing in isolation, but

not between choice and pricing in the choice context.

Despite considerable variation in subjects’ evaluations (which is a general feature of such

elicitations, see Grether and Plott (1979), Bostic et al (1990), Tversky et al (1990)), the

results are consistent with our predictions. First, among the subjects who chose Lπ over L$,

the average (avg) price of Lπ in isolation was lower than the average price of L$ in isolation:

avg[P (Lπ |L0 )] = 4.6 < avg[P (L$ |L0 )] = 5.2 .

Thus, our subjects pool exhibits the standard preference reversal between choice and average

pricing in isolation.20

Second, preference reversals subside when we compare choice and pricing in the choice

context. In fact, in this context the same subjects priced their chosen lottery Lπ higher, on

average, than the alternative risky lottery L$:

avg[P (Lπ|L$)] = 4.3 > avg[P (L$|Lπ)] = 4.1

As predicted by our model, in the choice context the average price ranking is consistent with

choice.21 One may object that this agreement is caused by the subjects’ wish to be coherent

19In our experimental design, each subject priced each lottery only once, and different lotteries were priced
in different contexts. This design ensures that subjects do not deform their prices to be consistent with their
choices; however, it also implies that preference reversals are not observed within-subject but only at the
level of price distributions across subject groups (see Appendix 2 for more details).

20This reversal holds not only with respect to average prices but also for the distribution of prices we
observe. Assuming that subjects draw evaluations randomly from the price distributions, we estimate that
around 54% of the subjects who choose Lπ would exhibit the standard preference reversals (see Appendix
2). The average prices above imply that some subjects priced the safer lottery Lπ above its highest payoff.
Such overpricing can occur even in a laboratory setting and with incentives schemes (Grether and Plott
1974, Bostic et al 1990), perhaps due to misunderstanding of the pricing task. In Appendix 2 we consider
truncations of the data that filters out such overpricing.

21In our data, the distribution for P (Lπ|L$) does not dominate that for P (L$|Lπ). This is due to the
fact that: i) on average subjects attribute similar values to both lotteries in the choice context, and ii)
there is substantial variability in choice (and thus in pricing), as about half the subjects chose each lottery.
In Appendix 2 we look in a more detailed way at the manifestation and significance of fact ii) in light on
Tversky’s et al. (1990) analysis of preference reversals.
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when they price just after a choice. However, each subject priced only one of the lotteries

in the choice context.22 It appears to be the act of comparing the lotteries that drives their

evaluation during choice, and not (only) an adjustment of value subsequent to choice.

Another potential objection is that our experiments do not elicit true selling prices. It

is well known that it is difficult to design price elicitation mechanisms for subjects who

violate the independence axiom of Expected Utility Theory. To avoid these problems, Cox

and Epstein (1989) study preference reversals by only eliciting the ranking of selling prices

across lotteries. In their experiments, Cox and Epstein directly compared lotteries to each

other, so their procedure can be viewed as eliciting evaluations in the context of choice. They

find some evidence of preference reversals, but crucially they show that these reversals are

equally likely in both directions (from risk averse choice to risk seeking pricing, and from risk

seeking choice to risk averse pricing). Symmetric reversal patterns are typically attributed

to arbitrary fluctuations in evaluation, see Bostic et al (1990). Thus we interpret Cox

and Epstein’s results as consistent with our predictions that systematic preference reversals

subside when prices are elicited in a choice context.

These results suggest that choice and pricing may follow the same fundamental principle

of context-dependent evaluation. Preferences based on choice could differ from those inferred

from pricing in isolation because they represent evaluations made in different contexts.

6 Choice Among Many Lotteries, with an Application

to Asset Pricing

6.1 Setup and Definitions

We now extend our model to choice among N ≥ 2 of lotteries. Before doing so, note that

salience in a general choice problem cannot be inferred from that of pairwise comparisons,

since salience – and thus evaluation – will generally change for each pairwise comparison.

Pairwise intransitive preferences may even arise in some cases, as we show in Section 7.

22We ran another version of the survey where we asked the subjects to price the lotteries under comparison
but without having to choose between them. These subjects exhibited similar behavior on average, namely
pricing L$ higher than Lπ in isolation, but similarly to Lπ under comparison.
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To model choice from an arbitrary set of alternatives, which is particularly useful for

economic applications, we need to generalize the notion of salience to a general choice set.

Suppose that the local thinker is faced with a state space S and a choice set ℵ = {L1, . . . , LN}

of lotteries defined over S, as in Section 3. Let xs = (x1s, . . . , x
N
s ) be the vector of payoffs

delivered in a generic state s, and denote by x−is = {xjs}i6=j the vector of payoffs excluding xis.

The salience of state s for lottery Li is then captured by a function σ̂(xis, x
−i
s ) which contrasts

Li’s payoff xis in s with all other payoffs x−is in the same state. Let x−is + ε denote the vector

with elements {xjs + ε}j 6=i. In line with Definition 1, we impose the following properties:

Definition 3 Given a state space S and a choice set ℵ, the salience of state s for lottery Li

is given by a continuous and bounded function σ̂(xis,x
−i
s ) that satisfies three conditions:

1) Ordering: if xis = max xs, then for any ε, ε′ ≥ 0 (with at least one strict inequality):

σ̂
(
xis + ε,x−is − ε′

)
> σ̂

(
xis,x

−i
s

)
.

If xis = min xs, then for any ε, ε′ ≥ 0 (with at least one strict inequality):

σ̂
(
xis − ε,x−is +ε′

)
> σ̂

(
xis,x

−i
s

)
.

2) Diminishing sensitivity: if xjs > 0 for all j, then for any ε > 0,

σ̂(xis + ε,x−is +ε) < σ̂(xis,x
−i
s )

3) Reflection: for any two states s, s̃ ∈ S such that xjs, x
j
s̃ > 0 for all j, we have

σ̂(xis,x
−i
s ) < σ̂(xis̃,x

−i
s̃ ) if and only if σ̂(−xis,−x−is ) < σ̂(−xis̃,−x−is̃ )

When N > 2, one may construct a salience function satisfying the above requirements

by setting:

σ̂(xis,x
−i
s ) ≡ σ(xis, f(x−is )),

where σ(., .) is the salience function employed in the two lottery case of Section 3, and

f(x−is ) : RN−1 → R is a function of the residual vector x−is . One intuitive specification
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which, together with Definition 1, fulfills Definition 3 is:

f(x−is ) =
1

N − 1

∑
j 6=i

xjs, (24)

in which case the salience of a state for a lottery depends on the contrast between the lottery’s

payoff and the average of the other lotteries’ payoffs in s. Even if σ(., .) is symmetric, salience

is in general not symmetric in the sense that the same state may have different salience for

different lotteries. For instance, a state where lottery Li’s payoff is very different from the

payoffs of all the other Lj’s (which in turn are similar to each other) is very salient for Li

but not salient for the Lj’s. However, the same state may be very salient for all lotteries,

if for example the lotteries’ payoffs in that state are equally divided into two very different

values.

Given a lottery specific salience ranking kis based on the salience function σ̂, each state

is assigned a decision weight πis according to Equation (4), and a value V LT (Li) is computed

for each lottery Li according to Equation (6).

One important new effect arises in our model of choice among N > 2 lotteries. Specif-

ically, the preference ranking among any two lotteries depends not only on the contrast

between their payoffs but also on the remaining alternatives. The choice set is a source

of context effects. To see how this can arise, consider the pairwise choice between a sure

prospect L1 = (x, 1) and a risky lottery L2 = (xh, πh; xl, 1 − πh) where xh > x > xl > 0,

πh < 1/2 and E(xs) = x. Using the salience function (2) with θ = 0, state sl = (x, xl) is

salient when:

xh · xl < x2. (25)

In this case, which we assume throughout, the lottery’s downside is salient and the sure

prospect L1 is chosen from the choice set {L1, L2}.

Suppose now that we add to this choice set another (correlated) risky lottery L3 =

(x + y, πh; x− y, 1− πh) whose payoffs are spread by an amount y > 0 relative to the sure

prospect L1. Before examining the impact of L3 on the preference between L1 and L2, note

that in a pairwise comparison L1 is always preferred to L3. This is because by diminishing

sensitivity the spread y is more salient as a loss than as a gain.
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Consider now the agent’s choice from the enlarged choice set {L1, L2, L3}. If the axiom of

independence of irrelevant alternatives holds, the agent’s preference of L1 over L2 should not

be affected by the presence of L3. In our model, however, this does not need to be so. To

see this, note that when evaluating L2 in the enlarged choice set, the salience of the state sh

is now computed by contrasting the lottery’s payoff xh with the average payoff x+ y/2 of L1

and L3 in the same state sh, while the salience of the state sl in which L2 loses now contrasts

the lottery’s payoff xl with x− y/2. Consider the most interesting case where lottery L2 is

still risky relative to the average lottery in the choice set, in the sense that xh > x+ y/2 and

xl < x− y/2. It is then easy to show that the loss state sl remains salient for L2 provided:

xh · xl < x2 − y2

4
. (26)

Thus, in the range xhxl ∈ (x2 − y2/4, x2) the local thinker prefers L1 to L2 in a pairwise

comparison but prefers L2 to L1 when L3 is added to the choice set. Intuitively, when L3

is added, the downside xl of the original risky lottery L2 looks less bad, relative to the

alternatives. Although L2’s upside xh also looks less good, by the convexity property the

former effect is stronger. In other words, the inclusion of an “unfavourable” risky lottery

L3 boosts the risk tolerance of the agent by making the risky lottery L2 look better by

comparison. This can induce the agent to switch his choice to L2 over L1. The general

analysis of these so-called “decoy” effects is beyond the scope of this paper, and can be

found in Bordalo (2011). An interesting implication of the model is that such shifts in

salience (and resulting violations of the axiom of independence of irrelevant alternatives)

should subside when the choice set is large (i.e. N is large).

Such choice set effects imply that manifestly dominated lotteries may affect salience and

thus evaluation. As shown in Bordalo (2011), one can even construct fine-tuned examples in

which a dominated lottery is overvalued relatively to, and even chosen over, a dominating

lottery. In reality, however, the agent quickly realizes that the dominating option is more

valuable: what is salient then is the dominance relation between lotteries. To deal with this

feature while keeping the model tractable, we have assumed in Section 3.2 that the agent

edits the choice set by immediately identifying, and discarding, dominated lotteries. (This
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is reminiscent of the editing out of dominated lotteries in Prospect Theory.)

6.2 An application of salience to asset pricing

In this subsection, we show how our model of salience can be included in a very standard

asset pricing model in a way that accounts for some puzzling existing evidence. An investor

living for two periods t = 0, 1 decides at t = 0 how to allocate his wealth w between current

and future consumption by investing in a measure 1 of assets, each available in net supply

of 1. The investor values consumption according to a concave utility function u(c) (u′ > 0,

u′′ ≤ 0) and there is no time discounting. Each unit of asset i ∈ [0, 1] costs pi units of current

consumption and yields at t = 1 a dividend xis in state s ∈ S. We denote by xs =
∫
i
xis · di

the aggregate payoff of all assets in s ∈ S. In line with Equation (24), we define the salience

of a state s for a generic asset i as a function of the asset’s payoff xis in that state and the

average market payoff xs in the same state, denoting it by:

σ(xis, xs), (27)

where σ(., .) satisfies Definition 1. Since each asset captures an infinitesimal market share,

all assets are compared to the same market benchmark xs. Equation (27) implies that a

state is salient for an asset if in that state the asset’s payoff “stands out” relative to the

market payoff. We then adopt the following definition:

Definition 4 At prices (pi)i∈[0,1] an equilibrium portfolio for a local thinker consists of a

measure one of asset holdings (αi)i∈[0,1] such that:

1) The portfolio (αi)i∈[0,1] is feasible, namely
∫
i
αi · pi · di ≤ w, and

2) The portfolio (αi)i∈[0,1] is preferred to any portfolio obtained from it by a small deviation

along the holding αj of asset j, for any j ∈ [0, 1]. The deviation for each asset j is evaluated

in light of that asset’s salience weighting.

Definition 4 extends the standard theory of portfolio choice to the case of a local thinker.

Just as in our prior analysis the local thinker evaluated the expected gain (relative to the

status quo) of accepting a lottery in light of the lottery’s salient states, condition 2) states
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that when deciding of whether to buy an extra unit of an asset the investor evaluates the

incremental gain so obtained in light of that asset’s salience ranking. Additionally, just as

the salience of a lottery is shaped by the choice set, according to Equation (27) the salience

of an asset is determined by its comparison with the other assets in the market (and not with

the investor’s status quo portfolio). The market is the key source of context dependence in

our specification.

To see what Definition 4 implies for the investor’s optimal choice, consider a specific asset

j ∈ [0, 1] and let (α′i)i∈[0,1] be a portfolio which coincides with (αi)i∈[0,1] along the holdings of

every asset i 6= j, but is not constrained in its holding of asset j. By condition 2), (αi)i∈[0,1]

is an equilibrium portfolio provided:

αj = arg max
α′j |α′i=αi

{
u

(
w −

∫
i∈[0,1]

α′ipidi

)
+ Es

[
ωs,j · u

(∫
i∈[0,1]

α′ix
i
sdi

)]}
, for all j ∈ [0, 1] .

(28)

This is the standard utility maximization condition except for the fact that a deviation along

the holding of each asset j is evaluated using the asset-specific decision weights ωs,j. From

(28), the first order condition for the investor is:

pi · u′(c0) = E
[
ωis · xis · u′(c1,s)

]
, for all i ∈ [0, 1] , (29)

where c0 = w −
∫
αipi and c1,s =

∫
αi · xis are the consumption levels at each time and in

each state. When deciding whether to buy an extra unit of asset i, the investor realizes

that the cost of doing so is the utility value of the consumption pi forsaken at t = 0, while

the expected benefit is the utility value of earning xis in each future state s. Equation (29)

departs from the standard Euler equation because the benefit xis of the asset is weighted by

its salience ωis. When thinking about an asset, the investor is drawn to over-value its salient

payoffs and under-value its non-salient payoffs. The investor will then seek to buy a higher

quantity of an asset whose upside is salient, especially if such upside occurs in a state where

the marginal utility of consumption u′(c1,s) is high.

Consider the implications of this model for asset prices. In general equilibrium, the

investor must hold the market portfolio, namely αi = 1 for all i, c1,s = xs for all s, and
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c0 = w −
∫
i
pi · di > 0. Suppose that at t = 1 there is no aggregate risk so that the average

payoff is xs = x for all s (and thus c1,s = c1 = x for all s). Then, for any utility function

u(c), the investor described by (29) is willing to hold the market portfolio provided:

pi =
E [xis]

R
+

cov [ωis, x
i
s]

R
, for all i ∈ [0, 1] , (30)

where R = u′(c0)/u
′(c1) is the return on the riskless asset. The first term on the right hand

side of (30) is the price prevailing when the agent is fully rational (i.e. when δ = 1): in the

absence of aggregate risk, the investor is risk neutral at the margin, valuing each asset at

its expected discounted dividend. Indeed, for a diversified investor, standard risk aversion is

second order, leaving prices unaffected.

Relative to an Expected Utility maximizer, the local thinker over or under values an

asset by the second term on the right hand side, which increases in the covariance between

the asset’s payoffs and their salience. Specifically, the local thinker overvalues an asset

– exhibiting risk seeking behavior – when the asset’s highest payoffs are salient, while he

undervalues an asset, exhibiting risk averse behavior, when the asset’s lowest payoffs are

salient. By shaping the agent’s focus on specific asset payoffs, salience creates a first order

source of risk attitudes.

To illustrate how this mechanism works, consider the well-known empirical finding in

the cross-section of stock returns, namely the fact that value stocks – those with low stock

market values relative to measures of “fundamentals” such as assets or earnings – earn higher

average returns than growth stocks, those with high market values relative to measures of

fundamentals (Fama and French, 1993, Lakonishok, Shleifer and Vishny, 1994). Consider

two stocks g and v characterized by the dividend structure:

xgs =


xg s ∈ Sg

l s ∈ S/Sg
xvs =


xv s ∈ Sv

l s ∈ S/Sv

where xg > xv > x > l (where x is the average market payoff) and Pr(s ∈ Sg) = πg <

Pr(s ∈ Sv) = πv. Asset g is a “growth stock”, delivering a large above market payoff xg with
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small probability πg and a below market payoff l with a high probability 1−πg. Asset v is a

“value stock”, yielding a small above market payoff xv with high probability πv and a below

market payoff l with low probability 1−πv. Suppose now that the salience of different states

satisfies:

σ(xg, x) > σ(l, x) > σ(xv, x). (31)

That is, the upside of the growth stock stands out relative to the market, while for the value

stock the downside stands out. Using the salience function of Equation (2), this condition

is met when xgl > x2 > xvl, which requires the upside xv of the more stable value stock to

be sufficiently close to the market average x relative to the upside xg of the growth stock.

In this case, the investor thinks of the growth stock as an opportunity to obtain a large

windfall while he magnifies the downside risk of the value stock. This agent (partly) neglects

the fact that the growth stock has an objectively higher probability of a low payoff because

its upside xg is sufficiently salient to catch the agent’s attention. Equation (30) then yields

equilibrium prices given by:

pg =
E [xgs]

R
+
πg(1− πg)(1− δ)

R
· (xg − l) , (32)

pv =
E [xvs ]

R
− πv(1− πv)(1− δ)

R
· (xv − l) . (33)

The growth stock is over-valued and the value stock is under-valued, the more so the lower

is δ.

This implication of the model is consistent with the empirical evidence we already men-

tioned, but it goes further than that. Fama and French (1992,1993) have conjectured that

the reason that value stocks earn higher average returns is that they are disproportionately

exposed to a separate risk factor, which they referred to as distress risk. Subsequent re-

search, however, has not been able to find evidence that value stocks are particularly risky

(Lakonishok et al, 1994). Furthermore, Campbell, Hilscher and Szilagyi (2008) find that

stocks of companies vulnerable to the risk of bankruptcy earn if anything lower average re-

turns, contradicting the Fama-French view that “value” reflects bankruptcy risk. Our model

of salience might help explain what is going on. It suggests that while value stocks are not
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fundamentally riskier, the possibility of their bankruptcy (or a very low payoff) is salient

to the investors, and as a consequence value stocks are underpriced. The model thus puts

together the Fama-French idea that investors fear bankruptcy of value stocks with the em-

pirical observation that this possibility is salient and thus exaggerated, so value stocks are

indeed underpriced.

More generally, this example shows that the extent to which certain asset payoffs “stand

out” relative to the market may cause – through salience – distortions in the perception of

asset specific risks and thus of asset prices, for instance helping to explain why right-skewed

assets tend to be overvalued. This principle may also imply that, precisely by reducing

right-skewness, a diversified basket of stocks could also be relatively undervalued. We leave

further analysis of the impact of salience on asset prices to future work.

7 Other applications and extensions

7.1 Reflection and Framing Effects

KT (1979) show that experimental subjects shift from risk aversion to risk seeking as gains

are reflected into losses. Our model yields these shifts in risk attitudes solely based on the

salience of payoffs, without relying on the S-shaped value function of Prospect Theory. To

see this, consider the choice between lottery L1 = (x1s, πs)s∈S and sure prospect L2 = (x, 1),

both of which are defined over gains (i.e. x1s, x > 0) and have the same expected value

E(x1s) = x. For a local thinker with linear value function:

V LT (L1) =
∑
s∈S

πsω
1
sx

1
s = E(x1s) + cov[ω1

s , x
1
s] (34)

Thus, the local thinker is risk averse, choosing L2 over L1, when cov[ω1
s , x

1
s] < 0. If then

L1 and L2 are reflected into lotteries L′1 = (−x1s, πs)s∈S and L′2 = (−x, 1), property 3) in

Definition 1 implies that the salience ranking among states does not change. As a result,

the same agent is risk seeking, choosing L′1 over L′2 when:

cov
[
ω1
s ,−x1s

]
= −cov

[
ω1
s , x

1
s

]
> 0, (35)
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which is fulfilled if and only if the agent was originally risk averse. Intuitively, a salient

downside inducing risk aversion in the gain domain becomes a salient upside inducing risk

seeking in the loss domain. Our model thus yields the fourfold pattern of risk preferences23

without assuming, as Prospect Theory does, a value function that is concave for gains and

convex for losses. Reflection of payoffs generates shifts in risk attitudes by inducing the

agent to shift his attention from the lottery upside to its downside and vice versa. The same

logic shows our model can account for the KT’s (1981) famous framing experiments and the

Public Health Dilemma, even with a linear value function.

7.2 Intransitivity of pairwise preferences

Intransitivities may arise in our model, but their occurrence rests on a delicate balance

between probabilities, payoffs and degree of local thinking δ. In certain classes of cases,

such a balance does not exists. For example, intransitivities never occur in choices among

independent lotteries sharing the same support with fewer than 4 outcomes. To illustrate

how intransitive preferences may arise in our model, consider the following three lotteries:

Lπ =


αx, π

0, 1− π
, L$ =


x, απ

0, 1− απ
, Ls = (y, 1), (36)

where x, y > 0 and α < 1. Lotteries L$ and Lπ are of the kind giving rise to the preference

reversals of Section 5. In this case, a local thinker prefers the safer lottery Lπ to L$ as long

as π is large and δ is not too small. Suppose now that the sure prospect y is such that in

the pairwise comparison with L$ the latter’s gain is salient while in that with Lπ the latter’s

loss is salient, i.e. σ(x, y) > σ(0, y) > σ(αx, y). It is then possible to find values (y, δ) such

that choices are intransitive:24

Lπ � L$, L$ � Ls, Ls � Lπ.

23The four-fold pattern of risk preferences refers to risk seeking behavior for gambles with small probabil-
ities of gains and gambles with moderate or large probabilities of losses, and risk averse behavior when the
signs of payoffs are reversed, see Tversky et al (1990).

24One numerical example is x = 100, α = 1/10, π = 3/4, y = 4 and δ = 0.75.

37



Intransitivity arises because risk aversion in the direct comparison of Lπ with L$ is reversed

to risk seeking when the two lotteries are indirectly compared via their pairwise choice against

the sure thing Ls. The intuition is as follows. In the direct comparison, Lπ � L$ because

lottery Lπ pays off with much higher probability than L$. In the indirect comparison,

Lπ ≺ L$ because the sure thing stresses the upside of the risky lottery and the downside

of the safe lottery. This is “as if” in the direct comparison the agent chooses based on

probabilities, while in the indirect comparison he chooses based on payoffs. This intuition is

closely related to Tversky’s (1969) account of intransitivities in choice under risk.

7.3 Mixed Lotteries

We now apply our model to mixed lotteries, those involving both positive and negative

payoffs. To this end, we come back to the KT (1979) piecewise linear value function exhibiting

loss aversion, for loss aversion provides an intuitive explanation for risk aversion with respect

to small mixed bets. Using the salience function of Equation (2), for which σ(x, y) =

σ(−x,−y) for all x, y, all risk aversion for lotteries symmetric around zero is due to loss

aversion. For non-symmetric lotteries, salience and loss aversion interact to determine risk

preferences. To see this, consider Samuelson’s wager, namely the choice between the lotteries:

LS =


$200, 0.5

−$100, 0.5

, L0 = ($0, 1) .

In this choice, many subjects decline LS even though it has a positive and substantial

expected value. With a symmetric salience function, we have that σ(200, 0) > σ(100, 0) =

σ(−100, 0), implying that in this choice the local thinker focuses on the lottery gain.

Consider now what happens under the following piecewise linear value function:

v(x) =


x, if x > 0

λx, if x < 0

,
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where λ > 1 captures loss aversion. Now the local thinker rejects LS provided:

200 · 1

1 + δ
− 100λ · δ

1 + δ
< 0.

The agent rejects LS when his dislike for losses more than compensates for his focus on

the lottery gain, i.e. λ > 2/δ.25 In lotteries where the negative downside is larger than the

positive upside, salience and loss aversion go in the same direction in triggering risk aversion.

Although our approach can be easily integrated with standard loss aversion, we wish to

stress that salience may itself provide one interpretation of the idea that “losses loom larger

than gains” (KT 1979) where, independently of loss aversion in the value function, states

with negative payoffs are ceteris paribus more salient than states with positive payoffs. The

ranking of positive and negative states is in fact left unspecified by Definition 1. One could

therefore add an additional property:

4) Loss salience: for every state s with payoffs xs = (xis)i=1,2 such that x1s + x2s > 0 we have

that

σ(−x1s,−x2s) > σ(x1s, x
2
s).

This condition relaxes the symmetry around zero of the salience function of Equation (2)

represented in Figure 1, postulating that departures from zero are more salient in the negative

than in the positive direction. In this specification, local thinking can itself be a force towards

risk aversion for mixed lotteries, complementing loss aversion. In particular, if losses are

sufficiently more salient than gains, one can account for Samuelson’s wager based on salience

alone (and linear utility): if σ(−100, 0) > σ(200, 0), a local thinker with linear utility rejects

Samuelson’s bet as long as 200 · δ
1+δ
− 100 · 1

1+δ
< 0, or δ < 1/2. A specification where

risk aversion for mixed lotteries arises via the salience of lottery payoffs may give distinctive

implications from standard loss aversion, but we do not investigate this possibility here.26

25The role of loss aversion can also be gauged by considering the choice between two symmetric lotteries
with zero expected value, L1 = (−x, 0.5; x, 0.5) and L2 = (−y, 0.5; y, 0.5), with x > y. Since (2) is
symmetric, the states (−x, y) and (x,−y) have salience rank 1, whereas states (−x,−y) and (x, y) have
salience rank 2, so that L1 is evaluated at x(1− λ)/2, and L1 is evaluated at y(1− λ)/2. This implies that
for any degree of loss aversion λ > 1, the Local Thinker prefers the safer lottery L2.

26If we endow the local thinker with a standard utility function, instead of a value function, then in the
absence of property 5) the utility function would be subject to Rabin’s critique (Rabin, 2000) in the domain
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8 Conclusion

Our paper explores how cognitive limitations cause people to focus their attention on some

but not all aspects of the world, the phenomenon we call local thinking. We argue that

salience, a concept well-known to cognitive psychology, shapes this focus. In the case of

choice under risk, this perspective can be implemented in a straightforward and parsimonious

way by specifying that contrast between payoffs shapes their salience, and that people inflate

the decision weights associated with salient payoffs. Basically, decision makers overweight

the upside of a risky choice when it is salient and thus behave in a risk-seeking way, and

overweigh the downside when it is salient, and behave in a risk averse way. This approach

provides an intuitive and unified explanation of the instability of risk preferences, including

the dramatic switches from risk seeking to risk averse behavior resulting from seemingly

innocuous changes in the problem, as well as of some fundamental puzzles in choice under

risk such as the Allais paradox and preference reversals. It makes predictions for when these

paradoxes will and will not occur, which we test and confirm experimentally.

Other aspects of salience have been used by economists to examine the consequences

of people reacting to some pieces of data (salient ones) more strongly than to others. For

example, Chetty et al. (2009) show that shoppers are more responsive to sales taxes already

included in posted prices than to sales taxes added at the register. Barber and Odean (2008)

find that stock traders respond to “attention grabbing” news. Perhaps most profoundly,

Schelling (1960) has shown that people can solve coordination problems by focusing on salient

equilibria based on their general knowledge, without any possibility for communication.

Memory becomes a potential source of salient data. Our formal approach is consistent with

this work, and stresses that in the specific context of choice under risk the relative magnitude

of payoffs is itself a critical determinant of salience.

Our specification of contrast as a driver of salience could be useful for thinking about

a variety of economic situations. We have discussed an application to asset pricing and

the growth/value anomaly, but other misperceptions in finance might also be influenced by

of mixed lotteries (but not in the domain of positive lotteries). Adding property 5) would entail that aversion
to mixed lotteries with positive payoffs follows from salience, and not from underlying preferences. Thus,
even though such a local thinker is at heart an expected utility maximizer, he is immune to Rabin’s critique.
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salience. Salience may also affect consumer behavior: when considering which of different

brands to buy, a consumer might focus on the attributes where the potential brands are

most different, neglecting the others (see Tversky and Simonson 1993). Bordalo (2011) and

Koszegi and Szeidl (2011) use a version of our model of salience to investigate this issue. In

many applications, the key idea of our approach is that mental frames, rather than being

fixed in the mind of the consumer, investor, or voter, are endogenous to the contrasting

features of the alternatives of choice. This notion could perhaps provide a way to study how

context shapes preferences in many social domains.
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Appendix 1.

Proposition 1 If the probability of state s is increased by dπs = hπs and the probabilities

of other states are reduced while keeping their odds constant, i.e. dπs̃ = − πs
1−πshπs̃ for all

s̃ 6= s, then for every lottery Li:

dωis
h

= − πs
1− πs

· ωis · (ωis − 1)

Proof. By definition,

ωis =
δk

i
s−1∑

r δ
kir−1 · πr

Therefore,

dωis = − ωis∑
r δ

kir−1 · πr

∑
r

δk
i
r−1 · dπr

Replacing dπs = hπs and dπr = − πs
1−πshπr (for r 6= s) leads to

dωis = − ωis∑
r δ

kir−1 · πr

[
− hπs

1− πs

∑
r 6=s

δk
i
r−1 · πr + hδk

i
s−1πs

]

Thus
dωis
h

= −ωis
1∑

r δ
kir−1 · πr

[
− πs

1− πs

∑
r 6=s

δk
i
r−1 · πr + δk

i
s−1πs

]

The parenthesis on the right hand side can be rearranged to yield

πs
1− πs

[
δk

i
s−1(1− πs)−

∑
r 6=s

δk
i
r−1 · πr

]
=

πs
1− πs

[
δk

i
s−1 −

∑
r

δk
i
r−1 · πr

]

where the sum is now over all states r. Inserting this term back into the equation above we

get the result:
dωis
h

= −ωis
πs

1− πs
(ωis − 1)
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