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1 Introduction

Policies to reduce oil consumption increasingly promote ethanol and other biofuels through subsi-

dies, mandates, and funding for research. Proponents argue that substituting toward biofuels will

enhance energy security, reduce carbon dioxide emissions, improve air and water quality, and ben-

efit farmers. Many recent policies mandate, either explicitly or implicitly, a minimum market share

for ethanol. A prime example is the U.S. Renewable Fuels Standard (RFS), which will increase

ethanol use to about 25% of gasoline consumption in the coming years. Despite this attention

from policymakers, relatively little is known about household preferences for biofuels or the effect

that ethanol mandates will have on gasoline markets. This information is critical for designing,

implementing, and evaluating policies to promote ethanol and other biofuels.

I address this important research need by estimating demand for ethanol as a gasoline substitute.

I find that demand for ethanol is sensitive to relative prices, with an average elasticity of about 2.5–

3.5. These are the first available estimates in the literature for the price elasticity of household

ethanol demand, which is a key parameter for studies that analyze a retail ethanol subsidy or

mandate. I find that elasticities are substantially smaller in magnitude (and less variable) than

they would be if fuel-switching behavior were concentrated around a single price. Rather, fuel-

switching behavior extends over a wide range of prices where ethanol is discounted 0%–25%

below gasoline. These results imply that many households are willing to pay a per-mile premium

for ethanol and that preferences for ethanol among these households are actually quite diffuse.

These results have important implications for policy. Previous analyses assume that households

are identical and that preferences depend exclusively on ethanol’s fuel-economy performance rel-

ative to gasoline (Holland, Knittel and Hughes 2008). This assumption can yield misleading re-

sults if some households also value ethanol for its perceived environmental and social benefits.

In simulations, I find that accounting for households that prefer ethanol can substantially reduce

the economic efficiency cost of a hypothetical ethanol content standard (i.e., a minimum market-

share requirement), since households with strong preferences choose ethanol without large price

subsidies. Similar intuition likely applies for policies to promote other “green” substitutes, such
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as renewable electricity, energy-efficient light bulbs and appliances, hybrid-electric vehicles, and

organic foods.

I begin my analysis by developing a model of household utility in which inputs of ethanol and

gasoline combine linearly to produce household transportation services. The key parameter in this

model is the relative price at which the household is indifferent between relying entirely on either

fuel. When this parameter varies continuously among households, aggregate demand for ethanol

is a smooth function of relative fuel prices. Thus, the model formalizes the precise, theoretical link

between the distribution of preferences for ethanol and the shape of the aggregate demand curve,

allowing me to recover micro preferences from aggregate data.

I estimate the model using a unique dataset that contains nearly 5000 monthly observations for

ethanol prices and sales volumes at over 200 individual retail fueling stations in Minnesota during

1997–2006. These data provide a rare and valuable opportunity to document household prefer-

ences for biofuels, whose market shares have generally been too small to be included in household

surveys or reported separately from gasoline in aggregate measures. I use these data to estimate

demand for ethanol as a function of relative fuel prices. Consistent with my theoretical model,

which implies that price elasticities might vary dramatically, I estimate demand as a flexible func-

tion of relative fuel prices using semi-parametric methods. Previous empirical studies of demand

for alternative fuels and gasoline varieties with close substitutes do not allow for this potentially

important flexibility.

I use the distribution of preferences implied by my econometric estimates to simulate the ef-

fects of a national ethanol content standard. I find that a 25% standard would decrease gasoline

consumption by about 20% and would cut carbon dioxide emissions from gasoline by about 10% at

an annual efficiency cost of roughly $20 billion. Efficiency losses derive primarily from ethanol’s

higher marginal production cost. Costs average about $180 per metric ton of carbon dioxide emis-

sions avoided, which is substantially higher than most estimates for marginal external damages,

or about $0.80 per gallon of gasoline saved, which exceeds most estimates for the external cost

associated with petroleum dependence.
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The empirical economic literature on demand for biofuels is miniscule.1 While an immense lit-

erature estimates demand for gasoline, the vast majority of studies focus on the response of overall

fuel demand to changes in fuel price levels. Because households have relatively few transportation

alternatives, fuel demand in the short run is price inelastic.2 This paper in contrast focuses on fuel-

switching behavior and how demand for ethanol as a gasoline substitute responds to changes in

relative fuel prices. Because households that purchase ethanol in my sample are able to substitute

easily between ethanol and gasoline, demand for ethanol is price elastic.

Within the fuel demand literature, this paper is most similar to studies that estimate demand for

particular fuels with close substitutes, including full-service and self-serve gasoline (Phillips and

Schutte 1988) and regular and premium gasoline in both leaded and unleaded varieties (Greene

1989). These studies find own-price and cross-price elasticities that exceed 10 in absolute value.

Elasticities also tend to be large for other goods with close substitutes, including breakfast cereals

(Nevo 2001), brand-name and generic pharmaceutical products (Ellison, Cockburn, Griliches and

Hausman 2006), and individual components of money supply (Barnett, Fisher and Serletis 1992).

I improve on this vein of the gasoline demand literature by formalizing fuel-switching behavior in

terms of the distribution of household preferences for alternative fuels, using instrumental variables

(IV) techniques to identify demand behavior more credibly, and estimating flexible econometric

models to test whether elasticities vary with relative fuel prices.3

This paper also contributes to the literature showing how to interpret IV estimates in the pres-

ence of heterogeneous treatment effects. Following Angrist, Graddy and Imbens (2000), I go

1Rask (1998) estimates intermediate demand for ethanol as a 10% blending component in gasoline. He does
not estimate household demand. Alves and Bueno (2003) estimate aggregate demand for gasoline in Brazil, which
requires 25% ethanol blending in all gasoline, and where ethanol comprises roughly 40% of the non-diesel fuels
market (Perkins and Barros 2006). They do not estimate price responses for ethanol. Salvo and Huse (2010) find
that the correlation between ethanol and gasoline prices in Brazil increased in the mid 2000s after the introduction of
flexible-fuel vehicles, which allow consumers to arbitrage between the two fuels. They do not model heterogeneous
preferences, and they do not estimate demand.

2Using a variety of methods, Davis and Kilian (2010) estimate price elasticities ranging from roughly −0.1 to
−1.1. For relatively recent surveys see Graham and Glaister (2002), Espey (1996; 1998), and Dahl and Sterner
(1991). Recent studies indicate that the price response may have declined even further in recent decades (Hughes,
Knittel and Sperling 2008; Kilian 2008)

3Hausman and Newey (1995) and Yatchew and No (2001) estimate gasoline demand using a semi-parametric
approach and other flexible methods. They do not model fuel switching.

3



beyond the standard testing for whether my instruments predict prices (i.e., F-tests for instrument

relevance) and develop a heuristic approach to analyze where in the demand function my instru-

ments actually induce price variation. This analysis allows me to determine which section(s) of

the demand function I estimate using instrumental variables. Such an approach may prove useful

in future applications.

The format of the paper is as follows. Section 2 discusses the role of ethanol in the fuels market,

ethanol’s environmental effects, and ethanol production and distribution. Section 3 presents a

model of household demand for ethanol as a gasoline substitute, aggregates households to give an

expression for market demand, and relates the distribution of household preferences to aggregate

price responses. Section 4 describes the data I use to estimate the model, providing descriptive

statistics that summarize supply and demand behavior. Section 5 outlines the econometric model,

discusses identification, and presents my results. Section 6 uses the distribution of preferences

implied by these estimates to simulate the effects of a national ethanol content standard. Section 7

concludes.

2 Background

2.1 Ethanol’s role in the fuels market

Ethanol is an alcohol fuel that in the United States derives primarily from corn. Gasoline blenders

mix ethanol with gasoline to comply with federal air quality regulations, to produce mid-grade and

premium fuels, and to satisfy the federal RFS. Virtually all gasoline vehicles can burn fuel blends

that contain 10% ethanol or less. While blenders sometimes use ethanol as a gasoline substitute

when ethanol prices are low, ethanol’s primary role is as a gasoline complement. Blenders added

about 5 billion gallons of ethanol to gasoline in 2006, or about 3.5% of gasoline consumption by

volume; blending has since doubled to 10 billion gallons or 7.3% of consumption in 2009. Ethanol

is heavily subsidized, with direct federal and state payments to ethanol producers, a federal tax

subsidy of $0.45 per gallon for blenders, and a tariff of $0.54 per gallon that applies to all but a
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nominal quantity of imports.

The market for ethanol as a direct gasoline substitute is small but growing rapidly. Stimulated

by rising gasoline prices and supported by federal, state, and local subsidies for alternative-fuel

vehicles and infrastructure, the number of retail stations offering E85—an alternative fuel blend

of 85% ethanol and 15% gasoline—more than doubled during 2006–2009 to over 1900 stations

nationwide. Here and throughout, I refer to E85 simply as “ethanol” or, when necessary to avoid

confusion, as “retail ethanol.”4 On the consumer side of this market, the federal Alternative Motor

Fuels Act of 1988 created strong incentives under the Corporate Average Fuel Economy (CAFE)

standards program for automakers with binding CAFE constraints to produce flexible-fuel vehicles

capable of burning both ethanol and gasoline. Automakers produced about 5 million of these

vehicles between 2000 and 2006, and production continues apace.

The federal RFS, which Congress first established in 2005 and then expanded in late 2007, sets

a minimum quantity of renewable fuel each year from 2008–2022, increasing gradually from 9

to 36 billion gallons. Industry is currently using ethanol to comply with the standard, and this is

likely to continue. The quantity standard for 2022 is about 25% of current gasoline consumption.

Although the standard mandates a minimum quantity of renewable fuel, the U.S. Environmental

Protection Agency (EPA) implements the standard as a percentage of projected fuel consumption.

Below I simulate the effects of a 25% ethanol content requirement for gasoline, which is modeled

roughly on the RFS for 2022.

Only flexible-fuel vehicles are certified to run on fuel blends containing more than 10% de-

natured ethanol. These vehicles have larger fuel injectors as well as fuel-system components that

are more resistant to corrosion. Earlier models also had special fuel sensors. These components,

which increase production costs no more than $100–$200, allow the vehicles to burn retail ethanol,

regular gasoline, or any combination of the two. Ethanol has lower energy content than gasoline,

implying fewer miles per gallon. The ratio of gasoline to retail ethanol mileage is about 1.35,

4I distinguish retail ethanol from “denatured ethanol,” which is blended with gasoline to produce retail fuels.
Denatured ethanol is nearly pure alcohol but with a small quantity of gasoline or other chemical added, making it unfit
for human consumption.
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which means that retail ethanol’s mileage is about 1− 1/1.35 ≈ 25% lower.5 Thus, households

that care only about minimizing fuel costs will demand a 25% price discount for retail ethanol.

2.2 Ethanol’s environmental and social effects

It has been estimated that replacing one gallon of gasoline with pure corn-based ethanol reduces

net petroleum consumption by 0.95 gallons, after accounting for upstream petroleum inputs and

ethanol’s lower mileage (Farrell, Plevin, Turner, Jones, O’Hare and Kammen 2006). Ethanol’s

climate benefits are less impressive. Corn collects energy from the sun and absorbs carbon dioxide

from the atmosphere as it grows, but ethanol production from corn is energy-intensive. Corn farm-

ing uses a lot of fertilizer, and the ethanol refining process uses a lot of heat. These inputs derive

largely from natural gas given current production techniques. As a result, ethanol only reduces net

carbon dioxide emissions by 15% after accounting for upstream energy inputs and ethanol’s lower

mileage (Farrell et al. 2006). In fact, ethanol may in some cases increase emissions, after further ac-

counting for direct and indirect land-use changes associated with growing feedstocks (Searchinger,

Heimlich, Houghton, Dong, Elobeid, Fabiosa, Tokgoz, Hayes and Yu 2008; Fargione, Hill, Tilman,

Polasky and Hawthorne 2008).

The local air and water quality benefits of ethanol are mixed. Ethanol is an oxygenate that

reduces carbon monoxide emissions in older engines, improving air quality, but modern engines

and pollution-control equipment largely obviate these benefits. Ethanol reduces tailpipe emissions

of benzene (a known human carcinogen) but increases emissions of acetaldehyde (a possible car-

cinogen) and nitrogen oxide (a precursor to ozone and smog). Ethanol displaces environmentally

harmful petroleum refining, but corn production increases fertilizer and pesticide use on environ-

mentally sensitive land. Finally, some policymakers worry about ethanol’s role in driving up food

prices.

5Using Environmental Protection Agency (EPA) estimates for combined city and highway driving, I calculate
the ratio of regular gasoline to retail ethanol mileage for each flexible-fuel vehicle model offered between 2000 and
2006 (U.S. Environmental Protection Agency 2000-2006). EPA did not test vehicles using both fuels until 2000, but
relatively few flexible-fuel vehicle models were offered prior to 2000. I calculate the sales-weighted mean ratio using
data for nationwide sales of individual flexible-fuel vehicle models from the U.S. Department of Transportation.
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Household preferences for ethanol as a gasoline substitute vary considerably. First, ethanol’s

relative mileage varies across vehicles and driving scenarios, even in highly controlled government

tests. On the road, some households drive primarily in stop-and-go city traffic, while others log a

large fraction of highway miles. These and other differences may affect relative mileage. Second,

many households internalize ethanol’s perceived benefits. More than half of the drivers in a recent

nationwide poll expressed interest in owning a flexible-fuel vehicle (Harris Interactive 2006). Of

these, nearly 90% were motivated by reducing oil dependence, while nearly two-thirds wanted

to reduce greenhouse gas emissions. Over 90% of the drivers in another poll would prefer to

own a flexible-fuel vehicle. When asked about ethanol’s benefits, they cited “renewable fuel,”

“clean fuel,” “made in America,” and “more economical” with roughly equal frequency (Phoenix

Automotive 2006).

2.3 Ethanol production and distribution

There were about 100 ethanol refineries nationwide in 2006, and the number has since doubled

to over 200 in 2009. Most refineries are located in the corn belt, although a handful are located

outside of the Midwest.

Nearly all denatured ethanol is blended with gasoline in ratios less than 10%. Most blending

occurs at fuel blending and distribution terminals, which are located strategically near population

centers throughout the country. Terminal operators blend gasoline, ethanol, and other components

into finished products and then distribute fuel by tanker truck to individual retail stations. A rela-

tively small share of ethanol blending occurs at ethanol refineries that have infrastructure for fuel

blending.

Fuel terminals receive most gasoline by pipeline from oil refineries. Existing pipelines are not

suitable for transporting ethanol, however, since ethanol can corrode gasoline pipelines, and since

water accumulating in the pipelines can mix with and contaminate ethanol. Moreover, existing

pipelines connect large oil refineries with cities, whereas ethanol refineries are usually located in

rural areas. In the corn belt, tanker trucks deliver ethanol from ethanol refineries to fuel terminals.
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Ethanol traveling from the Midwest to the coasts usually goes by rail.

Retail ethanol is readily available wherever large quantities of denatured ethanol are blended

with gasoline. In Minnesota, for instance, retail ethanol is available at virtually every fuel terminal

any time of year, because Minnesota has required 10% ethanol blending in all gasoline year-round

since October 1997. Terminal operators maintain stocks of fuel and sometimes lease storage fa-

cilities to retail chains who manage their own fuel stocks. Retail ethanol is also readily available

at a handful of ethanol refineries that have infrastructure for fuel blending. Retail ethanol stations

in states such as Minnesota have no difficulty resupplying on short notice, given ethanol’s wide

availability for gasoline blending.

3 Theoretical model

To motivate my empirical analysis, I develop a model of demand for ethanol as a gasoline substi-

tute. The model formalizes the precise link between the distribution of household preferences and

the shape of the aggregate demand function.

3.1 The household’s problem

For the moment I assume that each household owns a single flexible-fuel vehicle. The household’s

utility is quasilinear in transportation services v(·) and other goods:

v(e+ rg)+ x, (1)

where v(·) is strictly increasing and strictly concave, e is consumption of ethanol, g is consumption

of regular gasoline, x is consumption of all other goods, and r is the rate at which the household

converts gallons of regular gasoline into ethanol-equivalent gallons. Ethanol and gasoline are per-

fect substitutes. That is, utility is defined over a linear combination of ethanol and gasoline, which

I call ethanol-equivalent fuel. When a household cares only about miles traveled the conversion
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rate r exactly equals the ratio of the household’s mileage when burning gasoline to its mileage

when burning ethanol. This ratio will vary across households due to minor differences in relative

mileage. More importantly, some households will value ethanol for its perceived environmental

or social benefits.6 By embodying mileage differences and these other factors, r fully summarizes

household preferences for ethanol as a gasoline substitute.

The household’s budget constraint is given by

y− pee− pgg− x = 0, (2)

where pe and pg are the prices of ethanol and gasoline, y is income, and I have normalized the

price of the composite good to $1.

Which fuel will the household choose?7 Because ethanol and gasoline combine linearly in the

utility function, the household will be at a corner solution and will purchase ethanol exclusively

when pe < pg/r and gasoline exclusively when pg/r < pe. That is, the household will choose the

fuel with the lower ethanol-equivalent price. For a household that cares only about mileage, this

amounts to choosing the fuel that is least costly per mile. Equivalently, the household will choose

ethanol when the conversion rate r is less than the price ratio pg/pe. Because the conversion rate

r equals the relative price where fuel switching occurs, I also refer to it as the fuel-switching price

ratio.

While relative prices determine the type of fuel that a household chooses, quantity demanded

depends on absolute price levels, with the household equating the marginal utility of ethanol-

equivalent fuel consumption to the ethanol-equivalent price of whichever fuel it chooses. For

households that choose ethanol, the optimal quantity of ethanol demanded is therefore given by

e∗ = q(pe), (3)

6In addition, the relative convenience of filling up with ethanol might vary somewhat across households, given the
fuel’s limited availability; I argue below that this source of variation is not particularly important in my data.

7I assume that the household always buys fuel but never spends its full income on fuel. Assuming that v′(0) > 1
ensures that the household buys fuel. Assuming that y is sufficiently large, so that v′(y/pe) < 1 and v′(ry/pg) < 1,
guarantees that the household does not spend its full income on fuel.
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where I have defined ethanol-equivalent fuel demand as q(p) ≡ v′−1(p) given ethanol-equivalent

fuel price p. The quantity of gasoline demanded for households that choose gasoline is given by

g∗ =
q(pg/r)

r
, (4)

where the presence of r converts ethanol-equivalent gallons into nominal gallons of gasoline. I

assume that households that do not own flexible-fuel vehicles (or are otherwise unable to buy

ethanol) face the same maximization problem, which implies that their gasoline demand is also

given by equation (4).

3.2 Aggregate demand

Because ethanol and gasoline are perfect substitutes, households that own flexible-fuel vehicles

sort into ethanol buyers and gasoline buyers according to their fuel-switching price ratios. While

each individual household rests at a corner solution, aggregate demand will be a smooth function

of relative prices when fuel-switching price ratios are distributed continuously.

To move formally from individual to aggregate demand, I first assume that there are N (techni-

cally, an infinite number of measure N) households in the market. Each household owns a single

vehicle, and a fraction φ of these are flexible-fuel vehicles. I next assume that fuel-switching

price ratios are distributed according to the differentiable cdf H(r), defined on [0,∞). Recall from

above that households will choose ethanol if their fuel-switching price ratios are less than the rel-

ative price pg/pe. So the fraction of households that choose ethanol is simply the cdf evaluated

at this relative price: H(pg/pe). I assume for convenience that v(·) and flexible-fuel ownership

are distributed independently of r (and of each other), so that fuel-switching price ratios are the

only relevant source of heterogeneity in the model. I discuss the validity of this independence

assumption below.
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Given these assumptions, aggregate demand for ethanol as a function of fuel prices is

Qe(pe, pg) = Nφ

∫ pg/pe

−∞

q̄(pe)dH(r)

= NφH
(

pg

pe

)
q̄(pe). (5)

where q̄(·) ≡ E[q(·)] is expected ethanol-equivalent fuel demand for an individual household

(which by independence does not depend on r). Aggregate demand is simply the total number

of households, multiplied by the fraction that own flexible-fuel vehicles, multiplied by the fraction

of these that choose ethanol (which depends on relative prices), multiplied by average ethanol con-

sumption among households that choose ethanol (which depends on the absolute price of ethanol).

The appendix provides similar expressions for aggregate gasoline demand and aggregate welfare,

which are important for the policy simulation below.

Taking logs on both sides yields logged aggregate ethanol demand:

lnQe(pe, pg) = lnNφ+ lnH
(

pg

pe

)
+ ln q̄(pe), (6)

This equation is critical because it relates fuel prices and ethanol quantities to the distribution of

household preferences for ethanol as a gasoline substitute. As is clear from the equation, tracing

out the precise shape of the demand curve as a function of relative prices will reveal the underlying

cdf of fuel-switching price ratios.

Differentiating (6) with respect to pg and then multiplying by pg yields the gasoline-price

elasticity of aggregate ethanol demand:

ξg =
h
(

pg
pe

)
H

(
pg
pe

) pg

pe
, (7)

where h(r)≡H ′(r). This cross-price elasticity quantifies the rate at which consumers switch from

regular gasoline to ethanol given a percent increase in the price of gasoline. A 1% increase in
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gasoline prices leads to a ξg% increase in the quantity of ethanol demanded. Observe that this

elasticity is also the elasticity of ethanol’s market share (i.e., the fraction of households that choose

ethanol) with respect to the price ratio. Thus, I also refer to this elasticity as the fuel-switching

elasticity.

Differentiating (6) with respect to pe and then multiplying by pe yields the own-price elasticity:

ξe =
peq̄′(pe)

q̄(pe)
−

h
(

pg
pe

)
H

(
pg
pe

) pg

pe

= ξ f −
h
(

pg
pe

)
H

(
pg
pe

) pg

pe
, (8)

where I have defined ξ f ≡ pq̄′(p)/q̄(p). The first term in (8), which I refer to as the price elasticity

of individual ethanol-equivalent fuel demand, quantifies the rate at which individual households

respond to the price increase (on average) by curtailing demand. The second term in (8), which

is identical to the gasoline-price elasticity in (7) multiplied by negative one, quantifies the rate at

which households switch from ethanol to gasoline as the price of ethanol increases. Again, this is

the fuel-switching elasticity (i.e., the elasticity of ethanol’s market share with respect to the price

ratio), this time multiplied by negative one. Together these terms imply that a 1% increase in

ethanol prices leads to a −ξe% decrease in the quantity of ethanol demanded.

As an aside, observe that the fuel-switching elasticity, given by

h
(

pg
pe

)
H

(
pg
pe

) , (9)

is the hazard rate for exiting the ethanol market as the price ratio decreases. That is, expression (9)

gives the instantaneous rate at which households switch to gasoline given a marginal decrease in

the price ratio, conditional on choosing ethanol.

Given any distribution of fuel-switching price ratios, equation (7) specifies precisely how elas-

ticities will vary with relative prices. It is clear from the equation that elasticities could vary
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Figure 1: Hypothetical preference distributions and elasticity functions

Note: Figure illustrates the relationship between the density function for fuel-switching price ratios and
the fuel-switching elasticity, as given by equation (7), for two hypothetical density functions.

dramatically, depending on the shape of the distribution. For this reason, imposing a constant

elasticity in empirical applications may yield misleading results. Given a sufficiently flexible es-

timate of the elasticity function, however, the equation shows how to recover the distribution of

fuel-switching price ratios.

Figure 1 illustrates this relationship. When households are nearly identical, as in figure 1(a),

fuel-switching behavior is concentrated around a single price ratio, which leads to a large and

highly variable price response in that neighborhood. When households are literally identical, as

previous studies assume, aggregate demand mirrors individual demand: the entire market is at a

corner solution, with all households choosing the fuel with the lowest ethanol-equivalent price. In

terms of figure 1(a), this assumption implies a mass point of individuals at the same fuel-switching

price ratio, an infinite price response at that single point, and a zero elasticity everywhere else. This

extreme assumption has important implications for policy analysis. If ethanol has relatively high

costs, so that no ethanol is consumed in the unregulated equilibrium, large distortions in market

prices may be required to induce households to choose ethanol.

When households are heterogeneous, however, as in figure 1(b), price elasticities are much
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smaller in magnitude and less variable. Fuel switching extends over a wide range of relative prices,

and demand is not especially sensitive to prices at any particular point. In this case, households

with particularly strong preferences for ethanol can be induced to purchase the fuel with less severe

distortion of market prices.

In theory, the model also provides a method for disentangling extensive-margin price responses

associated with fuel-switching behavior from intensive-margin responses associated with overall

fuel demand. Adding equations (7) and (8) demonstrates that the price elasticity of individual

ethanol-equivalent fuel demand is simply the sum of the two aggregate elasticities:

ξ f = ξe +ξg. (10)

For a precise quantitative interpretation of this elasticity, consider a simultaneous 1% increase in

both fuel prices. No fuel switching occurs, because relative prices do not change, but households

that choose ethanol reduce their demand by ξ f %. Put differently, a 1% increase in the price of

ethanol generates both fuel-switching behavior and conservation, while a 1% increase in the price

of gasoline only generates the former; thus, the difference in magnitude between these two price

responses equals the conservation effect.

4 Data and summary statistics

I estimate the model of logged aggregate ethanol demand in equation (6) above using monthly data

for ethanol prices and sales volumes at a large number of retail fueling stations, gasoline prices

in those same areas, and several ancillary variables. Table 1 presents summary statistics for my

estimation sample.
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Table 1: Summary statistics

Variable Mean Std. Dev. Min. Max.
sales volume (gallons) 3352.71 3977.99 6.90 37770.50
retail ethanol price 1.74 0.35 0.74 2.96
retail gasoline price 1.98 0.43 1.10 3.00
retail gasoline / ethanol price 1.14 0.10 0.74 1.69
wholesale ethanol price 1.27 0.56 0.45 3.03
wholesale gasoline price 1.39 0.45 0.44 2.33
wholesale gasoline / ethanol price 1.17 0.33 0.69 2.45
ethanol pump age (months) 29.08 24.27 1.00 110.00
number flexible-fuel vehicles in county 3252.61 4804.87 0.00 24453.00
number ethanol pumps in county 3.72 2.75 1.00 13.00
number gas stations in county 96.69 110.68 4.00 357.00
distance to Benson refinery (miles) 112.47 43.89 4.63 242.18

Note: Table is based on estimation sample of 4,825 monthly reports from 232 fueling stations in Minnesota
between October 1997 and November 2006. Prices are in 2006 dollars. See text for details.

4.1 Data sources

These data come from several sources. My data for retail ethanol prices and sales volumes

come from a Minnesota Department of Commerce and American Lung Association of Minnesota

monthly survey of retail ethanol stations in Minnesota. Stations that received funding to help de-

fray ethanol infrastructure costs are required to respond, while other stations may participate on a

voluntary basis. This requirement is not strongly enforced, however, and stations do not always

report as required. The earliest stations began reporting in October 1997, and the data include

records through November 2006.8

Stations report volume-weighted prices derived from monthly sales volumes and revenues.

Retail prices include federal, state, and local fuel taxes. State and federal fuel taxes did not change

during my sample period. The data also record open and close dates for all retail ethanol pumps

in Minnesota and the county in which each pump is located. I use this information to calculate

8The data include records for a handful of state-operated stations; I ignore these stations in my analysis, because
they are only open to government fleets. While government fleets are able to purchase ethanol from private stations,
private flexible-fuel vehicles outnumber government flexible-fuel vehicles 100 to 1 in the Midwest Corts (2010).
Minnesota’s governor issued an executive order requiring state-owned flexible-fuel vehicles to fill up using ethanol
“whenever practical,” but not until spring of 2006, near the end of my sample period.
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Figure 2: Relative retail prices and ethanol sales volumes

Note: Ethanol sales volume in figure (a) is the monthly average volume of ethanol sales among reporting
ethanol stations in Minnesota; the ratio of gasoline to ethanol prices is the volume-weighted sample-mean
price of gasoline divided by the volume-weighted sample-mean price of ethanol. Figure (b) is the empirical
distribution of relative prices (i.e., percent price discounts for ethanol) in the estimation sample.

the total number of stations operating retail ethanol pumps in each county in each month and the

length of time that each pump has been operating, both of which I include as control variables. I

match these retail ethanol data to county-average retail prices for regular gasoline from Oil Price

Information Service (OPIS). I convert all prices to real 2006 prices using the monthly consumer

price index from the U.S. Department of Labor.

My data report geographic coordinates for many (but not all) stations. Using these coordinates,

I attempted to assign brand affiliations (if any) to the stations in my sample.9 I am unable to

identify 14% of stations (accounting for only 5% of my observations), due to missing or inaccurate

coordinates, and some of the brand affiliations that I assign to stations are possibly incorrect, due

to inaccurate coordinates and changing affiliations over time. While these problems (and station

fixed effects) rule out using brand dummies directly in my estimating equation, I do use the brand

affiliations to construct my price instruments, as I discuss below.

9After locating the coordinates in Google Maps, I searched for the nearest gasoline station and recorded its name. I
attempted to corroborate this information using a MN Department of Commerce list of stations operating in Minnesota
as of late 2006, a similar list from the National Ethanol Vehicle Coalition, and the U.S. Department of Energy’s
database of alternative fueling stations (which includes the date the station was added to the database, which is highly
correlated with open date).
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Figure 2(a) plots relative retail prices over time. Relative prices vary considerably during the

sample period, with the relative price of gasoline trending upward. Average ethanol sales also

increase steadily over time. The relationship is not necessarily causal, however, as the increase in

sales volume is also consistent with a growing stock of flexible-fuel vehicles. I am careful in my

estimation to control explicitly for flexible-fuel vehicles and trends in fuel demand. Short-run in-

creases in the relative price of gasoline correlate with contemporaneous increases in ethanol sales

volumes, which is perhaps more suggestive of a price response. Again, however, this relation-

ship is not necessarily causal, as unmodeled shifts in aggregate demand might affect fuel prices.

Below, I discuss how I identify demand parameters using cross-sectional variation in pricing be-

havior. Figure 2(b) shows that retailers typically discount ethanol 0%-25% below gasoline; thus,

my estimates will reflect price responses within this range of the demand function.

As a measure of underlying fuel costs, I obtain wholesale ethanol price data from a trade

publication called Ethanol and Biodiesel News (previously known as Renewable Fuels News and

Oxy-Fuel News before that). These data measure weekly spot prices at fuel terminals for denatured

ethanol in Minneapolis and Fargo. I assign to each county (and thereby each station) the wholesale

price from whichever city is nearest. About four-fifths of stations are located in counties nearest to

Minneapolis. I calculate the monthly average of these weekly prices and then subtract the federal

ethanol blending subsidy, which fell from $0.54 per gallon to $0.51 per gallon during my study

period. I obtain wholesale gasoline price data come from the U.S. Energy Information Adminis-

tration (EIA). These data measure the volume-weighted monthly average spot price in Minnesota.

Although wholesale spot price data are available for additional Minnesota cities at a substantial

cost from proprietary sources, in practice these prices track each other closely (Minnesota Depart-

ment of Agriculture 2003). I use these wholesale price variables to construct my price instruments.

In addition to these price variables, I obtain data on flexible-fuel vehicle registrations from the

Minnesota Department of Public Safety Division of Driver and Vehicle Services. These data record

vehicle identification numbers (VINs), original sales dates, and owner zip codes for all vehicles

registered in Minnesota as of the summer of 2007. I identify 154,000 flexible-fuel vehicles in the
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Figure 3: Flexible-fuel vehicles and retail ethanol stations

Note: Figure (a) shows the growth in the number of retail ethanol stations and the stock of flexible-fuel
vehicles in Minnesota. Figure (b) shows the locations of Minnesota’s 264 retail ethanol fueling stations as
of August 2006. Minnesota measures 400 miles from north to south and about 250 miles along its southern
border. The shaded region is the seven-county metropolitan area of Minneapolis and St. Paul.

database by cross-referencing VINs with lists of flexible-fuel vehicle models and VIN identifiers

from the National Ethanol Vehicle Coalition and from a private firm that collects data on the auto

industry. These vehicles represent about 3.3% of the 4.6 million light-duty vehicles registered in

Minnesota in 2007. I then use original sales dates to reconstruct a monthly time series for the stock

of flexible-fuel vehicles in each county, which I include as a control variable.10

Figure 3(a) charts the growth in the number of retail ethanol stations and flexible-fuel vehicles.

The flexible-fuel stock grows at a roughly constant rate during the sample period, which is con-

sistent with CAFE standards that generated strong incentives for some manufacturers to produce a

limited number of flexible-fuel vehicles each year. Growth in the number of retail ethanol stations

accelerated in 2000, when the American Lung Association negotiated an agreement with a partic-

ular retail chain to subsidize ethanol pumps at a large number of its stations. Growth accelerated

again in 2004-2005. High gasoline prices and low wholesale ethanol costs may have contributed

10I am unable to determine whether some vehicles are flexible-fuel vehicles due to missing or invalid VINs, and
a relatively small number of flexible-fuel vehicles are excluded due to missing sales dates or zip codes outside Min-
nesota. I am also unable to account for vehicle attrition or historical movements of vehicles in and out of Minnesota
and across county lines prior to 2007. Owner addresses also might differ from counties where flexible-fuel vehicles
are actually driven. For these various reasons I measure flexible-fuel stocks with some error.
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to this accelerated growth.

As I note above, I calculate the total number of retail ethanol stations in each county in each

month to quantify variation in competition, and I include this variable as a control. Figure 3(b)

maps the locations for all 264 retail ethanol stations in Minnesota as of August 2006 based on a

separate list of station addresses from the Minnesota Department of Commerce. I also calculate

the total number of retail gasoline stations operating in each Minnesota county in 2006 based on

station address information from the Minnesota Department of Commerce Weights and Measures

Division. Table 1, which assumes the same number of gas stations operating in each county for

1997-2006, shows that there are more than 20 gasoline stations for every ethanol station on average

in my sample.11 While competition in fuel markets is typically fierce, most ethanol retailers operate

as local monopolists in the narrower retail ethanol market. I use both measures of competition to

construct my price instruments.

My analysis covers the time period from October 1997 through November 2006. During this

time the number of private retail ethanol stations in Minnesota grew from less than 10 to nearly

250. Based on reported open and close dates, there were about 7500 potential monthly observations

at these stations. Approximately 64% of these potential observations are covered by the Minnesota

survey. The remaining 36% are missing, reflecting stations that almost never participate in the

survey, as well as stations that fail to report in just some months. This results in an estimation

sample of 4825 observations at 232 stations, implying an average panel size of about 21 months.

Some stations operate nearly the entire study period, while others operate for just a few months, as

is clear from figure 3(a).

My data are subject to several potential layers of selection. First, ethanol retailers might locate

in areas where preferences for ethanol are strongest. Ethanol pumps are spread throughout Min-

nesota, however, covering every major region except the sparsely populated northeast, which has

11The actual ratio is probably slightly higher. Although most of the nearly 2900 individual stations operating in
2006 were also operating during 1997-2005 (personal communication with Mark Buccelli of the Minnesota Bureau
of Weights and Measures), the total number of retail stations statewide declined about 7% from 1997–2006 (National
Petroleum News 2006).
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higher ethanol transport costs (being farther from ethanol refineries).12 Rural areas are overrep-

resented, but infrastructure subsidies in the state were allocated so as to make ethanol as widely

available as possible. Minnesota itself has more pumps than other states, but the state has lower

ethanol transport costs (having many in-state ethanol refineries) and has been receiving federally

funded infrastructure subsidies longer than most states.

Second, not all stations participate in the Minnesota survey, not all participating stations report

every month, and stations appear and disappear from the sample as they open and close over time.

Below, I test formally for biases related to an unbalanced panel and sample selection in my dataset,

finding no evidence for either.

Finally, flexible-fuel owners might have systematically different preferences than other drivers.

Flexible-fuel owners tend to buy American, and they are more likely than other drivers to consider

minivans and pickups for their next purchase (Phoenix Automotive 2006). Furthermore, most

flexible-fuel vehicles have identical gasoline-only counterparts, which could lead to sorting directly

on flexible-fuel capacity. On the other hand, automakers produce flexible-fuel vehicles primarily to

comply with fuel-economy regulations. They market the vehicles all over the country, even in areas

where ethanol is not available, they sell the vehicles for the same prices as comparable gasoline-

only vehicles, and flexible-fuel buyers are not observably different from buyers of comparable

gasoline vehicles (Anderson and Sallee 2010). In sum, while there is undoubtedly some selection

present in my data, it is not necessarily severe. Consistent with this judgment, I find below that

price responses do not vary significantly across sub-samples.

4.2 Retail pricing behavior and instruments

I spoke with industry representatives and inspected retail pricing behavior closely to identify price

variation that is arguably exogenous to demand.13 Retailers generally set prices using rule-of-

12Corts (2010) finds that ethanol availability within the Midwest is highly correlated with the presence of flexible-
fuel vehicles and proximity to ethanol refineries.

13I spoke with representatives from the largest retail chains in Minnesota that offer retail ethanol, as well as several
independently owned and operated stations, representatives from two ethanol refineries that directly supply about one-
third of retail ethanol stations in Minnesota, several ethanol industry analysts, and the administrators of the Minnesota
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Figure 4: Nominal price discounts

Note: Figure (a) shows the empirical distribution of ethanol’s nominal retail price discount relative to
gasoline in the estimation sample. Figure (b) shows ethanol’s nominal price discount relative to gasoline
for an example ethanol retailer over time.

thumb strategies. Most retailers price ethanol at a discount to regular gasoline in nominal incre-

ments of $0.10 per gallon, while some price at a fixed nominal markup over wholesale ethanol.

This behavior is manifest in figure 4(a), which plots the distribution of nominal price discounts in

my sample, and is consistent with how retailers tell me they set prices.14

The industry representatives with whom I spoke indicated that discounts at individual stations

can sometimes persist at the same level for extended periods. Retailers update discounts primarily

to adjust for broad shifts in relative fuel costs; they do not deliberately adjust discounts in response

to local, short-term shifts in demand, which are probably not even detectable until after the fact.

This behavior is evident in figure 4(b), which plots the nominal discount for one station over time.

This station has been operating longer than most but its pricing behavior is fairly typical. This

behavior helps identify demand parameters: because retailers often set rule-of-thumb discounts

and maintain them for extended periods of time, unmodeled shifts in ethanol demand will tend not

to affect relative fuel prices, limiting the potential for price endogeneity.

The sizes of these discounts depend on underlying fuel costs as determined in the broader

survey.
14While this pricing behavior may appear suboptimal, ethanol sales are very low relative to gasoline (and not hugely

sensitive to prices, as I show below), so the stakes are not especially high.
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Figure 5: Relative wholesale prices and relative retail fuel prices

Note: The ratios of gasoline to ethanol prices in figures (a) and (b) are the volume-weighted sample-mean
prices of gasoline divided by the volume-weighted sample-mean prices of ethanol. The dispersion of the
retail price ratio in figure (b) is the monthly standard deviation of the OLS residuals from the retail price
ratio regressed on a vector of month and station dummies. This variable quantifies differential changes in
relative prices across stations.

markets for gasoline and fuel additives. Average discounts generally increase when wholesale

prices for denatured ethanol fall relative to gasoline, and discounts shrink when ethanol prices rise,

as is evident in figure 5(a). The economic causality is markedly one sided: events specific to the

tiny retail ethanol market have zero bearing on prices for crude oil, gasoline, or even denatured

ethanol, whose primary role is as a fuel additive. See the appendix for an extended discussion on

the determinants of wholesale fuel prices.

The key to my identification strategy is that, for a variety of reasons, these changes in mar-

ket spot prices affect the ethanol retailers in my sample differently. One reason is the different

relationships the retailers have with their suppliers. As of 2006, about one third of ethanol retail-

ers in Minnesota bought finished fuel from an ethanol refinery in Benson, which is a small town

in the southwestern part of the state. Throughout the entire sample period, this refinery supplied

ethanol to retailers at a fixed nominal discount below the spot price of gasoline. The retailers, in

turn, agreed by contract to pass this same discount along to consumers at their stations. 15 As a

15This unique pricing agreement ended in the fall of 2007. The ethanol refinery now supplies retail ethanol at
market prices, and retailers are free to price ethanol at whatever price the market will bear. I am not aware of any
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result, relative prices are mechanically less variable at these stations. Other retailers have no such

contractual arrangement and therefore bear the full brunt of variation in relative spot prices, which

transmits to the retail level. Even among these other retailers, variation in contracts could lead to

variation in pricing behavior.16

Differences in local competition will also lead to variation in pricing behavior. Retail ethanol

prices will be more sensitive to changes in relative fuel costs for retailers facing greater competition

from other ethanol retailers, whereas retailers in less competitive areas will price largely based on

willingness to pay and will therefore be less sensitive to costs. In addition, stations facing different

levels of competition in the overall fuel market will also price differently. Where competition is

weak, consumers that do not buy ethanol at a given station will likely buy gasoline from the same

station instead; where competition is fierce, these consumers are more likely to buy gasoline from

a different station altogether. Thus, differences in overall competition will also lead to variation in

pricing behavior. I make these points formally in the appendix.

This variation in pricing behavior is critical: it allows me to control for month effects common

to all stations and still identify demand parameters using differential changes in fuel prices across

stations. To quantify this variation, I regressed relative prices on a vector of month and station

effects and then computed the standard deviation of the residuals in each month. I refer to this

standard deviation as the dispersion of relative prices. Figure 5(b) shows that price dispersion

increases when gasoline spot prices are high relative to ethanol. This behavior is consistent with the

different supply relationships I document. Some stations have supply contracts that mechanically

tie retail ethanol prices to gasoline, while other stations purchase ethanol at spot prices and pass

these costs on to consumers. Price dispersion therefore increases whenever ethanol and gasoline

spot prices diverge. This behavior is also consistent with differences in competition. When ethanol

similar agreements between ethanol retailers and their suppliers.
16Larger retail chains generally have long-term contracts for denatured ethanol and blend their own fuel, whereas

smaller chains and independents buy fuel from terminal operators at market spot prices. Contract prices for denatured
ethanol are often tied directly to the price of gasoline, which means that relative fuel costs are less variable for larger
firms. In theory, the opportunity to sell fuel on the spot market should equalize marginal costs across these firms. Only
a small fraction of denatured ethanol actually trades on the spot market, however, and so it is possible that larger firms
with long-term contracts perceive their ethanol costs as being less variable. If so, then ethanol’s relative price may be
less variable at their retail stations.
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costs are low relative to gasoline, competitive retailers are forced to reduce prices, while less

competitive retailers are able to price closer to gasoline. Price dispersion therefore decreases as the

gap between ethanol costs and gasoline prices narrows.

To exploit this variation in pricing behavior, I construct three distinct sets of instruments. The

first set (my “Brand” instruments) interact logged wholesale prices for ethanol and gasoline with

dummy variables for the 14 identifiable retail brands in my sample (28 variables total). These

instruments predict variation in pricing behavior related to chain-specific supply relationship and

idiosyncratic pricing strategies. The second set (my “Benson” instruments) interact logged whole-

sale prices with the logged distance between each county’s population-weighted center and the

Benson ethanol refinery (2 variables total). These instruments predict variation in pricing behavior

related to having a supply contract with the Benson refinery. Because ethanol is costly to trans-

port, the Benson refinery is most likely to supply nearby stations. The third set (my “Competition”

instruments) interact logged wholesale prices with the logged numbers of ethanol and gasoline

retailers in each county (4 variables total). These instruments help predict variation in pricing be-

havior related to differences in local competition. I use these three sets of instruments to identify

variation in relative prices that is arguably exogenous to demand.

5 Econometric estimation and results

5.1 Econometric model

I estimate logged aggregate ethanol demand of the following form:

lnvolumeit = α ln peit +F
(

ln
pgit

peit

)
+β
′Xit + γt +δi +ωi(t)+ εit , (11)

where: volumeit is gallons of ethanol sold at fueling station i in month t; peit is the retail price of

ethanol and pgit is the retail price of regular gasoline; Xit is a vector of time-varying county and

station characteristics; γt is a month effect that is constant across all fueling stations; δi is a fueling
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station effect that is constant across all time periods; ωi(t) is a station-specific time trend; εit is

an unobserved station-month demand shifter; and the remaining elements are coefficients, vectors

of coefficients, and functions to be estimated. Note that regression (11) is the empirical analog of

logged aggregate demand in theoretical equation (6) above.17

While my main estimates assume that F(·) is linear, implying a constant fuel-switching elas-

ticity, my theoretical model implies that elasticities may vary dramatically with relative prices. I

test for variable elasticities using two approaches. First, I estimate the model using different sets of

instruments. In the presence of a variable elasticity response, different instruments may yield dif-

ferent estimates, if those instruments are inducing price variation at different points in the demand

function Angrist et al. (2000). I return to this issue below when interpreting my main results. Sec-

ond, I use OLS to estimate flexible polynomial, cubic spline, and semi-parametric approximations

for F(·). While it is well-known that OLS is a biased estimator of demand, I argue below that the

OLS bias in my application relatively mild.

The own-price elasticity of ethanol demand in this model is simply α− F ′(ln pg/pe). The

gasoline price elasticity is F ′(ln pg/pe), which is equivalent to the fuel-switching elasticity. Fol-

lowing equation (10), the price elasticity of individual ethanol-equivalent fuel demand is the sum of

the gasoline-price and own-price elasticities (i.e., the difference in magnitudes), which simplifies

here to α. Thus, equation (11) imposes a constant price elasticity for overall fuel demand, which

is consistent with recent nonparametric estimates (Yatchew and No 2001). When F(·) is linear,

this model is equivalent to the standard linear-in-logs demand model, with constant own-price and

cross-price elasticities.

In my main estimates, I impose α = −0.20 rather than estimate it directly; this value is con-

sistent with previous estimates for the short-run price elasticity of fuel demand. I do this for two

reasons. First, efficiency. To pin down α precisely, I need to observe different stations charging the

17Unfortunately, I do not observe gasoline quantities below the state level, and so I am unable to calculate local
market shares. I am also unable to estimate the model using any alternative level of aggregation (e.g., zip code or
county), because I do not observe prices and sales volumes for every ethanol station. Ethanol stations tend to be
isolated from one another, however, with stations in my sample located 8 miles from their nearest competitors on
average. Thus, it is valid to treat the stations themselves as approximately distinct ethanol markets.
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same relative prices (so that fuel choice is held constant) but different price levels (so that quantity

demanded varies). Unfortunately, because gasoline prices vary little after controlling for month

and station effects, the variation needed to pin down α precisely does not exist, and attempting

to estimate it inflates the standard errors on the fuel-switching responses.18 Second, consistency.

While I argue that most variation in relative prices is orthogonal to demand, this same argument

does not hold for price levels. Thus, imposing α helps me mitigate endogeneity problems when

I estimate the model using OLS. I show below that my fuel-switching results are not particularly

sensitive to the choice of α, whether imposed or estimated freely.

Returning to the econometric model, the fueling station effect δi controls for persistent differ-

ences in fueling station characteristics, such as brand name, location, and amenities. The station

effect also controls for persistent determinants of local fuel demand, including household income

and other demographics, driving habits, and vehicle efficiency. The month dummy variables given

by γt control for trends in demand related to growing awareness of flexible-fuel vehicle capabilities

or rising state income levels. The station-specific time trends ωi(t) control for similar factors that

evolve at different rates locally. Finally, the month dummies control for potential seasonality in

demand, including the well-known surge in driving that occurs each summer.19

The vector of time-varying station characteristics Xit includes the log of the county’s flexible-

fuel vehicle stock. The vector also includes the log of the total number of stations that offer retail

ethanol in the same county. While a negative coefficient would imply that new stations draw

customers away from existing stations, a zero coefficient might only suggest that new stations

locate where competition is weak. This measure of competition reflects retailer choices about

when and where to install ethanol pumps, and these decisions presumably depend critically on the

locations of existing pumps. Table 1 indicates that there are less than 5 retail ethanol stations per

18After controlling for station effects, the month dummies explain just 42% of the variation in logged relative prices.
The remaining variation comes almost entirely from differences in ethanol prices across stations: the month dummies
explain 99.5% of the variation in logged gasoline prices but only 88% of the variation in logged ethanol prices.

19The minimum denatured ethanol content of retail ethanol in Minnesota varies seasonally due to cold weather
starting issues, ranging from 70% in the winter to 79% in the summer (U.S. Department of Energy 2006). Although
the month dummies control for seasonality in the level of demand, they do not control for potential seasonality in the
price elasticity of demand due to variation in denatured ethanol content. Variation in ethanol content is relatively minor,
however, and unlikely to be transparent to consumers, making it neither problematic nor useful for identification.
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county, while there are more than twenty times as many gasoline stations. A finding of significant

competition in retail ethanol markets would therefore be surprising. Finally, the vector of time-

varying station characteristics includes dummy variables that indicate the length of time that a

station has been offering ethanol. These dummy variables differ from the month dummy variables

because start dates vary from station to station. Sales will likely be low after a station first opens

before customers are fully aware of the new opportunity to purchase ethanol.

5.2 Identification

I estimate regression (11) using ordinary least squares (OLS) and two-stage least squares (2SLS).

OLS estimates are potentially biased if unmodeled shifts in ethanol demand correlate with fuel

prices. This is a standard endogeneity problem in estimating demand functions. Shifts in ethanol-

specific demand would tend to bias the own-price elasticity toward zero, if such shifts led to higher

ethanol prices. In contrast, shifts in overall fuel demand would tend to increase prices for all

fuels, in which case relative prices would arguably be exogenous. This would facilitate identifica-

tion using OLS because I am primarily interested in fuel-switching behavior, which only depends

on relative prices. Endogenous price levels would nevertheless bias OLS estimates for the price

elasticity of individual ethanol-equivalent fuel demand (when this parameter is estimated freely).

In practice, the station owners with whom I spoke indicated that they do not deliberately update

retail ethanol prices in response to local, short-term demand shifts. Rather, they price ethanol at

nominal discounts to regular gasoline (or markups over denatured ethanol), often maintain these

discounts for extended periods of time, and only adjust discounts in response to changes in un-

derlying fuel costs. Indeed, for a large fraction of stations in the sample, discounts are fixed by

contract. This behavior largely rules out ethanol-specific demand shifts at individual stations being

correlated with station-level price changes and biasing OLS estimates.20

20There is theoretical justification for retailers being unresponsive to local demand shifts when setting relative prices.
For a monopolist ethanol retailer, relative retail prices will be invariant to demand shifts that enter multiplicatively
by scaling aggregate demand. This is because multiplicative demand shifts do not alter the shape of the own-price
elasticity function, leaving the monopolist’s first-order pricing condition unchanged. See the appendix for benchmark
models of retail pricing behavior.
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Underlying fuel costs could still be endogeneous to local demand shifts, however, if such shifts

were correlated across many stations. That is, even if individual retailers are price takers in whole-

sale markets, their collective behavior could influence wholesale prices, meaning that wholesale

prices are not exogenous in an econometric sense (Kennan 1989). A classic example is the surge in

travel demand that drives up fuel prices each summer. I control for these and other correlated de-

mand shifts using month dummy variables. Finally, I control for any slowly evolving local demand

shifts using station-specific trends.

While these controls throw away potentially useful time-series and cross-sectional variation,

I am able to document a variety of contractual relationships between retail ethanol stations and

their wholesale suppliers, as well as variation in local competition, which lead to cross-sectional

variation in pricing behavior. To exploit this variation in pricing behavior, I construct three sets

of price instruments as described above. These instruments included logged wholesale ethanol

and gasoline prices interacted with: (1) station brand dummies, (2) logged distance to the Benson

refinery, and (3) the logged numbers of ethanol and gasoline stations operating in the same county.

In effect, I am treating as exogenous the price variation that derives from different rule-of-thumb

pricing strategies, different supply relationships, and different levels of market competition inter-

acting with wholesale fuel prices, even though wholesale prices themselves are not necessarily

exogenous. In my OLS estimates, I also retain variation related to the idiosyncratic timing of when

individual stations adjust their rule-of-thumb discounts; this variation is valid so long as the size

and timing of such adjustments is exogenous, conditional on month and station effects.

Additional identification issues arise in the context of an unbalanced and non-random sample

of stations. Stations appear and disappear from my dataset as they open and close pumps, join

the Minnesota survey, or fail to report. As long as these choices are uncorrelated with demand,

conditional on controls, then OLS estimates are consistent (Wooldridge 1995 2002). This seems

plausible, given that I explicitly control for fuel prices, station effects, month dummies, and other

likely determinants of selection. I tested this hypothesis formally by adding leads and lags of

selection indicators to the regression in equation (11). The F-statistic on these variables was highly
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insignificant, suggesting that standard selection bias is not a problem.21

A separate but related issue is that stations with long panel lengths will weigh heavily in the

estimates relative to stations with short panels, while stations without ethanol pumps receive no

weight at all. This is not a concern if the elasticity function F ′(·) is the same everywhere. If the

elasticity function varies over time or across stations, however, and if the stations I observe are not

representative, then my estimates of the “average” elasticity function will be biased. I examine this

issue below by estimating price responses separately for different time periods and for different

regions. I find no significant disparities.

5.3 Estimation results

5.3.1 Constant elasticity estimates

Table 2 presents my main OLS and 2SLS estimation results, which impose α = −0.20 and also

assume a constant price elasticity for fuel-switching behavior. I control for station effects using

both fixed-effects and first-difference estimators, which have different efficiency properties in the

presence of serial correlation and different probability limits in the presence of dynamic price

responses. Below, I test the sensitivity of the results to alternative values of α and relax the as-

sumption of a constant fuel-switching elasticity.

Ethanol demand is sensitive to price changes. The coefficient on logged relative prices in

regression (1), which is based on the OLS fixed-effects estimator, implies that the elasticity of

ethanol’s market share with respect to relative prices is 2.730. The same coefficient is 3.484 in

equation (2), which is based on the 2SLS fixed-effects estimator. These results imply that the OLS

estimator is biased toward zero, which is consistent with the usual intuition. The implied bias is

only about 20%, however, which is consistent with my arguments above that most price variation

is orthogonal to demand. The corresponding elasticities based on the first-difference estimator,

in regressions (3) and (4), are about 0.9 smaller in magnitude. Why? One possible explanation

21I added one-period leads and lags of a dummy variable, call it sit , that equals one if I observe data for station i in
month t and zero otherwise. I also added ∑

T
r>t sir. Wooldridge (1995; 2002) suggests adding ∑

T
r 6=t sir and ∏

T
r 6=t sir, but

neither has any time variation in my panel.
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Table 2: Main estimation results

Fixed effects First differences
Variable (1) OLS (2) 2SLS (3) OLS (4) 2SLS

ln(gas price / ethanol price) 2.730 3.484 1.872 2.613
(0.193) (0.406) (0.233) (0.562)

ln(number flex-fuel vehicles) 0.048 0.059 0.095 0.096
(0.023) (0.024) (0.023) (0.023)

ln(number ethanol stations) -0.097 -0.092 -0.035 -0.013
(0.077) (0.076) (0.092) (0.094)

month 1 of operation -0.648 -0.636 -0.688 -0.690
(0.100) (.099) (0.112) (0.112)

month 2 of operation -0.075 -0.069 -0.105 -0.106
(0.078) (0.077) (0.083) (0.083)

month 3 of operation 0.003 0.014 -0.033 -0.032
(0.068) (0.068) (0.058) (0.058)

month 4 of operation -0.014 -0.007 -0.036 0.034
(0.046) (0.046) (0.032) (0.033)

Number of observations 4825 4825 4148 4148
Number of stations 232 232 202 202
R-squared 0.18 0.13
Residuals AR(1) 0.422 0.444 -0.249 -0.246

(0.029) (0.027) (0.026) (0.026)
F-statistic (weak instruments) 18.83 68.61
(Chi-square p-value) (0.00) (0.00)
Hansen’s J-statistic (overidentification) 45.956 34.165
(Chi-square p-value) (0.066) (0.412)

Note: Dependent variable is logged monthly ethanol sales volume in gallons; results impose an overall fuel demand
elasticity of −0.20. Clustered standard errors (in parentheses) are robust to arbitrary heteroskedasticity and serial
correlation within stations. All regressions control for station effects, month dummy variables, and station-specific
time trends; R-squared is the fraction of remaining variation explained by the variables above. Residuals AR(1) is the
coefficient from the least-squares regression of the residuals on their lagged values. F-statistic (for weak instruments)
tests the null that excluded instruments have no explanatory power in the first-stage regression; robust p-values are in
parentheses. Hansen’s J-statistic (for overidentification) tests the null that instruments are jointly uncorrelated with the
errors; robust p-values are in parentheses. See text for details.

is that demand does not respond fully to changes in relative fuel prices within the first month, in

which case the fixed-effects and first-difference estimators may give different results. The first-

difference estimator exploits the correlation between price and quantity changes in adjacent time

periods only, while the fixed-effects estimator relates average sales volumes to relative fuel prices

in all time periods. For this reason, fixed-effects estimates may be more robust to delayed price

responses.22

22Indeed, when I include lagged price variables, the fixed-effects and first-difference OLS estimates begin to con-
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The instruments appear to be performing well. The first-stage F-statistics are highly signifi-

cant: they indicate that the instruments are strong predictors of relative fuel prices, conditional on

covariates. At the same time, the Hansen’s J-statistics for overidentification are not significant: I

am unable to reject the null that the instruments are jointly uncorrelated with the error terms in

the model (and that the price elasticity is constant, as I discuss below), although the statistic is

borderline significant in the fixed-effects 2SLS model.

Standard errors in table 2 are robust to arbitrary heteroskedasticity and serial correlation. The

fixed-effects estimates have slightly narrower confidence intervals than the first-difference esti-

mates. The errors are serially correlated for both estimators, however, and neither estimator is

fully efficient.23

Table 3 presents elasticity estimates when imposing different values of α (in the first four

rows) and estimating α freely (in the last row). The table omits results for the covariates, since

they change little. A clear pattern emerges: as the imposed value of α increases in magnitude, the

fuel-switching elasticity decreases by roughly the same magnitude. This is not surprising: logged

ethanol prices and logged relative prices are almost perfectly collinear; hence, the offsetting ef-

fects. When I attempt to estimate α freely, the standard error on the fuel-switching effect increases

substantially, while α itself is estimated imprecisely and has the wrong sign.24 I do not put much

stock in these estimates, however, given the inherent difficulty in pinning down α in this model. In

verge. Another possible explanation is I calculate relative fuel prices based on county-average gasoline prices. While
it is unclear that a different level of aggregation is more appropriate, measurement error will tend to bias the elasticity
estimates toward zero, and this bias is usually more severe in first-difference estimates (Griliches and Hausman 1986).
The 2SLS estimator should correct for this bias, however, and so I suspect this is not the primary explanation.

23First-order serial correlation in the fixed-effects residuals is about 0.40 and statistically different from zero. First-
order serial correlation in the first-difference residuals is −0.25. This coefficient is statistically different from zero,
which indicates that the first-difference estimates are not efficient. This coefficient is also statistically different from
−0.5, which confirms the inference based on the fixed-effects residuals that the model’s errors in levels are serially
correlated (Wooldridge 2002). That −0.25≈−(1−0.40)/2 is consistent with the model’s errors following an AR(1)
process (Solon 1984).

24There are several possible explanations. First, a household’s overall fuel demand may be correlated with its fuel-
switching price ratio, which would violate my assumption that they are independent. Second, some households may be
responding to linear differences in fuel prices instead of relative prices. When I add the linear difference to the models
estimated using OLS fixed-effects and first-differences, however, its coefficient is insignificant, while α continues to
have the wrong sign and be insignificant. Lastly, if consumers respond to price changes with a delay, and this delay
is longer for ethanol prices, this could manifest as a positive coefficient on α. When I add lagged price effects, the
coefficient on α flips signs for fixed-effects estimation, but remains highly insignificant.
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Table 3: Sensitivity to different choices for α

Fixed effects First differences
Value of α OLS 2SLS OLS 2SLS
α =−0.00 2.927 3.679 2.069 2.816

(0.193) (0.406) (0.232) (0.561)
α =−0.10 2.829 3.582 1.970 2.715

(0.193) (0.406) (0.232) (0.562)
α =−0.20 (main results) 2.730 3.484 1.872 2.613

(0.193) (0.406) (0.233) (0.562)
α =−0.30 2.632 3.387 1.774 2.511

(0.194) (0.406) (0.233) (0.563)
α = freely estimated 3.465 4.320 2.777 3.613

(0.616) (3.669) (0.517) (1.224)
α itself 0.545 0.656 0.720 0.782

(0.607) (3.739) (0.433) (1.235)

Note: Table replicates the results in table 2 above while imposing different values for α (in the first four rows) and
estimating α freely (in the last row). Clustered standard errors (in parentheses) are robust to arbitrary heteroskedasticity
and serial correlation within stations. See text and the previous table for details.

any case, the fuel-switching response is relatively stable, and I am unable to reject α = −0.20 or

any of the other reasonable values I impose in table 3.

Returning to the estimates in table 2, the coefficients on flexible-fuel vehicle stocks indicate that

a 1% increase in the number of vehicles leads to a 0.05%-0.10% increase in ethanol sales volumes.

I had expected to find coefficients closer to 1, indicating that ethanol sales increase proportionally

with the density of potential buyers. I suspect that this estimate is biased toward zero, however, as

a result of measurement error, which is exacerbated in panel data models (Hausman 2001).25

The coefficients in the next row indicate that a 1% increase in the number of ethanol pumps per

county leads to a 0.01%-0.10% reduction in sales volumes at individual stations; these coefficients

are not statistically different from zero. Conditional on where retailers choose to locate, new pumps

draw only a small fraction of customers away from existing stations. This result is not surprising,

25Using my monthly panel of flexible-fuel stocks, I regressed the logged number of flexible-fuel vehicles on a vector
of station and month dummy variables. These controls explained 88% of the variation in flexible-fuel stocks. Any
residual variation that remains is likely contaminated by measurement error, given that I construct my panel using a
snapshot of vehicles on the road in 2007. In addition to being noisy, my measure of flexible-fuel stocks is likely biased,
as I systematically undercount vehicles from earlier time periods that may have exited Minnesota or been scrapped
prior to 2007. This is not a problem if the rate of exit and scrappage is similar across counties, however, because I
include month dummies.
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given the small number of ethanol pumps statewide and the fact that infrastructure subsides targeted

areas where ethanol was not already available.

The last set of coefficients indicate that sales volumes are low in the first several months after

a pump begins operating. Sales volumes are about exp(−0.70)−1≈ 50% lower in the first month

but quickly increase to long-run levels within a month or two. This rapid increase indicates that

market participants are well-informed about ethanol’s availability.

5.3.2 Instrumental variables interpretation

Angrist et al. (2000) show how to interpret linear (in logs) IV estimates of demand when the

underlying demand function is nonlinear. They show that IV returns a weighted average of the

elasticity response over the entire demand function. Roughly, weights are proportional to the

density of the data within the range of prices over which the instruments induce price variation. So,

for example, if the instruments only generate price variation in the high-price region of the demand

function, IV will reflect price elasticities in that region only. This interpretation is analogous to

the local-average treatment effect (LATE) interpretation for IV in the case of a discrete-valued

treatment variable.

This result has two implications. First, OLS and 2SLS estimates may differ, even when OLS is

unbiased, if the estimators are implicitly estimating different sections of the demand function. To

explore this possibility, I calculated the density of predicted prices from my first-stage regression.

Figure 4(a) shows that the density of predicted prices overlaps closely with the density of observed

prices. Next, I calculated for each observation the marginal contribution that the instruments make

toward predicting prices in the first-stage regression (i.e., the absolute value of the inner product of

the instruments with their first-stage coefficients). Figure 6(a) shows that the instruments induce

price variation everywhere, while figure 6(b) shows that the analogous identifying variation in OLS

is similarly distributed (except in the extremes of the data for a handful of observations). Thus,

I conclude that the OLS and 2SLS estimators are applying roughly similar weights to different

sections of the demand function.
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(b) Identifying variation in OLS

Figure 6: Identifying variation in 2SLS and OLS estimates

Note: Figures show the identifying variation in 2SLS and OLS. Figure (a) shows: (1) the distribution
of first-stage predicted prices from 2SLS (as well as the distribution of observed prices for comparison)
and (2) the absolute value of the inner product of the instruments with their first-stage coefficients scatter-
plotted versus the first-stage predicted prices themselves. Figure (b) shows the analogous information for
OLS: (1) the distribution of observed prices and (2) the absolute value of the residuals from a regression
of observed prices on covariates scatter-plotted versus observed prices themselves. Note that 100 times
logged relative price is approximately equal to ethanol’s percent discount. See text for details.

A second, related implication is that different sets of instruments may give statistically different

estimates, either because one or more of the instruments is endogenous (the usual interpretation) or

because the instruments are estimating different sections of the demand function (the LATE-type

interpretation). I explore this issue by estimating model (11) separately using different combi-

nations of instruments. Table 4 presents the estimated fuel-switching price responses from these

2SLS regressions, as well the first-stage F-tests (testing weak instruments) and Hansen’s J-statistics

(testing overidentifying restrictions). The F-statistics are all significant, implying that each subset

of instruments does a good job of predicting prices. Looking down the columns of fixed-effects

and first-difference 2SLS coefficients, there is a noticeable pattern: models that include the brand

instruments have larger estimated elasticities. In general, however, the estimates are fairly con-

sistent across the different sets of instruments, and the J-statistics (with two exceptions) are all

insignificant. I take this as indirect evidence that the elasticity function is roughly constant over

the range of observed prices; I explore this issue in further detail below.
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Table 4: Robustness to alternative sets of instruments

Fixed effects First differences
Instrument set Coefficient F-statistic J-statistic Coefficient F-statistic J-statistic

None (main OLS results) 2.730 1.872
(0.193) (0.233)

All (main 2SLS results) 3.484 18.83 45.956 2.613 68.61 34.165
(0.406) (0.00) (0.066) (0.562) (0.00) (0.412)

Brand & Benson 3.756 19.98 35.992 2.601 73.08 30.784
(0.452) (0.00) (0.174) (0.543) (0.00) (0.376)

Brands & Competition 3.482 18.70 42.234 2.723 75.10 32.099
(0.400) (0.00) (0.086) (0.605) (0.00) (0.412)

Benson & Competition 2.896 43.12 11.011 1.503 6.13 4.594
(0.750) (0.00) (0.051) (0.695) (0.00) (0.467)

Brand only 3.814 20.05 27.699 2.706 71.15 29.017
(0.451) (0.00) (0.427) (0.616) (0.00) (0.360)

Benson only 2.274 47.66 1.337 1.987 8.73 0.045
(1.040) (0.00) (0.248) (0.762) (0.00) (0.832)

Competition only 2.966 49.95 10.186 1.558 9.24 3.372
(0.913) (0.00) (0.017) (0.851) (0.00) (0.338)

Note: Table shows 2SLS estimates for the fuel-switching price elasticity estimated using different sets of instruments.
Table also presents first-stage F-statistics for weak instruments (with robust p-values in parentheses) and Hansen’s
J-statistics for overidentifying restrictions (with robust p-values in parentheses). See text for details.

5.3.3 Variable elasticity estimates

In addition to the indirect tests above, I estimate a variable elasticity function directly. Because

OLS does not appear to be severely biased in my application, I use OLS to estimate increasingly

flexible polynomial, cubic spline, and non-parametric approximations for F(·). Coefficient esti-

mates on the covariates are similar to those in table 2 above, so I focus here on the fuel-switching

elasticities. For consistency with the above results, I impose α =−0.20; recall from above that the

magnitudes of the fuel-switching response and imposed α move in opposite directions.

Figures 7(a)–(b) plot the elasticity function based on a cubic polynomial approximation, esti-

mated using the OLS fixed-effects and first-difference estimators. Elasticities decline slightly in

magnitude as the ratio of gasoline to ethanol prices increases, but there is little curvature in the

elasticity function. Because the cubic model would have difficulty revealing sharp peaks in the

elasticity function, I also estimated more flexible polynomial approximations. Elasticities based

on the higher-order polynomial approximations reveal additional non-linearities but are not statis-
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(a) Fixed-effects polynomial
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(b) First-differences polynomial
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(d) Semi-parametric

Figure 7: Estimated fuel-switching elasticities

Note: Figure shows the fuel-switching elasticity of aggregate ethanol demand based on fixed-effects poly-
nomial, first-differences polynomial, cubic-spline, and semi-parametric estimation. Solid gray lines are
95% confidence intervals for estimates based on cubic polynomials, cubic spline with knots every 0.20,
and semi-parametric estimates with bandwidth 0.06. Confidence intervals for semi-parametric estimates
are based on the standard errors from local polynomial regressions. See text for details.

tically different from the more restrictive cubic estimates.

Polynomial approximations are sensitive to the number of terms and to outliers, and the func-

tion in one region is sensitive to the fit in other regions. To test the performance of the polynomials,

I also estimated regression (11) using a cubic-spline approximation with knots at relative price in-

tervals of 0.05, 0.10, and 0.20 (prior to taking logarithms), while controlling for station effects

using fixed-effects estimation. Cubic-spline approximations are more flexible than polynomials
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and less sensitive to outliers, but they are sensitive to the number and placement of knots. Finally,

I estimated the model semi-parametrically using Yatchew’s (1997) estimator for the partial linear

model with a bandwidth of 0.03 and 0.06.26 Semi-parametric estimators give more detailed local

approximations, but estimates are sensitive to the choice of bandwidth. See Hausman and Newey

(1995) for a discussion of these tradeoffs as applied to gasoline demand.

Figures 7(c)–(d) plot the elasticity estimates from the cubic-spline and semi-parametric ap-

proaches. For neither the cubic-spline nor the semi-parametric approaches am I able to reject the

least flexible of the functional forms, although the more flexible semi-parametric approach reveals

additional nonlinearities that the polynomial and cubic-spline approaches obscure.

5.3.4 Preference heterogeneity

My results all point to heterogeneous preferences for ethanol. First, relative prices vary consider-

ably across stations and over time, which would not happen if preferences were literally homoge-

nous, since retailers would be forced to set a single price. At a minimum, fuel-switching behavior

extends over a wide range of relative prices where ethanol is discounted 0%-25% below gasoline.

These results suggest (1) that some consumers are willing to pay a per-mile premium for ethanol,

and (2) that preferences are actually quite diffuse among households that choose ethanol at ob-

served prices. Second, while my 2SLS elasticity estimates are large in magnitude, they are not

26For a general partial-linear model given by:

yt = f (xt)+Ztβ+ εt ,

Yatchew’s procedure entails: (1) sorting the data by xt , (2) differencing the data to remove the non-linear component
f (xt) under the assumption that f (xt)≈ f (xs) for xt ≈ xs, (3) estimating β parametrically on the differenced data, (4)
subtracting the predicted value of this parametric regression from the original dependent variable to yield yt−Z′t β̂, and
finally (5) regressing yt −Z′t β̂ on xt non-parametically using any number of non-parametric regression techniques. I
employ tenth-order differencing using Yatchew’s (1998) optimal differencing weights, which improves efficiency to
within 5% of Robinson’s (1988) fully efficient procedure. I control for station effects using station dummy variables.
Several hundred observations share the same relative price as another observation, which means the results may be
sensitive to how sorting ties are broken. I therefore estimate the first stage 50 separate times, breaking ties randomly in
each trial, and take the mean coefficient values from these trials as my first-stage estimates. In practice, my estimates
vary negligibly across trials. I then estimate the non-parametric portion of the model using local polynomial regression,
which has attractive properties in the extremes of the data. Polynomials also yield intuitive and convenient estimates
for first derivatives. I use a quadratic local polynomial, which is appropriate for estimating first derivatives (Fan and
Gijbels 1996), and an Epanechnikov kernel weighting function. I calculate an “optimal” bandwidth of 0.03 using a
rule-of-thumb approximation (Fan and Gijbels 1996, p.111).
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nearly as large as they would be if household preferences for ethanol were more homogeneous, as

in figure 1(a). Third, my linear 2SLS estimates are for the most part consistent across different sets

of instruments, which is consistent with a roughly constant elasticity function. Fourth and finally,

when I estimate flexible elasticity functions directly, I also find that elasticities are roughly con-

stant. These results are all consistent with a flat elasticity function and heterogeneous preferences

for ethanol, as in figure 1(b) above.

Unfortunately, because I rarely observe ethanol discounted less than 0% or more than 25% be-

low gasoline, I am unable to estimate the elasticity function or say anything definitive about pref-

erences in those regions. I can, however, estimate the distribution of preferences over the range of

observed prices. Rough calculations suggest that about 13% of flexible-fuel owners chose ethanol

during my sample period when the price ratio averaged 1.14. Thus, I can impose H(1.14) = 0.13

and use any one of my elasticity estimates to reveal the rest of the distribution (i.e., by integrating

the elasticity function with respect to relative prices), as detailed in the appendix.

One concern is that my estimates, which reflect preferences for ethanol in a particular time and

place, may not be appropriate for out-of-sample simulations. I tested whether preferences have

changed over time (e.g., due to advertising campaigns late in the sample period) by estimating

the model separately on data for 1997–2003 and 2004–2006. I also tested whether preferences

vary cross-sectionally (e.g., with the importance of agriculture in the local economy) by estimating

the model separately for stations in the Twin Cities and stations in greater Minnesota. Fixed-

effects polynomial and cubic-spline estimates show no significant differences over time or across

geography, however, which suggests that efforts to make the results more nationally representative

would probably not alter my main findings appreciably.

One final concern is that some of the heterogeneity I observe derives not from variation in

preferences per se but from variation in ethanol’s relative convenience. If so, then my estimates

may give inaccurate predictions when I simulate the effects of an ethanol standard, which would

presumably expand ethanol’s availability beyond current levels. In reality, while there are rela-

tively few ethanol stations statewide, if a given town has an ethanol station at all, it is typically
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located near other gasoline stations. Thus, while some consumers may be driving out of their way

for ethanol, most are probably not driving very far. Hence, correcting for variation in ethanol’s

convenience also would not alter my main conclusions appreciably.27

6 Policy simulation

I use my model and estimates to simulate the effects of an ethanol content standard, which man-

dates that denatured ethanol comprise a minimum fraction of the overall gasoline supply. The

simulation model is necessarily stylized and intended to highlight the importance of modeling het-

erogeneous preferences for ethanol. I simulate 15% and 25% standards. The 25% standard is

consistent with the federal RFS of 36 billion gallons annually for 2022, which represents about

25% of current gasoline consumption.28 I assume in my simulations that industry complies with

the standard by increasing the market share of retail ethanol, although blending with regular gaso-

line in other ratios would also be a potential compliance strategy.29 My model and estimates could

also be used to evaluate other government policies to promote retail ethanol.

I assume in my simulations that, for price ratios less than 1.35, preferences follow the cdf im-

plied by my 2SLS fixed-effects estimates. Rather than extrapolate forward out of sample, however,

I impose that the remaining mass of households share the same fuel-switching price ratio of 1.35,

which is the average ratio of gasoline to ethanol mileage and therefore consistent with most con-

27Within a five-mile radius, 60% of competing stations are within 0.5 miles and half are within 1 mile. At a time
cost of $15 per hour, travel speed of 30 miles per hour, ethanol cost of $1.75 per gallon, fuel economy of 20 miles
per gallon, and refueling rate of 15 gallons, traveling one mile round-trip out of the way for ethanol (the median)
would add only $0.04 to the effective price of ethanol. Adjusting for this extra distance would (given the forgoing
assumptions) shift a price ratio of 1.15 to 1.12.

28Recall that while this standard mandates a minimum quantity of renewable fuel, the EPA rulemaking that imple-
ments the standard sets a minimum percentage of renewable fuel in each compliance period. Gasoline consumption is
not projected to increase much in the coming decades.

29Although industry has thus far been blending ethanol with gasoline to comply, this strategy will soon be limited
by the fact that regular gasoline vehicles cannot run on ethanol blends higher than 10%. Industry recently requested a
waiver from EPA that would allow ethanol blends higher than 10% in regular gasoline; it is unclear whether this waiver
will be approved and whether automakers would similarly modify vehicle warranties. Given that a sizeable fraction of
households are willing to pay a per-mile premium for ethanol, however, it is possible that industry would eventually
find it profitable to differentiate between the two fuels and recover costs by charging households with flexible-fuel
vehicles a higher price for ethanol.
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sumers minimizing fuel costs. In effect, I assume that the distribution of preferences has a mass

point at 1.35 and a long left tail consistent with my estimates. For comparison to previous analyses

that assume identical preferences, I also simulate the standards assuming that all households are

massed at 1.35. I close the model by adding a supply side, drawing on previous work by Holland

et al. (2008). I numerically search for retail fuel prices and a shadow value on the ethanol content

constraint such that households maximize utility, suppliers maximize profits, industry complies

with the constraint, and markets clear. See table 5 and the appendix for further details on the

simulation.

Table 5 presents the simulation results. Scenario 1 assumes that households have nearly iden-

tical preferences based on ethanol’s mileage relative to gasoline. This constrains the equilibrium

price ratio under the standard to nearly equal the mileage ratio of 1.35. A 15% ethanol content

standard reduces gasoline consumption by about 12% and reduces carbon dioxide emissions by

about 4%. The policy is costly, however, at $12 billion annually. I calculate total costs based on

changes in consumer surplus and producer surplus, with changes in tax revenue (i.e., fuel taxes net

of the federal ethanol subsidy) entering as lump-sum transfers. These impacts are about twice as

high for the 25% standard.

Scenario 2 assumes that households are heterogeneous as implied by my estimates. After

accounting for the fact that some households prefer ethanol, the surplus cost of a 15% ethanol

content standard falls by 10%. Costs are lower in scenario 2 because households with strong

preferences can be induced to purchase ethanol with less severe distortion of market prices, as

evidenced by the lower equilibrium price ratio of 1.1.30 For the 25% standard, surplus costs are

only 3% lower than in scenario 1. A fairly high price ratio of 1.31 is needed to comply with

the standard, and so price distortion is nearly as high. The fuel supply industry benefits quite

substantially under the policy, although producer surplus in the table does not distinguish between

30In fact, baseline ethanol consumption is actually higher in scenario 2. The expansion of baseline ethanol consump-
tion above current levels occurs because I assume for the simulation that all households own flexible-fuel vehicles,
whereas in reality this fraction is quite small. While conversion costs are low and falling over time, they are not zero,
and so production of these vehicles derives primarily from CAFE incentives. Endogenizing flexible-fuel conversions
by adding conversion costs to the analysis would reduce the difference between scenarios 1 and 2 and increase the cost
of complying with an ethanol content standard.

40



Table 5: Simulation results

Scenario 1: Identical households Ethanol standard
0% 15% 25%

ethanol price ($/gallon) 2.68 2.17 2.52
gasoline price ($/gallon) 2.62 2.90 3.38
gasoline / ethanol price 0.98 1.34 1.34
quantity pure ethanol (billion gallons) 4.95 21.61 35.99
quantity pure gasoline (billion gallons) 136.86 122.44 108.30
emissions (million mtCO2) 1229.08 1185.28 1132.54
change consumer surplus (billion $) 0.00 -7.73 -21.00
change producer surplus (billion $) 0.00 3.07 13.65
change tax revenue (billion $) 0.00 -7.37 -14.59
total cost (billion $) 0.00 -12.03 -21.94
cost per gasoline saved ($/gallon) 0.83 0.77
cost per emissions reduced ($/mtCO2) 274.69 227.24

Scenario 2: Heterogeneous households Ethanol standard
0% 15% 25%

ethanol price ($/gallon) 3.29 2.51 2.50
gasoline price ($/gallon) 2.56 2.75 3.27
gasoline / ethanol price 0.78 1.10 1.31
quantity pure ethanol (billion gallons) 9.34 20.50 34.02
quantity pure gasoline (billion gallons) 129.38 116.35 101.93
emissions (million mtCO2) 1185.10 1126.07 1066.61
change consumer surplus (billion $) 0.00 -3.11 -14.35
change producer surplus (billion $) 0.00 -1.11 6.96
change tax revenue (billion $) 0.00 -6.62 -13.96
total cost (billion $) 0.00 -10.84 -21.35
cost per gasoline saved ($/gallon) 0.83 0.78
cost per emissions reduced ($/mtCO2) 183.70 180.22

Note: Scenario 1 assumes that fuel-switching price ratios follow a normal cdf with mean 1.35 and standard
deviation 0.01. Scenario 2 assumes that fuel-switching price ratios follow the supremum of (a) a normal
cdf with mean 1.35 and standard deviation 0.01 and (b) the cdf implied by my 2SLS fixed-effects elasticity
estimates with H(1.14) = 0.13; this amounts to adding a long left tail to the distribution in scenario 1.
All simulations assume: that every household owns a flexible-fuel vehicle; a price elasticity for individual
ethanol-equivalent fuel demand of -0.20; price elasticities of 1.25 and 2.5 for pure gasoline and denatured
ethanol supply; 8.8 kilograms of CO2 emissions per gallon of gasoline; and that ethanol’s energy-adjusted,
life-cycle CO2 emissions are 15% lower than gasoline. The aggregate ethanol-equivalent fuel demand
function is calibrated to 2006 gasoline quantities and retail prices. Supply functions are calibrated to 2006
quantities and national-average wholesale spot prices; supply functions also include a constant marginal
cost for distribution, marketing, and taxes net of subsidies. See the appendix for further details.
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producers of ethanol and gasoline. Consumers and taxpayers split the remaining costs 60-40.

Gasoline consumption and greenhouse gas emissions under the 15% and 25% standards fall by

about the same amount as in scenario 1.

The ethanol content standard remains a costly policy, however, even after accounting for re-

vealed preferences. Surplus costs in scenario 2 average about $0.80 per gallon of gasoline saved.

For comparison, a recent study by Harrington, Parry and Walls (2007) assumes $0.12 per gallon

for the external costs of petroleum dependence, though the studies they review estimate a range of

$0.08–$0.50 per gallon.31 Surplus costs in scenario 2 average more than $200 per ton of carbon

dioxide emissions avoided. Again, these costs exceed most estimates for climate damages from

carbon dioxide emissions. A recent meta-analysis suggests that marginal damages are unlikely to

exceed $15 per ton of carbon dioxide emissions (Tol 2005), while even pessimistic recent estimates

put marginal damages at only $85 per ton (Stern 2006).

These estimates are sensitive to assumptions about ethanol’s life-cycle emissions and other

impacts. If land-use changes eat into ethanol’s moderate climate benefits, as recent studies suggest

is likely, the content standard could actually increase emissions. In addition, most life-cycle studies

assume that ethanol plants use natural gas, while some new plants rely on coal, which is much

dirtier. Lastly, ethanol consumes a lot of water, which may grow scarcer with climate change,

while fertilizer and nutrient runoff from corn production are also damaging.

There are several other limitations to these results. First, my estimates reflect preferences

of households in Minnesota that own flexible-fuel vehicles and live near ethanol pumps. These

households may have stronger preferences. While price responses are not statistically different

over time or across regions, I am unable to verify that the estimates are representative. Second,

it is difficult to determine precisely the fraction of households that choose ethanol at observed

prices, and I can only speculate about preferences outside my sample. Third, any heterogeneity

that derives from variation in ethanol’s convenience will likely diminish over time as the ethanol

31They include petroleum dependence costs in a comprehensive measure of gasoline-related externalities, which
they estimate at $2.20 per gallon. The majority of these costs depend on miles driven, however, and therefore hit
ethanol even harder due to its poor mileage relative to gasoline.
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market expands.

On the supply side, previous research has not estimated ethanol and gasoline supply elasticities

as convincingly as one would hope, though this is an active area of research. Second, I do not

consider preexisting distortions, such as agricultural price supports, nor do I consider other general

equilibrium effects. Commodity prices were high in the sample period, however, and price floors

were not binding. Finally, I do not consider new technologies that would facilitate cheap ethanol

production from agricultural waste or other feedstocks. While the RFS actually mandates that a

substantial fraction of the standard be met with such fuels, forcing these technologies prematurely

could increase the cost of the standard. Addressing these various issues would have an ambigu-

ous effect on overall costs, but the key qualitative point remains: accounting for heterogeneous

preferences can (in this case) reduce simulated costs.

7 Conclusion

I develop a model that explicitly links aggregate demand for ethanol in a market to the distribution

of household preferences for ethanol as a gasoline substitute. The model allows me to extract infor-

mation about micro preferences from aggregate data on ethanol quantities and relative fuel prices.

I need not observe gasoline quantities, in contrast to other methodologies that match predicted

and observed market shares. I estimate the model using panel IV methods and data from a large

number of retail fueling stations. My theoretical model implies that elasticities might vary dramat-

ically with relative prices. Thus, I attempt to determine which part(s) of the demand function are

weighted most heavily in my IV estimates using a heuristic approach, and I test whether different

instruments (operating in different parts of the demand function) give different results. Taking

a more direct approach, I also estimate elasticities that vary flexibly with relative fuel prices us-

ing semi-parametric estimation and other flexible methods. Future research could apply this model

and these methodologies to estimate preferences for other goods with perfect substitutes. Imposing

constant elasticities in such contexts may give misleading results.
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I find that demand for ethanol as a gasoline substitute is sensitive to relative fuel prices, with

elasticities of about 2.5–3.5. Price responses are considerably smaller and less variable, however,

than they would be if preferences were identical. Fuel-switching behavior extends over a wide

range of relative prices where ethanol is discounted 0%–25%, and there is no single price at which

a large mass of consumers suddenly switches to ethanol. The results imply that some households

are willing to pay a premium for ethanol and that preferences among these households are quite

heterogeneous.

These results have important implications for policy. Accounting for households that prefer

ethanol can cut the cost of an ethanol content standard substantially. While the typical house-

hold may require a large subsidy, households with stronger preferences choose ethanol with min-

imal price distortion, reducing costs in some cases. Similar intuition likely applies for policies

to promote other “green” substitutes, such as renewable electricity, energy-efficient lighting and

appliances, hybrid-electric vehicles, or organic foods. Researchers should take care to distinguish

between average and marginal households when assessing the impacts of policy; assuming identi-

cal preferences for all households can yield misleading results and (in this case) overstate costs.

The ethanol content standard nevertheless remains a costly policy. Costs per gallon of gasoline

saved or ton of carbon emissions avoided exceed most conventional estimates of external dam-

ages, even after revising the analysis in ethanol’s favor. Moreover, to the extent that preferences

for ethanol reflect pure altruism toward farmers, the environment, or national security, then the

behavior I interpret as reducing costs is in fact only shifting costs, at least in part. Finally, some of

the altruism may actually be misplaced. If land-use changes associated with growing feedstocks

negate ethanol’s climate benefits, or if ethanol’s other side effects are not managed carefully, then

the policy could actually damage the environment. Policies that tax or regulate carbon dioxide

emissions directly tend to mitigate such side-effects.
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The Demand for Ethanol as a Gasoline Substitute

Appendix: Not for Publication

Soren T. Anderson

A Aggregate demand and household welfare

I show above that the aggregate ethanol demand is

Qe(pe, pg) = φNH
(

pg

pe

)
q̄(pe). (12)

Aggregate demand for gasoline reflects households that own flexible-fuel vehicles but choose

gasoline, as well as households that do not own flexible-fuel vehicles. Gasoline demand for house-

holds that own flexible-fuel vehicles is given by

φN
∫

∞

pg/pe

q̄(pg/r)
r

dH(r). (13)

By similar arguments aggregate demand for households that do not own flexible-fuel vehicles is

(1−φ)N
∫

∞

−∞

q̄(pg/r)
r

dH(r), (14)

which is just the total number of households that do not own flexible-fuel vehicles multiplied

by their average gasoline consumption. Here, as above, I rely on the assumption that flexible-

fuel vehicles and v(·) are distributed independently of r (and of each other). Adding these two

expressions gives aggregate gasoline demand:

Ge(pe, pg) = φN
∫

∞

pg/pe

q̄(pg/r)
r

dH(r)+(1−φ)N
∫

∞

−∞

q̄(pg/r)
r

dH(r). (15)
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Maximized utility for an individual household that chooses ethanol is

v(q(pe))+ y− peq(pe), (16)

which holds whenever r ≤ pg/pe, while a household that chooses gasoline has utility given by

v(q(pg/r))+ y− pg
q(pe/r)

r
, (17)

which holds whenever r > pg/pe. Because I assume that household utility is linearly separable

in the composite good, and because I assume an interior solution with respect to consumption of

this good, each household’s utility function has dollar units. This allows me to compute average

welfare:

φ

{∫ pg/pe

−∞

[v(q(pe))+ y− peq(pe)]dH(r)+
∫

∞

pg/pe

[
v(q(pg/r))+ y− pg

q(pe/r)
r

]
dH(r)

}
+(1−φ)

∫
∞

−∞

[
v(q(pg/r))+ y− pg

q(pe/r)
r

]
dH(r) (18)

where I have left the averaging over v(·) and q(·) implicit to simplify the notation. The top term

is average welfare for households that own flexible-fuel vehicles weighted by the fraction of these

households, and the bottom term is average welfare for households that do not own flexible-

fuel vehicles weighted by the fraction of such households. Average welfare for households that

own flexible-fuel vehicles reflects both households that choose ethanol as well as households that

choose gasoline. Multiplying by the total number of households N gives aggregate welfare.

B Retail supply behavior

How will a retailer facing the demand functions developed above choose to set prices, and how

will these prices respond to shifting costs? For an ethanol retailer located close to other retailers,
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competition will drive the retail price of ethanol down to marginal costs:

pe = ce, (19)

where ce is the marginal cost of ethanol. The equilibrium ratio of retail gasoline to ethanol prices

is given by:

ρ
∗ =

pg

ce
, (20)

where ρ = pg/pe is the price ratio the retailer chooses, and where I assume for simplicity that

the retail price of gasoline pg is fixed exogenously by conditions in the retail gasoline market.32

Changes in ethanol’s cost relative to gasoline therefore transmit directly to relative retail prices:

∂ρ∗

∂(pg/ce)
= 1. (21)

When ethanol’s cost relative to the price of gasoline increases, relative retail prices increase ac-

cordingly.

Marginal-cost pricing is not a particularly good model for understanding retail ethanol pricing

behavior. Current retail ethanol markets reflect a peculiar mix of monopoly power and competition.

Because relatively few stations offer retail ethanol, customer bases overlap only marginally, if at all,

allowing ethanol retailers to operate largely as local monopolists. At the same time, these retailers

compete directly with nearby gasoline stations in the broader fuels market, because flexible-fuel

vehicle owners are able to switch seamlessly between ethanol and gasoline.

Consider first a monopolist ethanol retailer that only offers ethanol. The retailer chooses the

price of ethanol to maximize profits:

Π(pe; pg) = Qe(pe; pg)pe− ceQe(pe; pg), (22)

32This assumption is consistent with the current fuel market, where relatively few stations offer ethanol and ethanol
sales volumes are low relative to gasoline. This assumption would not be valid for a significantly expanded retail
ethanol market.
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where Π is retailer profit, which is a function of the retail prices of ethanol pe and regular gasoline

pg, Qe is the quantity of ethanol demanded as a function of retail prices, and ce is the constant

marginal cost of offering ethanol. I assume for simplicity that the retail price of gasoline pg is

fixed exogenously by conditions in the retail gasoline market.

The first-order condition of this maximization problem is given by:

Qe +Q′e pe− ceQ′e ≡ 0, (23)

where all derivatives are with respect to the retail price of ethanol and I have suppressed the argu-

ments of functions for clarity. Collecting terms that contain Q′e, moving Qe to the right-hand side,

and then dividing by pe and Q′e on both sides yields:

pe− ce

pe
≡−Qe

pe
· 1

Q′e
. (24)

This is equivalent to

µe ≡−
1
ξe

, (25)

where µe ≡ (pe− ce)/pe is the percent retail markup of ethanol and ξe is the own-price elasticity

of aggregate ethanol demand. This is the standard monopoly result where the retailer equates the

percent retail markup to the negative reciprocal of the price elasticity of demand.

Now consider a monopolist ethanol retailer that also sells gasoline. Adding profits from gaso-

line sales to the maximization problem results in a modified first-order condition:

µe +
(

Q′g
Q′e
·

pg

pe

)
µg ≡−

1
ξe

,

where Q′g is the change in gasoline sales volume given a marginal increase in the price of ethanol,

µg ≡ (pg−cg)/pg is the percent retail markup of gasoline, and all other terms are as above. I again

assume that retail gasoline prices are fixed by market competition. When a station’s ethanol price

has no effect on its gasoline sales, so that Q′g = 0, the first-order condition reduces to the simple
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case above. When Q′g > 0, however, the optimal price of ethanol is higher, because increasing the

price of ethanol drives some consumers to gasoline at the same station. This incentive increases

with Q′g. The incentive to increase ethanol prices and drive consumers to gasoline also increases

with gasoline markups µg.

In areas where overall competition is fierce, retailers that increase the price of ethanol are

unlikely to capture many customers switching to gasoline, since these customers have many com-

peting gasoline stations from which to choose. That is, Q′g will be relatively small in magnitude,

and pricing behavior will tend toward the simple case above. In areas where competition is weak,

however, so that Q′g is large in magnitude, the incentive to increase the price of ethanol and could

be quite strong.

I now return to the case of a monopolist ethanol retailer that only sells ethanol. Restating this

retailer’s first-order condition in terms of the price ratio ρ by making the substitutions pe = pg/ρ

and ξe =−ξg +ξ f yields:

1− ρ

pg/ce
≡− 1
−ξg +ξ f

, (26)

where ρ is the price ratio the retailer chooses. Assuming that the price elasticity of individual

ethanol-equivalent fuel demand ξ f is constant, the implicit function theorem gives the following

comparative static for the impact of a change in ethanol’s relative cost on the profit-maximizing

price ratio:
∂ρ∗

∂(pg/ce)
=

ρ∗

pg
ce
−

(
pg/ce
−ξg+ξ f

)2
ξ′g

> 0, (27)

where ρ∗ is the profit-maximizing price ratio and the inequality assumes that ξ′g < 0 at the optimum.

Recall that ξ f is constant by assumption and that ξg and ξ′g only depend on relative prices.

Expression (27) implies that changes in relative costs will have their largest impact on relative

retail prices when the fuel-switching elasticity is roughly constant near the optimum, so that ξ′g is

close to zero. In contrast, when the elasticity is highly variable near the optimum, which indicates

a large concentration of households near that same fuel-switching price ratio, ξ′g will be large in

magnitude and relative prices will be less responsive to changes in ethanol’s costs. In the extreme
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Figure 8: Profit-maximizing retail price ratio

Note: Figure illustrates profit-maximizing price ratios for a monopolist ethanol retailer. Profit-maximizing
price ratios are given by intersection of markups and the negative reciprocal of the own-price elasticity,
as in equation (25). More profitable and less profitable cases assume that marginal ethanol costs are 60%
and 80% the retail price of gasoline. Elasticity functions assume a constant ethanol-equivalent fuel price
elasticity of -0.25.

case where households have identical preferences for ethanol, ξ′g will be infinitely large in mag-

nitude and relative prices will be invariant to underlying costs. Retailers will be reluctant to raise

ethanol prices when costs increase, lest they drive all consumers to gasoline. At the same time,

retailers will have no incentive to reduce prices when costs fall, because lowering prices will not

stimulate any additional demand.

Figure 8 illustrates this first-order condition and comparative static for two hypothetical fuel-

switching elasticity functions, where I have set the elasticity of individual ethanol-equivalent fuel

demand to a constant -0.20. The figures illustrate that when household preferences are nearly

homogeneous, so that price elasticities are highly variable, as in figure 8(a), the profit-maximizing

price ratio is insensitive to changes in relative costs. When household preferences are more diffuse,

however, so that price elasticities are less variable, as in figure 8(b), shifts in relative costs lead to

large changes in the profit-maximizing price ratio.
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Figure 9: Retail fuel prices

Note: Retail ethanol price is the monthly volume-weighted average retail price of
ethanol at reporting stations in Minnesota. Retail gasoline price is the monthly
county-average retail price of regular gasoline, weighted by retail ethanol sales
volumes at these same stations. Prices are in 2006 dollars.

C Aggregate price trends

Figure 9 plots average retail ethanol and regular gasoline prices from October 1997 through Novem-

ber 2006. Average ethanol prices track regular gasoline prices closely, albeit at a noticeable dis-

count for most of the period.

Figure 10 plots average wholesale prices for the same time period. Wholesale spot prices for

denatured ethanol do not always track wholesale gasoline prices closely. This is perhaps not sur-

prising, given that demand for denatured ethanol derives largely from its role as a complement to

gasoline production and less from its role as a gasoline substitute. Opportunities for direct substi-

tution do exist, however, and large price differences can create strong incentives for substitution,

which is one reason that wholesale ethanol prices track wholesale gasoline prices broadly over

time. This is particularly evident in the fall of 2005, when ethanol helped ease gasoline shortfalls
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Figure 10: Wholesale fuel prices

Note: Wholesale ethanol price is a weighted average of the spot price for denatured
ethanol in Minneapolis and Fargo, less the federal ethanol blending tax credit.
Wholesale gasoline price is the Minnesota volume-weighted average rack price.
Prices are in 2006 dollars.

after Hurricanes Katrina and Rita knocked out Gulf Coast petroleum refineries and distribution

pipelines. Ethanol prices were low relative to gasoline in the first half of 2005 due to a glut of

ethanol. Ethanol prices then spiked to equal gasoline prices as ethanol substituted for gasoline

after the hurricanes. Ethanol’s margin relative to gasoline eventually returned to pre-hurricane lev-

els as refineries and pipelines came back on line and as imports of refined gasoline arrived from

abroad.

A second reason that wholesale prices track broadly is that ethanol and a petroleum-based

chemical fuel additive called methyl tertiary-butyl ether (MTBE) are close substitutes in some

U.S. regions during much of this time period, creating an avenue for petroleum prices to correlate

indirectly with ethanol prices. The importance of this substitution is most evident in the first half of

2006, when fuel suppliers quit using MTBE due to concerns about potential groundwater contam-

ination. Prices surged as ethanol filled the gap left by this key substitute. Ethanol prices fell in the

8



summer months as ethanol refiners scaled up production and as fuel distributors resolved logistical

difficulties in transporting ethanol from refineries in the Midwest, where ethanol is produced, to

markets on the coasts, where MTBE had previously held a large market share.

Figure 5(a) above demonstrates that large fluctuations in relative wholesale prices correlate

with comparatively small changes in retail prices. Note that the scale for the wholesale price ratio

in figure 5(a) above is five times as large as the scale for the retail price ratio. What explains

this behavior? The natural assumption is that ethanol retailers are pricing ethanol based primarily

on what flexible-fuel vehicle owners are willing to pay, relative to gasoline, as opposed to what

the fuel costs. As I show above in appendix section B, when the elasticity is highly variable and

retailers are monopolists, the relative price of ethanol will be insensitive to changes in ethanol’s

costs relative to gasoline. The pricing behavior in figure 5(a) is therefore consistent with a highly

variable elasticity function.

There are alternative explanations. Above, I described rule-of-thumb pricing strategies, supply

relationships that mechanically tie retail ethanol prices to gasoline, and pricing formulae for long-

term ethanol contracts, which could all lead retail prices to be less variable than observed spot

prices. In addition, station owners may have an incentive to reduce price volatility by maintaining

retail ethanol prices that are more consistent with the long-run relationship between gasoline prices

and ethanol costs. Short-term profits may suffer, but this strategy helps maintain a consistent

customer base. Indeed, several industry representatives I spoke with indicated that some retailers

were actually pricing ethanol below costs in late 2005 and early 2006. Ethanol costs were high

relative to gasoline, due to the discontinuation of MTBE, but some retailers were willing to incur

temporary losses to maintain favorable relationships with their customers.

D Evidence of cross-sectional variation in pricing behavior

As I describe in the main text, about one-third of ethanol retailers in Minnesota purchase ethanol

directly from an ethanol refinery in Benson, which is located in the southwestern part of the state.

9
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Figure 11: Relative wholesale prices and relative retail fuel prices

Note: Top figure shows relative retail prices for stations in counties within 50 miles of Benson and for
other rural counties. Bottom figure shows relative retail prices for stations in Twin Cities counties and for
stations in rural counties.
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Throughout the entire sample period, this refinery supplied retail ethanol at a fixed nominal dis-

count to the spot price of regular gasoline. The ethanol retailers, in turn, agreed to price retail

ethanol at the same discount below regular gasoline at their stations. When retail ethanol prices are

tied directly to the price of gasoline, relative prices will be less responsive to changes in ethanol’s

relative cost. This is apparent in figure 11(a), which plots relative retail prices for stations located

in counties within 50 miles of the Benson refinery, which are most likely to have contracts with

this refinery, and for stations located in other counties outside the Twin Cities. In 2000-2001,

when wholesale ethanol costs were high relative to gasoline, stations near Benson priced ethanol

at a larger percent discount. This happened again in late 2003-2004 and at times in late 2005-2006.

Figure 11(b) plots relative retail prices for stations located inside and outside the Twin Cities,

where the density of retail ethanol stations is higher. Stations in the Twin Cities appear to be more

sensitive to changes in relative costs. When wholesale ethanol costs are low relative to gasoline,

stations in the Twin Cities discount ethanol more heavily than in rural areas. When wholesale

ethanol costs are high relative to gasoline, retailers in the Twin Cities do not discount ethanol as

generously. This pricing behavior is consistent with retailers in the Twin Cities facing greater

competition and therefore being more sensitive to changes in relative costs.

E Using elasticity estimates to reveal preferences

This section shows how to retrieve the distribution of household preferences from aggregate price

repsonses. Recall that equation (7) above links the distribution of household preferences to aggre-

gate price responses:

ξg(x) =
h(x)
H(x)

x. (28)

Dividing both sides by x and using the first-derivative rule for logarithms gives:

ξg(x)
x

=
∂ lnH(x)

∂x
. (29)
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Assume that an estimate of the elasticity function is available for price ratios ranging from rL to

rH . Then integrating both sides with respect to x through r > rL gives:

∫ r

rL

ξg(x)
x

dx =
∫ r

rL

∂ lnH(x)
∂x

dx

= lnH(r)− lnH(rL). (30)

Finally, taking the exponential of both sides and rearranging yields:

H(r) = H(rL) · exp
(∫ r

rL

ξg(x)
x

dx
)

. (31)

Given H(rL) and an econometric estimate of ξg(x) over the interval [rL,rH ], equation (31) yields

an estimate for the cdf of household preferences on the interval.

A boundary condition is required to solve for H(rL). Suppose one knows that the fraction of

households choosing ethanol at some price ratio r∗ ∈ [rL,rH ] is H(r∗). Then it is easy to solve for

H(rL):

H(rL) = H(r∗) · exp
(
−

∫ r∗

rL

ξg(x)
x

dx
)

, (32)

and equation (31) yields the distribution of preferences on the interval [rL,rH ].

Unfortunately, it is not possible to reveal the full distribution of household preferences for

ethanol, unless one has an estimate for the elasticity function over the entire range of possible

fuel-switching price ratios.

Because I rarely observe ethanol discounted less than 0% or more than 25% below gasoline, I

am unable to estimate the elasticity function or say anything definitive about preferences in those

regions. I can, however, estimate the distribution of preferences over the range of observed prices.

Rough calculations suggest that 5% of flexible-fuel owners in a county choose ethanol on

average during the study period, when the price ratio averaged 1.14.33 This figure likely understate

33There are about 3250 flexible-fuel vehicles per county on average. Assuming a flexible-fuel vehicle drives 1000
miles per month and achieves 14 miles per gallon on ethanol (the sales-weighted average based on EPA mileage
estimates), this translates to 1000/14 ·3250≈ 230,000 potential gallons per county. Actual sales average about 3350
gallons per station. With about 3.7 stations per county on average, this translates to 3350 ·3.7≈ 12,400 gallons. Thus,
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Figure 12: Estimated and simulation cdfs for fuel-switching price ratios

Note: Figure on the left shows cdfs for fuel-switching price ratios based on several alternative estimators
of the fuel-switching elasticity function. Each cdf assumes that H(1.14) = 0.13. See text for further
details. The figure on the right shows the precise cdf used in the simulations, which is based on the 2SLS
fixed-effects constant-elasticity estimates for price ratios less than 1.35. See text for details.

the fraction of flexible-fuel owners that would choose ethanol if given the option, however, since

not all households currently have access to the fuel, given its limited availability. Assuming, based

on somewhat speculative calculations, that only 40% of the households in a county currently have

access on average, then ethanol’s implied market share is actually 2.5 times as high. Thus, I can

impose H(1.14) = 0.13 and use any one my estimated elasticity functions to back out the rest of

the cdf.34 Figure 12(a) does this using the 2SLS constant-elasticity estimates in table 2 and the

OLS variable-elasticity estimates from figure 7 above.

Figure 12(b) plots the precise cdf I use in my simulations below. This cdf is based on my 2SLS

fixed-effects estimation of the constant-elasticity model. Following the calculations above, the cdf

assumes that H(1.14) = 0.13. I then use my elasticity estimates to reveal the cdf for price ratios

less than 1.35. Rather than extrapolate forward out of sample, however, I impose that the remaining

roughly 12,400/230,000≈ 5% of flexible-fuel owners choose ethanol.
34The average county in my sample is about 750 square miles. If stations drew households from within a five-mile

radius, which is about 80 square miles, then 3.7 non-overlapping stations per county would cover about 3.7 ·80≈ 300
square miles. If households were evenly distributed, then about 300/750 = 40%, or roughly half of consumers would
have access. The fraction with access would be higher if households were more concentrated near stations and lower
if the market radius was smaller than five miles.
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mass of households share nearly the same fuel-switching price ratio of 1.35, which is the average

ratio of gasoline to ethanol mileage for flexible-fuel vehicles and therefore consistent with most

consumers minimizing fuel costs. While a large mass of households at 1.35 would imply retailers

could have dramatically increased revenues by lowering the relative price of ethanol during the

study period, this rarely would have been profitable given wholesale ethanol costs. Note that a

price ratio of 1.35 is roughly equivalent to a 25% ethanol discount.

F Simulation details

F.1 Minimum ethanol content standard

An ethanol content standard mandates that denatured ethanol comprise a minimum fraction of the

overall fuel supply:
πeQe +πgQg

Qe +Qg
≥ σ, (33)

where Qe and Qg are the aggregate retail quantities of ethanol and gasoline, πe is the percent

denatured ethanol content of retail ethanol, πg is the percent denatured ethanol content of retail

gasoline, and σ is the minimum fraction of denatured ethanol in the fuel supply as mandated by the

ethanol content standard. I assume that πe ≥ σ≥ πg, where the leftmost inequality guarantees that

the ethanol content standard is technically achievable, and the rightmost inequality implies that the

standard is not met trivially for any combination of fuels. Rearranging the inequality demonstrates

that the standard is equivalent to a minimum market share for retail ethanol:

Qe

Qg
≥−

πg−σ

πe−σ
(34)

An ethanol content standard is therefore identical to any fuel performance standard that im-

plicitly mandates a minimum market share requirement for ethanol, including a low-carbon fuel

standard met through increased ethanol production.
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F.2 Model of the fuels market

Following Holland et al. (2008) I assume that a competitive fuel supply industry maximizes profits

given by:

peQe + pgQg−C(Qe,Qg)+λ[πeQe +πgQg−σ(Qe +Qg)], (35)

where pe and pg are the retail prices of ethanol and regular gasoline, Qe and Qg are the aggregate

retail quantities of ethanol and regular gasoline, C(·, ·) is the fuel industry’s cost function, which is

increasing in both arguments and convex, λ is the shadow value of the ethanol content constraint,

and πe and πg are as above. Note that the total quantity of denatured ethanol required to produce

the given retail quantities is πeQe +πgQg, while the total quantity of pure gasoline is (1−πe)Qe +

(1− πg)Qg. The cost function reflects denatured ethanol and gasoline refining and distribution

costs, as well as the costs of blending, distribution, and retail marketing. The cost function also

reflects retail fuel taxes, as well as subsidies for denatured ethanol blending.

The first-order conditions from the fuel supplier profit maximization problem and the house-

hold utility maximization problem above together characterize market equilibrium:

v′(e) =
∂C(Qe,Qg)

∂Qe
+λ[σ−πe], (36)

v′(rg)r =
∂C(Qe,Qg)

∂Qg
+λ[σ−πg], (37)

and

λ[πeQe +πgQg−σ(Qe +Qg)] = 0, (38)

where λ≥ 0 and where I have assumed that v(·) is identical for all households. The first condition

holds for all consumers with r ≤ pg/pe who choose ethanol and the second condition holds for

all consumers with r > pg/pe who choose gasoline. These equilibrium conditions state that each

household’s marginal willingness to pay for fuel equals the fuel supply industry’s marginal cost.

The third condition is that either the ethanol content constraint is binding or that the shadow value

of the constraint is zero.
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The ethanol content standard gives an implicit subsidy of λ[πe−σ] for the production of retail

ethanol, because the denatured ethanol content of retail ethanol exceeds the standard. Conversely,

the standard imposes an implicit tax of λ[σ−πg] on the production of retail gasoline, because the

denatured ethanol content of gasoline is less than the standard. The ultimate effect of the standard

on equilibrium fuel quantities depends on the stringency of the standard, the fuel industry’s cost

function, the household’s ethanol-equivalent fuel demand function, and the distribution of fuel-

switching price ratios.

Holland et al. (2008) use a similar model to evaluate a low-carbon fuel standard met through

increased ethanol production. They show that such a standard can never deliver efficient reduc-

tions in carbon dioxide emissions, because the standard implicitly subsidizes ethanol while taxing

gasoline. Any first-best policy must tax all fuels that contain carbon, including ethanol, based on

marginal external damages. They also show that a low-carbon fuel standard might actually increase

energy consumption and carbon dioxide emissions, because the fuel supply industry could meet

the standard simply by increasing ethanol production. This is similar to the well-known result that

a pollution performance standard may create incentives to expand output if the rate of pollution

increases less than proportionally with production. These results apply equally to my analysis of

an ethanol content standard.

F.3 Calibrating demand

I assume that the fuel consumption component of individual utility is of the form:

v(e+ rg) = k1/ε ε

ε−1
(e+ rg)

ε−1
ε , (39)

so that the household’s maximization problem above yields the following expression for individual

ethanol-equivalent fuel demand:

q(p) = kp−ε, (40)
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where k is a constant, p is the ethanol-equivalent price, and −ε is the constant price elasticity

of ethanol-equivalent fuel demand. The assumption that individual demand has a constant price

elasticity is consistent with my econometric model, which imposes a constant price elasticity of

individual ethanol-equivalent fuel demand. Maximized individual utility is given by

ε

ε−1
kp1−ε + y. (41)

From here, it is straightforward to calculate aggregate quantities of retail ethanol and gasoline

demand, as well as aggregate household welfare, based on the general expressions available in

appendix section A. Given the functional form assumption above, these expressions depend on

the price elasticity of individual ethanol-equivalent fuel demand −ε, the scale of fuel demand Nk,

the fraction of households that own flexible-fuel vehicles φ, and the distribution of fuel-switching

price ratios H(r).

I calibrate −ε = −0.2 based previous estimates of this parameter in the literature; this is also

consistent with my main econometric estimates for fuel-switching responses, which impose this

same elasticity. I then calibrate Nk based on aggregate gasoline demand and average retail gasoline

prices in 2006 under the assumption that φ = 0. This is consistent with current market conditions

where few households own flexible-fuel vehicles and those that do have virtually no access to

ethanol. I then reset φ = 1 for the simulations. Simulations therefore reflect market conditions in a

hypothetical world where the scale of ethanol-equivalent fuel demand is equivalent to current levels

but where all households own flexible-fuel vehicles. I calibrate H(r) based on my econometric

estimates, as described above.

F.4 Calibrating supply

I assume that marginal costs in the fuel supply industry are given by

∂C(Qe,Qg)
∂Qe

= πeKeBe
ηe +(1−πe)KgBg

ηg +ψe + τe−πeθ (42)
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and
∂C(Qe,Qg)

∂Qg
= πgKeBe

ηe +(1−πg)KgBg
ηg +ψg + τg−πgθ, (43)

where: πe and πg are the denatured ethanol content ratios of retail ethanol and gasoline; Be ≡

πeQe+πgQg and Bg≡ (1−πe)Qe+(1−πg)Qg are the quantities of pure ethanol and gasoline blend

stocks required to produce the retail quantities Qe and Qg; the functions KeBe
ηe and KgBg

ηg are

marginal costs of denatured ethanol and gasoline production, reflecting all costs through delivery

to fuel terminals, with ηe, ηg, Ke, and Kg parameters to be calibrated; ψe and ψg are the constant

marginal costs of distributing fuels to retail outlets and retail marketing, to be calibrated; τe and τg

are retail fuel taxes remitted by fuel retailers to state and federal governments; and θ is the federal

blending subsidy for denatured ethanol.

I assume that πe = 0.85, because retail ethanol contains 85% denatured ethanol. I calibrate

πg = 0.035, which is the fraction of denatured ethanol in gasoline in 2006. I assume 8.8 kilograms

of CO2 emissions per gallon of gasoline and that replacing gasoline with ethanol reduces CO2

emissions by 15% on an energy-adjusted basis. I assume that the constant price elasticity of dena-

tured ethanol supply is 1/ηe = 2.5 and that the price elasticity of gasoline supply is 1/ηg = 1.25,

which are the midpoints of the ranges considered by Holland et al. (2008) based on their reading

of the previous literature. I then calibrate Ke and Kg based on 2006 production quantities and

wholesale spot prices for denatured ethanol and unblended gasoline. I calibrate distribution and

marketing costs ψe = ψg = $0.16 as the differential between average wholesale prices for retail

gasoline and average pre-tax retail prices. I calibrate τe = τg = $0.50 as the average differential

between pre-tax and tax-inclusive retail prices. Finally, I calibrate θ = $0.51, which is the current

federal subsidy for denatured ethanol blending in 2006.

F.5 Numerical solution algorithm

The numerical solution algorithm is as follows:

(1) Choose an initial fuel price vector p0 = [p0
e , p0

g].

18



(2) Set initial shadow value of ethanol content constraint to zero: λ = 0.

(3) Compute quantities supplied based on initial price vector and first-order conditions from in-

dustry profit maximization problem. If fuel supply industry is not in compliance, increase λ,

return to step (2), and iterate until industry is exactly in compliance with the ethanol content

standard, yielding retail quantities supplied S0 = [S0
e ,S

0
g]

(4) Compute retail quantities demanded based on initial price vector and first-order conditions

from household maximization problem, yielding retail quantities demanded D0 = [D0
e ,D

0
g].

(5) If the markets clear, that is if

D0−S0 = [D0
e ,D

0
g]− [S0

e ,S
0
g] = [0,0],

then stop. Otherwise, update the price vector according to p1 = p0 + κ[D0−S0], where κ is a

positive constant. This moves the price vector in a direction that reduces excess demand. In

practice I decrease κ as the number of iterations increases in order to hone in on the market-

clearing price vector. Return to step (1), and iterate.
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