
NBER WORKING PAPER SERIES

BUNDLING AMONG RIVALS:
A CASE OF PHARMACEUTICAL COCKTAILS

Claudio Lucarelli
Sean Nicholson

Minjae Song

Working Paper 16321
http://www.nber.org/papers/w16321

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
August 2010

We have benefited from discussions with Yongmin Chen, Joshua Lustig, Jae Nahm, Michael Raith,
Michael Riordan, Michael Waldman, and comments by seminar participants at Columbia University,
the Cowles Foundation, the Federal Trade Commission, the 2009 IIOC, Korea University, SKK University,
the University of Rochester and the University of Wisconsin-Madison. All errors are ours. The views
expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau
of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-
reviewed or been subject to the review by the NBER Board of Directors that accompanies official
NBER publications.

© 2010 by Claudio Lucarelli, Sean Nicholson, and Minjae Song. All rights reserved. Short sections
of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full
credit, including © notice, is given to the source.



Bundling Among Rivals: A Case of Pharmaceutical Cocktails
Claudio Lucarelli, Sean Nicholson, and Minjae Song
NBER Working Paper No. 16321
August 2010
JEL No. I11,L1,L11

ABSTRACT

We empirically analyze the welfare effects of cross-firm bundling in the pharmaceutical industry.
Physicians often treat patients with "cocktail" regimens that combine two or more drugs. Firms cannot
price discriminate because each drug is produced by a different firm and a physician creates the bundle
in her office from the component drugs. We show that a less competitive equilibrium arises with cocktail
products because firms can internalize partially the externality their pricing decisions impose on competitors.
The incremental profits from creating a bundle are sometimes as large as the incremental profits from
a merger of the same two firms.

Claudio Lucarelli
Assistant Professor
Department of Policy Analysis
and Management
Cornell University
MVR Hall
Ithaca, NY 14853-4401
cl443@cornell.edu

Sean Nicholson
Associate Professor
Department of Policy Analysis and Management
Cornell University
123 Martha Van Rensselaer Hall
Ithaca, NY 14853
and NBER
sn243@cornell.edu

Minjae Song
Assistant Professor
Simon Graduate School of Business
University of Rochester
Rochester, NY 14627-0100
minjae.song@simon.rochester.edu



1 Introduction

In the pharmaceutical market patients often take a combination of two or more drugs in order to

improve the effi cacy of treating a disease or alleviate side effects. Most HIV/AIDS patients, for

example, receive a "cocktail" regimen, such as efavirenz, lamivudine, and zidovudine. Three of

the six new cholesterol-reducing drugs entering phase 3 clinical trials in 2007 were combinations

of drugs that had already been approved as stand-alone products to treat the disease (Blume-

Kohout and Sood, 2008). In 2008, thirty-one percent of U.S. colorectal cancer patients receiving

chemotherapy treatment were administered cocktail regimens. A pharmaceutical cocktail must be

approved by the Food and Drug Administration (FDA) by demonstrating superior effi cacy, fewer

side effects, or greater convenience relative to existing drugs, even if the cocktail is a combination

of already-approved drugs. Thus, cocktails compete with stand-alone regimens.

In this paper we analyze empirically the welfare effects of cross-firm bundling for pharma-

ceutical treatment of cancer patients where each cocktail consists of drugs made by different firms,

and each drug is also offered as a stand-alone product. In this market a firm is constrained to set

the same price (i.e., a price per milligram of active ingredient) for both its stand-alone product

as well as its component of a cocktail product. This pricing constraint exists because oncologists

purchase the component drugs from different manufacturers and then infuse the regimen into a pa-

tient in an offi ce or hospital clinic.1 This is an example of mixed bundling in an oligopoly market,

where there is demand for a bundle of products due to their complementarity but firms cannot

price discriminate.

Firms often bundle or tie their own products for various reasons, and there is a substantial

economic literature analyzing this practice. Bundling may allow a firm to engage in price discrim-

ination (McAfee and Whinston, 1989), to leverage monopoly power in one market by foreclosing

sales and discouraging entry in another market (Whinston, 1990; Chen, 1997; Carlton and Wald-

man, 2002; Nalebuff, 2004), or alter a pricing game among oligopolists even when entry is not

deterred or no firms exit (Carlton, Gans, and Waldman, 2007). However, little is known about

price changes when a firm’s product is bundled with those of its rival, and welfare effects of this

practice.

1Most HIV/AIDS patients, on the other hand, take a single pill that contains two or more separate drugs, which
allows firms to price discriminate.
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Firms entering the oncology market often test their experimental drug in combination with

a drug that is already approved. The entering firm can purchase the approved product without

the permission of the incumbent firm, and administer the two drugs together in a clinical trial.2

The fact that an entering firm bears the cost of clinical trials indicates that it expects positive

profit. The cocktail’s impact on incumbents, however, is not clear a priori. Patients may prefer

having cocktail regimens because they provide more options for treatment, but if prices increase

substantially as a result, patients may be worse off with cocktails. Cocktail regimens allow firms to

internalize partially the externalities their pricing strategies impose on competitors. Cocktails also

steal market share from existing regimens. If the former effect is larger than the latter, cocktails

render the market less competitive; if the latter effect is larger, cocktails increase competition.

We focus on the market for colorectal cancer chemotherapy drugs. We first estimate a

demand system at the regimen level using data on regimen prices, market shares, and attributes.3

Regimens, which can be a single drug or a cocktail of two or more drugs, are well defined and stan-

dardized. Organizations such as the National Comprehensive Cancer Network (NCCN) recommend

the amount of each drug that oncologists should use in each regimen, based on the dosages used

in clinical trials or in actual practice. A regimen price is a function of the price and quantity (or

dose) of each component drug used in the regimen. A cocktail regimen’s price is thus affected by

prices of all drugs used in the regimen, and a firm whose drug is used in a cocktail regimen must

set a single drug price to maximize profit across its stand-alone and cocktail products.

Market share is defined as the proportion of chemotherapy patients treated with a particular

regimen. Data from randomized clinical trials provide information on attributes such as regimen

effi cacy (e.g., median number of months patients survived in the clinical trial) and side effects (e.g.,

the percent of patients in the clinical trial who experienced abdominal pain).

The demand estimates and a profit maximization condition allow us to recover the marginal

cost of each drug. We analyze the economic effects of cocktails by performing a series of counter-

2Rather than modeling a firm’s decision regarding whether and how to combine its product with other firms’
products, we take existing product combinations as given. Scott Morton (1999) is the only paper we are aware of
that models explicitly a pharmaceutical firm’s decison of whether to enter a market, and she focuses on the subsequent
entry of generic firms rather than the initial decision by the innovating firm. She finds that generic pharmaceutical
firms tend to enter markets that have supply and demand characteristics similar to the firm’s portfolio of products.

3Our empirical approach allows us to study bundled pricing in an unrestrictive way. The existing bundling
literature assumes either that the utility of consuming a bundle is the sum of utilities of each product (independent
products) or that it is less than the sum (substitutes). Instead, we use data to measure directly the utility of each
product.
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factual exercises. First, we remove cocktail regimens one at a time and compute new equilibrium

prices. One underlying assumption is that drug-level marginal costs and patients’preference re-

garding effi cacy and side effects do not change when a regimen is removed; regimen-level own- and

cross-price elasticities, however, do change. We find that profits of all firms involved in that cocktail

decrease and consumer surplus increases when a cocktail is removed. Cocktail regimens increase

profits for an entrant as well as the incumbent, but harm consumers. This occurs because cocktail

regimens result in high drug prices; the effect of internalizing pricing externalities dominates the

business stealing effect in our application.

In the second counterfactual we compare the market with cocktails to markets with hypo-

thetical mergers between firms that contribute to a cocktail. This allows us to assess how collusive

the market has become with cocktail regimens. We consider two merger scenarios. In the first

scenario we remove one cocktail regimen and allow the two participating firms to merge instead.

We find that firms can earn higher profits from having a cocktail regimen than from the merger.

In the second merger scenario we allow a pair of firms to merge while maintaining their cocktail

regimen. The merging firm has an incentive to increase prices to exploit its market power, but at

the same time it also has an incentive to lower prices to exploit a cocktail regimen’s complementar-

ity. We find that some hypothetical mergers result in higher prices and others in lower prices, but

the merger never increases profits substantially. Specifically, a firm’s profit never increases by more

than 12 percent and in one case the merging firm’s profit actually falls. These results indicate that

cocktails facilitate almost as much collusion as mergers.

In the third counterfactual we allow a firm to set two separate drug prices, one for its

stand-alone regimen and the other for its component drug in a cocktail regimen. This is equivalent

to a case where a firm has two separate drugs, one used by itself and the other in a cocktail

regimen. Setting two prices introduces a new strategic incentive that we observe in other sectors

of the pharmaceutical market. In the early 2000s Abbott launched Kaletra, a drug for treating

HIV/AIDS. At the time Abbott was already selling Norvir, which was used in a cocktail regimen

to help boost the performance of its competitor’s drug. Shortly after the launch of Kaletra, Abbott

increased Norvir’s price four-fold while pricing Kaletra more competitively, presumably to drive

customers from the cocktail regimen to its new stand-alone regimen. Although we do not observe a

similar situation in the colorectal drug market, we use this exercise as an “out-of-sample" validation
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test for our static Nash pricing assumption. We find similar pricing behaviors in our counterfactual:

firms set the price of the cocktail component higher than the stand-alone drug when allowed this

flexibility.

In addition to the bundling literature, this paper is also related to the literature on the

determinants of pharmaceutical prices. Saha et. al. (2006), Frank and Salkever (1997), and

Grabowski and Vernon (1992) show how prices fall as generic firms enter following the expiration

of a patent; Duggan and Scott Morton (2006) examine how Medicaid policy affects pharmaceutical

prices in the non-Medicaid market; and Duggan and Scott Morton (2010), Lichtenbeg and Sun

(2007), Ketcham and Simon (2008), Yin et. al. (2008), and Lakdawalla and Yin (2010) demonstrate

that the expansion of prescription drug insurance to Medicare beneficiaries caused pharmaceutical

prices to fall. Unlike the studies mentioned above, we use a demand model to analyze the welfare

effects of firms’pricing decisions, focusing on a sector where all chemotherapy options are substitutes

for one another. The model allows us to account explicitly for both the demand effects and the

competition effects of cocktail products.

In Section 2 we present an overview of colorectal cancer treatment and we describe the

data in Section 3. We present the model in Section 4 and simple numerical examples in Section 5

where two firms each have a single stand-alone regimen and each contribute their drug to a third

cocktail regimen. Results from the demand estimation and counterfactual exercises are presented

in Section 6 and Section 7, respectively. We conclude in Section 8.

2 Overview of Colorectal Cancer

Colorectal cancer is the fourth most common cancer based on the number of newly-diagnosed

patients, after breast, prostate, and lung cancers. About one in 20 people born today is expected

to be diagnosed with colorectal cancer over their lifetime. The disease is treatable if it is detected

before it metastasizes, or spreads, to other areas of the body. Between 1999 and 2006, colorectal

cancer patients had a 65 percent chance of surviving for five years and a 58 percent chance of

surviving for 10 years (National Cancer Institute). The probability a patient will survive for five

years ranges from 90 percent for those diagnosed with Stage I cancer to 12 percent for those
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diagnosed with Stage IV (or metastatic) cancer.4

The way a colorectal cancer patient is treated depends on the stage of the tumor at di-

agnosis. Most patients with a Stage I, II, or III tumor will have the tumor removed surgically

(i.e., resected). The NCCN recommends that patients with Stage III disease receive six months of

chemotherapy following the resection; they do not recommend chemotherapy for Stage I patients;

and they encourage Stage II patients to discuss the benefits and costs of with their oncologist before

deciding. The majority of patients diagnosed with Stage IV disease have an unresectable tumor.

Some of these patients receive chemotherapy to shrink the tumor such that it can be resected,

and many receive chemotherapy without prior surgical treatment. Our demand model examines

patients’ chemotherapy treatments choices once they have decided to receive chemotherapy; we

assume patients have already decided whether or not to receive surgery prior to chemotherapy

treatment.

Five major pharmaceutical firms produced a patent-protected (or branded) colorectal can-

cer drug during our study period: Pfizer (which produced irinotecan), Roche (capecitabine), Sanofi

(oxaliplatin), ImClone (cetuximab), and Genentech (bevacizumab). There are 12 major treatment

regimens, half of which are cocktail regimens, composed of two or more branded drugs, and half

consist of a single branded drug. In one cocktail regimen, Roche’s capecitabine is combined with

Pfizer’s irinotecan. In another capecitabine is combined with Sanofi’s oxaliplatin. Genentech’s

bevacizumab is combined separately with oxaliplatin, irinotecan, and oxaliplaitin and capecitabine

to create three distinct cocktail regimens. Finally, ImClone’s cetuximab is combined with Pfizer’s

irinotecan.5

Three of the remaining six regimens are individual drugs used in the cocktail regimens

mentioned above, but in different dosages. The other non-cocktail regimen are fluourouracil com-

bined with leucovorin (5FU/LV), both of which are generic drugs; Pfizer’s irinotecan combined

with 5FU/LV; and Sanofi’s oxaliplatin combined with 5FU/LV. We take the generic drug’s price

as given and assume they are priced at marginal cost, not the result of firms’strategic pricing. We

therefore treat the last two regimens described above as being stand-alone regimens. The appendix

4Cancers are classified into four stages, with higher numbers indicating that the cancer has spread to the lymph
nodes (Stage III) or beyond its initial location (Stage IV).

5Some of the cocktail regimens also include generic drugs such as fluorouracil and leucovorin, whose patents have
expired and are now produced by many firms.
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provides a complete description of the recommended dosage of the 12 regimens for which we have

complete data.

The National Comprehensive Cancer Network (NCCN) divides colorectal cancer chemother-

apy regimens into two groups. For early-stage patients who cannot tolerate intensive therapy, it

recommends 5FU/LV (the generic regimen), Roche’s stand-alone regimen, or the Pfizer-Roche cock-

tail regimen. The other regimens are recommended for those who can tolerate the possible side

effects of intensive therapy. The NCCN also provides chemotherapy guidelines for patients whose

cancer progresses in spite of the first chemotherapy treatment. For example, if the Roche and Sanofi

cocktail regimen was selected for initial therapy, the NCCN recommends the Pfizer and ImClone

cocktail for second-line chemotherapy treatment. In Section 4 we use these guidelines to define the

nests for a nested logit demand model.

Most oncology drugs are infused into a patient intravenously in a physician’s offi ce or an

outpatient hospital clinic by a nurse under a physician’s supervision. Unlike drugs that are distrib-

uted through pharmacies, physicians (and some hospitals on behalf of their physicians) purchase

oncology drugs from wholesalers or distributors (who have previously purchased the drugs from

the manufacturers), store the drugs, and administer them as needed to their patients. Physicians

then bill the patient’s insurance company for an administration fee and the cost of the drug. In our

model we assume physicians are agents for their patients; we explain the details of the imperfect

agency in Section 4.

Because each drug is sold separately to physicians who then combine them (when relevant)

into a cocktail regimen, the only variable a firm controls is the price of its own drug. This price,

in turn, affects the demand and profits of all cocktail regimens in which the drug appears. We

explicitly account for this impact in our supply-side (pricing) model in Section 4.

3 Data

We use several data sources to collect four types of information: drug prices, regimen market shares,

the quantity/dose of each drug typically used in a regimen, and regimen attributes from clinical

trials (e.g., the median number of months patients survived when taking the regimen in a phase

3 clinical trial). IMS Health collects information on the sales in dollars and the quantity of drugs
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purchased by 10 different types of customers (e.g., hospitals, physician offi ces, retail pharmacies)

from wholesalers in each quarter from 1993 through the third quarter of 2005. Prices and quantities

are reported separately by National Drug Classification (NDC) code, which are unique for each firm-

product-strength/dosage-package size. We calculate the average price paid per milligram of active

ingredient of a drug across the different NDC codes for a particular drug. IMS Health reports the

invoice price a customer actually pays to a wholesaler, not the average wholesale price (AWP) that

is set by a manufacturer and often differs substantially from the true transaction price.

The price we calculate does not include any discounts or rebates a customer may receive

from a manufacturer after purchasing the product from the wholesaler. Based on interviews with

oncologists and an analysis reported in Lucarelli, Nicholson, and Town (2010), we do not believe

that manufacturers offered substantial rebates during this period.6 Although we have information

on 10 different types of customers, we focus on the prices paid by the two largest customers -

hospitals and physician offi ces -because most colon cancer chemotherapy drugs are infused in a

physician’s offi ce or hospital clinic.7

We compute the price of each regimen for a representative patient who has a surface area

of 1.7 meters squared (Jacobson and Newhouse, 2006), weighs 80 kilograms, and is treated for

12 weeks. Regimen prices are derived by multiplying the average price per milligram of active

ingredient in a quarter by the recommended dosage of each drug in the regimen over a 12-week

period.8 The NCCN reports the typical amount of active ingredient used by physicians for the

major regimens.9 Dosage information is reported in the appendix. For example, the standard

dosage schedule for oxaliplatin+5FU/LV, the regimen with the second largest market share in

2005, is 85 milligrams (mg) of oxaliplatin per meter squared of a patient’s surface area infused on

the first day of treatment, followed by a 1,000 mg infusion of fluourouracil (5FU) per meter squared

of surface area on the first and second treatment days, and a 200 mg infusion of leucovorin (LV) per

meter squared on the first and second treatment days. This process is repeated every two weeks.

6For the five patent-protected colorectal cancer drugs in our study, Lucarelli, Nicholson, and Town (2010) compared
prices that include discounts and rebates to the IMS prices that we use in this paper. They found that prices from the
two data sources were within two to four percent of one another, which is consistent with no or small rebates/discounts.

7Based on data from IMS Health, 59% of colorectal cancer drugs in the third quarter of 2005 were purchased by
physician offi ces and 28% by hospitals. The remainder was purchased by retail and mail order pharmacies, health
maintenance organizations, and long-term care facilities.

8The regimens are priced using price data for the contemporaneous quarter only.
9We supplement this where necessary with dosage information from drug package inserts, conference abstracts,

and journal articles.
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The IMS Health data contain information on market share by drug, but not market share for

combinations of drugs (regimens). We rely, therefore, on two different sources for regimen-specific

market shares, where market share is defined as the proportion of colorectal cancer chemotherapy

patients treated with a particular regimen. IntrinsiQ collects monthly data from its oncology

clients on the types of chemotherapy drugs administered to patients. Based on these data, we

derive monthly market shares for each regimen between January 2002 and September 2005.

Since IntrinsiQ’s data only go back to 2002, we rely on the Surveillance Epidemiology and

End Results (SEER) data set for market shares for the 1993 to 2001 period. SEER tracks the

health and treatment of cancer patients over the age of 64 in states and cities covering 26 percent

of the United States population.10 Based on Medicare claims data available in SEER, we calculate

each colorectal cancer regimen’s market share in each quarter.11

In order to standardize market shares between the pre- and post-2002 periods, we take

advantage of the fact that the two data sets overlap for the four quarters of 2002. We apply a

regimen-specific factor to adjust the pre-2002 market shares based on the ratio of total (from In-

trinsiQ) to Medicare-only (from SEER) market shares for the four quarters of 2002. The underlying

assumption in this adjustment is that the proportion of total patients represented by Medicare does

not vary over time.

All regimens we include in the sample contain drugs that were approved by the FDA for

colorectal cancer and had a market share greater than one percent at the end of the sample period.

The outside option includes off-label drugs, regimens with less than one percent market share at

the end of the sample period, and regimens with missing attribute data.12

We plot market shares for the 12 regimens in the sample and the outside option in Figure 1.

Between 1993 and 1996, about 95 percent of colorectal cancer patients were treated with 5FU/LV,

a generic regimen, with the remainder treated with off-label drugs or regimens with small market

share. In 1996 irinotecan was approved by the FDA for treating colorectal cancer, and over the

next several years the market share of irinotecan and irinotecan combined with 5FU/LV grew at

10SEER contains data on the incidence rate of cancer among the non-elderly, but only has medical claims available
for Medicare patients.
11According to IntrinsiQ’s data, approximately 48 percent of all colorectal cancer chemotherapy patients were 65

years or older in October 2003.
12Off-label use occurs when a physician treats a colorectal cancer patient with a drug that has not been approved

by the FDA explicitly for colorectal cancer.
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the expense of 5FU/LV.13 Capecitabine, a tablet that produces the same chemical response as

5FU/LV, was approved for treatment of colorectal cancer in April 2001 and was administered as a

stand-alone therapy or combined with irinotecan. Besides capecitabine, all other drugs for treating

colorectal cancer in our sample are delivered intravenously (i.e., by IV) under the supervision of a

physician or nurse.

Oxaliplatin was introduced in August 2002, followed by cetuximab and bevacizumab in

February 2004. By the third quarter of 2005, two of the regimens created by these three new drugs

(oxaliplatin + 5FU/LV and bevacizumab + oxaliplatin + 5FU/LV) surpassed the market share of

5FU/LV, whose share had fallen to about 14 percent.14

We obtain most of the attribute information from the FDA-approved package inserts that

accompany each drug. These inserts describe the performance of the drug/regimen in phase 3

clinical trials, including the number and types of patients enrolled in the trials, the health outcomes

for patients in the treatment and control groups, and the side effects experienced by these patients.

Often there are multiple observations for a regimen, either because a manufacturer conducted

separate trials of the same regimen, or because a regimen may have been used for the treatment

group in one clinical trial and the control group in a subsequent trial. In these cases we calculate

the mean attributes across the separate observations. Where necessary, we supplement the package

insert information with abstracts presented at oncology conferences and journal articles.

We summarize the attribute information in Table 1, taking a weighted (by market share)

average across regimens in each quarter and then averaging across quarters for each year. The

effi cacy and side effect attributes are time invariant while price can change each quarter. We

record three measures of a regimen’s effi cacy: the median number of months patients survive

after initiating therapy (Survival Months); the percentage of patients who experience a complete or

partial reduction in the size of their tumor (Response Rate); and the mean number of months (across

patients in the trial) before the cancer advanced to a more serious state (Time to Progression).

We also record the percentage of patients in phase 3 trials who experienced either a grade

3 or a grade 4 side effect for five separate conditions: abdominal pain, diarrhea, nausea, vomiting,

13Because it takes Medicare a while to code new drugs into their proper NDC code, a new drug will appear in the
outside option for several quarters.
14Drugs have brand names in addition to the generic names that we provide in the text. The brand names of

the five patent-protected drugs are as follows: Camptosar (irinotecan), Xeloda (capecitabine), Eloxatin (oxaliplatin),
Avastin (bevacizumab), and Erbitux (cetuximab).
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and neutropenia. Although many more side effects are recorded for most regimens, these five were

consistently recorded across the 12 regimens in the sample. Side effects are classified on a 1 to 4

scale, with grade 4 being the most severe. Higher values for the side effect attributes should be

associated with worse health outcomes although regimens that are relatively toxic are likely to be

both more effective and have more severe side effects.

This table demonstrates that there was a large price increase in 1998. The average regimen

price for a 12-week treatment cycle increased from about $50 to over $300. This jump is due to the

introduction of Pfizer’s irinotecan. Since then the average price continued to rise with significant

jumps in 2001 when Roche’s capecitabine was introduced, and in 2004 when bevacizumab and

cetuximab were launched.15 New regimens tend to be more effi cacious than the existing regimens,

with side effect profiles that are sometimes more and sometimes less severe than earlier regimens

(Lucarelli and Nicholson, 2008).

4 Model

4.1 Supply

We assume that firms play a static Nash-Bertrand game with differentiated products. Because

drugs in our data set are protected by patents, the firms have considerable market power. However,

physicians have multiple treatment alternatives, which puts the firms in an oligopolistic competitive

environment. The price hike by Abbott in the AIDS drug market mentioned earlier provides

evidence that price is a crucial strategic variable in the pharmaceutical market. In the third

counterfactual exercise we show that our static Nash pricing is consistent with the AIDS market

case.

The prices of individual drugs do not show any common time trend consistent with dynamic

pricing, such as a below-marginal-cost pricing or intertemporal price discrimination. For example,

the price of irinotecan, the first patented colorectal cancer drug approved in 30 years, increased

steadily from $4.12 per milligram in 1998 to $6.40 in 2003, about a 10% increase annually, and

then dropped below five dollars in 2004 when ImClone and Genentech introduced new drugs. The

price of oxaliplatin, introduced in 2002, was stable around $16 per milligram for two years and then

15The price jump in 2000 is due to a market share increase of irinotecan+5FU/LV.

11



dropped about 50 cents after 2004.

Nevertheless, price setting may not fully describe pharmaceutical firms’strategic behavior.

Marketing to physicians (i.e., detailing) is the most important non-price action. We do not observe

detailing activity and do not attempt to include it in the model. We also do not explicitly model

decisions by some pharmaceutical firms to provide a rebate to certain physicians if their purchased

volume exceeds a certain threshold for the quarter or year. We are not aware of any study that

examines how physicians react to rebates, presumably because firms do not disclose rebates. And

as mentioned above, discounts/rebates in the colorectal chemotherapy market appear to be small.

Although these features are not considered in the supply side model, we introduce a shock in the

demand model to capture physicians’reaction to such supply-side decisions.

Let pf be the price firm f charges for its drug/product. Consistent with our data, we

assume that each firm produces only one drug, and therefore, pf is the only endogenous variable

in the firm’s optimization problem. We denote mcf as the marginal cost for firm f , and qf (p) the

quantity produced by firm f . Profits for firm f are

πf = (pf −mcf )qf (p),

where qf (p) is obtained by aggregating quantities across the regimens in which the firm participates.

Formally, if firm f participates in Rf regimens, and r = 1, . . . , Rf , then qf (p) can be written as

qf (p) =

 Rf∑
r=1

sr(p)qrf

M,

where sr(p) is the share of patients treated with regimen r, qrf is the dosage of the drug produced

by firm f used in regimen r, and M is the market size. pRk , the price of regimen k, is determined

by pf and qrf . For example, if regimen 1 is firm 1’s stand-alone regimen, pR1 = q11p1; if regimen 3

is a cocktail regimen, comprised of drugs from firm 1 and firm 2, pR3 = q31p1 + q32p2.

The equilibrium conditions can then be written as

∂πf
∂pf

=

Rf∑
r=1

sr(p)qrf + (pf −mcf )

Rf∑
k=1

Rf∑
r=1

∂sr(p)

∂pRk

∂pRk
∂pf

qrf = 0 (1)
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Equation (1) shows that a firm will take into account the effect of its drug price on the overall

price of each regimen (∂pRk /∂pf ), and how changes in regimen prices impact the market shares of

all regimens in which a drug participates (∂sr(p)/∂pRk ). The former effect is determined by the

quantity of a drug used in a recommended regimen “recipe;" the latter effect is determined by the

regimen’s price elasticity of demand, which we estimate using regimen-level data. We can recover

the marginal costs of each drug by re-writing equation (1) for these costs.

Equation (1) highlights that an analytical analysis is not straightforward. Consider the

simplest case where firm 1 and firm 2 each sell a stand-alone regimen and there is one cocktail

regimen that combines the two firms’drugs. If all three regimens are substitutes for one another,

the profit-maximizing first order condition for firm 1 becomes

∂π1
∂p1

= (s1(p)q11 + s3(p)q31)+(p1−mc1)
(
∂s1

∂pR1

∂pR1
∂p1

q11 +
∂s1

∂pR3

∂pR3
∂p1

q11 +
∂s3

∂pR3

∂pR3
∂p1

q31 +
∂s3

∂pR1

∂pR1
∂p1

q31

)
= 0

(2)

Note that while ∂pRk /∂pf is fixed by the recommended recipe (which was chosen years earlier when

structuring the clinical trial), ∂sr/∂pRk is a function of price unless one assumes a constant elasticity

demand. We rely, therefore, on numerical and empirical analyses to study the economic implications

of cocktail regimens.

4.2 Demand

We obtain our demand system by aggregating over a discrete choice model of physician behavior.

Following the Lancasterian tradition, products are assumed to be bundles of attributes, and prefer-

ences are represented as the utility derived from those attributes. A physician may choose a highly

effective regimen if a patient can tolerate side effects, or she may choose a less effective regimen

with more bearable side effects. We also include price as an attribute. It is not obvious physicians

pay attention to price because of health insurance. However, most Medicare patients pay about

20% of the treatment cost out of their pocket, most private insurance plans require patient cost

sharing, and private plans often have a lifetime maximum coverage limit. We also allow physicians

to observe regimen-specific attributes beyond those we observe in the clinical trials, i.e., attributes

that physicians observe but we do not.
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Regimen attributes, no matter how many we control for, are not adequate to describe

physicians’choices fully. Other factors such as patient conditions, detailing activities, and rebates

affect treatment choices as well. Because of data limitations, we summarize all these factors with

an idiosyncratic shock. We assume a physician draws an i.i.d. shock from the Type I Extreme

Value distribution every time she makes a choice, which makes our model a so-called logit demand

model. Thus, a physician choice is a probabilistic event, with regimen attributes determining the

probability.

The indirect utility of physician i over regimens j ∈ {0, . . . , Jt} at time (market) t is

characterized as

uijt = −αpjt + βxj + ξt + ∆ξjt + εijt (3)

where pjt is the price of regimen j at time t, xj are observable regimen attributes such as effi cacy and

side effects, ξt is the mean of unobserved attributes for each period, and ∆ξjt is the regimen specific

deviation from ξt. εijt represents the idiosyncratic shock from Type I Extreme Value distribution

following McFadden (1981) and Berry (1994).

We estimate ξt using quarterly indicator variables. ∆ξjt, which represents demand shocks

or regimen attributes that physicians observe but we do not, is likely to be correlated with price.

That is, price is endogenous as in most demand models. All terms other than εijt represent

patient utility (e.g., patient co-payments, observed and unobserved attributes of the treatment);

εijt captures any unobserved elements that affect a physician’s choice independent of patient utility.

The outside option (j = 0) includes off-label colon cancer treatments, regimens with small market

shares, or regimens without a complete set of attributes. The utility of the outside options is set

to zero.

Market shares for each regimen j are defined as

sjt =
exp(−αpjt + βxj + ξt + ∆ξjt)

1 +
∑Jt
k=1 exp(−αpkt + βxk + ξt + ∆ξkt)

This leads to the following demand equation

ln sjt − ln s0t = −αpjt + βxj + ξt + ∆ξjt. (4)
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Berry (1994) provides details of this derivation.

In this model all the individual-specific heterogeneity is contained in the idiosyncratic shock

to preferences and, therefore, it suffers from the well-known independence of irrelevant alternatives

criticism.16 Berry and Pakes (2007) propose an alternative demand model that removes the idio-

syncratic shock from the indirect utility function and assign a random coeffi cient to at least one

product attribute. In our pharmaceutical context, this pure characteristics model implies that

physicians are perfect agents for their patients and are not affected by detailing or rebates. The

pure characteristics model has a “local" substitution pattern, while the model with the idiosyncratic

shock has a global pattern.17 However, based on numerical simulations similar to those in Section

5, we conclude that the vertical model (the one-random-coeffi cient-pure characteristics demand

model) does not correctly characterize the market with cocktail regimens.

Thus, as an alternative model we divide regimens into groups and estimate a nested logit

demand model. As mentioned in Section 2, the NCCA recommends 5FU/LV (the generic regimen),

Roche’s stand-alone regimen, and the Pfizer and Roche cocktail regimen for patients who cannot

tolerate intensive therapy and other regimens for less frail patients. Following this recommendation,

we form two regimen groups. In this model the degree of substitution within a group can differ

from the degree of substitution across groups.18 Following Berry (1994) , the nested logit demand

equation is

ln sjt − ln s0t = −αpjt + βxj + σ ln sj/g + ξt + ∆ξjt (5)

where ln sj/g is a regimen’s within-group market share.

5 Numerical Analysis

Before we apply models to the data, we examine cross-firm bundling numerically in the simplest

setting. In the benchmark case, firm 1 and firm 2 sell one stand-alone regimen each without cross-

16Although we could alleviate this problem by allowing for random coeffi cients on price and product attributes
following Berry, Levinsohn, and Pakes (1995), we are unlikely to identify the random coeffi cients with our existing
data set. Usually one needs the consumer distribution from multiple markets as in Nevo (2000), or micro choice
data as in Petrin (2002). We, on the other hand, observe the same market over time and lack micro choice data on
physicians’decisions.
17See Berry and Pakes (2007) and Song (2007) for a more detailed discussion of the differences between these two

models.
18When we allow for more groups, the estimation results are similar, as described in section 6.
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firm bundling (i.e., no cocktail regimen). The firms compete a la Bertrand and consumer demand

is based on the utility function in equation (3). Assuming a price coeffi cient of -1 and given product

quality, which we denote δj for j = 1 and 2, the firms set price to maximize static profits.19 In the

empirical analysis we use actual market share data and observed regimen attributes to estimate

product quality and fix its value, but in the numerical analysis we change quality to study how

quality differentiation affects prices, profit, and consumer surplus.

We introduce a cocktail regimen by allowing the two firms to combine their drugs, given δ1

and δ2. We assume that this third regimen’s product quality, say δ3, is the maximum of δ1 and δ2.

The cocktail regimen can be produced using different combinations of the two drugs. Recall from

Section 4 that qrf is the dosage of a drug produced by firm f used in regimen r. For simplicity

we set q11 = q22 = 1 such that pR1 = p1 and pR2 = p2. For the cocktail regimen we let r31 and

r32 be proportions of drugs 1 and 2 used in regimen 3 such that r31 + r32 = 1, 0 < r31 < 1, and

0 < r32 < 1. The price of regimen 3 will be determined by

pR3 = r31p1 + r32p2.

We also allow r31 to vary in order to study its impact. The profit-maximizing first order condition

is identical to equation (2) with q11 = q22 = 1 and q31 = r31. The marginal cost is assumed to be

one-tenth of the stand-alone regimen’s quality, i.e., mcj = δj/10 for j = 1, 2.

In our first numerical analysis we set r31 to be 0.5 and δ1 to be 1, and allow δ2 to change

from 1 to 3 so that the quality difference between regimens changes from 0 to 2. A new equilibrium is

computed for each value of δ2. This simple exercise allows us to understand how a firm’s behavior

changes as the difference in regimen quality increases. Figure 2 compares firms’profit between

cases with the cocktail regimen versus the benchmark case (no cocktails). The x-axis measures

the quality difference between firm 2’s stand-alone regimen and firm 1’s stand-alone regimen, i.e.,

δ2 − δ1, and the y-axis measures profit. Figure 2 demonstrates that the presence of the cocktail

regimen increases profit for both firms relative to not having a cocktail. Higher profit occurs as

firms decide to charge higher prices with the presence of a cocktail regimen. This is similar to a

19Product quality is a linear function of observed and unobserved product attributes in equation (4), i.e. δj =
βxj + ξt + ∆ξjt.
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case where a firm that produces multiple substitutes earns higher profit by charging higher prices.20

An interesting difference is that the cocktail regimen serves a multi-product function for both firms

at the same time.

Figure 2 also shows that as the quality difference widens, profit increases faster for the low-

versus the high-quality firm relative to the benchmark case with no cocktail regimen. This occurs

because the low-quality firm “free-rides" on the relatively high quality provided by the cocktail

regimen. In the benchmark case the low-quality firm decreases its price while the high-quality firm

increases price as the quality difference widens. With the cocktail present, however, as the quality

difference widens the low-quality firm increases its price to the point where the market share of its

stand-alone regimen becomes negligible. But the low-quality firm still earns considerable profits

from the cocktail regimen. The high-quality firm also increases its price, but not as substantially

as the low-quality firm, so that it sells both its stand-alone regimen and the cocktail regimen.

Consumers experience offsetting effects. They benefit from having one more product avail-

able in the market but are hurt by the resulting higher prices. In our case the latter (negative)

effect is larger than the former (positive), so consumers are worse offwith the cocktail regimen, and

further worse off as the quality difference increases. Compared to the benchmark case, consumer

surplus is about 0.4 percent lower when δ2− δ1 = 0 and about 8.0 percent lower when δ2− δ1 = 2.

Whether consumer surplus falls, as it does in the above example, depends on how sensitive

consumers are to price. If δ2 − δ1 = 0, consumers are better off with the cocktail regimen when

the price coeffi cient is smaller (more negative) than -1.7. Prices with cocktails increase less and

consumers are hurt less when consumers are more price sensitive. Even with a moderate quality

difference, however, consumers are hurt by the cocktail regimen for a wide range of values for the

price coeffi cient. When the price coeffi cient is -2.5, the lowest value that sustains both firms in the

market in the benchmark case, consumers are worse off with the cocktail regimen when δ2 − δ1 is

larger than 0.2.

We next ask whether the two firms can earn larger profits with a cocktail regimen or

by merging without participating in a cocktail regimen. Figure 3, which compares firms’profits

between the cocktail regimen case and the merger case, demonstrates that both firms earn larger

profits with a cocktail regimen versus a merger. Firm 1’s profit is about 20 percent higher when

20See Tirole (1998) p.70.
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δ2 − δ1 = 0, and the profit difference (relative to a merger) grows as the quality gap widens. Firm

2’s profit is also about 20 percent higher with the cocktail versus a merger when δ2 − δ1 = 0,, but

the profit difference decreases as the quality gap widens.

The firms have higher demand for their products with the cocktail regimen, but they do

not lower their prices to attract consumers. In fact, the firms charge higher prices with the cocktail

regimen than in the merger case once the quality difference becomes suffi ciently large. Specifically,

firm 2 charges a higher price as soon as δ2−δ1 exceeds 0.05, and firm 1 charges a higher price when

δ2 − δ1 exceeds 0.5. Despite higher prices, consumer surplus is 29 to 36 percent higher with the

cocktail regimen and no merger versus a merger without the cocktail regimen, due to the benefit

of having another product available.

Interestingly, when we let the two firms merge while allowing them to keep the cocktail

regimen, the merger provides small incremental benefits. The merging firm increases the prices

only marginally, and the combined profit is less than one percent higher. This implies that firms

almost fully internalize externalities with the cocktail regimen. As we elaborate in Section7.2, the

small incremental benefits of merging occurs in part because the acquisition of a complementary

product creates an incentive for the newly-merged firm to reduce prices. Thus, firms may not

have a strong incentive to merge once they participate in a cocktail regimen, particularly if there

are transactions costs associated with merging. Consumers are clearly worse off with the merger

because the cocktail is available without the merger.

In the next numerical analysis we allow one of the two firms to set two separate prices: one

for the stand-alone regimen and another for their drug in the cocktail regimen. This situation is

equivalent to a case where a firm has two separate drugs, one used in a stand-alone regimen and

the other used in a cocktail regimen. We first let firm 1, the low-quality firm, to set two separate

prices while varying δ2 from 1 to 3. Figure 4 compares the two prices that firm 1 now sets versus

its single price from the first numerical analysis (Price1_Single). This figure demonstrates that

the firm sets a much lower price for the stand-alone regimen (Price1_Solo) than for the cocktail

regimen (Price1_Cocktail). Over the entire range of the quality difference, the former price is

about a 50 percent lower than the latter.

Compared to the baseline single price (Price1_Single) case, the firm sets about a 14 percent

lower price for the stand-alone regimen and a 66 percent higher price for the cocktail regimen when
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δ2 − δ1 = 0. As the quality difference widens, the single price increases much faster than the other

two prices. Recall that with the single price, firm 1 sacrifices its stand-alone regimen’s market

share as the quality gap increases and earns profit mostly from the cocktail regimen. Now with

more flexible pricing, the market share of firm 1’s stand-alone regimen is larger than that of the

cocktail regimen, although it still free-rides on the cocktail regimen’s high quality by curbing the

price increase for its component of the cocktail regimen. (The unconstrained price is only 27

percent higher than the restricted price when δ2 − δ1 = 2, as compared to 66 percent higher when

δ2 − δ1 = 0.)

Not surprisingly, firm 1 is better off with the more flexible pricing, while firm 2 is worse

off. Firm 2 now charges about 90 percent of what it used to charge. Firm 1’s profit is about 6

percent higher than in the single pricing case, and profit does not change much as the quality gap

widens. Firm 2’s profit is about 12 percent lower in the flexible pricing case when δ2 − δ1 = 0 and

9 percent lower when δ2− δ1 = 2. However, firm 2’s profit is still higher than in the absence of the

cocktail regimen (the benchmark case.)

We next let firm 2, the high quality firm, set two separate prices. Firm 2 also sets a much

lower price for the stand-alone regime than for the cocktail regimen. However, both prices increase

as the quality difference widens. This price increase seems to reduce the ability of firm 1 to free-

riding on the cocktail regimen’s high quality. As in the previous case, firm 2 is better off with the

more flexible pricing while firm 1 is worse off.

Finally, we fix δ1 = 1 and δ2 = 1, and let r31 change from 0.5 to 0.9. This exercise helps

us understand how the incentives to participate in making the cocktail regimen change when for

chemical and/or biological reasons, one firm’s drug constitutes a higher percentage of the cocktail

recipe. We find, not surprisingly, that the profit for firm 1 increases as its mixture ratio increases,

and the reverse is true for firm 2 as its mixture ratio decreases. Compared to the benchmark case,

firm 1’s profit is always higher and firm 2’s profit is higher up to r31 = 0.8 and then becomes lower

beyond that point. We repeat this exercise by varying r32 from 0.5 to 0.9 while fixing δ1 and δ2

and obtain qualitatively same results.
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6 Demand Estimation

We estimate equation (4) using regimen-level market share, price, and attribute data. The price

variable is likely to be correlated with the unobserved attributes or contemporaneous demand shock

because firms observe them before setting prices. This price endogeneity problem requires using

instruments to consistently estimate the demand equation. We construct two instruments with the

lagged prices of other regimens. In particular, for the price of regimen j in period t, one instrument

is the average price in period t−1 of all regimens other than regimen j, and the other is the average

price in period t− 1 of regimens produced by firms whose drugs are not used in regimen j.

Our identifying assumptions are that these instruments are uncorrelated with the current-

period demand shock, but are correlated with the current period price of regimen j. The latter

correlation should occur due to oligopolistic interactions and the evidence that the price of a given

product is usually autocorrelated. The former assumption requires that a demand shock for regimen

j in period t is uncorrelated with a demand shock for regimen k in period t − 1, and is likely to

hold true. However, this condition could be violated if there exists a time-persistent market-level

demand shock.21

We use the generalized method of moments with (Z′Z)−1 as the weighting matrix, where

Z includes the instrumental variables, all the observed regimen attributes other than price and the

time dummy variables.22 The estimates are presented in Table 2. The first column reports the

results of the OLS logit model; the second column, labeled IV Logit, reports results using lagged

prices as instruments; and the third column, labeled Nested Logit I, reports results of the nested

logit with two regimen groups. The last column, labeled Nested Logit II, corresponds to the nested

logit where regimens for patients who can tolerate intensive therapy are again divided into two

groups (three regimen groups in total). In the two nested logit models we treat the within-group

share variable as an endogenous variable. In all specifications we use the logarithm of price as a

regressor.

Comparing the price coeffi cient from the first column with the other three reveals that

there is a positive correlation between price and the demand shock, and the instrumental variables

21We do not use other products’attributes as instruments because they do not vary much over time due to infrequent
product entry and exit. The first stage F-statistics on joint significance of these instruments is less than five, and the
estimation results are not substantially different from the OLS logit results that we present.
22Our sample size is not large enough to use the optimal weighting matrix.
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mitigate this problem. The price coeffi cient changes from -0.690 without instruments (OLS Logit)

to -2.150 in IV Logit, and to -1.557 and -1.794 in two nested logit models. The price coeffi cient is

significantly different from zero at the one-percent level in all models. The F-statistic from the first

stage F-test for the joint significance of the instruments is over 10 in all three specifications using

instruments for price. In the nested logit models, the coeffi cient for the within-group share variable

is 0.403 and 0.421 for Nested Logit I and Nested Logit II respectively, and statistically significant.

This indicates that regimens are closer substitutes within a group than between groups.23 Allowing

for more nestings in Nested Logit II does not affect the results substantially.

The effi cacy attribute coeffi cients are statistically significant in IV Logit and the nested

logit models, but only the response rate coeffi cient is positive. Because these three variables are

correlated with one another, we evaluate preferences for a linear combination of the three effi cacy

variables. In the IV Logit model, the average willingness to pay for obtaining the mean effi cacy

from a 12-week treatment is about $70,000 in 2005. The average cost for that treatment in the

same year is about $18,000. The average willingness to pay for the mean effi cacy is slightly smaller

(by less than $3,000) in the nested logit models.

Among the side effect variables, only the neutropenia coeffi cient is both statistically sig-

nificant and negative as expected. The estimate implies that the average willingness to pay to

reduce a chance of having neutropenia by one percent is about $900. The other side effect variables

are either positive or insignificant. This may occur because cancer patients often take drugs that

ameliorate the impact of certain side effects, such as pain, nausea, and diarrhea, while neutropenia

is fatal and harder to prevent with other drugs. If a physician prescribes anti-pain and antiemetic

drugs in conjunction with the chemotherapys drugs, she may downgrade the importance of these

side effects when choosing a regimen. Another possible explanation is that the toxic drugs are more

likely to cause side effects but have other favorable unmeasured attributes. Thus, it is important

to include these variables because, if left in the unobserved attribute term, they are likely to be

correlated with the effi cacy variables.24

23The first stage F-statistics reported for the nested logit models in Table 2 is for the within-group share variable.
24Estmation results do not change substantially with different specifications. In Table A-1 we report estimates of

alternative versions of the OLS and logit models, including versions without side effect variables and versions with
manufacturer fixed effects.
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7 Counterfactual Exercises

With demand estimates we can recover the marginal cost of each drug using equation (1), and

given the marginal cost and demand estimates we can compute hypothetical equilibrium prices

under various counterfactual scenarios. We focus on the last six quarters of the sample period,

i.e., from the second quarter of 2004 to the third quarter of 2005. That is a period in which all

12 major regimens are present in the market. All results are averaged over these six quarters.25

In this Section we present results using the estimates reported in the second column of Table 2

(IV Logit). Results using the estimates in the third column (Nested Logit I ) are also presented in

Tables A-2−A-4.

7.1 Welfare Effects

In the first counterfactual exercise we remove one cocktail regimen from the market at a time,

calculate the new Nash equilibrium prices for all branded drugs, estimate profits for all major

firms, and compute consumer surplus. This exercise is similar to the welfare counterfactual in

Petrin (2002). Because there are six cocktail regimens, we evaluate six hypothetical cases. The

results are reported in Table 3. The baseline reported in the first row, the situation actually

observed in the market, is normalized to 100. Therefore, the table allows one to observe percentage

changes in prices, profits, and consumer surplus when one particular cocktail regimen is removed

compared to the observed situation. The numbers in bold typeface are level changes for firms that

participate in the removed regimen (which we refer to as "participating firms" hereafter.) The rows

are ordered from the oldest to the most recent cocktail that entered the market, and the columns

are ordered from the earliest firm that sold a cocktail at the left to the most recent at the right.

The first panel of the table reports the estimated price of each firm’s drug, relative to the

baseline situation (100.0), when the particular regimen in a row is absent. For example, the final

row corresponds to a scenario where the Sanofi-Genentech cocktail regimen, which had the highest

market share of all regimens in 2005, is removed. Without this regimen, Sanofi and Genentech are

predicted to decrease their drug prices by 45.3 percent and 12.2 percent, respectively.

25Since we solve a system of non-linear equations, there may be multiple sets of solutions. In most cases we do
not encounter multiplicity with different starting points. In the few situations with multiplicity, we select the single
equilibrium with the largest profits. See the following sections for more details.
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There are a few notable features of the first panel. In five out of six cases, prices of the

participating firms’drugs are predicted to fall when a regimen is removed, which indicates that

introducing a cocktail regimen is likely to increase participating firms’prices. Because price is a

strategic complement, prices of drugs not used in the removed regimen generally fall as well. Roche

is an exception; it consistently increases its price when other firms’cocktail regimens are removed.

In all five of these cases, the price of the incumbent firm’s drug in the cocktail (i.e., the first firm

in bold typeface in a row) is predicted to fall by more than the price of the entering firm. This

indicates that when a new cocktail regimen is introduced, the incumbent may be increasing price

primarily to protect the market share of its stand-alone regimen.

The exceptions in the first panel, such as the predicted price increases in the second row

and Roche’s pricing reactions to other firms’ cocktail regimen introductions, could result if the

structure of cross-firm bundling is more complicated than we are able to model. When a cocktail

regimen is removed in the numerical analysis, each firm was allowed a single stand-alone regimen.

In the actual market, on the other hand, all drugs other than ImClone’s are used in three cocktail

regimens. When one cocktail regimen is removed, therefore, participating firms will still consider

their other cocktail regimens when setting prices.26

The second panel of Table 3 reports estimated profit once a particular regimen is removed.

No participating firm is better off without a regimen. Profit losses are sometimes substantial,

especially when the cocktail’s market share is much larger than that of a firm’s stand-alone regimen.

ImClone’s profit (second to last row), for example, is predicted to fall by over 80 percent if its

regimen, which has a market share three times larger than the market share of its stand-alone

regimen, is removed. Non-participating firms are generally worse off too, although there are some

exceptions, such as Roche in the Sanofi-Genentech case and ImClone in the Pfizer-Genentech case.

We report consumer surplus in the final column of Table 3. The effect of removing a

regimen on consumer surplus is not clear a priori. Consumers are worse offwith one fewer available

product; but consumers benefit from the resulting lower prices. The demand model with an additive

logit error term allows variety to provide the maximum possible benefit. Table 3 demonstrates that

on net we predict that in five of the six cases consumers would be better off without the cocktail

26Roche’s pricing reaction shows that price can become a strategic substitute when firms have a cocktail regimen
in common.
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regimens. All drug prices are predicted to increase when the Pfizer-Roche cocktail is removed, so

consumers clearly benefit with this cocktail. In general, consumer gains from the price decreases

tend to outweigh the losses from reduced variety.

The evidence on prices, profits and consumer welfare in Table 3 indicates that these par-

ticular cross-firm bundlings create a less competitive market that harms consumers. Firms setting

prices in the presence of cocktail regimens consider the demand for the cocktail regimen as well as

the demand for their stand-alone regimens. In doing so, firms internalize part of the externalities

they impose on their competitors, which results in a less competitive outcome. This result leads to

our next question: if a cocktail regimen renders a market less competitive, how does a cocktail sce-

nario compare to a merger or perfect collusion? We answer this question in the next counterfactual

exercise.

7.2 Merger Analysis

Table 4 reports the joint profit of the merging firms and consumer surplus when different pairs of

firms merge, where the two firms’joint profit under the current situation (of offering the cocktail

regimen) is normalized to 100. For comparison, the joint profit from the first counterfactual exercise

is reported in the second column, which is labeled Removed. The profit loss can be as large as 49

percent when the Sanofi-Genentech regimen is removed.

In the column labeled Removed+Merger we report the joint profit when the two firms

merge without the cocktail regimen. Although the joint profit in third column exceeds that of the

second because the two firms have more market power, this profit is not necessarily larger than the

current profit with the cocktail regimen. In fact, in three of five cases the joint profit of the merger

is smaller than the joint profit with the cocktail regimen; firms gain more from cocktail regimens

than from mergers.27 The difference is quite substantial; mergers are estimated to increase joint

profit by less than 15 percent in these three cases whereas cocktail regimens increase profit by at

least 30 percent.

In the column labeled Merger in Table 4 we report the joint profit when two firms merge

while maintaining their cocktail regimen. Interestingly, this joint profit is not much higher than

the current joint profit. The largest increase (10.2 percent) occurs when Pfizer and Roche merge.

27There are five instead of six cases in this counterfactual exercise because we do not model a three-firm merger.
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Compared to the profit change from adding the cocktail regimen (column 1 - column 2), a merger

increases the joint profit only marginally, confirming our finding in Section 5.

In our counterfactual exercise the merging firm does not always increase prices. In the

Pfizer-Roche and the Roche-Sanofi mergers, the merging firm raises both drugs’prices as in the

numerical simulation. In the Pfizer-Genentech merger, on the other hand, the merged firm reduces

Genentech’s drug price while raising Pfizer’s drug price. More interestingly, in the last two merger

cases the merging firm reduces both drugs’prices.

This mixed pricing result seems to be driven by a tension between complementary effects

and market power effects. Without complementarity a merging firm always increases prices, but

because it now has a complement, the merging firm has an incentive to reduce prices.28 Thus,

the merging firm would not increase prices as much as it would without a complement and may

decrease prices if the complementary effects dominate.

The mixed pricing result also indicates that the merging firm’s joint profit is not always

higher than the current joint profit.29 If the merging firm reduces prices because of dominant

complementary effects, the other firms’prices, which are strategic complements, may go down as

well, which can hurt all firms including the merging firm. Although this does not occur in the last

two merger cases in Table 4, in Table A-3 we show that a merger can lead to reduced profit when

Pfizer and ImClone merge with their cocktail regimen and we model demand with a nested logit.

In the scenario reported in Table A-3, the merging firm’s joint profit is about two percent lower

than the current joint profit.30

As expected, consumer surplus decreases when firms merge without the cocktail (going

from Removed to Removed+Merger) and increases when firms add the cocktail regimen while

being merged (going from Removed+Merger to Merger), as displayed toward the right of Table 4.

In the former case consumer surplus falls as the market becomes less competitive; in the latter case

consumer surplus rises as another product is added to the choice set. However, consumer surplus

can change in either direction when two firms offering a cocktail regimen are allowed to merge

28This is basically the same as a double marginalization problem with a complement.
29A merger is not always profit enhancing in an oligopolistic setting. It is well known that in a symmetric three-firm

Cournot environment, a merger between any two firms is not profit enhancing. This is because the third firm responds
to a merger by increasing its quantity.
30Consider a simple case with linear demand where two price-setting firms independently sell perfect complements.

A merger between the two is not necessarily profitable if there is a third firm selling a bundle of differentiated
complements.

25



(going from Current to Merger). Since the number of regimens does not change, it depends solely

on how the firms change prices after a merger.

7.3 Setting Two Prices

In our third counterfactual exercise we allow one of the participating firms in a cocktail to set

two separate prices for the same drug: one for its stand-alone regimen and one for its drug in the

cocktail. This is the same exercise as the two-price setting case in Section 5. As mentioned, we use

this exercise as a validation test for our static Nash pricing assumption. Moreover, this exercise

sheds light on the welfare effects of Abbott’s pricing strategy in the HIV/AIDS market.

Table 5 reports price, profit, and consumer surplus when firms have pricing flexibility,

where the baseline levels are indexed to 100. The column labeled Solo reports the optimal drug

prices for the stand-alone regimen and the numbers in bold typeface are prices for the drug used

in the cocktail regimen. In the second row, for example, we predict that Pfizer would reduce the

price of irinotecan by almost 60 percent for its stand-alone regimen while increasing the price of

irinotecan by 25 percent for use in its three cocktail regimens.

Table 5 shows that the drug price for cocktail regimens can go up dramatically with ad-

ditional price flexibility. Roche increases its drug price for cocktail regimens by a factor of five

(in the fourth row) and Sanofi does so by almost two times (in the fifth row). Drug prices for

the stand-alone regimens usually decrease substantially, ranging from 23.5 to 57.2 percent. A firm

tries to attract consumers to its stand-alone regimen by charging a higher price for a drug used in

cocktails. The market share of the cocktail regimen in question affects the magnitude of the price

change. For example, ImClone changes prices moderately (the last row) because its cocktail regime

has a much larger market share than its stand-alone regime. The other firms’reaction to the new

price scheme is mixed. As one price rises and another decreases, some firms respond more strongly

to the rising price and others to the decreasing price.

The second panel of the table demonstrates that firms earn higher profits by setting two

prices in almost all cases, which is consistent with the numerical example. An exception is Sanofi,

whose profit falls by five percent. This seems to be driven by a large price decrease by Pfizer and

Roche (24.4 and 29.7 percent, respectively), which harms all firms.31 The flexible pricing hurts the

31 In the nested logit model all firms are better off by this flexible pricing. See Table A-4.
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other firms, although the magnitude is usually relatively small. However, Table A-4 shows that

this is not always true. When Roche sets two prices, ImClone and Genentech are better off as well.

A difference is that in this case all other firms raise their prices.

We report consumer surplus in the last panel of Table 5. Since the regimen qualities do not

change in this counterfactual, the only variable affecting consumer surplus is price. Consumers pay

a lower price for some regimens and a higher price for others. Thus, the net effect is determined

by the magnitude of price changes and regimens market shares. Consumer surplus is higher in all

cases, but Table A-4 shows an exception where consumer surplus is lower when Roche sets two

prices and we model demand with a nested logit. This is also a case where all firms increase prices.

These results demonstrate that it is hard to predict the welfare effects of the flexible pricing

scheme. Firm profits and consumer surplus may change in either direction depending on how firms

react to the flexible pricing. This suggests that Abbott’s pricing strategy with Norvir and Kaletra

is not necessarily detrimental to welfare. Nevertheless, the result that a firm lowers a price for

a stand-alone regimen and raises a price for a drug used in cocktails is true in all models and

specifications we investigate.

8 Conclusions

This paper is the first attempt to understand firms’decisions when their products are consumed in

conjunction with their competitors’products. The firm controls only the price of its own product,

and therefore needs to take into account the effect of its pricing strategy on all the bundles in which

its product appears.

We apply our framework to the pharmaceutical industry, in particular to colorectal can-

cer chemotherapy drugs. We estimate regimen-level demand using unique data from IntrinsiQ, and

perform a series of counterfactual exercises using estimates of the demand parameters and marginal

cost. First, we find that inter-firm combinations are likely to enhance profit for all firms participat-

ing in a product combination because the effect of internalizing pricing externalities dominates the

business-stealing effect. However, consumers are likely to be worse off with the combined products,

despite more variety, because they pay higher prices. In settings where consumers are less price

elastic, bundling may increase consumer welfare.
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We also find that firms earn higher profits with product combinations than mergers. Even

if firms that already have product combinations merge, the merger increases profits only marginally.

Interestingly, consumers are not necessarily worse off because the merged firm may lower prices to

fully internalize the pricing externalities. These results suggest that the anti-competitive merger

effects would be smaller when the products of merging firms are already consumed together in the

market, and should help the government evaluate the expected outcomes of the recent merger wave

in the pharmaceutical market.

In addition, we find that if a firm is able to set two different prices, one for its stand-

alone regimen and another for its component in a cocktail regimen —rather than a single price for

both products, it would set a much higher price for the cocktail component than the stand-alone

product. This result is consistent with what we observe in other sectors of the pharmaceutical

industry, such as Abbott’s pricing strategy with Norvir and Kaletra, and supports our static Nash

pricing assumption.
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Table 2: Demand Estimation Results

Variable OLS Logit IV Logit Nested Logit I Nested Logit II

log (price) -0.690∗ -2.150∗ -1.557∗ -1.794∗

(0.125) (0.483) (0.411) (0.412)

Survival (months) -0.087 -0.421∗ -0.323∗ -0.356∗

(0.056) (0.116) (0.093) (0.097)

Response Rate (%) 0.166∗ 0.913∗ 0.644∗ 0.784∗

(0.072) (0.254) (0.214) (0.215)

Time to Progression -0.335 -2.070∗ -1.395∗ -1.830∗

(months) (0.244) (0.644) (0.538) (0.545)

Diarrhea 0.024 0.072∗ 0.051∗ 0.052
(0.023) (0.034) (0.026) (0.030)

Nausea -0.137 -0.065 -0.059 -0.017
(0.078) (0.116) (0.082) (0.090)

Abdom_pain 0.135 0.806∗ 0.561∗ 0.681∗

(0.077) (0.229) (0.196) (0.193)

Vomiting 0.166 0.245 0.196 0.176
(0.118) (0.166) (0.116) (0.134)

Neutropenia -0.008 -0.109∗ -0.082∗ -0.098∗

(0.011) (0.034) (0.027) (0.028)

log
(
sj/g

)
0.403∗ 0.421∗

(0.154) (0.166)
R-square 0.836

1st Stage 11.983 27.235 20.960
F-statistics
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Table A-1: Demand Estimation with Various Specifications in the Logit Demand Model

Specification 1 Specification 2 Specification 3 Specification 4
Variable OLS IV OLS IV OLS IV OLS IV

log (price) -0.473∗ -0.690∗ -0.281∗ -1.210∗ -0.493∗ -1.290∗ -0.392∗ -1.606∗

(0.039) (0.064) (0.060) (0.302) (0.051) (0.218) (0.060) (0.437)

Response 0.025∗ 0.043∗ 0.043∗ 0.128∗ 0.074∗ 0.118∗

Rate (%) (0.008) (0.008) (0.009) (0.027) (0.010) (0.022)

Neutropenia 0.001 -0.011∗ -0.022∗ -0.111∗ -0.045∗ -0.131∗

(0.006) (0.006) (0.008) (0.026) (0.009) (0.035)

Pfizer -0.695∗ 2.730∗ -0.027 2.439∗ -0.515 4.293∗

(0.266) (1.213) (0.205) (0.743) (0.276) (1.827)

Roche -1.315∗ -0.063 -1.314∗ -1.621∗ -1.892∗ -1.577∗

(0.174) (0.485) (0.161) (0.219) (0.178) (0.233)

ImClone -0.988∗ 2.029∗ -1.252∗ 0.646
(0.333) (1.095) (0.304) (0.935)

Sanofi -0.125 3.244∗ -0.948∗ 2.752
(0.298) (1.236) (0.300) (1.463)

Genentech -0.332 0.553 -1.255∗ -1.439∗

(0.241) (0.504) (0.246) (0.440)

R-square 0.819 0.862 0.875 0.899

1st Stage 80.204 8.231 14.828 5.782
F-statistics
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