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Attenuation Bias in Measuring the Wage Impact of Immigration 
 

Abdurrahman Aydemir and George J. Borjas* 
 

I. Introduction 

The textbook model of a competitive labor market has clear and unambiguous 

implications about how wages should adjust to an immigration-induced labor supply shift. In 

particular, higher levels of immigration should lower the wage of competing workers, at least in 

the short run. 

Despite the common-sense intuition behind this prediction, the economics literature has 

found it difficult to document the inverse relation between wages and immigration-induced 

supply shifts. Much of the literature estimates the labor market impact of immigration in a 

receiving country by comparing economic conditions across local labor markets in that country. 

Although there is a great deal of dispersion in the measured impact across these geographic labor 

market studies, the estimates tend to cluster around zero. This finding has been interpreted as 

indicating that immigration has little impact on the receiving country’s wage structure.1 

One problem with this interpretation is that the “spatial correlation”—the correlation 

between labor market outcomes and immigration across local labor markets—may not truly 

capture the wage impact of immigration if native workers (or capital) respond by moving their 

                                                 
* Dr. Aydemir is an Assistant Professor of Economics, Sabancı University, İstanbul, Turkey; Dr. Borjas is a 

Professor of Economics and Social Policy at the Harvard Kennedy School, Cambridge, MA, and a Research 
Associate at the National Bureau of Economic Research. We are grateful to Joshua Angrist, Sue Dynarski, Richard 
Freeman, Daniel Hamermesh, Larry Katz, Robert Moffitt, Jeffrey Smith, Douglas Staiger, and especially to Alberto 
Abadie for helpful comments and suggestions on earlier drafts of this paper. Most of the work on this article was 
completed while Dr. Aydemir was employed at Statistics Canada in Ottawa, Canada. The authors are grateful to 
Statistics Canada for their invaluable research support.  

1 Representative studies include Altonji and Card (1991), Borjas (1987), Borjas, Freeman, and Katz (1997), 
Card (1991, 2001), Grossman (1982), Hartog and Zorlu (2005), LaLonde and Topel (1991), Pischke and Velling 
(1997), and Schoeni (1997). Friedberg and Hunt (1995), Smith and Edmonston (1997), and Longhi et al. (2005) 
survey the literature. 



 3

inputs to localities seemingly less affected by the immigrant supply shock.2 Because these flows 

arbitrage regional wage differences, the wage impact of immigration may perhaps be best 

measured at the national level. Borjas (2003) used this insight to examine if the evolution of 

wages in particular skill groups—defined in terms of both educational attainment and years of 

work experience—were related to the immigrant supply shocks affecting those groups. In 

contrast to the geographic labor market studies, the national labor market evidence indicated that 

wage growth was strongly and inversely related to immigration-induced supply increases.3 

A number of papers have replicated the national-level approach, with mixed results. 

These initial replications, therefore, seem to suggest that the national labor market approach may 

find itself with as many different types of results as the spatial correlation approach that it 

conceptually and empirically attempted to replace. For example, Mishra (2007) applies the 

framework to the Mexican labor market and finds significant positive wage effects of emigration 

on wages in Mexico. On the other hand, Bonin (2005) applies the framework to the German 

labor market and reports a very weak impact of supply shifts on the wage structure. Aydemir and 

Borjas (2007) apply the approach to both Canadian and Mexican Census data and find a strong 

inverse relation between wages and immigration-induced supply shifts. In contrast, Bohn and 

                                                 
2 The literature has not reached a consensus on whether native workers respond to immigration by voting 

with their feet and moving to other areas. Filer (1992), Frey (1995), and Borjas (2006) find a strong internal 
migration response, while Card (2001) and Kritz and Gurak (2001) find little connection between native migration 
and immigration. It is worth noting that the spatial correlation will also be positively biased if income-maximizing 
immigrants choose to locate in high-wage areas, creating a spurious correlation between immigrant supply shocks 
and wages. Borjas (2001) and Cadena (2010) show that immigrants tend to settle in those cities that offer the best 
economic opportunities for the skills they have to offer. Alternative modes of market adjustment are studied by 
Lewis (2005), who examines the link between immigration and the input mix used by firms, and Saiz (2003), who 
examines how rental prices adjusted to the Mariel immigrant influx.  

3 Note that the classification of workers into narrowly defined skill groups (based on education and 
experience) represents an empirical strategy that should also be pursued by the geographic labor market studies—
after all, both the national and geographic labor market studies attempt to estimate the impact of an immigration-
induced increase in the number of workers with a particular set of skills on the wage of comparable pre-existing 
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Sanders (2005) use publicly available Canadian data and report weak wage effects in the 

Canadian labor market. 

This paper argues that the differences in estimated coefficients across the fast-growing set 

of national labor market studies, as well as many of the very weak coefficients reported in the 

spatial correlation literature, may well be explained by a simple statistical fact: There is a lot of 

sampling error in the measures of the immigrant supply shift commonly used in the literature, 

and this sampling error leads to substantial attenuation bias in the estimated wage impact of 

immigration.4 

Measurement error plays a central role in these studies because of the longitudinal nature 

of the exercise that is conducted. The immigration-induced supply shift is often measured by the 

“immigrant share,” the fraction of the workforce in a particular labor market that is foreign-born. 

The analyst then examines the relation between the wage and the immigrant share within a 

particular labor market. To net out market-specific wage effects, the study typically includes 

various vectors of fixed effects (e.g., regional fixed effects or skill-level fixed effects) that absorb 

these permanent factors. The inclusion of these fixed effects implies that there is very little 

identifying variation left in the variable that captures the immigrant supply shift, permitting any 

sampling error in the immigrant share to play a disproportionately large role. As a result, even 

very small amounts of sampling error get magnified and easily dominate the remaining variation 

in the immigrant share. 

                                                                                                                                                             
workers. As will be discussed below, however, many of the geography-based studies ignore the skill composition of 
the immigrant workforce when estimating the wage impact of immigration.  

4 The biases resulting from sampling error are well known to be important in empirical work outside the 
immigration context. For example, Paxson and Waldfogel (2002) note that corrections for sampling error have very 
large effects; in some cases more than doubling parameter estimates when they investigate the impact of parental 
economic circumstances on child maltreatment using state-level panel data. 
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Because the immigrant share variable is a proportion, its sampling error can be easily 

derived from the properties of the hypergeometric distribution. The statistical properties of this 

random variable provide a great deal of information that can be used to measure the extent of 

attenuation bias in these types of models as well as to construct relatively simple corrections for 

measurement error. 

Our empirical analysis uses data for both Canada and the United States to show the 

numerical importance of sampling error in attenuating the wage impact of immigration. We have 

access to the entire Census files maintained by Statistics Canada. These Census files represent a 

sizable sampling of the Canadian population: a 33.3 percent sample in 1971 and a 20 percent 

sample thereafter.5 The application of the national labor market model proposed by Borjas 

(2003) to these entire samples reveals a significant negative correlation between wages of 

specific skill groups and immigrant supply shifts. It turns out, however, that when the identical 

regression is estimated in smaller samples (even on those that are publicly released by Statistics 

Canada), the regression coefficient is numerically much smaller and much less likely to be 

statistically significant. We also find the same pattern of attenuation bias in our study of U.S. 

Census data. A regression model estimated on the largest samples available reveals significant 

effects, but the effects become exponentially weaker as the analyst calculates the immigrant 

share on progressively smaller samples. 

  

                                                 
5 These confidential files are the largest available micro data files in Canada that provide information on 

citizenship, immigration, schooling, labor market activities, and earnings. The confidential data is available on a 
cost-recovery basis to researchers not employed by Statistics Canada who abide by the agency’s confidentiality 
rules. 
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II. Framework 

 We are interested in estimating the wage impact of immigration by looking at wage 

variation across labor markets. A labor market k (k = 1,…,K) may be defined in terms of skills, 

geographic regions, and/or time. The available data has been aggregated to the level of the labor 

market and typically reports the wage level and the size of the immigrant supply shock in each 

market. The generic regression model estimated in much of the literature can be summarized as: 

 

  wk  k  hzkh  k ,
h
        (1) 

 

where wk gives the log wage in labor market k; k gives the immigrant share in the labor market 

(i.e., the fraction of the workforce that is foreign-born); the variables in the vector Z (h =1,...,H) 

are control variables that may include period fixed effects, region fixed effects, skill fixed 

effects, and any other variables that generate differences in wage levels across labor markets; and 

 is an i.i.d. error term, with mean 0 and variance 2
 . 

 A crucial characteristic of this type of empirical exercise is that the analyst typically 

calculates the immigrant share from the microdata available for labor market k. This type of 

calculation introduces sampling error in the key independent variable in equation (1), and 

introduces the possibility that the coefficient  may be inconsistently estimated.6 

To fix ideas, suppose that all other variables in the regression model are measured 

correctly. Suppose further that the only type of measurement error in the observed immigrant 

share pk is the one that arises due to sampling error and not to any possible misclassification of 

                                                 
6 Note that while we use the terms measurement error and sampling error interchangeably in the rest of the 

text, we will mainly be concerned with errors that arise due to sampling. 
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workers by immigrant status.7 The relation between the observed immigrant share and the true 

immigrant share in the labor market is given by: 

 

  pk = k + uk .          (2) 

 

When a data sample of size nk is obtained by sampling with replacement from a population of 

size Nk, the observed immigrant share is the mean of a sample of independent Bernoulli draws, 

so that E(uk) = 0 and Var(uk) = k(1 - k)/nk. Census sampling, however, is without replacement 

and the error term in (2) has a hypergeometric distribution with E(uk) = 0 and 

(1 )
( ) .

1
k k k k

k
k k

N n
Var u

n N

   
 


 

The size of the population in the labor market, Nk, is not typically observed, but the 

expected value of the ratio nk/Nk is known and is simply the sampling rate () that generates the 

Census sample (e.g., a 1/1000 sample). We approximate the variance of the error term in (2) by 

Var(uk)  (1 - ) k (1 - k)/nk. Note that the variance of the sampling error has a simple binomial 

structure for very small sampling rates.8 Further, uk and k are mean-independent, implying 

Cov(k, uk) = 0. We will show below that these statistical properties of the sampling error have 

important implications for the size of the attenuation bias in estimates of the wage impact of 

                                                 
7 It is likely that the results reported in many studies (particularly those conducted in the 1980s and early 

1990s) are contaminated by a different type of measurement error. In particular, these studies often examined the 
impact of immigrant supply shocks on the wage of particular skill groups, such as high school dropouts. However, 
the measure of the immigrant supply shock used in these studies often ignored the skill composition of the foreign-
born workforce and was simply defined as the immigrant share in the labor market (see, for example, Altonji and 
Card, 1991; Borjas, 1987; and LaLonde and Topel, 1991). 

8 Conversely, for very large sampling rates the sample approximates the population and there is little 
sampling error in the observed measure of the immigrant share. 
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immigration. They also provide relatively simple ways for correcting the estimates for the impact 

of sampling error. 

 The easiest way of quantifying the magnitude of the bias in this context is to follow the 

standard method in the measurement error literature, and simply examine the asymptotic 

properties of the OLS estimator as sample size K goes to infinity. In particular, it is well known 

that the probability limit of ̂  in a multivariate regression model when only the regressor pk is 

measured with error is:9 

 

  plim ̂ 1
plim

1

K
uk

2

k


(1 R2 ) p
2

















,      (3) 

 

where 2
p  is the variance of the observed immigrant share across the K labor markets, and R2  is 

the multiple correlation of an auxiliary regression that relates the observed immigrant share to all 

other right-hand-side variables in the model. The term 2 2(1 ) pR  , therefore, gives the “purged” 

variance, the variance of the observed immigrant share that remains unexplained after controlling 

for all other variables in the regression model.  

As noted above, the typical study in the literature pools data on particular labor markets 

over time and adds fixed effects that net out persistent wage differences across labor markets as 

well as period effects. This type of regression model, of course, is effectively differencing the 

                                                 
9 Maddala (1992, pp. 451-454) presents a particularly simple derivation of equation (3) when the regression 

has two explanatory variables; see also Cameron and Trivedi (2005, p. 904). Garber and Keppler (1980), and Levi 
(1973). Griliches, and Hausman (1986), Bound and Krueger (1991), and McKinnish (2008) discuss measurement 
error in panel data models and Bound, Brown and Mathiowetz (2001) provide an excellent survey of the 
measurement error literature. 
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data so that the wage impact of immigration is identified from within-market changes in the 

immigrant share. The multiple correlation of the auxiliary regression in this type of longitudinal 

study will typically be very high, usually above 0.9. As a result, much of the systematic variation 

in the immigrant share is “explained away,” and the measurement error introduced by the 

sampling error plays a disproportionately large role in the estimation. 

 One problem with this approach is that the asymptotic exercise involves letting the 

number of markets K go to infinity while holding fixed the sample size nk used to estimate the 

immigrant share in the market. An alternative (and perhaps more sensible) exercise would be to 

let both the number of markets K and the sample size nk go to infinity. In this case, of course, the 

estimator would be consistent as there would not be any sampling error. It would be of interest to 

derive the finite-sample properties for the OLS estimator ̂—in the sense that the number of 

markets K is “small.” Although finite-sample properties of regression coefficients in 

measurement error models are difficult to derive explicitly, the results presented in Richardson 

and Wu (1970, p. 729) for the classical model suggest that even when K is of moderate size 

(around 50 or 100) the expected value of the OLS coefficient ̂  can be closely approximated by 

the asymptotic formula in (3).10 Hence equation (3) may be a potentially valuable approximation 

of the impact of attenuation bias in the immigration context.  

                                                 
10 Richardson and Wu (1970) examine the finite-sample properties of the coefficients in a bivariate 

regression model where both the dependent and the independent variables have classical measurement error. Our 
model differs mainly in that it also includes a vector Z of correctly measured regressors. We can reinterpret our 
multivariate regression model as a bivariate regression where the wage is being regressed on the purged residual of 
the immigrant share. The Richardson-Wu results may be applicable if we could interpret our observed purged 
residual (i.e., the residual from the auxiliary regression of the observed immigrant share on Z, with associated 
coefficient vector  ) as the sum of the “true” purged residual (i.e., the residual from the unfeasible auxiliary 

regression of the true immigrant share on Z, with coefficient vector  ) and the measurement error. It is easy to 

show that the observed purged residual equals the “true” purged residual plus the measurement error u plus a term 
involving the difference (    ) . This difference has expected value of zero since errors in the dependent variable 

do not lead to bias. We conducted a number of Monte Carlo simulations that indicated that this term accounts for 
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In the Mathematical Appendix, we show that the probability limit of the average of the 

square of the error terms as K   in (3) is: 

 

  plim
1

K
uk

2  (1 )E
k (1 k )

nk





k

 ,     (4)
 

 

where the expectation in (4) is taken across the K labor markets. Note that the average of the 

squared error terms goes to zero if the sample size nk also goes to infinity. Combining results, we 

can then write: 

 

  plim ̂= 1 (1 )
E[k (1 k ) / nk ]

(1 R2 ) p
2









 .     (5) 

 

 Equation (5) imposes an important restriction on the magnitude of the sampling error. 

The expected sampling error given by (4) must be less than the unexplained portion of the 

variance in the immigrant share (in other words, the variance due to sampling error cannot be 

larger than the variance that remains after controlling for other observable characteristics). This 

restriction implies that in situations where sampling error tends to be large and where there is 

little variance left in the immigrant share after controlling for variation in the other variables, the 

classical errors-in-variables model may be uninformative and it may be impossible to retrieve 

                                                                                                                                                             
only 0.2 percent of the variance in the observed purged residual when K = 50, and less than 0.02 percent when K = 
400. Hence the Richardson-Wu results may provide a reasonably accurate approximation of the finite-sample 

properties of the OLS estimator ̂ . 
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information about the value of the true parameter from observed data. This restriction is often 

violated when the immigrant share is calculated in relatively small samples. 

The violations may arise for two reasons. First, any calculation of the expected sampling 

error in (5) requires that we approximate the true immigrant share k with the observed 

immigrant share pk. This approximation introduces errors, making it possible for the estimate of 

the expected sampling error to exceed the adjusted variance in small samples. 

Second, we assumed that the only source of measurement error in the observed 

immigrant share is sampling error. There could well be other types of errors, such as 

classification errors of immigrant status (Aigner, 1973; Freeman, 1981; and Kane, Rouse, and 

Staiger, 1999). In relatively small samples, where the sampling error already accounts for a very 

large fraction of the adjusted variance, even a minor misclassification problem could easily lead 

to a violation of the restriction implied by equation (5). 

 It is useful to present an approximation to equation (5) that gives a back-of-the-envelope 

formula for estimating the importance of attenuation bias. In particular, suppose that we calculate 

the average sampling error so that larger cells count more than smaller cells. Define the weight 

k = nk/nT, where nT gives the total sample size across all K labor markets. We can then rewrite 

the expectation in (4) as: 

 

   

  

E


k
(1 

k
)

n
k







 

k


k
(1 

k
)

n
kk




n

k

n
T


k
(1 

k
)

n
kk




E[

k
(1 

k
)]

n
,

      (6) 
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where n  (= nT/K) is the average per-cell number of observations used to calculate the immigrant 

share in the various labor markets. It is easy to show that E[k (1 - k)] can be closely 

approximated by the expression (1 )p p , where p  is the average observed immigrant share 

across the K labor markets.11 We can then rewrite equation (5) as: 

 

  plim ̂= 1 (1 )
p(1 p) / n

(1 R2 ) p
2









 .      (7) 

 

Equation (7) implies that the percent bias generated by sampling error is given by: 

 

  

  

plim ̂  


 (1 )
p (1 p) / n

(1 R2 )
p
2

.       (8) 

 

The immigrant share in the United States is around 0.1, and we will show below that the variance 

in the immigrant share across national labor markets defined on the basis of skills (in particular, 

schooling and work experience) is approximately 0.004. Finally, the explanatory power of the 

auxiliary regression of the immigrant share on all the other variables in the model (such as fixed 

effects for education and experience) is very high, on the order of 0.95. Figure 1 illustrates the 

predicted size of the bias as a function of the per-cell sample size when the sampling rate  is 

small (  0). It is evident that even when the immigrant share is calculated using 1,000 

observations per cell there is a remarkably high level of attenuation in the coefficient . In 

                                                 

11 The difference between (1 ) / n    and [ (1 )] /k kE n    equals 2 / , where ( ).kn E     The 

approximation, therefore, is quite good for any reasonable value of n . 
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particular, the percent bias is 45 percent when the average cell has 1,000 observations, 60 percent 

when there are 750 observations, 75 percent when there are 600 observations, and the coefficient 

is completely driven to zero when there are 450 observations.12 

 The figure also reports the results of a similar calculation with data from the Canadian 

labor market. In Canada, the immigrant share is around 0.2, and we will show below that the 

variance in the immigrant share across national labor markets (defined by education and 

experience) is around 0.005. The R2 of the auxiliary regression is again around 0.95. The fact that 

the immigrant share is twice as large in Canada implies that the bias is higher than in the United 

States—for a given mean cell size. In particular, the percent bias is 64 percent when the average 

cell has 1,000 observations, 85.3 percent when there are 750 observations, and sampling error 

completely overwhelms the data when there are fewer than 640 observations. It is also worth 

noting that the hypergeometric distribution of the sampling error—combined with the fact that 

the longitudinal nature of the exercise removes much of the identifying variation in the 

immigrant share—implies a quantitatively meaningful bias even when there are as many as 

10,000 observations per cell: the percent bias is then 6.4 percent in Canada and 4.5 percent in the 

United States.  

 The “back of the envelope” correction implied by equation (8) is likely to be particularly 

useful in empirical applications that use proportions as independent variables in regression 

models. Although practical, the correction depends on various assumptions (such as the number 

of labor markets being very large) that may not be strictly satisfied by the data. As a result, it is 

important to examine if alternative methods of correcting for attenuation bias lead to generally 

similar results as the simpler back-of-the-envelope approach. The OLS estimator for β in 

                                                 
12 The bias cannot be calculated if the average cell size is less than 450. The implied amount of 
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equation (1) is biased and inconsistent when the regression uses the observed immigrant share 

because the sampling error u creates a non-zero correlation between the resulting error term and 

p. Consistent estimates may be obtained if either some information about the sampling error is 

known or if an instrument is found that is correlated with   but uncorrelated with u. In the next 

section, we will introduce two alternative methods—based on an approximation of a moment of 

the sampling error and on the method of instrumental variables—that can also be used in applied 

work. 

 Because many of the recent empirical studies in the literature use the seemingly large 

Public Use Samples of the U.S. Census (which contain individual observations for a 5 percent 

sample of the population since 1980), it may seem that the number of observations used to 

calculate the immigrant share is likely to be far higher than just a few hundred (or even a few 

thousand), so that the attenuation problem would be relatively minor. It turns out, however, that 

once the analyst begins to define the “labor market” in ever-narrower terms (e.g., skill groups or 

occupations within a geographic area), it is quite easy for even these very large 5 percent files to 

yield relatively small samples for the average cell and the attenuation bias can easily become 

substantively important. 

 Finally, our analysis assumes that the immigrant share is the only mismeasured variable 

in the regression model. Deaton (1985) suggests that there may be non-classical errors because 

the immigrant share is unlikely to be the only variable that is measured less precisely as the cell 

size gets smaller. The dependent variable (the mean of the log wage in market k) also is 

measured more imprecisely in smaller samples. In some contexts, Deaton (1985) shows that the 

sampling error between the dependent and independent variables could be correlated. 

                                                                                                                                                             
measurement error would then be larger than the unexplained variance in the immigrant share.  
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Such a correlation, however, does not exist in our context. To see why, consider the 

nature of the sampling error in the immigrant share. Suppose we happen to sample “too many” 

natives in market k, underestimating the true immigrant share. What is the impact of this 

sampling error on the calculated mean (log) earnings of native workers in that market?  Each 

additional native that was over-sampled was drawn at random from the population of natives in 

market k. As a result, the expected value of the earnings of the over-sampled natives equals the 

average earnings of natives in market k, implying that the sampling error in mean log earnings is 

independent from the sampling error in the immigrant share.  

 

III. Data and Results 

We use microdata Census files for both Canada and the United States to illustrate the 

quantitative importance of attenuation bias in estimating the wage impact of immigration. Our 

study of the Canadian labor market uses all available files from the Canadian Census (1971, 

1981, 1986, 1991, 1996, and 2001). Each of these confidential files, resident at Statistics Canada, 

represents a 20 percent sample of the Canadian population (except for the 1971 file, which 

represents a 33.3 percent sample). Statistics Canada provides Public Use Microdata Files 

(PUMFs) to Canadian post-secondary institutions and to other researchers. The PUMFs use a 

much smaller sampling rate than the confidential files used in this paper. In particular, the 1971 

PUMF comprises a 1.0 percent sample of the Canadian population, the 1981 and 1986 PUMFs 

comprise a 2.0 percent sample, the 1991 PUMF comprises a 3.0 percent sample, the 1996 PUMF 

comprises a 2.8 percent sample, and the 2001 PUMF comprises a 2.7 percent sample. 

Our study of the U.S. labor market uses the 1960, 1970, 1980, 1990 and 2000 Integrated 

Public Use Microdata Samples (IPUMS) of the decennial Census. The 1960 file represents a 1 
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percent sample of the U.S. population, the 1970 file represents a 3 percent sample, and the 1980 

through 2000 files represent a 5 percent sample.13 For expositional convenience, we will refer to 

the data from these five Censuses as the “5 percent file,” even though the 5/100 sampling rate 

only applies to the data collected since 1980. 

We restrict the empirical analysis to men aged 18 to 64 who participate in the civilian 

labor force. The Data Appendix describes the construction of the sample extracts and variables in 

detail. Our analysis of the U.S. data uses the convention of defining an immigrant as someone 

who is either a noncitizen or a naturalized U.S. citizen. In the Canadian context, we define an 

immigrant as someone who reports being a “landed immigrant” (i.e., a person who has been 

granted the right to live in Canada permanently by immigration authorities), and is either a 

noncitizen or a naturalized Canadian citizen.14 

 

A. National Labor Market 

As noted earlier, Borjas (2003) suggests that the wage impact of immigration can perhaps 

best be measured by looking at the evolution of wages in the national labor market for different 

skill groups. He defines skill groups in terms of both educational attainment and work experience 

to allow for the possibility that workers who belong to the same education groups but differ in 

their work experience are not perfect substitutes. 

                                                 
13 We created the 3 percent 1970 sample by pooling the 1/100 Form 1 state, metropolitan area, and 

neighborhood files. These three samples are independent, so that the probability that a particular person appears in 
more than one of these samples is negligible. 

14 Since 1991, the Canadian Censuses include non-permanent residents. This group includes those residing 
in Canada on an employment authorization, a student authorization, a Minister’s permit, or who were refugee 
claimants at the time of Census (and family members living with them). Non-permanent residents accounted for 0.7, 
0.4 and 0.5 percent of the samples in 1991, 1996 and 2001, respectively, and are included in the immigrant counts 
for those years. 
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We group workers in both the Canadian and U.S. labor markets into five education 

categories: (1) high school dropouts; (2) high school graduates; (3) workers who have some 

college; (4) college graduates; and (5) workers with post-graduate education.15 We group 

workers into a particular years-of-experience cohort by using potential years of experience, 

roughly defined by Age – Years of Education – 6. Workers are aggregated into five-year 

experience groupings (i.e., 1 to 5 years of experience, 6 to 10 years, and so on) to incorporate the 

notion that workers in adjacent experience cells are more likely to affect each other’s labor 

market opportunities than workers in cells that are further apart. The analysis is restricted to 

persons who have between 1 and 40 years of experience. 

Our classification system implies that there are 40 skill-based population groups at each 

point in time (i.e., 5 education groups  8 experience groups). Note that each of these skill-based 

national labor markets is observed a number of times (6 cross-sections in Canada and 5 cross-

sections in the United States). There are, therefore, a total of 240 cells in our analysis of the 

national-level Canadian data and 200 cells in our analysis of the U.S. data. 

Remarkably, even at the level of the national labor market, the sampling error in the 

immigrant share attenuates the wage impact of immigration. We begin our discussion of the 

evidence with the Canadian data because we have access to extremely large samples of the 

Canadian census. Table 1 summarizes the distribution of the immigrant share variable across the 

240 cells in the aggregate Canadian data. The first column of the table shows key characteristics 

of the distribution calculated using the large file resident at Statistics Canada. These data indicate 

                                                 
15 In Canada, the term “college education” typically refers to education at 2-year post-secondary 

institutions, while in the US it refers to 4-year university education. Throughout the text, we use the term “college” 
to refer to a university-level education. The Data Appendix provides a detailed discussion of the classification of the 
five education groups. 
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that 19.1 percent of the male workforce is foreign-born in the period under study, and that the 

variance of the immigrant share is 0.0050.16 

The remaining columns of the top panel show what happens to this distribution as we 

examine progressively smaller samples of the Canadian workforce. In particular, we calculate the 

distribution of the immigrant share when we use data sets that comprise a 5/100 random sample 

of the Canadian population, a 1/100 random sample, a 1/1000 random sample, and a 1/10000 

random sample. For each of these sampling rates, we drew 500 random samples from the large 

Statistics Canada files, and the statistics reported in Table 1 are averaged across the 500 

replications. One of the replications reported in the table is of particular interest because it is the 

sampling rate used by Statistics Canada when they prepare the publicly available PUMF 

(roughly a 1 to 3 percent sample throughout the period). We drew 500 replications using the 

PUMF sampling rate and also report the resulting statistics. 

Before proceeding to a discussion of the shifts that occur in the distribution of the 

immigration share variable as we draw progressively smaller samples, it is worth noting that 

seemingly large sampling rates (e.g., those available in the PUMF) generate a relatively small 

sample size for the average cell even at the level of the national Canadian labor market. Put 

differently, because the Canadian population is relatively small (31.0 million in 2001), national-

level studies that calculate the immigrant share using the publicly available data may introduce 

substantial sampling error into the analysis. For example, the large Census files maintained at 

Statistics Canada yield a per-cell sample size of 30,416 observations. The PUMF replications, in 

                                                 
16 The regressions presented below are weighted by the number of native workers used to calculate the 

mean log weekly wage of a particular skill cell. This weighting helps to adjust for differences in precision in 
estimating the dependent variable. To maintain consistency across all calculations, we use this weight throughout the 
analysis (with only one exception: to give a better sense of the distribution of cells, the percentiles of the immigrant 
share variable reported in Tables 1 and 3 are not weighted). We also normalized the sum of weights to equal 1 in 
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contrast, give a per-cell sample size of 3,247 observations. The number of observations per cell 

declines further to 1,400 in the 1/100 replication, to 140 in the 1/1000 replication, and to 14 in 

the 1/10000 replication. 

Not surprisingly, Table 1 shows that the mean of the immigrant share variable is 

estimated precisely regardless of the sampling rate used. It is notable that the variance of the 

immigrant share variable increases only slightly as the average cell size declines, from 0.0050 in 

the large files resident at Statistics Canada to 0.0051 in the 1/100 replications and to 0.0064 in 

the 1/1000 replications. It is tempting to conclude that because the increase in the variance of the 

immigrant share variable does not seem to be very large, the problem of sampling error in 

estimating the wage impact of immigration may be numerically trivial. We will show below, 

however, that even the barely perceptible increase in the variance reported in Table 1 can lead to 

very large numerical changes in the estimated wage impact of immigration. 

The other statistics reported in Table 1 illustrate the shifting tails of the distribution of the 

immigrant share as we draw smaller samples. In particular, an increasing number of cells report 

either very low or very high immigrant shares. In the Statistics Canada files, for example, the 

10th percentile cell has an immigrant share of 12.3 percent. In the 1/1000 replications, the 10th 

percentile cell has an immigrant share of 11.2 percent, so that more cells now have few, if any, 

immigrants. Similarly, at the upper end of the distribution, the 90th percentile cell in the Statistics 

Canada files has an immigrant share of 36.6 percent. In the 1/1000 replication, however, the 90th 

percentile cell has an immigrant share of 38.8 percent, so that the cells at the upper end of the 

distribution are now much more “immigrant-intensive.” 

                                                                                                                                                             
each cross-section to prevent the more recent cross-sections from contributing more to the estimation simply 
because each country’s population increased over time.  
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The data for the U.S. labor market tell the same story. We use the 5/100 file to draw 500 

random samples for each sampling rate: 1/100, 1/1000, and 1/10000. Even though the size of the 

U.S. population is almost 10 times larger than that of Canada, it is not difficult to obtain samples 

where the cell size falls sufficiently to raise concerns about the impact of attenuation bias—even 

in studies of national labor markets. The 5/100 files in the United States, for instance, lead to 

47,564 observations per cell. The per-cell number of observations falls to 11,746 in the 1/100 

replication, to 1,175 in the 1/1000 replication, and to 117 in the 1/10000 replication. 

In the United States, as in Canada, the mean of the immigrant share distribution remains 

constant and the variance increases only slightly as we consider smaller sampling rates. There is 

also a slight fattening of the tails so that more cells contain relatively few or relatively many 

immigrants. 

Let wsxt denote the mean log weekly wage of native-born men who have education s, 

experience x, and are observed at time t. We stack these data across skill groups and calendar 

years and estimate the following regression model separately for Canada and the United States: 
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where S is a vector of fixed effects indicating the group’s educational attainment; X is a vector of 

fixed effects indicating the group’s work experience; and  is a vector of fixed effects indicating 

the time period. The linear fixed effects in equation (9) control for differences in labor market 

outcomes across schooling groups, experience groups, and over time. The interactions (S × T) 
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and (X × T) control for the possibility that the impact of education and experience changed over 

time, and the interaction (S × X) controls for the fact that the experience profile for a particular 

labor market outcome may differ across education groups. Note that the regression specification 

in (9) implies that the labor market impact of immigration is identified using time-variation 

within education-experience cells. The standard errors are clustered by education-experience 

cells to adjust for possible serial correlation. The regressions weight the observations by the 

sample size used to calculate the log weekly wage. We also normalized the sum of weights to 

equal one in each cross-section. 

 Table 2 reports our estimates of the coefficient  in the Canadian labor market. Column 1 

presents the basic estimates obtained from the very large files maintained by Statistics Canada. 

The coefficient is -0.507, with a standard error of 0.202.17 We also estimated the auxiliary 

regression of the immigrant share on all the other regressors in equation (9). The R-squared of 

this auxiliary regression (reported in row 4) was 0.967, suggesting that the attenuation bias 

caused by sampling error could easily play an important role in the calculation of the wage 

impact of immigration even for relatively large samples. 

 We then estimated the regression model in each of the 500 randomly drawn samples for 

each sampling rate, and averaged the coefficient ̂  across the 500 replications. The various 

columns of Table 2 document the impact of sampling error as we estimate the same regression 

model on progressively smaller samples. 

                                                 
17 It is easier to interpret this coefficient by converting it to a wage elasticity that gives the percent change 

in wages associated with a one-percent immigration-induced change in labor supply. Borjas (2003, pp. 1348-1349) 
shows that this elasticity equals (1 – p)2. Since the average immigrant share is around 0.2 for Canada, the 
coefficients reported in Table 2a can be interpreted as wage elasticities by multiplying the coefficient by 
approximately 0.6. 



 22

Consider initially the sampling rate that leads to the largest cell size: a random sample of 

5/100 (proportionately equivalent to the largest samples publicly available in the United States). 

As Table 2 shows, the estimated wage impact of immigration falls by 7.7 percent; the coefficient 

now equals 0.468 and has an average standard error of 0.196.18 Even when the immigrant share 

is calculated using an average cell size of 7,001 persons, therefore, sampling error has a 

numerically noticeable effect on the estimated wage impact of immigration. 

The attenuation becomes more pronounced as we move to progressively smaller samples. 

Consider, in particular, the results from the 500 replications that use the PUMF sampling rate. 

Recall that this is the largest sampling rate that is publicly available in Canada. The average 

estimated coefficient drops to 0.403 (or a 20.5 percent drop from the estimate in the far larger 

Statistics Canada files). The typical researcher using the largest publicly available random 

sample of Canadian workers would inevitably conclude that immigration had a much smaller 

numerical impact on wages.19 In fact, we can drive the estimate of  to zero by simply taking 

smaller sampling rates. The 1/1000 replication uses 140 observations per cell to calculate the 

immigrant share variable. The average coefficient is -0.076, with an average standard error of 

0.191. The 1/10000 replication has 14 observations per cell and the average coefficient is -0.011, 

with an average standard error of 0.200. 

                                                 
18 Note that the average standard error (across the 500 replications) is always larger than the standard 

deviation of the estimated coefficient across the 500 replications. We suspect that part of this difference arises 
because of the conservative approach that STATA uses when it computes clustered standard errors. 

19 This is not idle speculation. Bohn and Sanders (2005) replicate the national-level Borjas framework on 
the publicly available Canadian data and conclude that immigration has little impact on the Canadian wage structure. 
If we estimate the model on the replication that is, in fact, publicly available, the estimated coefficient is -0.210, 
with a standard error of 0.191. It is worth noting that, in addition to the increased sampling error, there are other 
notable differences between the Statistics Canada file and the publicly available PUMF. In particular, the detailed 
information that is provided for many of the key variables (e.g., years of schooling and labor force activity) in the 
Statistics Canada file is not available in the PUMF file because the values for some variables are reported in terms of 
intervals. 
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 It is easy to show that the substantial drop in the estimated wage impact of immigration 

as we move to progressively smaller random samples can be attributed to sampling error. 

Because we have access to the “true” immigrant shares in Canada (i.e., the immigrant shares 

calculated from the large Statistics Canada files), we can correct for sampling error by simply 

running a regression that replaces the error-ridden measure of the immigrant share with the true 

immigrant share in each of our replications. The distribution of the coefficient from this 

regression, *, is reported in rows 6-8 of Table 2. 

In every single case, regardless of how small the sampling rate is, we come very close to 

estimating the “true” coefficient—although there is a great deal of variance in the estimated 

wage impact across the replications. In particular, the coefficient estimated in the Statistics 

Canada file is -0.507. If we used the correct immigrant share in the 1/100 replications the 

estimated coefficient * is -0.499, and the standard deviation of this coefficient across the 500 

replications is 0.126. Similarly, if we used the correct immigrant share in the 1/1000 replication, 

the estimated coefficient is -0.466, and the standard deviation of this coefficient is 0.405. Even in 

the 1/10000 replication, with only 14 observations per cell, the use of the “true” immigrant share 

leads to a coefficient that is much closer to the true wage impact (although it is very imprecisely 

estimated): the coefficient is -0.384, with a standard deviation of 1.353. In sum, Table 2 provides 

compelling evidence that sampling error in the measure of the immigrant share can greatly 

attenuate the estimated wage impact of immigration.20 

Of course, the typical analyst will not have access to the “true” immigrant share in the 

Statistics Canada file so that this method does not provide a practical way for calculating 

                                                 
20 Note that the estimates constructed using the “true” immigrant share fall with sample size. As the sample 

size gets smaller, the classification errors discussed in section 2 may become increasingly more important if the 
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consistent regression coefficients. It is crucial, therefore, to consider alternative methods of 

correcting for attenuation bias. Equation (7) provides a simple solution to the problem as long as 

the measurement error is attributable solely to sampling error and no other variables are 

measured with error.21 In particular, equation (7) allows us to conduct a back-of-the-envelope 

calculation of what the coefficient  would have been in the absence of sampling error. This 

exercise requires information on the immigrant share in the population, the observed variance of 

the immigrant share, the R2 from the auxiliary regression, and average cell size. We calculated 

the corrected coefficient for each of the 500 replications at each sampling rate. Row 9 of Table 2 

reports the average corrected coefficient and row 10 reports the standard deviation across 

replications.22 

The corrected coefficients reported in Table 2 reveal that even the coefficients estimated 

using the large files resident at Statistics Canada are not immune to sampling error. Although the 

bias is not large, using either of the correction methods described above suggests that the “true” 

wage impact of immigration in Canada is -0.52, implying an attenuation bias of 2.5 percent even 

with a cell size of over 30,000 persons. 

                                                                                                                                                             
noise to signal ratio becomes larger. This may attenuate the estimated parameters (see Freeman, 1984; and Paggiaro 
and Torelli, 2004). 

21 Some of the replications combine samples collected at different sampling rates. The sampling rate is set 
at 0.20 for the corrections in the Statistics Canada file; 0.025 for the corrections in the PUMF replication; and 0.05 
for the corrections in the 5/100 file for the United States. 

22 As an alternative to the back-of-the-envelope method for calculating the coefficient we can instead 
estimate the mean of the sampling error defined in equation (4) by:  
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where the weight k gives the number of native workers in cell k. This procedure involves the calculation of this 
expectation for each of the 500 replications in our simulation. The results from this alternative procedure, not 
reported here, are similar to those reported in rows 9 and 10 of Table 2 produced by the back-of-the-envelope 
calculation. 
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The back-of-the-envelope correction generates adjusted coefficients that typically 

approximate this “true” effect as long as the mean cell size is large, but is much less useful when 

the mean cell size declines. A useful “rule of thumb” seems to be that one needs at least 1,000 

observations per cell in order to predict the true coefficient with some degree of accuracy. In the 

5/100 replications, for example, the adjusted coefficient is around -0.53. At the PUMF sampling 

rate, the inconsistent coefficient ̂ is -0.403. The adjusted coefficient is -0.52 if we use the back-

of-the-envelope approach in equation (7). The adjustment goes further off the mark if we move 

to the 1/100 replications. The estimate is -0.64, with a very large standard deviation. Finally, if 

the cell size gets sufficiently small, as in the 1/1000 replication, the back-of-the-envelope 

correction breaks down. At this sampling rate, the predicted amount of sampling error often 

exceeds the adjusted variance of the observed immigrant share, leading to very unstable 

corrections. 

As noted above, the back-of-the-envelope correction, although easily applied in practice, 

may be misleading because the usual OLS estimator of β that is used in the correction is itself 

biased. As a result, equation (8) may not provide a good estimate of the size of the attenuation 

bias. It is therefore important to compare this method to alternative, relatively more complex, 

methods that provide consistent estimates of the parameter of interest β. The first such consistent 

estimator, as discussed by Greene (1993, p. 282), can be obtained if Var(uk) is known, or can be 

approximated. As we show in the Mathematical Appendix, an alternative estimator of β in the 

current context is given by: 
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where rk are the residuals from a regression of pk on Zk in equation (1), where Zk includes a 

constant and all the fixed effects and interactions defined in equation (9), K is the number of 

labor markets, and H is the dimension of the vector Zk. In short, the estimation strategy involves 

a first stage regression of pk on Zk, which provides the residual rk, and then computing the 

moments that appear in the numerator and denominator of equation (10). Following the strategy 

introduced in the previous section, 
  
Var� (u

k
)  1  p 1 p 

n
 and the remaining two terms in 

equation (10) can be calculated directly from the data. While consistent, the estimator   is 

subject to a finite sample bias because of the nonlinear transformations applied to the unbiased 

estimators of the numerator and the denominator, and a correction for this bias is possible by 

using a Monte Carlo procedure for Bootstrap Bias Estimation (BBE) (Horowitz, 2001). The BBE 

procedure involves the following steps:  

Step 1: Use the data from the estimation sample and the approximation for Var(uk) to 

compute  . 

Step 2: Generate a bootstrap sample of exactly the same size as the original microdata by 

sampling randomly with replacement. We then use the new estimation sample to compute 

* . We draw 500 such bootstrap samples for each of the replications. 

Step 3: Compute *[ ]E   by averaging the results of the 500 repetitions in step 2.23 We 

then define the bias as * *B [ ] .E     

Step 4: The bias-corrected estimator of β is then given by *B .   
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Row 11 of Table 2 presents the results of the BBE method. The bias-corrected estimates are very 

similar to those obtained using the back-of-the-envelope correction for large samples. For the 

5/100 sampling rate, for instance, the BBE estimate of β is -0.522, as compared to -0.531 with 

the back-of-the-envelope correction. It is worth noting that the BBE method also breaks down 

when the sample size becomes very small.  

Finally, it is of interest to compare these bias-corrected, consistent estimates to those 

obtained from an alternative method based on instrumental variables. The IV approach for 

correction of attenuation bias, first proposed by Griliches and Mason (1972), requires that we 

observe two measures of the variable subject to error. The two measures have the property that 

they are correlated with each other, but have uncorrelated measurement errors. The second 

measure is then used as an instrument for the first to correct for the attenuation bias. 

We employ the unbiased split sample instrumental variable (USSIV) method to correct 

for attenuation bias (Angrist and Krueger, 1995). In our context, this method boils down to 

splitting each sample randomly into half samples and using observed immigrant shares from the 

second-half sample as instruments in the first-half sample. More formally, for a given replication 

we first split the sample randomly into two parts. For labor market k, let 1
kp  and 2

kp  be the 

observed immigrant shares in the first- and second-half samples. Both 1
kp  and 2

kp  are measures 

of the true immigrant share such that 11
kkk up    and 22

kkk up   . For a given labor market 

k, 1
kp  and 2

kp  are correlated, but the measurement errors 1
ku  and 2

ku  are uncorrelated because the 

half samples are drawn randomly. We then use the data from the first half sample to estimate: 

 

                                                                                                                                                             
23 We also conducted some of the simulations using 2000 repetitions at this stage rather than 500 with the 

Canadian data and the results were similar to the ones reported here.  
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and instrument 1
sxtp  with 2

sxtp .  

For a given sampling rate, we estimated equation (11) for each of the 500 replications. 

We also applied this method in the Statistics Canada file by creating 500 half sample pairs from 

the Statistics Canada file using a random number generator with different seeds and then 

estimating the USSIV corrected coefficients for each case.24 The estimated USSIV regression 

coefficients are reported in row 12 of Table 2 (and the standard deviation is reported in row 13). 

For larger sampling rates, the USSIV estimates are very similar to those estimated using the 

other correction methods. Consider, for instance, the results obtained in the PUMF replication. 

The OLS coefficient estimated using the mismeasured immigrant share variable is -0.403; the 

back-of-the-envelope correction yields a bias-corrected estimate of -0.524; and the USSIV 

method yields an estimate of -0.510.25 Note, however, that the USSIV method also breaks down 

as the cell size becomes smaller. In the 1/1000 replication, for example, the mean USSIV 

coefficient changes sign and becomes 0.482.26 As a general rule, the various (and very different) 

                                                 
24 In the U.S. context, the analogous procedure is to create 500 half-sample pairs from the 5/100 data using 

a random number generator with different seeds and then estimate the USSIV corrected coefficients for each case. 

25 It is also possible to use instruments based on the economics of the model, rather than the purely 
statistical approach in USSIV, to correct for sampling error bias. We will discuss below the problems introduced by 
sampling error when one uses the preferred instrument in the literature, a lagged measure of the immigrant share in 
labor market k.  

26 The average coefficient across the 500 replications is generally similar to the median for sufficiently 
large sampling rates. In the Canadian data, for example, the mean and median estimates for the 1/100 sampling rate 
are -0.525 and -0.510 respectively. The mean and median estimates, however, are 0.482 and -0.302 for the 1/1000 
sampling rate, and -0.486 and -0.134 for the 1/10000 sampling rate. 
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methods of correction for attenuation bias tend to work only when the average cell in the 

Canadian national labor market has at least 1,000 observations. 

Table 3 replicates the analysis using the data available for the U.S. labor market. Note 

that our largest sample is the publicly available IPUMS of the decennial Census—which 

represents a 1% sampling rate in 1960, a 3% sampling rate in 1970, and a 5% sampling rate from 

1980 through 2000. The estimate of the wage impact of immigration at the national level in this 

large sample is quite similar to that found with the Statistics Canada data: the estimated 

coefficient is -0.489, with a standard error of 0.223. Note, however, that because of the much 

larger U.S. population, the mean cell size is far larger (47,514 observations) than the mean cell 

size in the Statistics Canada file (30,416 observations). Note also that applying any method of 

correction to the coefficient estimated in this very large U.S. sample only slightly increases the 

magnitude of the estimated wage impact of immigration to around -0.5. 

As with Canada, we estimated the model using 500 replications for each smaller 

sampling rate. The 1/100 replications have 11,746 observations per cell. As a result, the 

estimated coefficient ̂  declines only slightly. The cell size in the 1/1000 replications, however, 

is much smaller (1,175 observations per cell), and the estimated coefficient falls to -0.347, with 

an average standard error of 0.247. In other words, the bias attributable to sampling error reduces 

the coefficient by almost 30 percent. Studies that use this sampling rate—even if they focus on 

national labor market trends and have over 1,000 observations per cell—will falsely conclude 

that the wage impact of immigration is numerically weak and statistically insignificant. Table 3 

shows that we can drive the estimated wage impact of immigration to zero by simply taking an 

even smaller sampling rate. The 1/10000 replication, where the average cell size used to 
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calculate the immigrant share variable has 117.4 workers, has an average coefficient of -0.082, 

with an average standard error of 0.279. 

The hypothesis that sampling error generates exponentially smaller immigration effects 

as we use smaller samples is confirmed by the regressions that use the “true” immigrant share 

(i.e., the immigrant share calculated from the 5/100 files). The coefficient * estimated in these 

regressions is reported in row 6 of the table. The estimated coefficients using the more precise 

measure of the immigrant share tend to almost exactly duplicate the estimated wage impact 

obtained from the 5/100 file. Even in the 1/10000 replication, where the wage impact of 

immigration estimated with the error-ridden immigrant share variable is essentially zero, the use 

of the immigrant share from the 5/100 file raises the coefficient to -0.498, almost exactly what 

we obtained in the “population” regression (although it is imprecisely estimated). 

The remaining rows of the table show what happens to the estimated wage impact of 

immigration when we use the three alternative correction methods to adjust the inconsistent 

estimate for sampling error. It turns out that only the USSIV method leads to a sensible estimate 

in the 1/1000 replication and none of the correction methods lead to sensible estimates in the 

1/10000 replication. As with the Canadian data, all of the correction methods break down when 

the average cell size in the U.S. national labor market falls below 1,000 observations. 

 

B. Local Labor Markets 

 Up to this point, we have considered national labor markets defined in terms of skills 

(education and experience). We now adopt the convention used in much of the literature and 

consider labor markets (within skill groups) defined by the geographic boundaries of 

metropolitan areas. There are approximately 27 identifiable metropolitan areas in each Canadian 
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census beginning in 1981, and over 250 identifiable metropolitan areas in the U.S. Census 

beginning in 1980.27 Workers who do not live in one of the identifiable metropolitan areas are 

excluded from the analysis. Because labor markets are now defined in terms of metropolitan 

area, education, experience, and time, the number of cells increases dramatically. There are 

5,360 cells in Canada and 31,472 cells in the United States.28 It immediately follows that the 

number of observations per cell declines substantially once we move the unit of analysis to this 

level of geography.29 

 Table 4 reports the distribution of the immigrant share variable estimated at the 

metropolitan area level for both Canada and the United States. In Canada, the per-cell number of 

observations is 660 even when we use the large confidential files maintained by Statistics 

Canada. If we use the PUMF sampling rate, the average cell contains only 84 observations. By 

the time we use the 1/100 sampling rate, we only have 34 observations per cell. In the United 

States, the 5/100 Public Use Samples yields only 174 observations per cell, and this number 

drops to just 36 observations if we use a 1/100 sampling rate. Because even the 1/100 sample in 

                                                 
27 The census file maintained at Statistics Canada identifies 26 metropolitan areas in the 1981 Census and 

27 metropolitan areas in each census since 1986. The publicly available PUMF identifies far fewer metropolitan 
areas; in 2001, for example, only 19 metropolitan areas are identified in the public file. The IPUMS file of the U.S. 
Census identifies 255 metropolitan areas in 1980, 249 metropolitan areas in 1990, and 283 metropolitan areas in 
2000. The definition of the metropolitan areas in both the Canadian and U.S. censuses is substantially different prior 
to 1980, so our analysis of wage differences across local labor markets is restricted to the census data that begins in 
1980/1981.  

28 The number of cells in our analysis of the 5/100 file in the United States is slightly smaller than the 
theoretically possible number of cells (31,480) because there are a few empty cells—that is, there are labor markets 
where we could not detect any native working men. These labor markets are not included in the regressions and 
create an additional source of error in estimates of the wage impact of immigration. This error will obviously be 
more important for smaller sampling rates. 

29 Although the per-cell size is much smaller in the spatial correlation analysis than in the national labor 
market analysis, we show below that the variance of the observed immigrant share across labor markets is much 
higher. This large variance suggests that the estimated wage impact of immigration at the local level—for a given 
cell size—would be less attenuated by sampling error than the comparable estimate at the national level.  
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Canada and the 1/100 sample in the United States have very few observations per cell, we limit 

our analysis of spatial correlations to sampling rates that are at least as large as these. 

As in the previous section, there is little difference in the mean immigrant share across 

the various sampling rates, and only a slight increase in the variance of the immigrant share 

variable as we use smaller samples. However, the small increase in the variance masks a 

substantial increase in the number of cells that have no immigrants as we use progressively 

smaller samples in either country. 

We use the following regression specification to estimate the wage impact of immigration 

in local labor markets. Let whrt denote the mean log weekly wage of native men who have skills 

h (i.e., a particular education-experience combination), work in metropolitan area r, and are 

observed at time t. For each country, we stack these data across skill groups, geographic areas, 

and Census cross-sections and estimate the model: 

 



whrt   phrt   h (i )H i
i
   r ( j )R j

j
   t ( l )Tl

l
   hr (ij )H i R j 

j


i


 ht ( il )H iTl   rt ( j l )
l
 R jTl

j
  hrt

l


i


 (12) 

 

where H is a vector of fixed effects indicating the group’s skill level; R is a vector of fixed 

effects indicating the metropolitan area of residence; and T is a vector of fixed effects indicating 

the time period of the observation. The standard errors are clustered by skill-region cells to adjust 

for the possible serial correlation that may exist within cells. 

 Table 5 reports the coefficients estimated for the various specifications. It is well known 

that because labor or capital flows across metropolitan areas arbitrage geographic wage 
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differences, the labor market impact of immigration estimated at the metropolitan area level will 

typically be smaller than that estimated at the national level—even in the absence of attenuation 

bias. Therefore, it is not surprising that the coefficient ̂  reported in Table 5 is substantially 

smaller than that found in the national-level analysis even when we use the largest samples 

available. In Canada, for example, the estimated effect using the Statistics Canada file is -0.053, 

with a standard error of 0.037. In the United States, the estimated effect is remarkably similar; 

the coefficient is -0.050, with a standard error of 0.023. 

Before we turn to the various replications, it is worth noting that because the sample size 

used to calculate the immigrant share variable is relatively small even using these large samples, 

the estimated wage effect of approximately -0.05 in either country may have already been greatly 

attenuated by sampling error.30 The corrected coefficients reported in the table confirm our 

suspicions. Row 8 of Table 5 shows that the simplest back-of-the-envelope correction more than 

doubles the estimated wage impact to -0.112 in Canada, so that the bias in the spatial correlation 

using the large Statistics Canada file is around 53 percent. Similarly, the back-of-the-envelope 

correction in the United States more than triples the estimated wage impact to -0.170 in the 

United States, implying a bias of around 70 percent. The use of BBE or USSIV leads to roughly 

                                                 
30 Card’s (1991) influential study of the Mariel flow is not susceptible to the type of sampling error 

documented in this paper. Card compares labor market conditions in Miami and a set of other cities before and after 
the Mariel flow of immigrants in 1980. He finds little change in Miami’s labor market conditions (relative to the 
comparison cities) during the period. The interpretation of Card’s evidence, however, is very unclear. Angrist and 
Krueger (1999) replicated Card’s study by examining conditions in Miami and the same comparison cities in 1994. 
The 1994 period is notable because conditions in Cuba were ripe for the onset of a new wave of refugees, and 
thousands of Cubans began the hazardous journey. The Clinton administration, however, rerouted all the refugees 
towards the American military base in Guantanamo Bay, so few of the potential migrants arrived in the U.S. 
mainland by 1995. Remarkably, Angrist and Krueger’s replication finds that a phantom immigrant influx (“The 
Mariel Boatlift That Didn’t Happen”) had a significant and adverse impact on labor market conditions in Miami. At 
least in 1994, there were confounding factors in Card’s difference-in-differences methodology that are not well 
understood and drive the results. 
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similar conclusions: The corrected estimate of the coefficient  in Canada or the United States is 

almost double the size of the OLS regression coefficient. 

Not surprisingly, the bias in the estimated wage impact of immigration becomes 

substantially worse when we consider smaller samples. In the PUMF sampling rate, the average 

estimated wage impact of immigration at the metropolitan area level is only -0.022, with an 

average standard error of 0.039. The publicly available data, therefore, leads to a completely 

different substantive conclusion (i.e., no statistically significant wage impact of immigration at 

the local level) than the larger Statistics Canada file. As row 5 of the table shows, however, we 

can replicate the impact implied by the Statistics Canada data (-0.053) in the PUMF replications 

if we had used the immigrant share that can be calculated in the large Statistics Canada sample. 

Because the average cell size becomes very small, the precision of our corrected coefficients 

declines dramatically as we use smaller sampling rates. 

The analysis of wage differences across local labor markets in the United States leads to 

very similar results. As noted above, we only consider one sampling rate because even at the 

1/100 level there are only 36 observations per cell. The average wage impact of immigration 

estimated in the 1/100 replications is less than half the size of that estimated using the larger 

5/100 files; the average coefficient is -0.022, and the average standard error is 0.027. As in 

Canada, the use of the 1/100 sampling rate would lead researchers to conclude that the wage 

impact of immigration at the local level is numerically and statistically zero, when in fact a 

different conclusion would have been reached if the analyst had used a much larger sample.  

 Because of the influence of the spatial correlation approach in the literature, it is of 

interest to discuss the implications of the results presented in this section for the existing 

evidence. The estimated effects reported in Table 5 define the labor market along the lines of 
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both skills and geography, using 40 skill groups (5 education groups and 8 experience groups) 

and every single metropolitan area that can be identified by the Canadian or U.S. Census. There 

are 283 identifiable metropolitan areas in the U.S. Census, so that there are potentially 11,320 

cells in each cross-section. Inevitably, the large number of distinct labor markets leads to a small 

average cell size. In an important sense, the research design used in Table 5 introduces the 

possibility that sampling error could play an important role in estimates of the spatial correlation. 

Many studies in the spatial correlation literature, however, avoid the problem of small 

cell size by altering the research design in one of two distinct ways. The first, used mainly in the 

earlier (though influential) studies in the literature, is simply to calculate the immigrant share in 

the metropolitan area—and completely disregard the skill composition of the local immigrant 

population in the calculation. For example, Altonji and Card (1991, p. 217) define the immigrant 

share as “the fraction of foreign-born residents” in each metropolitan area. Similarly, Schoeni 

(1997, p. 7) defines the immigrant share as “the share of the entire working aged population in 

that area who are immigrants; the sample sizes in the Census are too small to calculate sub-group 

specific shares in most geographic areas.”31 These studies then proceed to relate the wage of 

specific groups (such as low-skill natives, or low-skill blacks) to the aggregate immigrant share 

in the locality. 

 This research strategy, however, introduces a different problem into the analysis. Because 

the wage of, say, low-skill workers is being correlated with the immigration-induced total supply 

shift in the locality, it is unclear what structural parameter this correlation is supposed to 

                                                 
31 Altonji and Card (1991, p. 217) note that “since our sample sizes for 1970 are too small to provide 

reliable estimates of the fraction of immigrants in many of the smaller cities, we have relied instead on the published 
population data.” The use of the published Census data implies that sampling error is unlikely to be an issue in the 
Altonji-Card analysis. Schoeni (1997, p. 7), however, estimates the immigrant share “internally from the census 
analysis files.” 
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measure. In some metropolitan areas, for example, the immigrant influx is disproportionately 

low-skill, and one might expect to find a negative correlation between the wage of the pre-

existing low-skill workforce and the immigrant share. In other metropolitan areas, however, the 

immigrant influx may be disproportionately high-skill, and there could potentially be a positive 

correlation between the wage of low-skill workers and the immigrant share because of 

production complementarities across skill groups. The sign of the net correlation estimated in the 

data, therefore, is unpredictable and depends on the settlement patterns of low-skill natives and 

low-skill immigrants. Although these studies avoid the attenuation bias introduced by sampling 

error, they do not estimate any parameter of interest. 

 Another common method for avoiding sampling error is to limit the analysis to the largest 

metropolitan areas in the country. Card (2001), for example, uses only the 175 cities with the 

largest number of native-born adults in the population, while Butcher and Card (1991, p. 292) 

use only 24 cities, which include “the 10 most immigrant-intensive cities.” This approach would 

be sensible if immigrants settled randomly across metropolitan areas in the United States. The 

assumption of random settlement, however, is clearly false. In 2000, for example, 38.4 percent of 

immigrants lived in four metropolitan areas (New York, Los Angeles, Chicago, and San 

Francisco), but only 12.2 percent of natives lived in the four metropolitan areas with the largest 

native-born populations (New York, Chicago, Los Angeles, and Philadelphia). Even abstracting 

from the econometric problems potentially introduced by non-random sample selection, the 

spatial correlations obtained from a selected sample of cities may have limited applicability. In 

particular, they may provide internally valid estimates of the wage impact of immigration for 

those cities, but may provide little information about the wage impact of immigration across the 

entire labor market.   
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 Moreover, it is easy to show that although restricting the analysis to the largest cities does 

indeed increase average cell size, these larger samples come at a cost. The analyst is effectively 

introducing a specific type of selection bias into the analysis.32 Although we are unaware of any 

study that examines the magnitude of the bias generated by the non-random sampling of local 

labor markets, it is easy to show that the resulting bias is numerically important. As Table 5 

shows, the coefficient in the United States is -0.050 (0.023) when the regression uses the full set 

of 283 metropolitan areas available in the 5/100 Census microdata. Remarkably, this coefficient 

falls to -0.013 (0.034) if we estimate the regression using only the data from the largest 50 

metropolitan areas; to -0.041 (0.028) if we use the largest 100 metropolitan areas; to -0.042 

(0.025) if we use the largest 150 metropolitan areas; and to -0.045 (0.024) if we use the largest 

200 metropolitan areas.33 In sum, restricting the analysis to the largest metropolitan areas reduces 

the size of the coefficient by 10 to 20 percent even when the regression uses half or two-thirds of 

the available local labor markets. This way of avoiding sampling error introduces a different type 

of bias—a selection bias that also leads to a numerically meaningful attenuation of the wage 

impact of immigration.  

  
C. Using Lagged Immigration as an Instrument 

Income-maximizing immigrants may cluster in particular (geographic or skill-based) 

labor markets because those are the markets that offer relatively high returns to the mobility 

costs incurred by the migrants. The immigrant share coefficient from an OLS wage regression 

                                                 
32 For instance, suppose that immigration has an adverse wage impact on competing workers. All other 

things equal, the sample selection rule used in these studies omits from the analysis those metropolitan areas with 
the highest wages, so that the regression introduces a type of selection bias based on selection in the dependent 
variable. 

33 The labor markets are ranked by the size of the native-born male workforce in 2000. 
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would then be positively biased. Some studies use instrumental variables to account for this 

potential endogeneity problem (e.g., Altonji and Card, 1991; Schoeni, 1997; Card, 2001). The 

typical instrument is some lagged measure of the immigrant share, on the presumption that the 

continuing influx of immigrants into particular markets is based mostly on the magnetic 

attraction of network effects rather than on any income-maximizing behavior.34 In theory, these 

IV regressions provide an alternative method for correcting for sampling error bias because the 

sampling error in the current and lagged values of the immigrant share is uncorrelated in 

independent samples. 

Of course, it is far from clear that the lagged immigrant share is a legitimate instrument: 

What factors attracted large numbers of particular immigrants to particular markets in the first 

place? If the earlier immigrant arrivals selected those markets because they offered relatively 

better job opportunities, any serial correlation in these opportunities violates the orthogonality 

conditions required in a valid instrument. Even abstracting from this conceptual question, it turns 

out that the sampling error in the immigrant share variable creates serious statistical problems for 

this particular instrument, leading both to weak instruments and to the violation of a key 

assumption in the classical measurement error model. 

Consider the generic first-stage regression: 

 

  
  
p
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  p

t1,k
 

h
z

tkh


h
 

tk
,         (13) 

                                                 
34 Although the IV methodology has been used exclusively in studies conducted at the metropolitan area 

level, a similar type of argument suggests that the lagged immigrant share could serve as an instrument in national-
level studies as well. Immigration policy in both Canada and the United States, for example, gives entry preference 
to family members of persons already residing in the receiving country. If skill levels are correlated within families 
(e.g., spouses and siblings may have roughly the same age and education level as the visa sponsor), an immigrant 
influx in a particular skill group at time t would likely generate more immigrants with similar skills in the future. 
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where ptk is the observed immigrant share for cell k in the current period and pt-1,k is the lagged 

share. The observed immigrant shares are defined by: ptk = tk + utk and pt-1,k = t-1,k + ut-1,k, where 

the sampling errors have mean zero, are uncorrelated with the true immigrant share, and are 

uncorrelated over time. The vectors of fixed effects included in the first-stage regression are the 

same as those included in equation (9) for the national-level analysis and equation (13) for the 

metropolitan area analysis.35 

Table 6 summarizes the results of our sensitivity analysis of the first-stage regression 

model. The qualitative nature of the evidence is very similar for both Canada and the United 

States. The coefficient of the lagged immigrant share in the large Statistics Canada file is 0.258, 

with a standard error of 0.085, implying that the F-statistic associated with the instrument is 

9.21, very close to the threshold (an F-statistic above 10) required to reject the hypothesis that 

the lagged immigrant share is a weak instrument (in the sense defined in Stock, Wright, and 

Yogo, 2002). Initially, as we consider smaller sampling rates, the estimated coefficient ̂  goes 

towards zero, and the lagged immigrant share becomes an obviously weak instrument. In the 

replications using a 1/100 sampling rate, for example, the coefficient is 0.054 and the standard 

error is 0.100. As the cell size gets smaller still, however, the coefficient ̂  turns very negative 

and significant! Note that this sign reversal occurs in the national level regressions for both 

Canada and the United States, as well as in the metropolitan area regressions for Canada. In the 

                                                 
35 There is a 10-year gap between the 1971 and 1981 Canadian cross-sections, but only a 5-year gap 

between the post-1981 censuses. To ensure that the lagged immigrant share is defined consistently, we omit all cells 
from the 1971 Canadian census in the regressions reported in this section. As a result, the first-stage regressions 
estimated in Canada only include cells beginning with the 1986 cross-section. The national level regressions for the 
United States include cells beginning with the 1970 census, and the metropolitan area regressions for the United 
States include cells beginning with the 1990 census. Finally, all the models estimated at the metropolitan area level 
include only those metropolitan areas that are identified in each cross-section. 
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metropolitan area analysis for the United States, the coefficient ̂  is already negative even at the 

5/100 sampling rate.36 In short, the first-stage IV regression seems to completely break down 

when the immigrant share is calculated in relatively small samples. 

It is easy to demonstrate that the IV method fails because the sampling errors on both 

sides of the first-stage regression equation are correlated. Table 6 reports the average estimate of 

two other regression coefficients: *
1

ˆ( , )t tp   , which is the coefficient obtained by regressing the 

observed current immigrant share on the “true” lagged immigrant share (i.e., the share calculated 

in the largest available sample—either the Statistics Canada file or the 5/100 U.S. Census); and 

*
1

ˆ( , )t tp   , which is the coefficient from the regression of the “true” current immigrant share on 

the observed lagged share. Note that the average value of *
1

ˆ( , )t tp    often replicates the positive 

and sizable coefficient obtained when the regression is estimated in the largest file available, 

confirming that sampling error in the dependent variable does not typically affect the regression 

coefficient. Similarly, the average of *
1

ˆ( , )t tp    is often close to zero, confirming that sampling 

error in the independent variable attenuates the estimated coefficient. 

We find negative and significant estimates of  only when both the current and the lagged 

immigrant share are measured with substantial sampling error. Although it would seem that the 

errors are uncorrelated because sampling error is independent across cross-sections, the first-

stage regression model actually builds in a strong negative correlation in the errors between the 

                                                 
36 Despite the fact that the lagged immigrant share enters the regression with the wrong sign, some of the 

regression specifications reject the hypothesis that the lagged immigrant share is a weak instrument. It is well 
known, however, that standard IV specification tests have no power to detect the problems associated with the type 
of non-classical measurement error documented in this section (Kane, Rouse, and Staiger, 1999). 
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two sides of the equation.37 In particular, the fixed effect specification effectively differences the 

data from the mean immigrant share observed in labor market k during the sample period (where 

labor market k is defined by skill and/or geography). As a result, we can write the first-stage 

regression model in its equivalent differenced form as: 

 

  , , 1, 1,( ) fixed effects ,t k t k t k t kp p p p     
    

(14) 

 

where ,t kp  is the average of the current immigrant share across the various cross-sections 

available for the labor market, and 1,t kp   is the corresponding average of the lagged immigrant 

share. The implications of this type of differenced structure for correlated sampling errors are 

obvious by considering the special case where the data consists of two cross-sections, and the 

fixed effect estimator is equivalent to a simple differencing of the data.38 We can then rewrite 

equation (14) as: 

 

  ptk – pt-1,k =  (pt-1,k – pt-2,k) + fixed effects + .    (14) 

 

                                                 
37 In fact, the measurement errors seem to be themselves serially correlated over time. This correlation 

might arise if there are persistent differences in the quality of local census operations or in the kinds of informal 
living arrangements that make enumeration difficult. It is easy to investigate this possibility in the Canadian context. 
In particular, we estimated MSA-level regressions of the observed immigrant share at a given sampling rate on the 
size of the MSA population, fraction of the population in the MSA in each education category (5 categories), and 
experience category (8 categories), separately by survey year. We then calculated the measurement error as the 
difference between the “true” immigrant share (obtained from the Statistics Canada file) and the one predicted from 
the MSA-level regression. We used the 1986, 1991, 1996, and 2001 Censuses to carry out a Monte Carlo study with 
500 random samples for each sampling rate. At the 5 in 100 sampling rate, the regression of the predicted 2001 
measurement error on the predicted measurement errors for previous years leads to an average coefficient of 0.619 
(mean standard error of 0.04) for the 1996 measurement error. The corresponding estimates for the 1991 and 1986 
predicted measurement errors are 0.09 (0.04) and 0.17 (0.03), respectively.  

38 Note, however, that three cross-sections are required to actually estimate the model.. 
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The appearance of pt-1,k on both sides of the equation indicates that any sampling error in the 

regressor gets completely transmitted—with a negative sign—to the dependent variable, 

violating one of the key assumptions of the classical measurement error model. The negative 

correlation between the measurement errors in the dependent and independent variables in (14) 

imparts a substantial negative bias on the coefficient  when there is sufficiently large sampling 

error in the observed immigrant share. 

The insight that the first-stage regression can be interpreted as a first-difference 

regression helps explain the pattern of estimated coefficients reported in Table 6. In particular, 

note that in the apparent absence of sampling errors (e.g., in the national-level regressions 

estimated either in the Statistics Canada or 5/100 U.S. Census files), the estimated coefficient ̂  

is strongly positive. Errors in the right-hand-side of equation (14) attenuate the coefficient 

towards zero, while errors in the left-hand-side have relatively little influence on the estimate. 

However, the existence of negatively correlated errors on both sides of the equation turns the 

estimated coefficient strongly negative. The results summarized in Table 6 clearly indicate that 

the lagged immigrant share is not a good instrument when the cell size is sufficiently small—

even when we abstract from any conceptual issues. 

 

IV. Summary 

The parameter measuring the wage impact of immigration plays a crucial role in any 

discussion of the costs and benefits of immigration on a receiving country. Because of its 

importance, a large and influential empirical literature developed over the past 20 years. 

Although economic theory predicts that the relative price of labor would decline as a result of the 

immigration-induced supply increase (at least in the short run), many studies, particularly those 
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that use geographic variation in wage levels to measure the relation between wages and 

immigration, conclude that the wage impact of immigration is negligible. 

 This paper tests a new hypothesis that may account for some of the weak estimated 

effects in the literature: the estimated wage impact of immigration is attenuated by measurement 

error. In particular, the key independent variable in the analysis, the fraction of the workforce 

that is foreign-born, is typically calculated from a sample of workers in the labor market of 

interest. This calculation introduces sampling error into the key independent variable and leads to 

attenuation bias through the usual errors-in-variables model. Sampling error plays a 

disproportionately large role because of the longitudinal nature of the econometric framework 

commonly used to measure the wage impact of immigration. After controlling for permanent 

factors that determine wages in labor markets, there is little variation remaining in the immigrant 

share. 

Our analysis used labor market data drawn from both Canada and the United States to 

show that: (a) the attenuation bias is quite important in the empirical context of estimating the 

wage impact of immigration; and (b) adjusting for the attenuation bias can easily double, triple, 

and sometimes even quadruple the estimated wage impact of immigration. Our evidence also 

indicated that the attenuation bias becomes exponentially worse as the size of the sample used to 

calculate the immigrant share in the typical labor market declines. 

 In an important sense, previous research in this literature has been conducted under the 

false sense of security provided by the perception that the analysis is sometimes carried out using 

very large samples (such as the 5 percent file of the U.S. Census). The use of these large data 

files would seem to suggest that the immigrant share of the workforce is measured accurately. 

We have shown, however, that even as large a sampling rate as a 5/100 file can easily generate 
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substantial sampling error in the immigrant share—and that this sampling error will almost 

certainly be a numerically important factor in longitudinal-type studies where the labor market is 

defined in terms of narrow skill groups and/or geography. Measurement error, therefore, has 

been an important—and previously ignored—contaminant of the empirical results reported in 

this literature. 

The false sense of security provided by the large microdata Census samples probably 

extends to many other contexts in applied economics. After all, there are many empirical studies 

where calculated proportions form the key variable of interest in a longitudinal context. 

Consider, for example, regression models where the key regressor is a group-specific 

unemployment rate or the fraction of the workforce belonging to a particular racial or ethnic 

group. In view of the evidence reported in this paper, it would not be far-fetched to conjecture 

that the conclusions of many of those studies are also likely to be very sensitive to attenuation 

bias. A greater appreciation for the problems introduced by binomial-based sampling error in 

independent variables could lead to a reappraisal of many regression-based stylized facts. 
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Mathematical Appendix 
 
A. Proof of equation (4) 

 
For simplicity, we consider the case where the sampling rate  approaches zero so that we 

can refer exclusively to the properties of the binomial distribution. The extension to the 
hypergeometric distribution is straightforward. The relation between the observed and true 
immigrant share is given by: 
 
  pk = k + uk .          (A1)  
 
Note that the error in (A1) can be written as: 
 

  uk  pk  k 
1

nk

(nk pk  nk k ).       (A2) 

 
Conditional on the sample size nk used to calculate the immigrant share and on k, nkpk is a 
binomial random variable with parameter (nk, k). The central moments of the binomial 
distribution imply: 
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Hence: 
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Independence implies that: 
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Using the Law of Iterated Expectations and combining results, we can then write: 
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Therefore, as K  , 
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Because mean-square convergence implies convergence in probability, it then follows that: 
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k1

K

        (A8) 

 
 
B. Derivation of equation (10) 
 

The model of interest is given by equation (1): 
 

  wk  k  hzkh  k ,
h
        (A9)

 
 

where E  k  k , Zk   0,  k ~ IID, and k  1,..., K .  By definition, pk = k + uk, with uk  (Zk ,wk )  

and E(uk k Zk )  0 , with Zk being the vector of explanatory variables in (A9) with dimension 

H. The relevant coefficient from the OLS regression when k is replaced with pk is: 
 

  



̂p 
Cov� wk ,rk 

Var� rk 
         (A10)  

 
where rk are the residuals from a regression of pk on Zk. Let k be the residuals from the 
unfeasible regression of k on Zk, and define: 
 

  



̂ 
Cov� wk ,k 

Var� k 
.        (A11)  

 
Note that: 
 

  
r  M   u 
  M

         (A12)  
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where M  [I  Z Z Z 1 Z ],  Z is the matrix of regressors, and  and u are K  1 vectors. We 

can then rewrite: 
 

  ̂ p  ((  u ) M (  u))1((  u ) Mw)      (A13)  

̂  (  M)1(  Mw)  
 
Note that: 
 

E (  u ) Mw  E  Mw .         (A14a) 

E ((  u ) M (  u))  E(  M ) E( u Mu) 2E(  Mu)  E(  M ) E( u Mu) .  (A14b) 

 

Equation (A14a) implies that Cov� (wk ,rk )  Cov� (wk ,k ). Further, for any scalar random variable 

a, we note that E(a) = E(tr (a)) = tr [E(a)], where tr () is the trace of the matrix in parentheses. It 
then follows that: 
 
 E u Mu  tr E( u Mu)  tr[E(Mu u )]  (K  H )Var(uk ).     (A15)  

  
Given equations (A14b) and (A15), we can then write an approximately unbiased estimator of 
Var(k) as: 
 



Var� (k ) 
E[  M ]

K


E p Mp  E u Mu 
K

.

Var� (rk )
(K  H )

K
Var� (uk )

      (A16) 

 
Substituting the various definitions in (A11) implies that a consistent estimator is given by: 
 

 



̂ 
Cov� wk ,rk 

Var� rk  K  H

K






Var� uk 
,         (A17) 

 

where, as derived in the text, Var� (uk )  can be approximated by (1 )
p(1 p)

n
. The estimator 

defined in (A17) is subject to finite sample bias because of the nonlinear transformation applied 
separately to the unbiased estimators of the numerator and denominator. This bias is removed by 
using the bootstrap method described in the text. 
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Data Appendix: Construction of samples and variables
  

Canada: 
The data are drawn from the 1971, 1981, 1986, 1991, 1996 and 2001 Canadian Census 

microdata files maintained by Statistics Canada. Each of these confidential data files represents a 
20 percent sample of the Canadian population, except for the 1971 file which represents a 33.3 
percent sample. Statistics Canada also provides Public Use Microdata Files (PUMFs) to 
Canadian post-secondary institutions and to other researchers. The public use samples represent 
a much smaller proportion of the Canadian population (e.g., a 2.7 percent sample in 2001). The 
analysis is restricted to men aged 18-64. A person is classified as an immigrant if he reports 
being a landed immigrant in the Canadian census, and is either a noncitizen or a naturalized 
Canadian citizen; all other persons are classified as natives. Unless otherwise noted, sampling 
weights are used in all calculations. While information on age, sex, marital status, mother tongue 
and relationship to the “householder” are asked of 100% of the population the rest of the census 
information is obtained on a stratified 20% sample using the additional questions on the long 
form questionnaire. Weights in the Census files are used to project the information gathered from 
the 20% sample to the entire population. 
 Definitions of education and experience: We use the Census variables dgreer indicating 
“highest degree, certificate and diploma” and trnucr indicating “trade or non-university 
certificate” for the 1981 to 2001 Censuses to classify workers into five education groups: high 
school dropouts; workers with either a high school diploma or a vocational degree; workers with 
both a high school and vocational degree or a post-secondary certificate or diploma below 
Bachelor’s degree; Bachelor’s degree holders; and post-graduate degree holders. The coding of 
the relevant variables changes across Censuses. For the 2001 Census these five groups are 
identified by i) dgreer=1 or 11; ii)  dgreer=2 or (dgreer=3 and trnucr 5 and trnucr 7); iii) 
dgreer=4 or dgreer=5 or (dgreer=3 and trnucr=5 or 7); iv) dgreer=6; and v) dgreer=7, 8, 9 or 
10. The highest degree variable in the 1971 Census only identifies university degree, certificate 
and diploma holders (and aggregates all others as “not applicable”).  

The 1971 Census does not contain similar information on degrees. We instead rely on 
information about years of grade school (highgrad), vocational training (training), and years of 
post-secondary education below university (otheredu) to create classifications comparable to 
later Census years. Our construction of the education categories in 1971 assumes that if a worker 
does not have a Bachelor’s degree but has 2 or more years of post-secondary education below 
university level, that worker possesses a post-secondary certificate or diploma. We also assume 
that Canadians who have eleven or more years of grade school and were born in Newfoundland 
or Quebec Provinces are high school graduates. All other Canadian-born and all immigrant men 
need 12 or more years of grade school to be considered high school graduates. This assumption 
recognizes the existence of different schooling systems across provinces and assumes that a 
Canadian-born worker’s entire grade school education is completed in the province where they 
were born.  

Canadian censuses also provide detailed information on the number of years an 
individual attended grade school (the variable hgradr in the 2000 census), post-secondary 
education below university (ps_otr), and university (ps_uvr). We calculate the total years of 
schooling by adding these variables and define work experience as Age - Years of Education - 6. 
We restrict the analysis to persons who have between 1 and 40 years of experience. Workers are 
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classified into one of 8 experience groups. The experience groups are defined in five-year 
intervals (1-5 years of experience, 6-10, 11-15, 16-20, 21-25, 26-30, 31-35, and 36-40). 
 Counts of persons in education-experience groups: The counts are calculated in the 
sample of men who do not reside in collective households, worked at some point in the past year 
(i.e., have a positive value for weeks worked in the previous calendar year), are not enrolled in 
school, and are not in the armed forces during the reference week39. The 1986 census does not 
provide school attendance information so that the construction of the 1986 sample ignores the 
school enrollment restriction. Our results are not sensitive to the exclusion of this cross-section 
from the analysis. 
 Annual and weekly earnings: We use the sample of men who do not reside in collective 
households, reported positive weeks worked and hours worked (during the reference week), are 
not in the armed forces in the reference week, and report positive earnings (sum of wages, farmi, 
and selfi variables, using the variable names corresponding to the 2001 Census). The 1971 
census reports weeks worked in the calendar year prior to the survey as a categorical variable.  
We impute weeks worked for each worker as follows: 7 weeks for 1 to 13 weeks, 20 for 14-26 
weeks, 33 for 27-39 weeks, 44 for 40-48 weeks and 50.5 for 49-52 weeks. The average log 
weekly earnings for a particular education-experience cell is defined as the mean of log weekly 
earnings over all workers in the relevant population. 
 
United States: 
 The data are drawn from the 1960, 1970, 1980, 1990, and 2000 Integrated Public Use 
Microdata Samples (IPUMS) of the U.S. Census. In the 1960 Census, the data extract forms a 1 
percent sample of the population. In the 1970 Census, the extract forms a 3 percent sample 
(obtained by pooling the state, metropolitan area, and neighborhood Form 1 files). In 1980, 1990, 
and 2000, the data extracts form a 5 percent sample. The analysis is restricted to men aged 18-64. 
A person is classified as an immigrant if he was born abroad and is either a non-citizen or a 
naturalized citizen; all other persons are classified as natives. Unless otherwise noted, sampling 
weights are used in all calculations. According to the Bureau of the Census, “the PUMS weight 
is a function of the full census sample weight and the PUMS sample design.”40 

Definition of education and experience:  We use the IPUMS variables educrec to first 
classify workers into four education groups: high school dropouts (educrec <= 6), high school 
graduates (educrec = 7), persons with some college (educrec = 8), college graduates (educrec = 
9). The college graduate sample is split into workers with 16 years of schooling or with post-
graduate degrees using the variables higrade (in 1960-1980) and educ99 (1990-2000). We 
assume that high school dropouts enter the labor market at age 17, high school graduates at age 
19, persons with some college at age 21, college graduates at age 23, and workers with post-
graduate degrees at age 25, and define work experience as the worker’s age at the time of the 
survey minus the assumed age of entry into the labor market. We restrict the analysis to persons 
who have between 1 and 40 years of experience. Workers are classified into one of 8 experience 
groups, defined in five-year intervals. 

                                                 
39 Note that the definition of the supply variables ignores the interesting issues that arise if immigration 

also influences native enrollment decisions or hours worked. 

40 The description of the sampling weights is found in: http://www.census.gov/prod/cen2000/doc/pums.pdf. 
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 Counts of persons in education-experience groups: The counts are calculated in the 
sample of men who do not reside in group quarters, worked at some point in the past year (i.e., 
have a positive value for weeks worked in the period calendar year), are not enrolled in school, 
and are not in the military during the survey week. 

Annual and weekly earnings: We use the sample of men who do not reside in group 
quarters, reported positive weeks worked and hours worked (last week’s hours in 1960 and 1970; 
usual hours in 1980 through 2000), are not in the military in the reference week, and report 
positive earnings. Our measure of earnings is the sum of the IPUMS variables incwage and 
incbusfm in 1960, the sum of incearn, incbus, and incfarm in 1970 and 1980, and is defined by 
incearn in 1990-2000. In the 1960, 1970, and 1980 Censuses, the top coded annual salary is 
multiplied by 1.5. In the 1960 and 1970 Censuses, weeks worked in the calendar year prior to the 
survey are reported as a categorical variable. We imputed weeks worked for each worker as 
follows: 6.5 weeks for 13 weeks or less, 20 for 14-26 weeks, 33 for 27-39 weeks, 43.5 for 40-47 
weeks, 48.5 for 48-49 weeks, and 51 for 50-52 weeks. The average log weekly earnings for a 
particular education-experience cell is defined as the mean of log weekly earnings over all 
workers in the relevant population. 
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Figure 1. Predicted percent bias on estimated wage impact 
of immigration in national labor market 

 

 
Note: The simulation for Canada assumes that the mean immigrant share is 0.2; the variance of the 
immigrant share across national-level labor markets is 0.005; and the R2 of the auxiliary regression is 
0.95. The simulation for the United States assumes that the mean immigrant share is 0.1; the variance of 
the immigrant share across national-level labor markets is 0.004; and the R2 of the auxiliary regression is 
0.95.  
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Table 1. The observed distribution of the immigrant share, national-level analysis 
 
 Statistics 

Canada file 5/100 PUMF 1/100 1/1000 1/10000 
Canada:       

n  30416.3 7000.7 3426.9 1399.8 139.9 14.4 
p  0.191 0.191 0.191 0.191 0.191 0.191 

2
p  0.0050 0.0050 0.0051 0.0051 0.0064 0.0194 

10th percentile 0.123 0.123 0.122 0.122 0.112 0.001 
50th percentile 0.229 0.229 0.228 0.228 0.220 0.193 
90th percentile 0.366 0.365 0.365 0.365 0.388 0.496 

       
United States       

n  --- 47564.3 --- 11746.0 1174.6 117.4 
p  --- 0.077 --- 0.077 0.077 0.077 

2
p  --- 0.0037 --- 0.0037 0.0037 0.0044 

10th percentile --- 0.035 --- 0.035 0.034 0.021 
50th percentile --- 0.070 --- 0.070 0.071 0.070 
90th percentile --- 0.152 --- 0.152 0.162 0.188 

 
Note: The variable n  gives the average number of observations in the education-experience-year cell 

used to calculate the mean immigrant share; p  gives the mean immigrant share across cells; and 2

p  

gives the variance of the immigrant share across cells. All statistics reported in the table, except those 
referring to the Statistics Canada file and the 5/100 U.S. Census, are averages across 500 replications of 
random samples at the given sampling rate. The analysis of the Canadian labor market has 240 cells; the 
analysis of the U.S. labor market has 200 cells. 
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Table 2. Estimated wage impact of immigration, national-level analysis - Canada 
 
 Stat. Can. 5/100 PUMF 1/100 1/1000 1/10000 
Canada:       

1. ̂  -0.507 -0.468 -0.403 -0.342 -0.076 -0.011 

2. Standard error of ̂  0.202 0.196 0.189 0.180 0.191 0.200 

3. Standard deviation of ̂  --- 0.056 0.099 0.119 0.174 0.174 

4. Fraction ̂  significant at:       

    1% level --- 0.308 0.232 0.178 0.018 0.008 
    5% level --- 0.912 0.624 0.458 0.064 0.048 
    10% level --- 0.988 0.820 0.644 0.108 0.074 
5. R2 of auxiliary regression 0.967 0.965 0.960 0.953 0.845 0.590 
6. *  --- -0.505 -0.501 -0.499 -0.466 -0.384 

7. Standard error of *  --- 0.209 0.226 0.241 0.485 1.475 

8. Standard deviation of *  --- 0.049 0.093 0.126 0.405 1.353 

Corrected coefficients:       
9. Back-of-the-envelope -0.520 -0.531 -0.524 -0.638 1.174 0.044 
10. Standard deviation of row 9 --- 0.064 0.132 0.241 15.647 1.652 
11. BBE method -0.530 -0.539 -0.466 -0.680 -0.599 0.308 
12. USSIV method -0.519 -0.515 -0.520 -0.525 0.482 -0.486 
13. Standard deviation of row 12 0.034 0.010 0.211 0.304 18.460 25.475 

       
 
Note: The coefficient ̂  gives the estimated wage impact of immigration; *  gives the coefficient when 
the observed immigrant share is replaced by the immigrant share calculated from the largest file (i.e., the 
Statistics Canada file). The R2 of the auxiliary regression gives the multiple correlation of the regression 
of the immigrant share on all other explanatory variables in the model. The corrected coefficients use the 

methods described in the text to net out the impact of sampling error on ̂ . All statistics reported in the 
table, except those referring to the Statistics Canada file, are averages across 500 replications of random 
samples at the given sampling rate. The analysis of the Canadian labor market has 240 cells. 
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Table 3. Estimated wage impact of immigration, national-level analysis – United States 
 
 
 5/100 1/100 1/1000 1/10000 

1. ̂  -0.489 -0.476 -0.347 -0.082 

2. Standard error of ̂  0.223 0.225 0.247 0.279 

3. Standard deviation of ̂  --- 0.056 0.162 0.227 

4. Fraction ̂  significant at:     

    1% level --- .062 .046 .006 
    5% level --- .706 .212 .042 
    10% level --- .962 .368 .072 
5. R2 of auxiliary regression 0.974 0.973 0.964 0.883 
6. *  --- -0.488 -0.497 -0.498 

7. Standard error of *  --- 0.228 0.291 0.631 

8. Standard deviation of *  --- 0.045 0.171 0.534 

Corrected coefficients:     
9. Back-of-the-envelope -0.496 -0.506 -0.642 5.794 
10. Standard deviation of row 9  0.060 0.320 89.464 
11. BBE method -0.529 -0.446 -0.035 0.089 
12. USSIV method -0.496 -0.496 -0.503 -5.420 
13. Standard deviation of row 12 0.040 0.090 0.371 48.076 
     
 
Note: The coefficient ̂  gives the estimated wage impact of immigration; *  gives the coefficient when 
the observed immigrant share is replaced by the immigrant share calculated from the largest file (i.e., rhe 
5/100 U.S. Census). The R2 of the auxiliary regression gives the multiple correlation of the regression of 
the immigrant share on all other explanatory variables in the model. The corrected coefficients use the 

methods described in the text to net out the impact of sampling error on ̂ . All statistics reported in the 
table, except those referring to the 5/100 U.S. Census, are averages across 500 replications of random 
samples at the given sampling rate. The analysis of the U.S. labor market has 200 cells. 
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Table 4. The observed distribution of the immigrant share, metropolitan area analysis 
 
 Statistics Canada file 5/100 PUMF 1/100 
Canada:     

n  659.5 165.1 83.9 34.1 
p  0.233 0.233 0.233 0.233 

2
p  0.0227 0.0234 0.0245 0.0274 

10th percentile 0.022 0.002 0.000 0.000 
50th percentile 0.178 0.175 0.169 0.157 
90th percentile 0.407 0.427 0.447 0.482 

     
United States:     

n  --- 174.4 --- 35.7 
p  --- 0.103 --- 0.103 

2
p  --- 0.0137 --- 0.0152 

10th percentile --- 0.009 --- 0.000 
50th percentile --- 0.061 --- 0.000 
90th percentile --- 0.247 --- 0.237 

 
Note: The variable n  gives the average number of observations in the city-education-experience-year cell 

used to calculate the mean immigrant share; p  gives the mean immigrant share across cells; and 2

p  

gives the variance of the immigrant share across cells. All statistics reported in the table, except those 
referring to the Statistics Canada file and the 5/100 U.S. Census, are averages across 500 replications of 
random samples at the given sampling rate. The analysis of the Statistics Canada file has 5,360 cells; the 
analysis of the 5/100 U.S. file has 31,472 cells. 
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Table 5. Estimated wage impact of immigration, metropolitan area analysis 
 
 Statistics Canada 5/100 PUMF 1/100 
Canada:     

1. ̂  -0.053 -0.022 -0.012 -0.004 

2. Standard error of ̂  0.037 0.039 0.040 0.042 

3. Standard deviation of ̂  --- 0.032 0.036 0.039 

4. R2 of auxiliary regression 0.982 0.959 0.929 0.864 
Using “large sample” share     

5. *  --- -0.053 -0.055 -0.049 

6. Standard error of *  --- 0.060 0.083 0.127 

7. Standard deviation of *  --- 0.045 0.069 0.115 

Corrected coefficients:     
8. Back-of-the-envelope -0.112 0.328 0.065 0.009 
9. Standard deviation of row 8 --- 0.921 0.196 0.099 
10. BBE method -0.085 -0.015    -0.122 0.086 
11. USSIV method -0.094 -0.076 -0.096 0.962 
12. Standard deviation of row 11 0.067 0.254 0.590 26.536 

     
United States:     

1. ̂  --- -0.050 --- -0.022 

2. Standard error of ̂  --- 0.023 --- 0.023 

3. Standard deviation of ̂  --- --- --- 0.019 

4. R2 of auxiliary regression --- 0.948 --- 0.896 
Using “large sample” share     

5. *  --- --- --- -0.033 

6. Standard error of *  --- --- --- 0.064 

7. Standard deviation of *  --- --- --- 0.045 

Corrected coefficients:     
8. Back-of-the-envelope --- -0.170 --- 0.036 
9. Standard deviation of row 8 --- --- --- 0.031 
10. BBE method --- -0.096 --- -0.082 
11. USSIV method --- -0.072 --- -0.068 
12. Standard deviation of row 11 --- 0.026 --- 0.113 

 
Note: The coefficient ̂  gives the estimated wage impact of immigration; *  gives the coefficient when 
the observed immigrant share is replaced by the immigrant share calculated from the largest file (i.e., the 
Statistics Canada file or the 5/100 U.S. Census). The R2 of the auxiliary regression gives the multiple 
correlation of the regression of the immigrant share on all other explanatory variables in the model. The 

corrected coefficients use the methods described in the text to net out the impact of sampling error on ̂ . 
All statistics reported in the table, except those referring to the Statistics Canada file and the 5/100 U.S. 
Census, are averages across 500 replications of random samples at the given sampling rate. The analysis 
of the Statistics Canada file has 5,360 cells; the analysis of the 5/100 U.S. file has 31,472 cells. 
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Table 6. Sensitivity of first-stage coefficient in IV regression model 
 
 Stat. Can. 5/100 PUMF 1/100 1/1000 1/10000 
Canada:       
National level       

̂  0.258 0.207 0.155 0.054 -0.175 -0.224 

Standard error 0.085 0.089 0.093 0.100 0.102 0.111 
Pr(F > 10) 0.000 0.042 0.016 0.002 0.078 0.158 

*
1

ˆ( , )t tp    --- 0.256 0.258 0.261 0.245 0.206 

*
1

ˆ( , )t tp    --- 0.231 0.201 0.149 0.029 0.003 

Metropolitan area       

̂  0.121 -0.081 -0.130 -0.188 -0.234 -0.304 

Standard error 0.026 0.022 0.021 0.021 0.039 0.434 
Pr(F > 10) 1.000 0.762 1.000 1.000 1.000 0.006 

*
1

ˆ( , )t tp    --- 0.123 0.124 0.133 0.214 0.342 

*
1

ˆ( , )t tp    --- 0.049 0.026 0.012 0.003 0.001 

       
United States       
National level       

̂  --- 0.464 --- 0.433 0.165 -0.135 

Standard error --- 0.218 --- 0.219 0.197 0.134 
Pr(F > 10) --- 0.000 --- 0.000 0.004 0.028 

*
1

ˆ( , )t tp    --- --- --- 0.464 0.457 0.453 

*
1

ˆ( , )t tp    --- --- --- 0.445 0.266 0.054 

Metropolitan area       

̂  --- -0.108 --- -0.371 --- --- 

Standard error --- 0.022 --- 0.017 --- --- 
Pr(F > 10) --- 1.000 --- 1.000 --- --- 

*
1

ˆ( , )t tp    --- --- --- -0.089 --- --- 

*
1

ˆ( , )t tp    --- --- --- -0.033 --- --- 

 
Note: The coefficient ̂  and “standard error” give the estimated coefficient and standard error from the 
regression of the immigrant share on the lagged immigrant share; Pr(F > 10) gives the probability that the 
F-statistic associated with this coefficient exceeds 10 under the null that the population coefficient equals 

zero; *

1
ˆ( , )t tp    is the coefficient from the regression of the observed immigrant share on the lagged 

“true” share calculated in the largest available sample; and *

1
ˆ( , )t tp    gives the coefficient from the 

regression of the true immigrant share on the lagged observed share. All statistics, except those referring 
to the Statistics Canada file and the 5/100 U.S. Census, are averages across 500 replications of random 
samples at the given sampling rate. The analysis of the Statistics Canada file has 160 cells in the national-
level analysis and 4,288 cells in the metropolitan area analysis. The analysis of the 5/100 U.S. Census file 
has 160 cells at the national-level and 17,510 cells at the metropolitan area level. 


