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In the absence of arbitrage, the fundamental equation of asset pricing states that the

expected time- and risk-adjusted cumulative return on any asset equals one at all horizons.

This paper arrives at, and then interprets, an apparently paradoxical result: for a typical

asset, the realized time- and risk-adjusted cumulative return tends to zero with probability

one.

The objects of interest are the martingale Xt ≡M1R1 · · ·MtRt, and the random variable

X∞ ≡ limt→∞Xt. (Mt is a stochastic discount factor that prices payoffs at time t from the

perspective of time t − 1; Rt is the gross return on some arbitrary asset from time t − 1

to time t.) The fundamental asset-pricing equation—Et−1MtRt = 1—implies that EXt = 1

for all finite t, so it is natural to expect that EX∞ = 1, too. It turns out that this may

or may not be true; typically, in fact, it is not, and when it is not, X∞ = 0.1 I provide a

variance criterion that dictates whether an asset is “typical” in this sense.

Where, then, do such assets get their long-run value—their EXt = 1—from? I show

that when X∞ = 0, Xt occasionally experiences enormous explosions that can be attributed

to some combination of high M1 · · ·Mt and high R1 · · ·Rt. The former possibility can be

thought of as “bad news” at the aggregate level, and the latter as asset-specific “good news”.

It is important to emphasize that the existence and importance of such events emerge from

the logic of arbitrage-free pricing alone. I neither assume nor exclude the possibility of, say,

jumps in asset returns.

The following simple (and well-known) example shows what is going on. Suppose that

there is a riskless asset with certain return Rf,t ≡ erf and a risky asset with return Rt ≡

eµ−σ
2/2+σZt , where Zt is standard Normal. Mt ≡ e−rf−λ

2/2−λZt is a valid SDF, where λ is

the Sharpe ratio (µ− rf )/σ, so Xt = e−(λ−σ)(Z1+···+Zt)−(λ−σ)2t/2.

Setting σ = 16% and λ = 50%, Figure 1a plots 400 sample paths of Xt over a 250 year

horizon. Each sample path starts from X0 = 1. Figure 1b shows the same 400 sample paths

plotted on a log scale. Together, the figures illustrate the main results of the paper. First,
1This statement holds with probability one, or almost surely. Throughout the paper, I drop such quali-

fications in the interest of readability.
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Figure 1: 400 sample paths of Xt, plotted against time, over a 250-year horizon.

despite the fact that EXt = 1 for all t, just two of the 400 sample paths lie above 1 after 250

years. (If the plot were extended, we would see that these paths, too, eventually tend to zero.

In the population, the median value of Xt after 250 years is e−(0.50−0.16)2×250/2 < 10−6.)

Second, this tendency for Xt to approach zero along sample paths is counterbalanced by

occasional explosions in Xt: one sample path rises above 1400. The two figures together

illustrate the principle that in the long run, extreme events are the dominant influence on

asset prices. Third, the empirical fact that Sharpe ratios are high—λ > σ—means that in

this example explosions in Xt can be attributed to very negative realizations of Z1+· · ·+Zt,

and hence to explosions in M1 · · ·Mt, that is, to extremely bad news.

In this i.i.d.-lognormal example, the fact that Xt → 0 can be seen as reflecting special

properties of Brownian motion. In contrast, I need to impose almost no mathematical

structure to derive the main results of this paper, which are presented in Sections 1 and 2.

These rest only on a no-arbitrage assumption that leads naturally (in view of Harrison and

Kreps (1979)) to the application of martingale methods.

With some extra structure—a conditional lognormality assumption—I am able to show,

in the case of the aggregate market, that explosions in Xt can be attributed to bad news,

by invoking the empirical fact that the market has a high Sharpe ratio. I also provide a

result that characterizes when such explosions can be attributed to bad news in the general

case, though the result requires imposition of structure of a different kind, in the shape of
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a function, κ, that is introduced in Section 3.

My approach is complementary to that of Hansen and Scheinkman (2009), who inves-

tigate long-run risk-return relationships in a somewhat more structured (continuous-time,

Markov) environment. The two papers focus on quite distinct objects of interest: eigen-

function decompositions as a means of characterizing long-run discount rates in the case of

Hansen and Scheinkman (2009), and the importance of rare events and the “edges” of the

distribution of sample paths in the case of this paper.

There is also a link to the literature on equivalent martingale measures (Dalang, Morton

and Willinger (1990), Schachermayer (1992)). When X∞ = 0, an equivalent martingale

measure does not exist, even if there is no arbitrage. The results of this paper attempt to

demonstrate what this means in economic terms.

The principle that the value of a long-dated asset may be dictated by extreme outcomes

is also explored by Weitzman (1998, 2009) and Gollier (2002) in the context of long-run

interest rates and of cost-benefit analyses of environmental projects with payoffs in the

distant future. In response, Nordhaus (2009) has suggested that Weitzman’s (2009) logic

rests on rather special assumptions about functional forms—notably on the properties of

utility functions near zero and on the distribution of “consumption” (to be understood

broadly) in the left tail. The present paper attempts to place the Weitzman argument on a

more general footing, based on very weak assumptions, that is immune to these criticisms.

1 An apparent paradox. . .

Time is discrete; today is time 0. Consider a sequence of gross returns, Rt, on some limited-

liability asset or investment strategy, and suppose that there is no arbitrage. For t > 0,

we can therefore define Mt to be a stochastic discount factor (SDF) which prices payoffs at

time t from the perspective of time t− 1 (Harrison and Kreps (1979), Hansen and Richard

(1987)). Then we have

Mt > 0, Rt ≥ 0, and Et−1 (MtRt) = 1 for all t. (1)
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Mt and Rt are random variables that only become known at time t.

Define the risk-adjusted return Xt, t = 1, 2, 3, . . ., by

Xt ≡M1R1 ·M2R2 · . . . ·MtRt.

It follows from (1) that EXt = 1 for all t. Moreover, Xt is a non-negative martingale,

because

Et−1Xt = Et−1 (M1R1 · · ·MtRt)

= M1R1 · · ·Mt−1Rt−1 Et−1 (MtRt)

= M1R1 · · ·Mt−1Rt−1

= Xt−1.

As a result, the random variable

X∞ ≡ lim
t→∞

Xt = lim
t→∞

M1R1 ·M2R2 · . . . ·MtRt

almost surely exists and is finite, by the martingale convergence theorem of Doob (1953,

p. 319). It is tempting to argue that

EX∞ = E lim
t→∞

Xt
?= lim
t→∞

EXt = lim
t→∞

1 = 1,

but, as I now show, the interchange of expectation and limit is not valid in general. The

following two Propositions introduce and interpret the variance criterion2

∞∑
t=1

vart−1

√
MtRt.

Proposition 1. If
∑

vart−1

√
MtRt =∞, then X∞ = 0.

If
∑

vart−1

√
MtRt < K, for some constant K <∞, then EX∞ = 1.

2Since the variance criterion is a sum of conditional variances, it is a random variable. Therefore the

two cases (i)
P

vart−1

√
MtRt = ∞ and (ii)

P
vart−1

√
MtRt < K, for some constant K < ∞—should be

understood to hold almost surely, as stated in footnote 1.
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Proof. Let at ≡ Et−1

√
MtRt. By the absence of arbitrage, Et−1MtRt = 1, so the conditional

form of Jensen’s inequality implies that at ≤ 1. Also, we trivially have at > 0. Define the

random variables

Yt =
√
M1R1

a1

√
M2R2

a2
· · ·
√
MtRt
at

;

Yt is then a martingale.

Suppose, first, that
∑

vart−1

√
MtRt =∞ almost surely; equivalently,

∑(
1− a2

t

)
=∞.

It follows, by a standard result—see, for example, Theorem 15.5 of Rudin (1987, p. 300)—

that
∏
a2
t = 0, and hence

∏
at = 0. (Conversely, if

∑(
1− a2

t

)
< K for some finite constant

K, then
∏
a2
t > δ, for some δ > 0. This fact is used below.) By the martingale convergence

theorem, Yt almost surely has a finite limit Y∞. But since Y∞ =
√
X∞/

∏
at, and

∏
at = 0,

it must be the case that X∞ = 0.

Alternatively, suppose that (almost surely)
∑

vart−1

√
MtRt < K, for some constant

K < ∞; equivalently,
∑(

1− a2
t

)
< K. So

∏
a2
t > δ, for some δ > 0. We then have

EY 2
t ≤ 1/δ <∞, so the martingale Yt is uniformly bounded in second moment. As a result,

E
(

max
t
Xt

)
≤ E

(
max
t
Y 2
t

)
≤ 4 max

t
E
(
Y 2
t

)
<∞,

the second inequality being the L 2 inequality of Doob (1953, p. 317). The random variable

maxtXt is therefore integrable. Since maxtXt dominates Xt, it follows that Xt is uniformly

integrable, so EX∞ = 1 (and we also have E maxXt <∞).

In the above proof, I have adapted the treatment of a result of Kakutani (1948) given

by Williams (1995) by generalizing to allow for the empirically relevant case in which asset

returns and the stochastic discount factor can be serially dependent.3

3This modification is not completely costless, since it comes at the expense of a mathematically less

elegant result: in the serially independent case, the variance criterion is a real number rather than a random

variable (since the conditional variances are variances) so the two alternatives—(i)
P

vart−1

√
MtRt =∞ or

(ii)
P

vart−1

√
MtRt < K, for some constant K <∞—capture all the possibilities, and the above result is a

dichotomy. In the serially dependent case, on the other hand, other theoretical possibilities arise: it is possible

to construct examples in which, say,
P

vart−1

√
MtRt = ∞ with probability 0.5 and

P
vart−1

√
MtRt < K

with probability 0.5, though such examples do not appear to be relevant in practice.
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To interpret the result, note that we only have
∑

vart−1

√
MtRt <∞ if the conditional

variance of
√
MtRt declines rapidly to zero as t → ∞: in other words, if MtRt is roughly

constant for large t. The following result makes this idea precise.

Proposition 2. For
∑

vart−1

√
MtRt = ∞, it is sufficient (though not necessary) that

MtRt 6→ 1.

Proof. I will prove that whenever
∑

vart−1

√
MtRt < ∞, we have MtRt → 1; the result

follows. Suppose, then, that
∑

vart−1

√
MtRt <∞. By the conditional form of Chebyshev’s

inequality,

Pt−1

(∣∣∣√MtRt − Et−1

√
MtRt

∣∣∣ ≥ ε) ≤ vart−1

√
MtRt

ε2

for arbitrary ε > 0, so

∞∑
t=1

Pt−1

(∣∣∣√MtRt − Et−1

√
MtRt

∣∣∣ ≥ ε) ≤ ∑∞t=1 vart−1

√
MtRt

ε2
<∞.

By the generalized Borel-Cantelli lemma (see, for example, Neveu (1975, p. 152)), it follows

that
∣∣√MtRt − Et−1

√
MtRt

∣∣ < ε for all sufficiently large t. Since ε > 0 was arbitrary, we

have established that √
MtRt − Et−1

√
MtRt → 0. (2)

Furthermore, if
∑

vart−1

√
MtRt <∞, we have

∏
Et−1

√
MtRt > 0 so, since Et−1

√
MtRt ≤

1, we must have

Et−1

√
MtRt → 1. (3)

(If not, it would have to be the case that for infinitely many t, Et−1

√
MtRt < 1 − δ

for some δ ∈ (0, 1), and hence
(
Et−1

√
MtRt

)2
< 1 − 2δ + δ2 < 1 − δ. But this im-

plies that vart−1

√
MtRt > δ for infinitely many t, which contradicts the assumption that∑

vart−1

√
MtRt <∞.)

It follows from (2) and (3) that
√
MtRt → 1, and hence MtRt → 1.

To understand Proposition 2, suppose that there is an SDF M∗t and return R∗t such

that M∗t R
∗
t = 1. Applying Jensen’s inequality to the fundamental asset pricing equation
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Et−1M
∗
t Rt = 1, for some arbitrary return Rt, we find that Et−1 logRt ≤ Et−1 log (1/M∗t ) =

Et−1 logR∗t . That is, R∗t is the growth-optimal return with maximal expected log return.

Moreover, we see that M∗t is a special SDF, namely the reciprocal of the growth-optimal

return (Long (1990)).4

Proposition 2 can therefore be interpreted as saying that if either the returns Rt are not

asymptotically growth-optimal or the SDF Mt is not asymptotically the reciprocal of the

growth-optimal return—or both—then X∞ = 0.5 This justifies the following terminology:

Definition 1. We are in the generic case if Rt is not asymptotically growth-optimal or Mt

is not asymptotically the reciprocal of the growth-optimal return, or both.

In the generic case, then, X∞ = 0. We are left with an apparent paradox. If such

an asset’s risk-adjusted return Xt tends to zero almost surely, where does its value—its

EXt = 1—come from? Why isn’t it cheaper?

2 . . . and its resolution

The next result provides a resolution to this apparent paradox by expressing a sense in

which such an asset’s value can be attributed to outcomes in which Xt explodes.

4To see that this is an SDF, suppose that there are N assets with returns R
(i)
t , i = 1, . . . , N . The

growth-optimal portfolio is obtained by picking αi, i = 1, . . . , N to solve

max
{αi}

E log
X

αiR
(i)
t s.t.

X
αi = 1 .

The first-order conditions are that, for each i,

E R
(i)
tP

αjR
(j)
t

= λ .

Multiplying both sides of this equation by αi and summing over i, we find λ = 1, so

E R
(i)
tP

αjR
(j)
t

= 1 for all i ,

which exhibits 1/
P
αjR

(j)
t = 1/R∗t as a valid SDF.

5As a theoretical matter, even if MtRt → 1 we may have
P

vart−1

√
MtRt = ∞, and hence X∞ = 0, if

the convergence takes place sufficiently slowly. Thus my terminology is conservative.

8



Proposition 3. In the generic case, in which X∞ = 0, we have

E maxXt =∞ and E [Xt log (1 +Xt)]→∞ as t→∞. (4)

In the non-generic case with EX∞ = 1, we have

E maxXt <∞ (5)

and the following partial converse to the second part of (4): if MtRt is bounded, uni-

formly in t, by some constant (which holds if, for example, the state space is finite) then

E [Xt log (1 +Xt)] remains bounded as t→∞.

Proof. Inequality (5) was shown in the course of the proof of Proposition 1. Similarly, the

first part of (4) must hold because otherwise Xt would be uniformly integrable and we

would have EX∞ = 1.

Next, since f(x) ≡ (x log x)+ is a convex function,6 (Xt logXt)+ is a submartingale by

Jensen’s inequality, so max E (Xt logXt)+ = limt→∞ E (Xt logXt)+. But then, by Proposi-

tions IV-2-10 and IV-2-11 of Neveu (1975), the second part of (4) and its partial converse

hold with E
[
(Xt logXt)+

]
replacing E [Xt log (1 +Xt)].

It remains to be shown that lim E [Xt log (1 +Xt)] is infinite iff lim E
[
(Xt logXt)+

]
is

infinite. But this follows from the observation that when Xt ≥ 1,

Xt logXt ≤ (1 +Xt) log (1 +Xt) ≤ 2Xt log (2Xt) ,

together with the fact that E log (1 +Xt) ≤ EXt = 1, since log(1 + x) ≤ x.

The two results in (4) are to be contrasted with the fact that EXt = 1 for all t. Since

log (1 +Xt) grows very slowly with Xt, the fact that EXt log(1 + Xt) tends to infinity in

the generic case indicates that Xt is enormous in some states of the world. (For example,

it implies that for any ε > 0, EX1+ε
t →∞.)

The next Proposition considers the probability that maxXt exceeds some large number

N . It places tight bounds on the rate at which this probability declines as N increases.

Such events are rare, but not—in the generic case—very rare.
6I am using the notation x+ ≡ max {x, 0}.
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Proposition 4. In either case, large values of maxXt are rare, in the sense that for any

N > 0,

P (maxXt ≥ N) ≤ 1
N
. (6)

In the generic case, this result is sharp, in the sense that for any ε > 0 we can find

arbitrarily large N such that

P (maxXt ≥ N) >
1

N1+ε
.

Proof. Applying the submartingale inequality of Doob (1953, p. 314) to Xt, we have N ·

P (maxt≤T Xt ≥ N) ≤ EXT = 1, so

P
(

max
t≤T

Xt ≥ N
)
≤ 1
N
.

Now, since

1
[
max
t≤T

Xt ≥ N
]
↑ 1
[
max
t
Xt ≥ N

]
as T ↑ ∞,

the first statement follows from the monotone convergence theorem.

Suppose the second statement were false. Then there is an ε > 0 (to be thought of as

small) and C > 1 (to be thought of as large) such that P (maxXt ≥ N) ≤ 1/N1+ε for all

N ≥ C. Since maxXt is positive, we would then have

E maxXt =
∫ ∞

0
P (maxXt ≥ N) dN

=
∫ C

0
P (maxXt ≥ N) dN +

∫ ∞
C

P (maxXt ≥ N) dN

≤ C +
∫ ∞
C

1
N1+ε

dN

< ∞,

in contradiction with Proposition 3.

As a corollary of Propositions 3 and 4, Monte Carlo pricing of a long-dated asset may

provide an unreliable indication of the asset’s value, as this largely depends on states of the
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world that occur with very low probability. Ignoring, or failing to sample, such states of

the world will lead to underpricing of the asset in question: in the case of long-term bonds,

the tendency will be to overestimate long-run interest rates.

We have seen that Xt → 0 in the generic case. How fast does convergence take place?

To answer this question, it is convenient to introduce stochastic order notation.7

Definition 2. Consider a sequence of random variables Zt. We write Zt = Op(1) if for

any ε > 0 there exists a constant N such that

sup
t

P (|Zt| > N) < ε,

and Zt = Op(Wt)—“Zt is of the same order of magnitude as Wt”—if Zt/Wt = Op(1).

For example, the central limit theorem implies that for i.i.d. random variables Ki with

zero mean and finite variance,

1
t

t∑
i=1

Ki = Op(1/
√
t),

which conveys the idea that the sample mean converges to the population mean at rate
√
t.

Proposition 5. Recall the definition ak ≡ Ek−1

√
MkRk. We have

Xt = Op

(
t∏

k=1

a2
k

)
.

Proof. In the proof of Proposition 1, I defined the non-negative martingale

Yt =
√
M1R1

a1

√
M2R2

a2
· · ·
√
MtRt
at

,

which has the almost-sure limit Y∞ by the martingale convergence theorem. So,

Xt

t∏
1

a2
k

=
M1R1 · · ·MtRt

t∏
1

a2
k

→ Y 2
∞,

where convergence is almost-sure; and hence also convergence takes place in distribution.

The result follows from Prohorov’s theorem.
7See van der Vaart (1998, pp. 12–13) for further details.
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To take a simple example, consider an i.i.d. economy, and suppose that the asset of

interest is not growth-optimal, so Et−1

√
MtRt equals some constant e−δ < 1 for all t. Then

Xt = Op
(
e−2δt

)
: convergence takes place exponentially fast.

3 How do extreme events take place?

In full generality, we have seen that for generic assets, X∞ = 0, an apparently paradoxical

result reconciled by the fact that E maxXt =∞. That is, there are rare states of the world

in which Xt is enormous. In such states, we have

M1R1 ·M2R2 · · ·MtRt very large,

and so we must have some combination of large M1 · · ·Mt and large R1 · · ·Rt. The former

possibility, large M1 · · ·Mt, corresponds roughly to the realization of a disastrously bad

state of the world. In a consumption-based model with time-separable utility, for example,

M1 · · ·Mt is large when marginal utility at time t is high. The latter possibility, large

R1 · · ·Rt, corresponds to a particularly favorable return realization for the asset in question.

To get more intuition for what happens in specific model economies, it is instructive to

explore two simple examples that are in a sense polar opposites. For simplicity, I suppose

in each case that there is a riskless asset whose return is constant over time.

First, consider a risk-neutral economy. Any asset that is not asymptotically riskless is

generic, and the preceding results imply that returns on such assets satisfy

R1 · · ·Rt
Rtf

→ 0 and E max
R1 · · ·Rt
Rtf

=∞.

Since M1 · · ·Mt = 1/Rtf is deterministic, the rare explosions that drive the second result can

only be attributed to occasional explosions in R1 · · ·Rt. That is, in a risk-neutral economy,

the pricing of risky assets is driven by occasional bonanzas: low-probability events in which

R1 · · ·Rt becomes very large.

For the second example, take an economy in which Mt is a nondegenerate random

variable for all t, and consider the pricing of an “insurance” asset whose return Rt is a
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nondecreasing function of Mt. (If the riskless rate is constant then the riskless asset is

an insurance asset, for example.) Then, M1R1 · · ·MtRt can only explode at times when

M1 · · ·Mt explodes, so the pricing of long-dated insurance assets is driven by extreme bad

news. This is a more general version of Weitzman’s (1998) logic.

What can we say in the case of the aggregate market? From the Hansen-Jagannathan

(1991) bound, combined with high available Sharpe ratios and a low riskless rate, it follows

that σ(M) is large relative to the volatility of the market, σ(R). By imposing some more

structure on the economy, in the form of a conditional lognormality assumption, we can use

this observation to argue that explosions in Xt must be due to explosions in M1 · · ·Mt, and

hence to “bad news”. It turns out that the critical condition that implies that explosions in

Xt correspond to bad news is that the Sharpe ratio of the market is higher than its volatility.

In the data, the Sharpe ratio of the market is on the order of 50% while its volatility is on

the order of 16%, so this seems an innocuous assumption.

Proposition 6. Suppose that the market return Rt ≡ eµt−1−σ2
t−1/2+σt−1Zt is condition-

ally lognormal, and that there is a riskless asset with return Rf,t ≡ erf,t. Then Mt ≡

e−rf,t−λ
2
t−1/2−λt−1Zt is a valid SDF, where λt ≡ (µt − rf,t+1)/σt is the Sharpe ratio on the

market. Finally, suppose that the market Sharpe ratio and volatility satisfy λt > σt + ε

almost surely, for some ε > 0.

Then we are in the generic case, so X∞ = 0 and E maxtXt = ∞. Moreover, long-run

pricing is driven by the possibility of extremely bad outcomes, in the sense that explosions

in Xt are driven by explosions in M1 · · ·Mt.8

Proof. We have MtRt = e−(λt−1−σt−1)Zt−(λt−1−σt−1)2/2, so the variance criterion is

∑
vart−1

√
MtRt =

∑(
1− e−(λt−1−σt−1)2/4

)
.

Since λt − σt > ε, the variance criterion is infinite, so without specifying anything further

about the properties of λt−1 and σt−1, we have X∞ = 0. (In practice, we might want λt−1

8The appendix extends this result to allow for multiple risk factors Zj,t, j = 1, . . . , N .
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and σt−1 to be high following realizations of Zt−1 or σt−2Zt−1 that are negative and large

in absolute value.)

By Proposition 3, we also have E maxXt = ∞. Since λt−1 − σt−1 > 0, MtRt is large

only if Zt is negative, so explosions in Xt correspond unambiguously to bad news at the

aggregate level (high M1 · · ·Mt) rather than good news at the idiosyncratic level (high

R1 · · ·Rt). That is, pricing is driven by the possibility of extremely bad outcomes.9

The simplicity of the above result is largely due to the assumption of conditional log-

normality, which amongst other things implies that the higher (conditional) cumulants10 of

logM and logR are zero. With non-zero higher cumulants, things become more compli-

cated: it is possible to construct example economies in which (say) M is bounded, while

period returns R have a small amount of weight in the extreme right tail, in such a way

that σ(M) is large (so the maximal Sharpe ratio is high) and σ(R) relatively small, and

yet explosions in M1R1 · · ·MtRt are due to right-tail events in which R1 · · ·Rt explodes.

The goal of the remainder of this section is to refine this intuition, and to develop sufficient

conditions that determine whether or not “explosions in Xt are driven by bad news” for a

given parametric model, by using the theory of large deviations (and, more specifically, the

Gärtner-Ellis theorem).

A natural metric for the extent to which explosions in Xt reflect bad news rather than

good news is the conditional probability that M1 · · ·Mt > eψt, conditional on the event

that Xt > eφt. (Here φ and ψ are fixed growth rates and t is some large time.) Using the

notation

Pt(φ, ψ) ≡ P
(
M1 · · ·Mt > eψt

∣∣M1R1 · · ·MtRt > eφt
)
,

we can say that bad news dominates consideration in the long run if Pt(φ, ψ)→ 1 as t→∞.

For fixed φ, this criterion is more (less) stringent if ψ is high (low).
9In the model of Campbell and Cochrane (1999), for example, the conditional standard deviation of the

market return is not provided in closed form, but Figures 5 and 6 of the paper suggest that λt−1−σt−1 > 0.
10By higher cumulants, I mean the third, fourth, fifth (etc) cumulants. See Backus, Foresi and Telmer

(2001), Martin (2009), and Backus, Chernov and Martin (2009) for more on cumulants.
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Some notation: let

κ(θM , θR) ≡ lim
t→∞

1
t

log E
[
(M1 · · ·Mt)

θM (R1 · · ·Rt)θR
]
. (7)

I assume that κ(θM , θR) is finite and continuously differentiable for all θM , θR ∈ R, and

write κM (·, ·) and κR(·, ·) for the partial derivatives of κ with respect to its first and second

argument, respectively. If the vectors (logMt, logRt) are i.i.d. for all t, then the definition

(7) reduces to κ(θM , θR) = log E
(
M θM

1 RθR1

)
, so κ(·, ·) is the cumulant-generating function

of the random vector (logMt, logRt).

Proposition 7. Let θ∗M and θ∗R solve the equations

κM (θ∗M , θ
∗
R) = ψ

κR(θ∗M , θ
∗
R) = φ− ψ .

Then Pt(φ, ψ)→ 1 as t→∞ if θ∗M < θ∗R and Pt(φ, ψ)→ 0 as t→∞ if θ∗M > θ∗R.

Proof. See appendix.

To link this result to the earlier results of this section, consider the simple special case in

which κ(θM , θR) = µMθM +µRθR+σMMθ
2
M/2+σMRθMθR+σRRθ2

R/2. This case arises if—

but not only if11—the vector (logMt, logRt) is i.i.d. bivariate Normal with mean (µM , µR)

and covariance matrix ( σMM σMR
σMR σRR ). By Proposition 7, Pt(φ, ψ)→ 1 if(
σMM + σMR

σMM + 2σMR + σRR

)
φ− µR − σRR/2− σMR/2 > ψ .

Fixing ψ > 0, this inequality is satisfied for sufficiently large φ, so long as

σMM + σMR > 0. (8)

In the “insurance asset” case, (8) holds because σMR ≥ 0. For risky assets with σMR < 0,

(8) may still hold if σMM is sufficiently large relative to σRR: in the case considered in the

introduction, for example, (8) is equivalent to λ > σ.
11Very roughly, the assumption is that the economy looks lognormal over long time periods.
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4 Applications

I now present two examples to illustrate the applicability of these results.

4.1 A generalization of a traditional result

Suppose that the SDF is the reciprocal of the growth-optimal return, Mt = 1/R∗t , but that

Rt is not asymptotically growth-optimal. Then MtRt 6→ 1; this is an example of the generic

case.

In this context, Proposition 1 amounts to the statement that R1 · · ·Rt/(R∗1 · · ·R∗t )→ 0

as t→∞: with probability one, the growth-optimal portfolio outperforms any non-growth-

optimal portfolio by an arbitrary amount in the long run. It can therefore be thought of as

extending the traditional results of Latané (1959), Samuelson (1971) and Markowitz (1976)

to the non-i.i.d. case. Of greater interest, it demonstrates that these traditional results

can be extended to SDFs Mt 6= 1/R∗t . This is important because it is often desirable to

work with SDFs that are more easily interpretable than 1/R∗t—for example, with SDFs

proportional to the marginal value of wealth.

We also have a new result: E max [R1 · · ·Rt/(R∗1 · · ·R∗t )] = ∞. In the short run, the

growth-optimal portfolio can hugely underperform. The probability of N -fold underperfor-

mance is at most 1/N ; on the other hand, for any ε > 0 we can find large N such that the

probability of N -fold underperformance is at least 1/N1+ε.

4.2 The consumption path of a utility-maximizing investor

Suppose that there is an unconstrained investor in the economy who maximizes E
∑
βtu(Ct)

for some concave, differentiable utility function u(·) and subjective discount factor β. The

investor’s marginal rate of substitution is then a valid SDF, and the above results imply

that in the generic case,

βt
u′(Ct)
u′(C0)

R1 · · ·Rt → 0 (9)
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and yet

E max
[
βt
u′(Ct)
u′(C0)

R1 · · ·Rt
]

=∞. (10)

For these equations to hold when applied to a riskless asset with time-t return Rf,t, for ex-

ample, it is enough that pricing is not asymptotically risk-neutral, so MtRf,t 6→ 1. Suppose

that this is so, and that the riskless rate is constant, Rf,t = Rf . Furthermore, suppose the

investor is sufficiently patient that βRf ≥ 1. Then (9) implies that

u′(Ct)→ 0.

In particular, if u(·) satisfies the Inada conditions, then consumption tends to infinity

in the long run. This is a result of Chamberlain and Wilson (2000): here, though, the

result emerges as a special case of the more general results presented previously. Moreover,

the observation that almost sure convergence to zero is inextricably linked with occasional

explosions in Xt appears to be new.12

Conversely, if the investor is impatient, with βRf ≤ 1, then (10) implies that E [maxu′(Ct)] =

∞, or equivalently—assuming u′′ < 0—that E [u′(minCt)] =∞.

5 Conclusion

The absence of arbitrage implies that expected risk-adjusted returns on all assets equal

one at all horizons. Proposition 1 provides a variance criterion that determines whether the

realized risk-adjusted return on an asset tends to zero. Proposition 2 demonstrates that this

is the relevant case unless (i) the asset is asymptotically growth-optimal and (ii) the SDF is

asymptotically the reciprocal of the growth-optimal return. These apparently paradoxical

findings are resolved by the fact that realized risk-adjusted returns explode (Proposition

3) occasionally (Proposition 4). Proposition 5 characterizes the speed of convergence of

risk-adjusted returns.
12We can also strengthen the finding that u′(Ct) → 0 by applying (9) to the growth-optimal asset, to

conclude that βtR∗1 · · ·R∗tu′(Ct)→ 0. This is stronger because R∗1 · · ·R∗t /Rtf →∞, so βtR∗1 · · ·R∗t →∞.
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In general, then, as a theoretical matter, explosions in risk-adjusted returns can be at-

tributed either to spectacular outperformance of the asset in question, or to disastrously

bad news at the aggregate level. I couple this observation with the empirical fact that

the market has a high Sharpe ratio to argue that disasters are the relevant consideration

in practice. As a corollary, cost-benefit analyses of long-dated assets, such as the payoffs

to environmental projects, should pay special attention to worst-case scenarios; calcula-

tions based on back-of-the-envelope logic, or on small Monte-Carlo exercises, are likely to

underestimate the value of such projects.
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Latané, H. A. (1959), “Criteria for Choice Among Risky Ventures,” Journal of Political Economy,

67:2:144–155.

Long, J. B. (1990), “The Numeraire Portfolio,” Journal of Financial Economics, 26:29–69.

Markowitz, H. M. (1976), “Investment for the Long Run: New Evidence for an Old Rule,”

Journal of Finance, 31:5:1273–1286.

Martin, I. W. R. (2009), “Consumption-Based Asset Pricing with Higher Cumulants,” Stanford

GSB working paper.

Neveu, J. (1975), Discrete-Parameter Martingales, trans. T. P. Speed, North-Holland, Amster-

dam.

Nordhaus, W. D. (2009), “An Analysis of the Dismal Theorem,” working paper, Yale University.

Samuelson, P. A. (1971), “The ‘Fallacy’ of Maximizing the Geometric Mean in Long Sequences

of Investing or Gambling,” Proceedings of the National Academy of Sciences of the United States of

America, 68:10:2493–2496.

Schachermayer, W. (1994), “Martingale Measures for Discrete-Time Processes with Infinite Hori-

zon,” Mathematical Finance, 4:1:25–55.

van der Vaart, A. W. (1998), Asymptotic Statistics, Cambridge University Press, UK.

Weitzman, M. L. (1998), “Why the Far-Distant Future Should Be Discounted At Its Lowest

Possible Rate,” Journal of Environmental Economics and Management, 36:201–208.

Weitzman, M. L. (2009), “On Modeling and Interpreting the Economics of Catastrophic Climate

Change,” Review of Economics and Statistics, 91:1:1–19.

Williams, D. (1995), Probability with Martingales, Cambridge University Press, Cambridge, UK.

19



A Appendix

A.1 Extension of Proposition 6 to the N-factor case

Suppose that the asset of interest loads on multiple conditionally Normal risk factors Zj,t,

indexed by j = 1, . . . , N . Suppose, for example, that

Rt = exp
{
µt−1 + β′t−1Zt − (1/2)β′t−1V t−1βt−1

}
,

where Zt = (Z1,t, . . . , ZN,t) is a vector of risk factors with conditional covariance matrix

V t, and βt−1 = (β1,t−1, . . . , βN,t−1) is a vector of loadings on the N risk factors at time

t − 1. I assume that the signs on factors are chosen so that βj,t > 0 for all j and t, so a

large positive value of Zj,t is always good news for the asset.13 I subtract off the variance

term in the exponential so that Et−1Rt = eµt−1 . For simplicity, suppose also that there is a

riskless asset with return Rf,t = erf,t .

Writing λt−1 = (λ1,t−1, . . . , λN,t−1) for the vector of risk prices, the SDF

Mt = exp
{
−rf,t − λ′t−1Zt − (1/2)λ′t−1V t−1λt−1

}
,

is valid so long as the risk premium, the price of risk, λt−1, and the quantity of risk,

V t−1βt−1, are linked by the relationship µt−1 − rf,t = β′t−1V t−1λt−1. It follows that

MtRt = exp
{
−
(
λt−1 − βt−1

)′
Zt − (1/2)

(
λt−1 − βt−1

)′
V t−1

(
λt−1 − βt−1

)}
.

So, if λj,t−1−βj,t−1 is almost surely positive (respectively, negative) then factor j is impor-

tant in the long run due to the possibility of long sequences of negative Zj,t, representing

disasters (respectively, positive Zj,t, representing bonanzas).

In the two-beta model of Campbell and Vuolteenaho (2004), two factors drive market

returns: Z1,t = NCF,t “cashflow news” and Z2,t = −NDR,t “discount-rate news”. In my

notation, the market return has unit loading on each factor, so βCF,t = βDR,t = 1. Equation

(8) of Campbell and Vuolteenaho’s paper expresses the fact that the price of cashflow
13The loss of generality here—the asset’s factor loading cannot change sign over time—simplifies subse-

quent interpretation.
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news risk, λCF,t, equals the coefficient of risk aversion, γ, while the price of discount-rate

news risk, λDR,t, is equal to one. Thus, whenever risk aversion is greater than one, so

λCF,t − βCF,t = γ − 1 > 0, the dominant concern in the long run is the possibility of

cashflow disaster. On the other hand, discount-rate news has no long-run impact in this

model, since λDR,t − βDR,t = 0. In fact, in any model in which price-dividend ratios are

stationary, so discount-rate news has no long-run impact on asset prices, this logic implies

that the price of discount-rate risk cannot systematically be either greater or less than one.

In the long-run risks model of Bansal and Yaron (2004), there are again two priced risk

factors: an expected consumption growth factor (e) and a consumption volatility factor (w).

Using the notation of Bansal and Yaron, it can be seen that λm,e > βm,e if and only if risk

aversion γ is greater than the “leverage ratio” φ, which holds in their calibration. Similarly,

λm,w < βm,w < 0.14 Thus long-run pricing is driven by the possibility of disastrously

low shocks to the expected consumption growth factor and disastrously high shocks to the

consumption volatility factor.

A.2 Proof of Proposition 7

Proof. By Bayes’ rule,

Pt(φ, ψ) =
P (GM,t > ψ and GM,t +GR,t > φ)

P (GM,t +GR,t > φ)

=
P(At)

P(At) + P(Bt)
,

where GM,t ≡ 1
t

∑t
1 logMi, GR,t ≡ 1

t

∑t
1 logRi, and At and Bt are the (disjoint) events

“GM,t > ψ and GM,t +GR,t > φ” and “GM,t < ψ and GM,t +GR,t > φ”.

When φ > 0, P(At) + P(Bt) tends to zero as t → ∞. (To see this, note that P(At) +

P(Bt) = P(M1 · · ·Rt > eφt). Now pick arbitrary ε > 0. As a corollary of the first part of

Proposition 6, if we take T large enough that eφT > 1/ε, then P(M1 · · ·Rt > eφt) < ε for

all t > T . That is, P(At) + P(Bt)→ 0.) Since P(At) + P(Bt) tends to zero, P(At) and P(Bt)

must each tend to zero.
14Since βm,w < 0, in conflict with my earlier notational assumption, it is indeed the case that when

λm,w < βm,w, explosions in Xt occur at times of disaster.
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The goal is now to analyze the rates at which P(At) and P(Bt) tend to zero. We will have

Pt(φ, ψ)→ 1 if P(Bt) tends to zero at a faster rate than P(At), and conversely Pt(φ, ψ)→ 0

if P(At) tends to zero faster than P(Bt). So we must find a condition that ensures that

P(Bt) tends to zero faster than P(At):

lim sup
t→∞

1
t

log P(Bt) ≤ lim inf
t→∞

1
t

log P(At) , (11)

where Bt is the event “GM,t ≤ ψ and GM,t + GR,t ≥ φ”. (The argument for the converse

condition, which ensures that P(At) → 0 faster than P(Bt) → 0, is very similar, so is

omitted.)

Let κ∗(xM , xR) ≡ supθM ,θR∈R xMθM+xRθR−κ(θM , θR), the Fenchel-Legendre transform

of κ(·, ·). The Gärtner-Ellis theorem15 implies that (11) holds if

inf
xM>ψ

xM+xR≥φ

κ∗(xM , xR) ≤ inf
xM≤ψ

xM+xR≥φ

κ∗(xM , xR) . (12)

The function κ∗ has the following properties: (i) it is convex (by Lemma 2.3.9 of Dembo

and Zeitouni (1998, p. 46)); (ii) κ∗(xM , xR) ≥ 0 (since it is at least as large as xM ·

0 + xR · 0 − κ(0, 0) = 0); (iii) κ∗(xM , xR) ≥ xM + xR (since it is at least as large as

xM · 1 + xR · 1 − κ(1, 1) = xM + xR); (iv) κ∗(µM , µR) = 0 where µM ≡ κM (0, 0) and

µR ≡ κR(0, 0), so κ∗ attains its global minimum at (µM , µR).

From (iii) and (iv), µM + µR ≤ 0, so (µM , µR) 6∈ {(xM , xR) : xM + xR ≥ φ}. It follows

by convexity that κ∗ attains its minimum over {(xM , xR) : xM + xR ≥ φ} on the boundary

of the set, i.e. on the line {(xM , xR) : xM + xR = φ}. The question is then whether the

minimum is attained for xM greater than ψ or less than ψ. Setting f(x) ≡ κ∗(x, φ − x),

(12) is satisfied if f ′(ψ) < 0, or equivalently κ∗M (ψ, φ − ψ) < κ∗R(ψ, φ − ψ), where κ∗M

denotes the derivative of κ∗ with respect to its first argument, and similarly for κ∗R. The

result follows by the envelope theorem.

15For a proof of the theorem, see Theorem 2.3.6 in Dembo and Zeitouni (1998, p. 44). The simplified

version of the theorem outlined in Remark (c) (p. 45) suffices, due to the assumption that κ(θM , θR) < ∞

for all θM , θR ∈ R.
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