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1. Introduction

In this paper analyze an aggregative general equilibrium model in

which the use of money is motivated by a Clower [19671—type cash—in—advance

constraint, applied to purchases of a subset of consumption goods. This

system is subject to both real and monetary shocks, which are economy—wide and

observed by all. The model is designed to study how the behavior of

equilibrium quantities and prices (including interest rates) depends upon the

stochastic processes generating the rate of growth of the money supply and the

level of real output.

One way to think of the paper is as a contribution to the theory of

interest. The model captures the real and nominal determinants of interest

rates in a way that reproduces the familiar Fisherian formulas in

deterministic contexts, and also shows how these formulas need to be modified

in a wide class of stochastic environments. This motivation is shared with

Lucas [1982] and Svensson [1983], but in those to papers the equilibrium

resource allocations were determined entirely by the exogenously given goods

endowments, so that the analysis involved determining the behavior of prices

given quantities. In this paper, as in Lucas and Stokey [19831 and Lucas

[1984], agents have possibilities for substituting against money that were not

present in Lucas [1982] or Svenssôn [1983]. Therefore, money shocks induce

real distortions, so that equilibrium quantities and prices must be determined

simultaneously. A main objective of this paper is to deal with the technical

problems raised by this simultaneity.

Another closely related paper is Townsend [1984]. In the model there, as

in the one here, agents hold cash to carry out transactions, and monetary

policy affects the real allocation. The models differ In that Townsend's

allows capital accumulation, while ours provides richer possibilities for the
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timing of information arrival and trade. In addition, the techniques used

differ considerably: the recursive methods used here require somewhat

stronger assumptions on preferences, but allow a sharper characterization of

the equili iir;aiJ are very amenable to numerical simulations.

To keep the studp of positive questions simple, we will be abstracting

the issues that make the normative study of monetary policy

difficult (and interesting). In particular, business cycles originating in

monetary disturbances will not be studied, and fiscal authorities will be

assumed to have access to lump—sum, non—distorting taxes. The only distortion

present in the system will be the "inflation tax" so that optimal monetary

policies will, in all cases, be those that set this "tax" equal to zero in all

circumstances. Characterizing these will be a relatively simple by—product of

the analysis, the main focus of which will be on determining the allocative

consequences of arbitrary policies.

In section 2, the model is set out and the problem of solving for the

equilibrium is reduced to the study of a functional equation in a variable

that may be thought of as the value of cash balances. 1o existence theorems

for solutions to this equation are offered in section 3. One is based on the

Arzela—Ascoli lemma and the Schauder fixed point theorem. The other, using

stronger conditions on preferences, is based on the contraction mapping

theorem, and also establishes the uniqueness of equilibria. Section 4

develops some properties of equilibria. In section 5, a number of examples

are studied under more specific assumptions about shocks and preferences.

Concluding remarks are given in section 6.

2. The ?bdel

The model1 is formulated in discrete time with an infinite horizon. Each

period is in turn divided into two subperiods, which will correspond to the
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structure of trading. Shocks to the system in any period are denoted by

(s1,s2) = s E S =
S1 x S2 c11, where s1 and are shocks that occur in the

first and second subperiods respectively. The shocks form a first—order

Markov process wLth a stationary transition funnt:ion Tt(s,A). Specifically,

let S1 and S2 denote the families of Bard sets of S1 and S7, respectively,

let s and s denote shocks in s cassi1e pcrlods, and 12t

,t1(s,A1) = Pr{s1 E Ajs}, s E S, A1 E Si,

and

,t2(s,s1,A2) = Pr{s2 E A2s,s1}, s E S, s E S1, A E S2.

Then

ic(s, A1 x A2) = Pr{s E A x A21s}

=

1A1
t1(s,ds1)it2(s,s1,A2), s E S, A1 E S1. A2 S2,

defines the transition function for the process.

Within each period two rounds of trading occur. In the first subperiod

agents trade securities, and in the second they trade goods. In the

securities market agents make portfolio decisions, including a decision about

the size of their cash balances, and in the goods market they make consumption

decisions. There are t consumption goods available each period: "cash

goods," which are subject to a Clower (cash—in--advance) constraint, and

"credit goods," which are not. Thus, an agent's consumption decision in the

goods market is constrained by the fact that his purchases of cash goods must

be financed out of currency acquired during securities trading earlier in that

period. It is not possible to acquire additional currency once goods trading
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has begun, or to use currency acquired from the contemporaneous sale of

endowment goods. For sellers, cash goods sales result in currency receipts

that simply accumulate during the period and are carried as overnight

balances, while credit goods sales result in invoices. Both overnight

balances and invoices become cash available for spending during securities

trading on the following day.

There is a single, infinitely—lived "representative consumer." His

consumption of cash and credit goods are cit and c2t respectively, and his

preferences are

E tO tu(c)}

where 0 < < 1, ct = (cit,c2t), and the expectation is over realizations of

the shocks. We assume that U is continuously differentiable, strictly

increasing, and strictly concave. Other restrictions will be added in the

next section, when existence and uniqueness of an equilibrium are discussed.

Goods are not storable, and the technology each period is simply

Cl + C2

where y(s), the endowment, is a function of the current shock. Because

receipts from the sale of either good in any period are carried over to the

securities market in the following period, it is clear that in each period

cash and credit goods will sell at the same nominal price.

The only activity of the government in this economy is to supply nney,

and the money growth factor in any period t is a fixed function g(s1) of the

shock s1 in the securities market in that period. This convention fixes the
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timing of monetary injections and withdrawals, which always occur at the time

of securities trading, and are accomplished via lump—sum transfers and

taxes.2 Therefore, in terms of the previous period's money supply, the

transfer received (tax paid if negative) in the securities market in any

period is g(s1) — 1.

Note that since s is a vector of arbitrary (but finite) length, the

specification of the endowment process and monetary "policy" is extremely

flexible. In particular, s and/or s may include lagged values of the

endowment and the rate of money growth, signals about future values of these

variables, and pure "noise" components that serve as randomizing devices.

We will motivate a definition of a stationary equilibrium, in which

prices and quantities are fixed functions of the state of the system. To do

so, we begin with the decision problem facing an agent engaged in securities

trading. Suppose that his assets, after the current tax or transfer, are a

relative to the economy—wide average, which we have normalized to unity. His

information about current and future states consists of last period's state,

, and his knowledge about the current state, s1. His immediate problem is to

divide his assets between cash balances in ) 0 and purchases (sales) at the

price q(,s) of claims to dollars one period hence. His budget constraint

for this portfolio problem is then

(2.1) m + q(s,s1) b — a 0.

After securities trading is concluded, the agent holds the portfolio

(m,b). Before trading in goods, he learns s2, so that s = (s1,s2) is

sufficient for forecasting future states and last period's state becomes

redundant information. At this point, he purchases goods c = (cj,c2) at a
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price p(s) (expressed as a ratio to the current period's money supply) subject

to the cash constraint

(2.2) p(s)c1(s) — m 0, all s.

These purchases together with the sale of his endowment y(s), also determine

his asset position, z(s), before the tax or transfer in next period's

securities market, so that his budget constraint in the goods market is:

(2.3) z(s) — m — b — p(s)[y(s) —
c1(s)

—
c2(s)] = 0, all s.

Let F(a,s,s1) be the value of the maximized objective function for a

consumer beginning securities trading with assets a when the economy is in

state (,s1). Then F must be the value function for the two—stage maximum

problem

F(a,s,s1)
max f [ max {U(c(s))
m,b 2 c(s),z(s)

(2.4)

+ k(s) + g(s1) — 1]/g(s1),s,s1) t1(s,ds1)}],c2(s,s1,ds2),

where for each s, the choice (c(s),z(s)) must satisfy (2.2) and (2.3) given

goods prices p(s), and the choice (m,b) must satisfy (2.1), given the bond

price q(,s1).

A stationary equilibrium for this system consists of bond prices q(,s1),

bond holdings b(,s1), cash balances m(,s1), goods prices p(s), and

consumption allocations c(s) = (c1(s),c2(s)), defined for all E S, s E S,

and satisfying the following conditions:
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(2.5a) c1(s) + c2(s)
= y(s), all s;

(2.5b) m(s,s1) 1, all

(2.5c) b(s,s1) = 0, all

and

(2.5d) for a = 1, and for each E S and s1 E S1, (m(,s1), b(,s1), c(s))

maximizes (2.4) subject to (2.i)—(2.3), given q(,s1) and p(s).

These conditions are standard: (2.5d) requires that in, b, and c be the

demands of a "representative consumer," (that is, one with relative assets

equal to unity) at the equilibrium prices, and conditions (2.5a—c) require

that with these demands, the goods, money and bond markets clear.

The first—order conditions for the two maximum problems in (2.4) (with

the market—clearing condition (2.5b) imposed) are:

(2.6) t11(c(s)) — p(s)[v(s) +w(s)} = 0, all s;

(2.7) U2(c(s)) — p(s)v(s) = 0, all s;

(2.8) p(s)c1(s) — 1 < 0, with equality if w(s) > 0, all s;

[z(s) + g(s1) - 11 ,

(2.9) Pf Fa(
g(s)

SSl)g(s) it1(s,ds1) — v(s) = 0, all s;

(2. 10) — X + [v(s) + w(s)],t2G,s1,ds2) = 0, all (s,s1);
2
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(2.11) —
Xq(s,s1) + f v(s)t7(s,s1,ds2)

= 0, all (s,s1);
2

where X, w(s) and v(s) are the multipliers associated with (2.1), (2.2), and

(2.3), respectively. In addition, the envelope condition for (2.4) is

(2.12) Fa(a,s,si) = x.

As a first step in solving for an equilibrium, use (2.12) to eliminate X

from (2.10)

(2.13) F(a,s,s1) = f [v(s) + w(s)]2(,s1,ds2).

Then, substitute from (2.5a)—(2.5c) into (2.3) to find that z(s) = 1, all s,

and recall that a = 1 as well. Therefore, substituting from (2.13) into (2.9)

we find that

(2.14) v(s) = [v(s) +w(s)1 (s,ds).
g(s1)

Equation (2.14), together with conditions (2.6)—(2.8) and (2.5a) form a system

of five equations in the five unknown functions v(s), w(s), p(s), c1(s) and

c2(s). (Equation (2.11) then determines q(,s1) in terms of these other

variables.) In the next section, we turn our attention to the existence and

uniqueness of functions satisfying this system.

3. Existence of Equilibrium

The economy described in the preceding section is specified by the

current period utility function U: 1R ÷ ]R, the discount factor E (0,1), the
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state space 3, the transition function it: S x S - [0,1], and the functions

g: S1 -* IR+ and y: S ÷ governing money growth and endornents. We will

study the existence and nature of equilibria under the following restrictions.

Assumption I: S is compact.

Assumption II: Both g and y are continuous in s and bounded away from zoro.

Note that under Assumptions I and II, g(s1) and y(s) take values in closed

intervals and [z,y], with g > 0 and y > 0.

Assumption III: For any c > 0 there exists some 5(c) > 0 such that

Its — sIl <8(c) > 1s J(s,s ,ds )f < c,

where t: S x S x S + [—1,11 is defined by

(s,s,A) = it(s,A) — it(s,A).

assumption III implies that for any continuous function f:S

fs f(s ),t(s,ds ) is a continuous function of s.

Assumption IV: For each s E S, 0<
g(s') it1(s,ds1)

1.

Assumption V: U is continuously differentiable, strictly increasing and

strictly concave, and for all y E [y,)]

urn cU2(c,y — c) = 0,
c+ 0

urn cU2(c,y — c) =

c+y
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max cU1(c,y—c) A < ,
cE [0,z]

and yE[,y]

urn U1(c,y — c)/U2(c,y
— c) > 1.

c+O

Assumption VI: For all y E [,y}, cJJ2(c,y — c) I: Y:rltly increasing in c.

Our strategy for proving existence of an equilibrium is first to use

(2.5a), (2.6)—(2.8) to eliminate w(s') from (2.15) as described in Lemmas 1

and 2. Then (2.15) becomes a functional equation in the single function v(s),

the properties of which we will develop in Theorems 1—5.

For fixed v > 0 and y E [y,], equations (2.5a), (2.6), (2.7), and (2.8)

are simply four equations in c1, c2, w, and p: the values o the equilibrium

functions (c(s), w(s), p(s)) when v = v(s) and y = y(s). Us (2.7) to

eliminate p and (2.5a) to eliminate c2, so that for each s, (y,v,w,c1) must

satisfy

y — c1) +
(3.1) = _____

y —
c1) v

(3.2) c1U2(c1, y — c1) v, with equality if w > 0.

Therefore, an equilibrium is characterized by functions v(s), w(s), and c1(s)

satisfying (2.14), (3.1) and (3.2). In Lemmas 1 and 2, this system is further

simplified.

Define the function c: x [,y] + {O,J by

(3.3) c(v,y)U2(c(v,y),y — c(v,y)) = v.
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Under Assumptions V and VI, c is well defined (see Figure 1). It is

continuous and strictly increasing in v and y.

cU2(c, y — c) I cU2(c,y' — c)

IH Il

Next, define c*: [,y] + [O,] by

(3.4) U1(c*(y), y — c*(y))/U2(c*(y), y — c*(y)) = 1.

Under Assumption V, c is well defined, continuous, and strictly increasing.

We are now ready to prove

Lemma 1: Under Assumptions V and VI, for any v > 0 and y E [y,], there is a

unique pair (w,c1) satisfying (3.1) and (3.2). This solution is:

(3.5) if U1(c(v,y), y - c(v,y))/U2(c(v,y), y - c(v,y)) > 1,

(3.6) then c1 = c(v,y),

A

V

c(v,y) y

Figure 1

c(v,y') y? c
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(3.7) and w = cjU1(c1, y — c1) —

anj if U1(c(v,y), y — c(v,y))/U2(c(v,y), y — c(v,y)) < 1,

(3.9) then = C

(3.10) and w = 0.

Proof: First let (v,y) be given and suppose that c(v,y) satisfies (3.5).

From (3.6) and (3.3), it follows that (3.2) holds with equality, and then

(3.7) implies (3.1). Next, suppose that c(v,y) satisfies (3.8). From (3.9),

(3.10) and (3.4), it follows that (3.1) holds. ?breover, from (3.8) it

follows that

y — i'U2(c, y — c) ( 1 = 1J1(c*,
—

c*)/U2(c*, y —

A *
Hence, by the concavity of U it follows that c > c so that by Assumption VI,

cU2(c, y — c) cU2(c,
— c*)

Therefore, using (3.3),

v = cU2(c, y — c)

) cU2(c, y — c*)
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= cU1(c, y — c*),

so that (3.2) holds.

Next let (v,y) be given and .upjose that (c1,i) satisfies (3.1) and

(3.2). If w > 0, then (3.2) and (3.3) imply that (3.6) holds. Then (3.7)

follows fron (3. 1). 3ut (3.6) and w > 0 are consistent with (3.1) only if

(3.5) holds. If w = 0, then (3.1) and (3.4) imply that (3.9) holds. Then

(3.2) implies:

* * *
c U2(c , y — c ) ' v cU2(c, y — c).

Using Assumption VI and the concavity of U, and reversing the argument above,

this implies that (3.8) holds. Ii

Next define h: x [y,] + R by

(3.11) h(v,y) = c(v,y)U1(c(v,y), y — c(v,y)).

Lemma 2: Under assumptions V and VI, v(s), w(s) and c1(s) satisfy (2.14),

(3.1) and (3.2) if and only if v(s) satisfies

(3.12) v(s) = max[v(s ), h(v(s'),y(s))]
g(s)

it(s,ds),

and for each s, w(s) and c1(s) are given by (3.5)—(3.10).

Proof: From Lemma 1 it follows that given v(s), w(s) and c1(s) satisfy (3.1)

and (3.2) if and only if they satisfy (3.5)—(3.1O). Choose any s. If

(v(s),y(s)) satisfies (3.5), then
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v(s) < v(s) + w(s)

= c1(s)U1(c1(s), y(s) — c1(s))

= h(v(s),y(s)),

while if (v(s),y(s)) satisfies (3.8), then

v(s) + w(s) = v(s)

= c(s)U2(c(s), y(s) — c(s))

) h(v(s),y(s)).

Hence

v(s) +w(s) = xnax[v(s), h(v(s),y(s))1, all s S,

so that (2.14) can be rewritten as (3.12). El

We are now ready to prove

Theorem 1: Under Msumptions 1—VI, there exists a bounded, continuous

function v satisfying (3.12), where h is as defined in (3.11). T,treover, v is

nonnegative and lvii A, where A is defined in Assuniption V.

Proof:3 Let 7 be the space of bounded, continuous functions f: S ÷ ]R+, with

the norm Ufil = sup jf(s)I. Let D c 7 be the subset of functions f that are
sE S

nonnegative and have hf hi A. Define the operator T on D by

(Tf)(s) = fmax[f(s),h(f(s),y(s))] , n(s,ds).
g(s1)
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Under Assumptions 1—11, y is bounded and continuous, and by hypothesis so is

f. Under Assumptions V and VI, h is well—defined, is continuous as a function

of s', and is bounded below by zero and above by A. Under Assumptions I—Il,

1/g(s) is also bounded and continuous. Hence, for any f E D

max[f(s ), h(f(s), y(s)]/g(s1)

is a bounded, continuous function of s'. Clearly then, Tf is bounded.

Specifically, it is nonnegative, and under Assumption IV it is bounded above

by A. Also, from Assumption III it follows that for any c > 0, there exists

8(c) > 0 such that for any f E D,

Js — s( <8(E) >

ITf(s) — Tf(s')I

= Ifs max[f(s"),h(f(s"),y(s))J
g(s") A(s,s,ds)

( Af fr(s,s,ds)f

< c.

Therefore, TE is continuous in s, so that T: D + D.

Ibreover, the last argument also establishes that the family D is

equicontinuous; and clearly it is also bounded. Then by the Arzela—Ascoli

theorem, D is relatively compact, and consequently every subset of D is

relatively compact.

Summing up, D is a nonempty, closed, bounded, convex subset of the Banach

space 7, and T: D ÷ 7 maps D into itself. MDreover, T is continuous and maps

every subset of D into a relatively compact set. }nce, T is a compact
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operator and, by the Schauder theorem, has a fixed point v in D. Clearly, v

satisfies (3.12). El

Theorem 1 does not rule out the possibility of a trivial solution

v(s) 0 to (3.12), nor does it insure that any nontrivial solutions exist. A

zero solution, which is consistent with Assumptions 1—VI, has an economic

interpretation as a "barter" equilibrium. It occurs if

urn cU1(c, y — c) = 0,
c+ 0

in which case c(O,y) = 0, all y, and hence h(O,y) 0. The next result is a

sufficient condition to rule out trivial solutions.

Theorem 2: Let Assumptions 1—VI hold, and assume in addition that for all

y E [y,]

(3.13) urn cU1(c, y — c) > 0.

c+ 0

Then, v 0 is not a solution to (3.12).

Proof: Under (3.13), h(v,y) is bounded away from zero, so that if v 0,

Tv>0. U

Theorem 1 guarantees the existence of a solution to (3.12), but says

nothing about the number of solutions and/or how to compute them. These

questions can be answered, at least in part, by exploiting the fact that

under additional hypotheses the operator T defined in the proof of Theorem 1

is nnotone. In particular, T is monotone if h(v,y) is increasing in v. To

insure this, we add
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Assumption VII: For each y E cU1(c,y — c) is nondecreasing in c.

Since under Assumptions V and VI, c(v,y) is increasing in v, the addition of

Assumption vii implies that h(v,y) is nondecreasing in v.

Theorem 3: Let Assumptions I—Vu hold and define the sequences {v} and {}

in D by

v0(s) 0 and n+1 = Tv, n = 0,1,2,...

v0(s) A and Vn+1 = Tv, n = 0,1,2,...

Then {v} and {} converge pointwise to solutions to (3.12) in D, v and

say, and for any solution v to (3.12),

V V

Proof: Under Assumptions V—VII, the function h is nondecreasing in v, so that

the operator T is monotone: u,v E D and u ) v imply Tu > Tv. 1breover, for

all s E S

=
Tv0 0

and

V1 = Tv0 A V0.

Hence, by induction, >
n and n+1 v, all n, and since both sequences

take values in [0,A}, both converge. As shown in the proof of Theorem 1, both

{v} and {} are equicontinuous families, so that the limit functions v and
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are both in D.

Finally, if v is any fixed point of T it must satisfy

= 0 ' v A =

Then the monotonicity of T implies

= Tv Tv = v T0 =

and hence, by induction,

v=limv v(limv v. [1— —n n
fl+

Theorem 3 is useful computationally because it provides a way of

constructing two solutions, v and , of (3.12) and, if v and should

coincide, of verifying that their common value is the only solution.

Our next theorem uses Assumptions I—Vu plus one additional restriction

on preferences, to establish a sufficient condition for (3.12) to have a

nontrivial solution.

Theorem 4. Let Assumptions I—Vu hold, and suppose that

(3.14) urn U2(c, — c)/U1(c,
— c) mm

it(s,ds1).
c+0 s 1 g(s1)

Then (3.12) has a solution with v(s) > 0, all s E S.

Proof: From (3. 14) and Assumption V it follows that there exists c satisfying
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— c)/TJ1(c,_ — c) =

* ' *
Define v cU2(c, — c), so that c(v ,) c. Then since h(v ,y) A and

pr < 1,

rcu1(c, — c)

= prh(v*,x)

A.

We show that the function v = urn defined in Theorem 3 is bounded below by
n+*v • For each n, let

a mm v (s).
n n

sES

Since h is increasing in v and y, it follows that for all n,s,

- max[ (s),hG (s),y(s))}
v+1(s) = 'i(s,ds )

g(s1)

h(a,X)
) fs it(s,ds )

g(s1)

) prh(a,x).

Since a0 A it follows by induction that

a+1 ) rh(az) ) rh(v*,) = all n,
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and hence v(s) v, all s. [1

Theorems 2 and 4 still allow the coexistence of both zero and strictly

positive solutions, as the following example shows. Let

1/2 1/2
U(c1,c2) = c. + c2

1 1/2
urn cU1(c, y — c) = urn c = 0,
c-*O c+O

so that v(s) 0 is a solution. But

U2(c, y — c) c 1/2
liin = lim( ) =0,
c+0 U1(c,y—c) c+O yc

so that (3.14) holds for any r and a positive solution also exists.

Our final result gives sufficient conditions for the operator T defined

in the proof of Theorem 1 to be a contraction. This will insure the

uniqueness of the solution to (3.12). It requires strengthening Assumption IV

to

Assumption IV': For each s E S,

0 <
Is

1
t(s,ds1) < 1.

1 g(s1)

It also requires adding t assumption on preferences that guarantees that the

slope of h(v,y) in the v direction is less than unity, i.e., that h(v,y) —v
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is nonincreasing in v. Using the definitions of c and h in (3.3) and (3.11).

we find that a sufficient condition is

Assumption VIII: For each y E

(3.15) c[U1(c,y — c) — U2(c,y — c)]

is a nonincreasing function of c.

Note that (3.15), evaluated at c(v,y) is just h(v,y) — v. Since under

Assumptions V—VI, c(v,y) is increasing in v, the addition of Assumption VIII

insures that h(v,y) — v is nonincreasing in v.

Theorem 5: Let Assumptions I—Ill, IV' and V—VIII hold. Then (3.12) has a

unique solution v E D and for all v0 E D, urn IIT'1v0 — vU = 0.

Proof. We will show that under these additional hypotheses, the operator T

defined in the proof of Theorem 1 satisfies Blackwell's [1965] Theorem 5,

sufficient conditions for a contraction. As observed in the proof of Theorem

3, under Assumptions V—Vu, h is nondecreasing in v, so that T is monotone.

We need only to verify that for some 8 E [0,1), T(v + k) ' Tv + 8k, for any

v E I and constant k > 0. Under Assumption VIII, h(v,y) —v is nonincreasing

in v: for any v E 7 and k > 0,

h(v + k,y) - (v + k) h(v,y) - v

or

h(v + k) ' h(v,y) + k.

Then
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T(v + k) = B
Is max[v(s) + k, h(v(s) + k, y(s ))} - , (s,ds)

g(s1)

I max [v(s) + k, h(v(s ),y(s )) + k] it(s,ds)

g(s1)

= Tv k Is (s,ds).
g(s1)

Now if Assumption IVt holds, then it follows from Assumptions I and III that

- it(s,ds) 6, for all s E S.
g(s )

for some 6 < 1, so that T is a contraction with modulus 6. The conclusion

then follows from the contraction mapping theorem. 11

Theorems 1 — 5 apply to the case in which the state space S consists of a

finite number of points and the transition function is described by a Markov

matrix

II = [it..] where it.. = Pr{s = s.Is = s.}.
1J 1J 3 1

In this case (3.12) defines an operator T taking the set D =

{ v iI 0 v A, i = 1,..,n} into itself. Since D is compact and

convex, Theorem 1 would in this case be an application of Brouwer's

Theorem.5

This completes our analysis of equation (3.12). Given a solution v(s) to

(3.12), Lemma 2 guarantees that there is exactly one corresponding solution

w(s) and c(s) = (c1(s), y(s) — c1(s)) to (3.1) and (3.2). The corresponding

(normalized) equilibrium price level is given by (2.7). The price q(,s1) of
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a one—period nominal bond is given by (2.11), (2.12) and (2.13). The nominal

interest rate r(,s1), defined by q = (1 + rY1, is then given in terms of v

by

rnax[v(s), h[v(s),y(s)]] t2(,s1,ds2)
— 2

(3.16) 1 + r(s,s1) = —

5 v(s) it2(s,s1,ds2)s

4. Properties of Equilibria

From (2.6) and lemma 2, we see that

max[v(s), h(v(s), y(s))]

is the marginal utility of a unit of cash, available at the time of goods

trading, when the state is s, and from (2.7) we see that v(s) is the marginal

utility of a unit of wealth (not in the form of cash), at the same time. Then

(3.12), written as

(4.1) v(s) = E{max[v(s'), h(v(s'), y(s'))}
g(s')

equates the marginal utility of wealth at the time of goods trading in one

period, with the (discounted) expected marginal utility of cash at the time of

goods trading in the subsequent period. This reflects the fact that the

consumer can, say, cut his consumption of credit goods slightly, and have the

proceeds available in the form of cash to purchase cash goods in the next

period's goods market.

A similar tradeoff is reflected in (3.16) which determines the nominal

interest rate. Using (4.1), we can write (3.16) as
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E{max[v(s), h(v(s), y(s))] , s}
(4.2) 1 + r(, s1) = —

E{v(s)Is,

E{max[v(s). h(v(s), y(s))], s}
(4.2') = ____________________________________________

E{max[v(s'), h(v(s'), y(s'))] (s, s}g1

Thus, the nominal interest rate in state (s2, is the ratio of the expected

marginal utility of cash during goods trading later in the period, to the

(discounted) expected marginal utility of cash during goods trading in the

subsequent period.

Using (4.1) and (4.2'), we can study the effect of the timing of

information. In particular, we will show that the equilibrium real allocation

does not depend on the accuracy of advance information about real income

available at the time of securities trading, while the variability of the

nominal interest rate does.

To see this, consider any family of economies all with the following

characteristics. The securities market shock s has two components,

s1 = (sU, s12). Money growth depends only on s11, and s12 is a signal about

s2. Real income, y(s2), is assumed to depend only on s2. The spaces S11 and

S2 and the functions g(s11) and y(s2) are identical for all umbers of the

family, but S12, the signal space, varies. The transition functions also

vary, but all must have the following two features.

First, for each economy, there exists a transition function

it: S11 x 2 x S + [0,1] such that

(4.3) it(s11,s12,s2,A) = it(s11,s2,A), all s11,s12,s2,A.
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This condition says that 12 is a signal only about s2, i.e., does not provide

any information about later events. Second, we require that there exist a

transition function lt*: S11 x S2 x S11 x S2 + [0,1], such that for all

economies in the family,

(4.4) 7t(s11,s2,A11x S12x A2) = it(s11,s2,A11x A2),
all

This condition says that the underlying joint distribution ic of 11'2) is

the same for all economies in the family.

Consider any such family of economies, and choose one member. Using

(4.3), we find that the solution(s) v(s) to (3.12) for that economy satisfy

(4.5) v(s) = 5 max[v(s'), h(v(s'), y(s))] _-±y x(s11,s2,ds').

Since s12 soes not appear on the right side of (4.5), v(s) does not depend on

s12. Therefore we can integrate out s2, and use (4.4) to find that

v(s) = 5 5 max[v(st), h(v(s'), y(s))} g(s') *(s11,s2,ds11,ds;)

(4.6) = E{max[v(s'), h(v(s'), y(s))] -_,J fS1I,

Since v does not depend on s2, the right side of (4.6) is identical for all

members of the family, and the set of solutions v(s) will be too. Then, since

is common to all, the equilibrium allocations will also be identical.

The behavior of interest rates will differ, however, depending on the

informativeness of the signal s12. Using (4.2), we see that
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— E{max{v(s),h(v(s),y(s2))I f,s11,s12}
(4.7) 1 ÷ r(s,s ,s )

= ________________________________________________
1

E{max[v(s'), h(v(s'), y(s))1
g(s)

11'12

Thus, the variability of interest rates depends on the informativeness of the

signal 12 even though the equilibrium allocation does not. This point is

further illustrated in Example 3 in the next section.

Another observation about the equilibrium real allocation follows

directly from (3.12): current money growth affects the current allocation only

insofar as it affects expectations about future money growth, i.e, only

through its value as a signal. In particular, if s and s' are two states for

which

(4.8) t(s,A) = 7t(s',A), all A E S,

then states s and s' have the same informational content. In this case, it

follows directly from (3.12) that v(s), the marginal utility of income, is the

same in s and s'. Therefore, using (2.7) find that

U (c(s)) U (c(s'))
2 = v(s) = v(s') = 2

p(s) p(s )

This is the sense in which only the informational content of money growth

matters. In particular, if (4.8) holds and in addition the endowments are the

same in the two states, y(s) = y(s'), then it follows from Lemma 1 that the

allocations are the same, c(s) = c(s'). This is true even if the associated

money growth rates differ, g(s1) g(sfl. Conversely, if the current

endowments and money growth rates are the same in the two states, but their

information contents differ——(4.8) fails——then in general v(s) # v(s'), and

the allocations will differ. In short, with income constant, two states yield
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the same allocation if (4.8) holds and in general yield different allocations

if it fails. The current rate of money growth plays no direct role in

determining the current allocation——only expectations about money growth (and

income) matter.

The equilibria we have described are related to the traditional theory of

money demand. The connections are easiest to see in the case when all

information is available at the time of securities trading (i.e., when given

the conditional distribution of s2 is degenerate), and the cash—in—advance

constraint is always binding. When these conditions hold, c1(s) is equal to

equilibrium real balances, and the solution for nominal interest rates is,

from (3.16) and Lemmas 1 and 2,

1 + r(s) = h(v(s),y(s))
v(s)

1J1(c1(s), y(s) — cr(s))=

1J2(c1(s), y(s) —
c1(s))

This relationship between three variables, c1, y and r, can be solved to give

real balances as a function of income and the rate of interest, and since the

form of this function depends only on preferences, it does not do too much

violence to ordinary usage to call it a demand function.

When the timing of information becomes more complex, this connection

becomes looser. L.iring securities trading, the nominal interest rate is set

and agents are committed to holdings of nominal balances. Later, during goods

trading, income is realized and a nominal price level is established.

Equation (3.16) still holds, but it is no longer accurate to think of agents

as demanding real balances at either trading stage.
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5. Examples

The theory developed in sections 2 and 3 admits a wide variety of

possibilities for the equilibrium behavior of interest rates and real

balances, depending on what is assumed about the behavior of real and monetary

shocks.6 This section illustrates some of these possibilities with specific

examples.

The first example simply shows that results familiar from deterministic

monetary theory carry over to the present model.

Example 1. Let S = {s} = {(s1,s2)}, it(s,s) = 1, g(s1) g and y(s) E y.

In this case, a solution v(s) to (3.12) is a constant v satisfying

v = max[v, h(v,y)].

If /g < 1, then a solution is any v satisfying:

v = h(v,y).

If /g = 1, then a solution is any v satisfying v ) h(v,y). From Theorem 1 it

follows that in either case there is at least one solution v > 0, from Theorem

2 that if (3.13) holds v = 0 is not a solution, and from Theorem 4 that if

(3.14) holds there is a positive solution. Provided v > 0, it follows from

(3.16) that

1 + r = h(v,y) = (1 + p)(l + 8) = 1 + p + 8 + p8,

so that the nominal interest rate r is approximately the sum of the rate of

money growth, p g — 1, and the subjective rate of time preference,

a p1 — 1.
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If the income and monetary shocks are independent of each other, and each

is independently and identically distributed over time, this example is only

slightly changed.

Example 2: Let y(s) y(s2) and let

it1(s1,s2,A1) = it1(A1), all s1, s2, A1,

and

=
i2(A2), all 2' s, A2.

It follows immediately that n(s1,s2,A) = it(A), all i' s2, A. Hence the right

side of (3.12) is independent of s, so that v(s) is also. Thus, a solution is

any constant v satisfying

(5.1) v = Ei/g(s1)} E{rnax[v, h(v,y(s2)]}.

If v > 0, it follows from (4.2) that the associated interest rate is also

constant:

1 + r = [pE{1/g(s)}]1.

Examples 1 and 2 show that if real income is i.i.d., then any monetary

policy g(s) consisting of i.i.d. money growth rates yields the same interest

rate behavior and resource allocation as does the deterministric policy with

hg = E{1/g(s1)}. Thus, they illustrate the point, made more generally in

section 4, that only expectations about future money growth have allocative

consequences.

The next example illustrates the importance of the timing of information
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about interest rates, discussed at a more general level in section 4. The

securities market shock s will have to components, s1 = (s1,s1), where

money growth depends ooiy on s1, and is a signal about s2. To addition,

the monetary and real shocks are as in Example 2——independent of each other

and i.i.d. over time, with income depending on 2 only. Thus, the only

information about the value of real income available at the time of securities

trading is the signal s17•

Example 3: Let

s1 = (s11,s12) E S11 x S12 = Si,

it1(s1,s2,A11 x A12) = t11(A11)it12(A12),

22,s1,A2) =

so that

x A12 x A2) = 11(A11) A
12

Then as in Example 2, the right side of (3.12) is independent of s, so that

v(s) is too. Thus, a solution is any constant v satisfying (5.1). If v > 0,

interest rates are given by (4.2). They do, in general, depend on the current

securities market shock. Specifically,

1 E{max[v, h(v, y(s2))] J12}
(5.2) 1 + r(s12) = ,

E{1/g(s1)} E{max{v, h(v, y(s2)}}

so that the interest rate depends on s12, the information about real income
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y(s2) in the goods market later in the period. The nominal interest rate is

higher when the conditional expected marginal utility of cash ba1inces, given

is above the average, and conversely.

The effect of advance information about income is illustrated by

considering a family of economies, constructed as in section 4. That is, all

have the same state spaces S11 and S2, and the same monetary and real income

shocks g(s11) and Y(2)• The signal spaces S12 nay diffar, 't the

distributions it1 and it2 satisfy (4.3) and (4.4). In addition, the

distributions satisfy the conditionsof Example 3. Hence, (4.4) requires that

it11 and

f it12 s1 2(s12,A2)
12

be the same for all members of this family.

Clearly the solution v given by (5.1), and hence the allocations, 'are

identical in all these economies. Specifically, the consumption allocation in

each period depends only on the level of real income, y(s2) in that period,

and is identical, state by state, for all the economies. However, the

behavior of interest rates may be quite different, as can be seen from

(5.2).

If the signal 12 contains no information about s2, then the situation is

as in Example 2: the interest rate is constant. At the other extreme, if s12

is a perfect predictor of s2, then interest rates fluctuate in a way that

reflects the marginal utility of a dollar (in cash) in the subsequent goods

market. If s12 is an imperfect signal about then interest rates will

fluctuate, but in a less extreme fashion. Note, too, that the average

interest rate, E{1 + r(s12)}, is the same for all economies in a family.
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A device we have found useful in generating additional examples that

illuminate the connections between shocks and resource allocations is to place

assumptions directly on equilibrium allocations and/or prices and then to

"work backwards' to characterize the monetary policies (if any) that implement

this allocation. This approach uses (3.12) in an inverse way, and makes no

use of Theorems 1—5. The remaining examples in this section give some idea of

the possibilities.

Example 4: Interest—stabilizing policies.

Assume that all information becomes available at the time of securities

trading, so that given s1, the conditional distribution of s2 is degenerate.

Let preferences assume the homethetic, constant relative risk—aversion form

U(c1,c2) = !({u(c1,c21
— 1),

where u is homogeneous of degree one and 1. We wish to characterize the

allocations and policies consistent with the maintenance of a constant value

r > 0, for the interest rate. Since with r > 0 the cash—in—advance constraint

is binding in all states, we have

v(s) = c1(s)U2(c(s)),

and

max [v(s),h(v(s),y(s))1 = h(v(s),y(s)) = c1(s)Uj(c(s)).

Hence, using (4.2) and the assumption that s1 provides perfect information

about 2' we find that the allocation c(s) must satisfy
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U1(c(s))1+r=
U2(c(s))

Since U is hornothetic, this in turn implies that the associated allocation

takes the form (c1(s),c2(s)) = (ay(s), (1 — a)y(s)), where a is the unique

solution to

u1(a,1
— a)

(5.3) 1 + r = ___________
u2(a,1 — a)

Then, using the fact that u is homogeneous of degree one, the functions v(s)

and h(v(s),y(s)) are simply

v(s) = c1(s)U2(c(s))

a—i= ay (s) [u(a,1 — a)] u2(a,1 — a),

and

h(v(s),y(s)) = c1(s)U1(c(s))

= aye(s) [u(a,1 — a)]u1(a,1 — a).

Then (4.1) simplifies to

y(s)u2(a,1 — a) = E{ ye(s) u1(a,i — a) 1, s}.

g(s )

Hence, using (5.3), we find that



g(s) = (l +

1. Evidently there are others that will achieve the same

is an expected value restriction.

to hold, monetary policy must to react to contemporaneous

except in the borderline case of = 0 (logarithmic

< 1, money growth must be positively correlated with

negatively.

We will continue in a more general way to calculate policies that

implement particular equilibria by restricting discussion to finite state

spaces. Number the states 1,2,..,n, and let y = (y1,...,y), g = (g1,...,g)
and v(s) = (v1, ..., v) be the corresponding values for y(s), g(s), and

v(s). Let ii = [it.l be the transition matrix. Then (3.12) becomes

n tnax[v.,h(v.,y.)]

j L 1'
—

j=1 j

We consider the implementation of given vectors v E IB. Let (v,fl) be given,

and consider solving

(5.5) v = lix

- 34 - -

u (a,1 — a)
(5.4) 1 r -

u(a,1
- a)

- E(
g(s)

netary policies consistent with a constant positive interest rate must,

then, maintain the constancy of the expression on the right of (5.4). One

policy that will do this is

with probability

end, since (5.4)

If (5.4) is

output movements,

utility). If 0 <

output; if < 0,
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for the unknown vector x. A monetary policy g implements a given (v.11) if and

only if

(5.6) = L max Iv.. h(v.,y.)], all i

for some x satisfying (5.5).

It is clear that given the transition probabilities 11, not all vectors

v ) 0 can be implemented. First, (5.5) has a solution if and only if wil = 0

implies W.V = 0, for any w E ]L'. In other words, to be implementable by some

g, v must lie in the subspace of )1 spanned by the columns of II. For

example, if the shocks are independently and identically distributed, then 11

has rank one, and v must be a constant vector. (This conclusion was reached

by a different route in Example 2.) In general, if II has rank m '

implementable v's must lie in an rn—dimensional subspace, and for given v, the

solutions x lie in an (n—m)—dimensional subspace. This conclusion can be

interpreted as follows.

If 8 is a probability vector interpreted as a distribution of s, then 811

is the implied distribution of St+1. Then full rank for 11 means that two

different s distributions, 8 and 8 say, with 8 — 8 0, always imply

different sj distributions: (8 — )11 * 0, so that different states always

have different "information effects." In this model, it is different

information effects that induce differences in resource allocations, so that

the rank of 11 is critical in determining the variety of v—values that can be

implemented.

A second restriction comes from the fact that the vector g, and thus the

vector x, must be positive. This also restricts the set of implementable v's.
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Example 5: Two states, symmetric transitions.

Let n = 2 and let the transition matrix be given by

1+a 1—a
2 2

11=

1—a 1+a
2 2

where —1 < a < 1. The symmetry of II means that in a stationary distribution

the system spends half the time in state 1 aiid half in state 2.

If a = 0, II is singular and (5.5) has a solution x if and only if v1 =

(as in Example 2, above). Given their common value v, the corresponding

solutions x and g must satisfy

v = ( )( :2
= max[v,h(v,y1)1 +max[v,h(v,y2)1.

Hence there is a one—dimensional manifold of solutions.

If a * 0, 11 can be inverted and the unique solution x to (5.5) is

1+u 1—a
x v — ___

1 2a 1 2a 2

1—a 1+a
x — V + v.
2 2a 1 2a 2

However, xl and x2 must be positive, so that if a > 0, we must have

(57)
1 - a <vi < 1 + a
1+a v 1—a'

while if a < 0,
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(5.8)
1 + a 1 1 - a
1—a V 1+a

For any pair (v1,v2) satisfying these bounds, there will be a unique (g1,g2)

that implements it.

To illustrate in more detail, let preferences be

TJ(c1,c2) =

and let y1 = Y2
= 2, so that states 1 and 2 differ only due to different money

growth rates. Then h(v,y) = y(1 + -1-) = -(1 + I). We seek to construct a

policy (g1,g2) to implement the equilibrium v1 = 2 and v2 = 2/3. For these v

and y values, h1 = 3/4 and h2 = 5/4. In state 1, the cash constraint is slack

(h1 < v1), so the associated allocation (c11, 2 — c11) is given by

1 — U1(c11,
2 —

c11) —
2 —

c11

—. U2(c11,
2 —

c11)
— ______

or c11 = 1 and y — c11
= 1. In state 2, the cash constraint is binding and

c21 is given by

2 —
c21 — h2 — 15
2

c21
2

or c21 = 4/5 and y — c21 = 6/5.

If a > 0, this allocation can be implemented only if v1/v2 = 3 satisfies

the bounds in (5.7), i.e. only if a > 1/2. For example, if a = 3/4, then

7 1 20
x1 = v1--v2 =
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1 7 4
x2 =—-V1+-V2 =

From (5.5), then,

.L=Lc
g1

21 9

and

4 16— = —x =
g, 5

.,
45

describe the required money growth rates, relative to the discount factor ..

To achieve the high consumption of cash goods and the slack Clower

constraint in state 1, the monetary authority must signal a relatively low

rate of monetary growth between this period and the next. With positive

serial correlation between states (a > 0), this is done by having a relatively

low current money growth rate. With negative serial correlation (a < 0), the

signal would work the opposite way, as the reader is invited to convince

himself by repeating these calculations for a negative a satisfying (5.8).

6. Conclusion

In this paper we have developed methods for verifying the existence of,

characterizing, and explicitly calculating equilibria for a simple monetary

economy, and we have illustrated these methods on a variety of examples. The

model analyzed allows situations in which different monetary policies induce

different real resource allocations: this is its main novelty over earlier

models using similar methods. On the other hand, the methods used rely

heavily on the state variables of the system being exogenous: it is not yet

known whether models incorporating capital accumulation, like the one in

Townsend [19841, can be studied with recursive methods.
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As a theory of nominal interest rates, the model captures two forces long

believed to be critical. First, shocks to real endowments, by altering

marginal rates of substitution, affect real interest rates. Second, current

monetary shocks, or more precisely, any variables conveying useful information

about future monetary shocks, affect the "inflation premiums' on interest

rates. We have shown how the effects of these two very different forces can

be analyzed, even when they are permitted to interact in complicated ways (as

we think they do in reality).

The theory's implications do not take the form of predicting definite

signs for the correlations between movements in money and other variables,

either contemporaneous or lagged. There is no doubt that a bumper crop of

apples depresses the price of apples, and that a useful model of the apple

market should reproduce this feature. But money Is not at all like apples.

In a model in which information is common, a monetary change is irrelevant

history as soon as it has occurred, and it affects real resource allocations

only insofar as it conveys information about the future. In such a model, one

can obtain tight predictions about the entire joint distributions of money,

interest rates, and other variables, current and lagged, given the joint

distribution of all exogenous variables, including those that are purely

Intorniational. However, no general predictions about individual moments

involving endogenous variables are possible. This reflects the fact that the

information content of the current value of any variable can be understood

only if the entire stochastic environment is specified.
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Notes

'This model is a special case of the one discussed in Lucas [1984] and is

very closely related to Lucas and Stokey [1983] and Townsend [19841; the

reader is referred there for further discussion.

2jth infinitely—lived agents and recourse to lump—sum taxes, the timing

of taxes and subsidies is immaterial, and there is no distinction between an

injection of money through a fiscal transfer payment and an injection through

an "open—uarket" purchase of government bonds. }nce, this convention will

not affect the results. See Lucas and Stokey [19831 for a parallel discussion

in which taxes are assumed to distort and this distinction is central.

3See Hutson and Pym [19801, chapter 8, for the terminology used and

results cited in this proof.

4Since U1(0,y)/1J2(0,y) > 1, the cash—in-advance constraint is binding in

this solution, so p(s)c1(s) = 1 an the price level, p(s), is "infinite." A

condition like (3.13), below, is uaed in Brock and Scheinkman [19801 and

Scheinkinan [1980] to rule out non—siationary equilibria that converge to

"barter," as well as stationary barter equilibria in overlapping generations

models.

5This is the route taken by Labadie [19841, Theorem 1, in a problem that

is technically very similar to ours.

6Equilibriuin also depends, of course, on the nature of preferences.

Preferences affect the basic functional equation (3.13) through the function

h, which is in turn determined entirely by the utility function U. If U takes

the form U(c1,c2) = £n(c1) + g(c2) then h(v,y) 1 and (3.12) may be solved

immediately for a constant function v(s). It would be useful to exhibit this

case as a "borderline" within some family of perference functions, but we have

not found an interesting parametric family for which h can be calculated using

"pencil and paper" methods. It seems clear that a wide variety of functions h

are consistent with preferences satisfying Assumptions V and VI.
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