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The combination of power utility and i.i.d. lognormal consumption growth makes for

a tractable benchmark model in which asset prices and expected returns can be found in

closed form. Introducing the consumption-based model, Cochrane (2005, p. 12) writes,

“The combination of lognormal distributions and power utility is one of the basic tricks

to getting analytical solutions in this kind of model.”

This paper demonstrates that the lognormality assumption can be dropped without

sacrificing tractability, thereby allowing for straightforward and flexible analysis of the

possibility that, say, consumption is subject to occasional disasters. There has recently

been considerable interest in reviving the idea of Rietz (1988) that the presence of rare

disasters, or fat tails more generally, can help to explain asset pricing phenomena such

as the riskless rate, equity premium and other puzzles (Barro (2006a), Farhi and Gabaix

(2008), Gabaix (2008), Jurek (2008)). Here, I take a different line, closer in spirit to

Weitzman (2007), and argue that the importance of rare, extreme events is a double-

edged sword: those model parameters which are most important for asset prices, such

as disaster parameters, are also the hardest to calibrate, precisely because the disasters

in question are rare.

Working under two assumptions—that there is a representative agent with Epstein-

Zin preferences and that consumption growth is i.i.d.—I exploit, in Section I, a mathe-

matical object (the cumulant-generating function) in terms of which the equity premium,

riskless rate, consumption-wealth ratio and mean consumption growth (the “fundamen-

tal quantities”) can be simply expressed. Cumulant-generating functions crop up else-

where in the finance literature; the contribution of this paper is to demonstrate how

neatly they dovetail with the standard framework used in consumption-based asset-

pricing and macroeconomics. Importantly, the framework allows for the possibility of

disasters, but is agnostic about whether or not they occur. I present results in both

discrete-time and continuous-time settings.

The expressions derived relate the fundamental quantities directly to the cumulants

(equivalently, moments) of consumption growth. I show, for example, how the precau-

tionary savings effect which determines the riskless rate in a lognormal model generalizes
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in the presence of higher cumulants.

I illustrate the framework by investigating a continuous-time model featuring rare

disasters, and show that the model’s predictions are sensitively dependent on the cal-

ibration assumed. As a stark example, take a consumption-based model in which the

representative agent has relative risk aversion equal to 4. Now add to the model a certain

type of disaster that strikes, on average, once every 1,000 years, and reduces consump-

tion by 64 per cent. (Barro (2006a) documents that Germany and Greece each suffered

such a fall in per capita real GDP during the Second World War.) The introduction

of this disaster drives the riskless rate down by 5.9 percentage points and increases the

equity premium by 3.7 per cent.1 Very rare, very severe events exert an extraordinary

influence on the benchmark model, and we do not expect to estimate their frequency

and intensity directly from the data.

The remainder of the paper is devoted to finding ways around this pessimistic conclu-

sion. We can, for example, detect the influence of disaster events indirectly, by observing

asset prices. I argue, therefore, that the standard approach—calibrating a particular

model and trying to fit the fundamental quantities—is not the way to go. I turn things

round, viewing the fundamental quantities as observables, and making inferences from

them. It then becomes possible to make nonparametric statements that are robust to

the details of the consumption growth process.

In this spirit, I derive, in section III, robust restrictions on preference parameters

that are valid in any Epstein-Zin-i.i.d. model that is consistent with the observed funda-

mentals. My results restrict the time-preference rate, ρ, and elasticity of intertemporal

substitution, ψ, to lie in a certain subset of the positive quadrant. (See Figure 4.) These

parameters are of central importance for financial and macroeconomic models. The

restrictions depend only on the Epstein-Zin-i.i.d. assumptions and on observed values

of the fundamental quantities, and not, for example, on any assumptions about the

existence, frequency or size of disasters. They are complementary to econometric or

1The effect is smaller with Epstein-Zin preferences if the elasticity of substitution is greater than 1,

but even with an elasticity of intertemporal substitution equal to 2, the riskless rate drops by 3.5 per

cent.
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experimental estimates of ψ and ρ, and are of particular interest because there is little

agreement about the value of ψ. (Campbell (2003) summarizes the conflicting evidence.)

I also show how good-deal bounds (Cochrane and Saá-Requejo (2000)) can be used to

provide upper bounds on risk aversion, based once again on the fundamental quantities,

without calibrating a consumption process.

This theme of making inferences from observable fundamentals without making as-

sumptions about the tails of consumption growth recurs in Section IV. I consider the

question, surveyed by Lucas (2003), of the cost of consumption risk. This cost turns

out to depend on ρ and ψ and on two observables: mean consumption growth and the

consumption-wealth ratio. The cost does not depend on risk aversion other than (implic-

itly) through the consumption-wealth ratio, which summarizes all relevant information

about the attitude to risk of the representative agent and the amount of risk in the

economy, as perceived by the representative agent.

In the power utility case, these welfare calculations apply to any consumption growth

process, i.i.d. or not. My results therefore generalize Lucas (1987), Obstfeld (1994) and

Barro (2006b). Unlike these authors, I view the consumption-wealth ratio as an observ-

able. Using Barro’s preferred preference parameters, I find that the cost of consumption

fluctuations is about 14 per cent. I also calculate the welfare gains from a reduction in

the variance of consumption growth, and show that almost all the cost of uncertainty

can be attributed to the higher cumulants of consumption growth.

Campbell and Cochrane (1999) and Bansal and Yaron (2004) modify the textbook

model along different dimensions. This paper explores different features, and implica-

tions, of the data, so is complementary to their work. In particular, both Campbell

and Cochrane (1999) and Bansal and Yaron (2004) take care to work in a lognormal

framework. It would, of course, be interesting to extend these papers by allowing for

the possibility of jumps, but doing so would obscure the main point of this paper.

A large body of literature applies Lévy processes to derivative pricing (Carr and

Madan (1998), Cont and Tankov (2004)) and portfolio choice (Kallsen (2000), Cvitanić,

Polimenis and Zapatero (2005), Aı̈t-Sahalia, Cacho-Diaz and Hurd (2006)). Lustig, Van
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Nieuwerburgh and Verdelhan (2008) present estimates of the wealth-consumption ratio.

Backus, Foresi and Telmer (2001) derive expressions relating cumulants to risk premia,

though their approach is very different from that taken here. An alternative to the

approach of this paper is to evaluate disaster models by considering a wider range of

asset prices than typically considered in the consumption-based asset pricing literature.

In this spirit, Julliard and Ghosh (2008) argue that the cross-section of asset price data is

hard to square with disaster explanations of the equity premium, and Backus, Chernov

and Martin (2009) explore the evidence in option prices.

I Asset-pricing and the cumulant-generating func-

tion

Define Gt ≡ logCt/C0 and write G ≡ G1. I make two assumptions.

A1 There is a representative agent with Epstein-Zin preferences, time preference rate

ρ, relative risk aversion γ, and elasticity of intertemporal substitution ψ.

A2 The consumption growth, logCt/Ct−1, of the representative agent is i.i.d.,2 and the

moment-generating function of G (defined below) exists on the interval [−γ, 1].3

Assumption A1 allows risk aversion γ to be disentangled from the elasticity of in-

tertemporal substitution ψ. To keep things simple, those calculations that appear in the

main text restrict to the power utility case in which ψ is constrained to equal 1/γ; in

this case, the representative agent maximizes

E
∞∑
t=0

e−ρt
C1−γ
t

1− γ if γ 6= 1 , or E
∞∑
t=0

e−ρt logCt if γ = 1 . (1)

2Really, all that we need is that the representative agent perceives himself as having i.i.d. consumption

growth and prices assets accordingly; the results of the paper go through without modification.
3If not, the consumption-based asset-pricing approach is invalid. This assumption implies, for ex-

ample, that all moments of G are finite. See Billingsley (1995, Section 21).
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Cogley (1990) and Barro (2006b) present evidence in support of A2 in the form of

variance-ratio statistics close to one, on average, across nine (Cogley) or 19 (Barro)

countries.

For now, I restrict to power utility. We need expected utility to be well defined in

that

E
∞∑
t=0

∣∣∣∣e−ρt C1−γ
t

1− γ
∣∣∣∣ <∞ if γ 6= 1. (2)

I discuss this requirement further below.

The Euler equation relates the price of an asset this period to the payoff next period.

Expectations are calculated with respect to the measure perceived by the representative

agent:

P0 = E0

(
e−ρ
(
C1

C0

)−γ
(D1 + P1)

)
.

Iterating forward, we get

P0 = E

(
T∑
t=1

e−ρt
(
Ct
C0

)−γ
Dt

)
+ E0e

−ρT
(
CT
C0

)−γ
PT .

Finally, allowing T → ∞ (and imposing the no-bubble condition that the second term

in the above expression tends to zero in the limit) leads to the familiar equation

P (D) = E

(
∞∑
t=1

e−ρt
(
Ct
C0

)−γ
Dt

)
. (3)

I start by considering an asset which pays dividend stream Dt ≡ (Ct)
λ for some

constant λ (the λ-asset). The central cases of interest will later be λ = 0 (the riskless

bond) and λ = 1 (the wealth portfolio which pays consumption as its dividend), but, as

in Campbell (1986) and Abel (1999), it is possible to view values λ > 1 as a tractable

way of modelling levered claims. I write Pλ for the price of this asset at time 0, and Dλ

for the dividend at time 0.
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From (3),

Pλ = E

(
∞∑
t=1

e−ρt
(
Ct
C0

)−γ
(Ct)

λ

)

= (C0)
λ

∞∑
t=1

e−ρtE

((
Ct
C0

)λ−γ)

= Dλ

∞∑
t=1

e−ρtE
(
e(λ−γ)Gt

)
= Dλ

∞∑
t=1

e−ρt
(
E
(
e(λ−γ)G

))t
. (4)

The last equality follows from the assumption that log consumption growth is i.i.d. To

make further progress, I now introduce a pair of definitions.

Definition 1. Given some arbitrary random variable, G, the moment-generating func-

tion m(θ) and cumulant-generating function or CGF c(θ) are defined by

m(θ) ≡ E exp(θG) (5)

c(θ) ≡ log m(θ) , (6)

for all θ for which the expectation in (5) is finite.

Here, G is an annual increment of log consumption, G = logCt+1−logCt. Notice that

c(0) = 0 for any growth process and that c(1) is equal to log mean gross consumption

growth, so c(1) ≈ 2%. The CGF summarizes information about the cumulants (or,

equivalently, moments) of G.4 We can expand c(θ) as a power series in θ,

c(θ) =
∞∑
n=1

κnθ
n

n!
,

and define κn to be the nth cumulant of log consumption growth. A small amount of

algebra confirms that, for example, κ1 ≡ µ is the mean, κ2 ≡ σ2 the variance, κ3/σ
3

the skewness and κ4/σ
4 the kurtosis of log consumption growth. Knowledge of the

cumulants of a random variable implies knowledge of the moments, and vice versa.

4See Appendix A for further details.
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With this definition, (4) becomes

Pλ = Dλ

∞∑
t=1

e−[ρ−c(λ−γ)]t

= Dλ · e−[ρ−c(λ−γ)]

1− e−[ρ−c(λ−γ)] .

It is convenient to define the log dividend yield dλ/pλ ≡ log(1 +Dλ/Pλ).
5 Then,

dλ/pλ = ρ− c(λ− γ) (7)

Two special cases are of particular interest. The first is λ = 0, in which case the asset

in question is the riskless bond, whose dividend yield is the riskless rate. The second

is λ = 1, in which case the asset pays consumption as its dividend, and can therefore

be interpreted as aggregate wealth. The dividend yield is then the consumption-wealth

ratio.

This calculation also shows that the necessary restriction on consumption growth

for the expected utility to be well defined in (2) is that ρ > c(1 − γ), or equivalently

that the consumption-wealth ratio is positive. When the condition fails, the standard

consumption-based asset pricing approach is no longer valid.

The gross return on the λ-asset is (dropping λ subscripts for clarity)

1 +Rt+1 =
Dt+1 + Pt+1

Pt
(8)

=
Pt+1

Pt

(
1 +

Dt+1

Pt+1

)
=

Dt+1

Dt

(
eρ−c(λ−γ))

and thus the expected gross return is

1 + ERt+1 = E

((
Ct+1

Ct

)λ)
· eρ−c(λ−γ)

= E
(
eGλ
) · eρ−c(λ−γ)

= eρ−c(λ−γ)+c(λ)

5It is worth emphasizing that log dividend yield, as I have defined it, is a number close to D/P ,

since log(1 + x) ≈ x for small x. d/p is not the same as d − p as used elsewhere in the literature to

mean logD/P .
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Once again, it turns out to be more convenient to work with log expected gross

return, erλ ≡ log(1 + ERt+1) = ρ+ c(λ)− c(λ− γ).

Proposition 1 (Fundamental quantities, power utility case). The riskless rate, rf ≡
log(1 + Rf ), consumption-wealth ratio, c/w ≡ log(1 + C/W ), and risk premium on

aggregate wealth, rp ≡ er1 − rf , are given by

rf = ρ− c(−γ) (9)

c/w = ρ− c(1− γ) (10)

rp = c(1) + c(−γ)− c(1− γ) . (11)

Writing these quantities explicitly in terms of the underlying cumulants by expanding

c(θ) in power series form, we obtain

rf = ρ−
∞∑
n=1

κn(−γ)n

n!
(12)

c/w = ρ−
∞∑
n=1

κn(1− γ)n

n!
(13)

rp =
∞∑
n=2

κn
n!
·
{

1 + (−γ)n − (1− γ)n
}
. (14)

Writing the first few terms of the series out more explicitly, (12) implies that

rf = ρ+ κ1γ − κ2

2
γ2 +

κ3

3!
γ3 − κ4

4!
γ4 + higher order terms .

By definition of the first four cumulants, this can be rewritten as

rf = ρ+µγ− 1

2
σ2γ2 +

skewness

3!
σ3γ3− excess kurtosis

4!
σ4γ4 + higher order terms . (15)

In the lognormal case, the skewness, excess kurtosis and all higher cumulants are zero,

so (15) reduces to the familiar rf = ρ + µγ − σ2γ2/2. More generally, the riskless rate

is low if mean log consumption growth µ is low (an intertemporal substitution effect);

if the variance of log consumption growth σ2 is high (a precautionary savings effect); if

there is negative skewness; or if there is a high degree of kurtosis.
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Similarly, the consumption-wealth ratio (13) can be rewritten as

c/w = ρ+ µ(γ − 1)− 1

2
σ2(γ − 1)2 +

skewness

3!
σ3(γ − 1)3 −

− excess kurtosis

4!
σ4(γ − 1)4 + higher order terms . (16)

In the log utility case, γ = 1, the consumption-wealth ratio is determined only by

the rate of time preference: c/w = ρ. If γ 6= 1, the consumption-wealth ratio is low

when cumulants of even order are large (high variance, high kurtosis, and so on). The

importance of cumulants of odd order depends on whether γ is greater or less than 1.

In the empirically more plausible case γ > 1, the consumption-wealth ratio is low when

odd cumulants are low: when mean log consumption growth is low, or when there is

negative skewness, for example. If the representative agent is more risk-tolerant than log,

the reverse is true: the consumption-wealth ratio is high when mean log consumption

growth is low, or when there is negative skewness.

The risk premium (14) becomes

rp = γσ2 +
skewness

3!
σ3
(
1− γ3 − (1− γ)3

)
+

+
excess kurtosis

4!
σ4
(
1 + γ4 − (1− γ)4

)
+ higher order terms . (17)

In the lognormal case, this is just rp = γσ2. Since 1 + γn − (1 − γ)n > 0 for even n,

the risk premium is increasing in variance, excess kurtosis and higher cumulants of even

order. The effect of skewness and higher cumulants of odd order depends on γ. For

odd n, 1 − γn − (1 − γ)n is positive if γ < 1, zero if γ = 1, and negative if γ > 1. If

γ = 1, skewness and higher odd-order cumulants have no effect on the risk premium.

Otherwise, the risk premium is decreasing in skewness and higher odd cumulants if γ > 1

and increasing if γ < 1.

The following result generalizes Proposition 1 to allow for Epstein-Zin preferences.

Proposition 2 (Epstein-Zin case). Defining ϑ ≡ (1− γ)/(1− 1/ψ), we have

rf = ρ− c(−γ)− c(1− γ)

(
1

ϑ
− 1

)
(18)

c/w = ρ− c(1− γ)/ϑ (19)

rp = c(1) + c(−γ)− c(1− γ) , (20)
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and the counterparts of (12)–(14) that result on expanding (18)–(20) as power series.

Proof. See Appendix B.

Equation (19) reveals that if γ > 1 and ψ > 1—as in the calibration of Bansal

and Yaron (2004)—so ϑ < 0, the comparative statics for the consumption-wealth ratio

that were discussed above are reversed: a high variance or kurtosis leads to a high

consumption-wealth ratio.

Equation (20) shows as expected that when the CGF is linear—that is, when con-

sumption growth is deterministic—there is no risk premium. Roughly speaking, the

CGF of the driving consumption process must have a significant amount of convexity

over the range [−γ, 1] to generate an empirically reasonable risk premium. It also con-

firms that risk aversion alone influences the risk premium: the elasticity of intertemporal

substitution is not a factor.

Expressions (12)–(14), and their analogues in the Epstein-Zin case, can in principle be

estimated directly by estimating the cumulants of log consumption, given a sufficiently

long data sample, without imposing any further structure on the model. If, say, the high

equity premium results from the occasional occurrence of severe disasters, this will show

up in the cumulants. Other than (A1) and (A2), no assumption need be made about

the arrival rate or distribution of disasters, nor of any other feature of the consumption

process.

In practice, of course, we cannot estimate infinitely many cumulants from a finite

data set. One solution to this is to impose some particular distribution on log consump-

tion growth, and then to estimate the parameters of the distribution. An alternative

approach, more in the spirit of model-independence, is to approximate the equations

by truncating after the first N cumulants, N being determined by the amount of data

available. (In this context it is worth noting that the assumption that consumption

growth is lognormal is equivalent to truncating at N = 2, since, as noted above, when

log consumption growth is Normal all cumulants above the variance are equal to zero—

that is, κn = 0 for n greater than 2.) For reasons given in the Introduction and discussed

further in Section II.A below, I do not follow this route.
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I.A The Gordon growth model

From equations (18)–(20), we see that

c/w = rp+ rf − c(1). (21)

This is a version of the traditional Gordon growth model. For example, the last term

of (21), c(1) = log ECt+1/Ct, measures mean consumption growth. Only three of the

riskless rate, risk premium, consumption-wealth ratio and mean consumption growth

can be independently specified: the fourth is mechanically determined by (21).

This observation, together with equations (18)–(20), provides another way to look at

Kocherlakota’s (1990) point. In principle, given sufficient asset price and consumption

data, we could determine the riskless rate, the risk premium, and CGF c(·) to any

desired level of accuracy. Since γ is the only preference parameter that determines the

risk premium, it could be calculated from (20), given knowledge of c(·). On the other

hand, knowledge of the riskless rate leaves ρ and ψ indeterminate in equation (18),

even given knowledge of γ and c(·). That is, the time discount rate and elasticity of

intertemporal substitution cannot be disentangled on the basis of the four fundamental

quantities alone. On the other hand, as noted in the introduction, the use of Epstein-

Zin preferences aids the interpretation of results and allows for a richer set of possible

comparative statics.

I.B The asymptotic lognormality of consumption

If G has mean µ and (finite) variance σ2, the central limit theorem shows that consump-

tion is asymptotically lognormal:6 as t→∞
Gt − µt√

t

d−→ N(0, σ2).

6Informally, Gt − µt is typically O(
√
t), so for positive α, P(Gt − µt ≥ αt) → 0 as t → ∞, or

equivalently, P(Ct ≥ C0e
(µ+α)t) → 0. The Cramér-Chernoff theorem tells us how fast this probability

decays to zero, and provides an opportunity to mention another context in which the CGF arises. It

implies that
1
t

log P
(
Ct ≥ C0e

αt
) −→ inf

θ≥0
c(θ)− αθ

12



It therefore appears that if one measures over very long periods, only the first two

cumulants will be needed to capture information about consumption growth. Why,

then, does the representative agent care about cumulants of log consumption growth

other than mean and variance? To answer this question, it is helpful to define the

scale-free cumulants

SFCn ≡ κn
σn

For example, SFC3 is skewness and SFC4 is kurtosis. These scale-free cumulants are

normalized to be invariant if the underlying random variable is scaled by some constant

factor. Since the (unscaled) cumulants of Gt are linear in t, the nth scale-free cumulant

of Gt is proportional to t · t−n/2 = t(2−n)/2 and so tends to zero for n greater than 2.

The asymptotic Normality of (Gt − µt)/
√
t is reflected in the fact that its scale-free

cumulants of orders greater than two tend to zero as t tends to infinity. But in terms of

the scale-free cumulants, the riskless rate (for example) can be expressed as

rf = ρ−
∞∑
n=1

κn(−γ)n

n!

= ρ−
∞∑
n=1

SFCnσ
n(−γ)n

n!
(22)

Thus, even though skewness, kurtosis and higher scale-free cumulants tend to zero as

the period length is allowed to increase, the relevant asset-pricing equation scales these

variables by σ—and this tends to infinity as period length increases, in such a way that

higher cumulants remain relevant.

II The continuous-time case

For the purposes of constructing concrete examples, it is convenient to confirm that the

simplicity of the above framework carries over to the continuous-time case.

Assumptions A1 and A2 are modified slightly. They become

and
1
t

log P
(
Ct ≤ C0e

αt
) −→ inf

θ≤0
c(θ)− αθ.

Van der Vaart (1998) has a proof.
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A1c There is a representative agent with constant relative risk aversion γ, who therefore

maximizes7

E
∫ ∞
t=0

e−ρt
C1−γ
t

1− γ if γ 6= 1 , or E
∫ ∞
t=0

e−ρt logCt if γ = 1 (23)

A2c The log consumption path, Gt, of the representative agent follows a Lévy process,

and m(θ) exists for θ in [−γ, 1].

The analysis is almost identical to that in the discrete-time case, using the fact that

EeθGt =
(
EeθG

)t
, (24)

which follows from Assumption A2c; see Sato (1999) for detailed discussion of Lévy

processes.

The following proposition shows that the discrete-time results go through almost

unchanged, except that the equations that previously held for log dividend yields, the

log riskless rate and the log risk premium now apply to the instantaneous dividend yield,

the instantaneous riskless rate and the instantaneous risk premium. The proof, which

is very similar to the discrete-time calculations, is omitted.

Proposition 3 (Reprise of earlier results). The riskless rate, Rf , consumption-wealth

ratio, C/W , and risk premium on aggregate wealth, RP ≡ ER1 −Rf , are given by

Rf = ρ− c(−γ)

C/W = ρ− c(1− γ)

RP = c(1) + c(−γ)− c(1− γ) .

The Gordon growth model holds:

Dλ/Pλ = ERλ − c(λ).

7For simplicity, I restrict to the power utility case, although the analysis could be easily generalized

to allow for the continuous-time analogue of Epstein-Zin preferences (Duffie and Epstein (1992)).
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II.A A concrete example: disasters

To aid intuition, it is helpful to demonstrate the above results in the context of a partic-

ular model. In this section, I show how to derive a convenient continuous-time version of

Barro (2006a). I use the model to show that i.i.d. disaster models make predictions for

the fundamentals that are sensitively dependent on the parameter values assumed. In

particular, making disasters more frequent or more severe drives the riskless rate down

sharply.

Suppose that log consumption follows the jump-diffusion process

Gt = µ̃t+ σBBt +

N(t)∑
i=1

Yi (25)

where Bt is a standard Brownian motion, N(t) is a Poisson counting process with pa-

rameter ω and Yi are i.i.d. random variables with some arbitrary distribution. The

significance of this example is that any Lévy process can be approximated arbitrarily

accurately by a process of the form (25). I will assume that all moments of the disaster

size Y1 are finite, from which it follows that all moments of G are finite.

The CGF is c(θ) = log m(θ), where

m(θ) = EeθG1

= eeµθ · EeσBθB1 · Eeθ
PN(1)
i=1 Yi ;

separating the expectation into two separate products is legitimate since the Poisson

jumps and Yi are independent of the Brownian component Bt. The middle term is the

expectation of a lognormal random variable: EeθσBB1 = eσ
2
Bθ

2/2. The final term is slightly

more complicated, but can be evaluated by conditioning on the number of jumps that

take place before t = 1:

E exp

θ
N(1)∑
i=1

Yi

 =
∞∑
0

e−ωωn

n!
E exp

{
θ

n∑
1

Yi

}

=
∞∑
0

e−ωωn

n!
[E exp {θY1}]n

= exp {ω (mY1(θ)− 1)} ,
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So, finally, we have

c(θ) = µ̃θ + σ2
Bθ

2/2 + ω (mY1(θ)− 1) . (26)

The cumulants can be read off from (26):

κn(G) = c(n)(0)

=


µ̃+ ω EY n = 1

σ2
B + ω EY 2 n = 2

ω EY n n ≥ 3

Take the case in which Y ∼ N(−b, s2); b is assumed to be greater than zero, so the

jumps represent disasters. The CGF is then

c(θ) = µ̃θ +
1

2
σ2
Bθ

2 + ω
(
e−θb+

1
2
θ2s2 − 1

)
. (27)
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(1− γ)(−γ)

c/w c(1)

Figure 1: The CGF in equation (27) shown with and without (ω = 0) jumps. The figure

assumes that γ = 4.

Figure 1 shows the CGF of (27) plotted against θ. I set parameters which correspond

to Barro’s (2006a) baseline calibration—γ = 4, σB = 0.02, ρ = 0.03, µ̃ = 0.025, ω =

0.017—and choose b = 0.39 and s = 0.25 to match the mean and variance of the

distribution of jumps used in the same paper. I also plot the CGF that results in the

absence of jumps (ω = 0). In the latter case, I adjust the drift of consumption growth

to keep mean log consumption growth constant.
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The riskless rate, consumption-wealth ratio and mean consumption growth can be

read directly off the graph, as indicated by the arrows. The risk premium can be

calculated from these three via the Gordon growth formula (rp = c/w + c(1) − rf ), or

read directly off the graph as follows. Draw one line from (−γ, c(−γ)) to (1, c(1)) and

another from (1 − γ, c(1 − γ)) to (0, 0). The midpoint of the first line lies above the

midpoint of the second by convexity of the CGF. The risk premium is twice the distance

from one midpoint to the other. This procedure is illustrated in Figure 2.

−4 −3 −2 −1 0 1
−0.05

0

0.05

0.1

0.15

θ

c(
θ
)

rp
2

(1− γ)(−γ)

Figure 2: The risk premium. The figure assumes that γ = 4.

The standard lognormal model predicts a counterfactually high riskless rate; in Fig-

ure 1, this is reflected in the fact that the no-jumps CGF lies well below ρ for reasonable

values of θ. Similarly, the standard lognormal model predicts a counterfactually low eq-

uity premium. In Figure 1, this manifests itself in a no-jump CGF which is practically

linear over the relevant range and which is upward-sloping between −γ and 1− γ. Con-

versely, the disaster CGF has a shape which allows it to match observed fundamentals

closely.

Zooming out on Figure 1, we obtain Figure 3, which further illustrates the equity

premium and riskless rate puzzles. With jumps, the CGF is visible at the right-hand

side of the figure; the CGF explodes so quickly as θ declines that it is only visible for

θ greater than about −5. The jump-free lognormal CGF has incredibly low curvature.

For a realistic riskless rate and equity premium, the model requires a risk aversion above
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Figure 3: Zooming out to see the equity premium and riskless rate puzzles. The dashed

box in the upper right-hand corner is the boundary of the region plotted in Figure 1.

80.

With the explicit expression (27) for the CGF in hand, it is easy to investigate the

sensitivity of a disaster model’s predictions to the parameter values assumed. Table I

shows how changes in the calibration of the distribution of disasters affect the relevant

fundamentals and the cost of consumption uncertainty, φ. I consider the power utility

case, with ρ = 0.03 and γ = 4, and also the Epstein-Zin case, with the same time-

preference rate and risk aversion but higher elasticity of intertemporal substitution,

ψ = 1.5, following Bansal and Yaron (2004). As is evident from the table, small changes

in any of the parameters ω, b or s have large effects on the equity premium (and,

with power utility, on the riskless rate; this effect is muted in the Epstein-Zin case).

Given that these parameters are hard to estimate—disasters happen very rarely—this

is problematic.

An important difference between the power utility and Epstein-Zin cases is that

increasing risk in the economy leads to lower consumption-wealth ratios in the power

utility case, and higher consumption-wealth ratios in the Epstein-Zin case. Bansal and

Yaron (2004) emphasize this feature in a model without disasters, and argue that it

supports an elasticity of substitution greater than 1.

Table II investigates the consequences of truncating the CGF at the nth cumulant.
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ω b s Rf C/W RP R∗f C/W ∗ RP ∗

Baseline case 0.017 0.39 0.25 1.0 4.8 5.7 -0.9 2.8 5.7

High ω 0.022 -2.4 3.1 7.4 -2.5 3.0 7.4

Low ω 0.012 4.5 6.4 4.1 0.7 2.6 4.1

High b 0.44 -1.9 3.6 7.5 -2.6 2.9 7.5

Low b 0.34 3.5 5.8 4.4 0.4 2.7 4.4

High s 0.30 -2.2 3.8 8.1 -3.1 2.9 8.1

Low s 0.20 3.2 5.5 4.2 0.5 2.7 4.2

Table I: The impact of different assumptions about the distribution of disasters. µ̃ =

0.025, σ = 0.02. Unasterisked group assumes power utility, ρ = 0.03, γ = 4. Asterisked

group assumes Epstein-Zin preferences, ρ = 0.03, γ = 4, ψ = 1.5.

(The risk premium calculation applies in either the power utility or Epstein-Zin case; the

riskless rate and consumption-wealth ratio calculations only apply in the power utility

case.) When n = 2, this is equivalent to making a lognormality assumption, as noted

above. With n = 3, it can be thought of as an approximation which accounts for the

influence of skewness; n = 4 also allows for kurtosis. As is clear from the table, however,

much of the action is due to cumulants of fifth order and higher. This suggests that

one should not expect calculations based on third- or fourth-order approximations to

capture fully the influence of disasters.

III Restrictions on preference parameters

Any three of the riskless rate, consumption-wealth ratio, risk premium and expected

consumption growth pin down the value of the fourth, via the Gordon growth model

c/w = rf + rp − c(1) given in (21). I now assume that these quantities are observable,

and take the values given in Table III.

We have seen, too, that the riskless rate, risk premium and consumption-wealth ratio

tell us information about the shape of the CGF. I now show how to exploit this observa-

19



n Rf C/W RP

1 10.3 8.5 0.0 deterministic

2 7.1 6.7 1.6 lognormal

3 4.7 5.7 3.0

4 3.0 5.1 4.1

∞ 1.0 4.8 5.7 true model

Table II: The impact of approximating the disaster model by truncating at the nth

cumulant. All parameters as in baseline power utility case of Table I.

riskless rate rf 0.02

risk premium rp 0.06

consumption-wealth ratio c/w 0.06

mean consumption growth c(1) 0.02

Table III: Assumed values of the observables.

tion to find restrictions on preference parameters, in terms of observable fundamentals,

that must hold in any Epstein-Zin/i.i.d. model, no matter what pattern of (say) rare

disasters we allow ourselves to entertain.

Since for example rf = ρ−c(−γ) in the power utility case, observation of the riskless

rate tells us something about ρ and something about the value taken by the CGF at

−γ. Similarly, observation of the consumption-wealth ratio tells us something about ρ

and something about the value taken by the CGF at 1− γ. Next, c(1) = log E(C1/C0)

is pinned down by mean consumption growth, and c(0) = 0 by definition. How, though,

can we get control on the enormous range of possible consumption processes? One

approach is to exploit the fact that the CGF of any random variable is convex:

Fact 1. CGFs are convex.
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Proof. Since c(θ) = log m(θ), we have

c′′(θ) =
m(θ) ·m′′(θ)−m′(θ)2

m(θ)2

=
EeθGEG2eθG − (EGeθG)2

m(θ)2
.

The numerator of this expression is positive by a version of the Cauchy-Schwartz in-

equality which states that EX2 ·EY 2 ≥ E(|XY |)2 for any random variables X and Y . In

this case, we need to set X = eθG/2 and Y = GeθG/2. (See Billingsley (1995), for further

discussion of CGFs.)

The following result exploits this convexity to derive bounds on preference parame-

ters, based on the observables, that are valid no matter what is going on in the higher

cumulants.

Proposition 4. In the power utility case, we have

rf − c/w ≤ c/w − ρ
γ − 1

≤ rp+ rf − c/w (28)

In the Epstein-Zin case, we have

rf − c/w ≤ c/w − ρ
1/ψ − 1

≤ rp+ rf − c/w (29)

Proof. From equation (19) we have, in the Epstein-Zin case,

c/w − ρ
1/ψ − 1

=
c(1− γ)

1− γ .

The convexity of c(θ) and the fact that c(0) = 0 imply that

c(−γ)

−γ ≤ c(1− γ)

1− γ ≤ c(1) ;

to see this, note that if f(θ) is a convex function passing through zero, then f(θ)/θ is

increasing. Putting the two facts together, we have

c(−γ)

−γ ≤ c/w − ρ
1/ψ − 1

≤ c(1) .
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After some rearrangement of the left-hand inequality using (18) and (19), and substi-

tuting out for c(1) using the Gordon growth model (21), we get (29). Equation (28)

follows since γ = 1/ψ in the power utility case.

The intuition for the result is that as ψ approaches one, the consumption-wealth

ratio approaches ρ. Therefore, when the consumption-wealth ratio is far from ρ, ψ must

be far from one. Using the empirically reasonable values rp = 6%, rf = 2%, c/w = 6%,

we have the restriction that −0.04 ≤ (0.06− ρ)/(1/ψ − 1) ≤ 0.02, or equivalently

4− 1

ψ
≤ 50ρ ≤ 1 +

2

ψ
if ψ ≤ 1

1 +
2

ψ
≤ 50ρ ≤ 4− 1

ψ
if ψ ≥ 1 .

Figures 4a and 4b illustrate these constraints. If ψ is greater than one, ρ is constrained

to lie between 0.02 and 0.08; if also ψ is less than two, ρ must lie between 0.04 and 0.07.
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(a) Power utility case: γ and ρ
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ψ and ρ in here

or in here

(b) Epstein-Zin case: ψ and ρ

Figure 4: Parameter restrictions for i.i.d. models with rp = 6%, rf = 2% and log

expected consumption growth of 2%.

III.A Hansen-Jagannathan and good-deal bounds

The restrictions in Proposition 4 are complementary to the bound derived by Hansen and

Jagannathan (1991), which relates the standard deviation and mean of the stochastic
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discount factor, M , to the Sharpe ratio on an arbitrary asset, SR:

SR ≤ σ(M)

EM
. (30)

In the Epstein-Zin-i.i.d. setting, the right-hand side of (30) becomes

σ(M)

EM
=

√
EM2

(EM)2 − 1

=
√
ec(−2γ)−2c(−γ) − 1 ; (31)

combining (30) and (31), we obtain a Hansen-Jagannathan bound in CGF notation:

log
(
1 + SR2

) ≤ c(−2γ)− 2c(−γ) . (32)

Cochrane and Saá-Requejo (2000) observe that inequality (30) suggests a natural

way to restrict asset-pricing models. Suppose σ(M)/EM ≤ h; then (30) implies that

the maximal Sharpe ratio is less than h. In CGF notation, the good-deal bound is that

c(−2γ)− 2c(−γ) ≤ log
(
1 + h2

)
(33)

Suppose, for example, that we wish to impose the restriction that Sharpe ratios

above 100% are too good a deal to be available. Then the good-deal bound is c(−2γ)−
2c(−γ) ≤ log 2. This expression can be evaluated under particular parametric assump-

tions about the consumption process. In the case in which consumption growth is

lognormal, with volatility of log consumption equal to σ, it supplies an upper bound on

risk aversion: γ ≤ √log 2/σ (which is about 42 if σ = 0.02). However, this upper bound

is rather weak, and in any case the postulated consumption process is inconsistent with

observed features of asset markets such as the high equity premium and low riskless rate.

Alternatively, one might model the consumption process as subject to disasters in

the sense of Section II.A. In this case, the good-deal bound implies tighter restrictions

on γ, but these restrictions are sensitively dependent on the disaster parameters.

In order to progress from (33) to a bound on γ and ρ which does not require

parametrization of the consumption process, we want to relate c(−2γ)−2c(−γ) to quan-

tities which can be directly observed. For example, the Hansen-Jagannathan bound (32)
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improves on a conclusion which follows from the convexity of the CGF, namely, that

0 ≤ c(−2γ)− 2c(−γ) . (34)

This trivial inequality follows by considering the value of the CGF at the three points

c(0), c(−γ), and c(−2γ). Convexity implies that the average slope of the CGF is more

negative (or less positive) between −2γ and −γ than it is between −γ and 0. To be

precise, it implies that

c(−γ)− c(−2γ)

γ
≤ c(0)− c(−γ)

γ
(35)

from which (34) follows immediately, given that c(0) = 0. Combining (33) and (34), we

obtain the (underwhelming!) result that

0 ≤ log
(
1 + h2

)
.

However, we can sharpen (34) by comparing the slope of the CGF between −2γ and

−γ to the slope between −γ and 1− γ (as opposed to that between −γ and 0). Making

this formal, we have by convexity of the CGF that

c(−γ)− c(−2γ)

γ
≤ c(1− γ)− c(−γ)

1
,

from which it follows that

c(−2γ)− 2c(−γ) ≥ (γ − 1)c(−γ)− γc(1− γ)

= (γ − 1)(c/w − rf ) + ϑ(c/w − ρ)

or equivalently
σ(M)

EM
≥
√
e(γ−1)(c/w−rf )+ϑ(c/w−ρ) − 1 . (36)

Proposition 5. If the maximal Sharpe ratio is less than or equal to h, then we must

have

(γ − 1)(c/w − rf ) + ϑ(c/w − ρ) ≤ log
(
1 + h2

)
. (37)
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Figure 5: Restrictions on γ and ρ implied by good-deal bounds in the power utility case

with c/w = 0.06, rf = 0.02.

Working with the power utility case for simplicity (ϑ = 1) and setting c/w =

0.06, rf = 0.02, Figure 5 shows the upper bounds on γ that result for various differ-

ent h. Lower values of h imply tighter restrictions. When h = 1—ruling out Sharpe

ratios above 100%—we have γ ≤ 16.8 + 25ρ. So if ρ = 0.03, γ < 17.6.

Alternatively, we could take the approach suggested at the end of the previous section,

by setting ρ = c/w. In the general (Epstein-Zin) case, equation (37) then implies the

restriction

γ ≤ 1 +
log (1 + h2)

c/w − rf . (38)

(To avoid unnecessary complication I have imposed the empirically relevant case c/w ≥
rf .) Setting c/w = 0.06, rf = 0.02, and h = 1, this implies that γ < 18.4.

The important feature of the bounds (37) and (38) is that by exploiting the observable

consumption-wealth ratio and riskless rate, they do not require one to take a stand on

the hard-to-estimate higher cumulants of consumption growth.

IV The cost of consumption fluctuations

Continuing with the theme of extracting information from observable fundamentals, I

now explore the implications of the consumption-wealth ratio for estimates of the cost of
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consumption fluctuations in the style of Lucas (1987), Obstfeld (1994) or Barro (2006b).

A starting point is the close correspondence between expected utility and the price

of the consumption claim (that is, wealth):

U(γ) ≡ E

[
∞∑
t=0

e−ρt
C1−γ
t

1− γ

]
←→ E

[
∞∑
t=1

e−ρt
(
Ct
C0

)1−γ
]

=
W0

C0

.

In fact we have

U(γ) =
C1−γ

0

1− γ ·
(

1 +
W0

C0

)
. (39)

This correspondence between expected utility and the consumption-wealth ratio, and

hence (39), does not have a meaningful analogue in the log utility case. In a sense,

the consumption-wealth ratio is less informative in the log utility case since it is pinned

down by the time discount rate, C/W = eρ − 1.

Expected utility can also be expressed in terms of the CGF:

U(γ) =
C1−γ

0

1− γ
(

1 +
1

eρ−c(1−γ) − 1

)
, γ 6= 1 . (40)

When γ < 1 the representative agent prefers large values of c(1−γ) and when γ > 1 the

representative agent prefers small values of c(1 − γ). When γ > 1, the representative

agent likes positive mean and positive skew and positive cumulants of odd orders but

dislikes large values of variance, kurtosis and cumulants of even orders; when γ < 1 the

representative agent likes large means, large variances, large skewness, large kurtosis—

large positive values of cumulants of all orders.8

Equation (39) gives expected utility under the status quo; expression (40) permits

the calculation of expected utility under alternative consumption processes with their

corresponding CGFs. I compare two quantities: expected utility with initial consump-

tion (1 + φ)C0 and the status quo consumption growth process,9 and expected utility

with initial consumption C0 and the alternative consumption growth process. The cost

8As always, these cumulants are the cumulants of log consumption growth. This explains the result

that risk-averse agents with γ < 1 prefer large variances, which may initially seem counterintuitive.
9Since the consumption growth process is unchanged, the consumption-wealth ratio remains con-

stant. The increase in initial consumption therefore corresponds to an increase in initial wealth by

proportion φ.
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of uncertainty is the value of φ which equates the two. This definition follows the lead

of Lucas (1987) and Obstfeld (1994) and Section V of Alvarez and Jermann (2004).

The following sections consider two possible counterfactuals: (i) a scenario in which

all uncertainty is eliminated, and (ii) a scenario in which the variance of consumption

growth is reduced by α2 but higher cumulants are unchanged. In each case, mean

consumption growth ECt+1/Ct is held constant.

IV.A The elimination of all uncertainty

Since E (C1/C0) = ec(1), keeping mean consumption growth constant is equivalent to

holding c(1) = log E(C1/C0) constant. If all uncertainty is also to be eliminated, log

consumption follows the trivial Lévy process Gt whose CGF is cG(θ) = c(1) · θ for all θ.

From (39) and (40), φ solves the equation

[(1 + φ)C0]
1−γ

1− γ ·
(

1 +
W0

C0

)
=
C1−γ

0

1− γ ·
eρ−c(1)·(1−γ)

eρ−c(1)·(1−γ) − 1
. (41)

Simplifying, we have

φ =

(
1 +

W0

C0

) 1
γ−1

{
1− e−ρ

[
E
(
C1

C0

)]1−γ
} 1

γ−1

− 1 . (42)

What assumptions are required to derive (42)? The left-hand side of (41) relies on

the correspondence between expected utility and the consumption-wealth ratio that was

noted at the beginning of section IV. This correspondence follows directly from Lucas’s

(1978) Euler equation with power utility: the assumption that real-world consumption

growth is i.i.d. is not required. The cost of all uncertainty given in (42) depends only

on the power utility assumption. The counterfactual case of deterministic growth is

trivially i.i.d., so it is convenient to work with a CGF, though not necessary. (Below, I

calculate the benefit associated with a reduction in the variance of consumption growth,

while higher moments remain constant. In this case, the i.i.d. assumption is required

and CGFs are central to my calculations.)

In the Epstein-Zin case it is also necessary to rely on the i.i.d. assumption. It turns

out that (42) is misleading in that the γ terms that appear in it are capturing not risk
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aversion but the elasticity of intertemporal substitution, as the following proposition

shows.

Proposition 6. In the Epstein-Zin case with elasticity of intertemporal substitution ψ,

the cost of uncertainty, φ, satisfies

φ =

(
1 +

W0

C0

) 1
1/ψ−1

{
1− e−ρ

[
E
(
C1

C0

)]1− 1
ψ

} 1
1/ψ−1

− 1 . (43)

With power utility and γ 6= 1, the above equation holds, even in the absence of the

i.i.d. assumption, with 1/ψ replaced by γ.

With log utility we do require the i.i.d. assumption, and have

φ = exp [(c(1)− µ) / (eρ − 1)]− 1

= exp

[
(c(1)− µ)

W0

C0

]
− 1 .

Proof. See appendix B for the Epstein-Zin calculations.

Proposition 6 shows that if the mean consumption growth rate in levels, consumption-

wealth ratio and preference parameters ρ and ψ can be estimated accurately, then the

gains notionally available from eliminating all uncertainty can be estimated without

needing to make assumptions about the particular stochastic process followed by con-

sumption. In particular, in the Epstein-Zin case, φ is not—directly—dependent on γ,

nor on estimates of the variance (and higher cumulants) of consumption growth. The

consumption-wealth ratio encodes all relevant information about the amount of risk

(that is, the cumulants κn, n ≥ 2) and the representative agent’s attitude to risk (γ).

In the power utility case in particular, this result is rather general. It applies to arbi-

trary consumption processes and so nests results obtained by Lucas (1987, 2003), Obst-

feld (1994) and Barro (2006b).10 The important feature is that I treat the consumption-

wealth ratio as an observable. Lucas, Obstfeld and Barro postulate some particular

10Lucas (1987, 2003) assumes that current consumption C0 is not known in the risky case. I follow

Alvarez and Jermann (2004) in assuming that C0 is known. The distinction is quantitatively insignificant

in practice.
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consumption process and, implicitly or explicitly, calculate the consumption-wealth ra-

tio implied by that consumption process. For these authors, a change in γ is accompanied

by a change in C/W ; I, on the other hand, hold C/W constant and view it as containing

information about the underlying consumption process.

IV.A.1 The cost of uncertainty with power utility

As before, suppose that c/w = 0.06 and c(1) = 0.02, and that ρ = 0.03 and γ = 4.

Substituting these values into (42) gives φ ≈ 14%. This cost estimate is roughly two

orders of magnitude higher than that obtained by Lucas (1987, 2003), even allowing

for the higher risk aversion assumed in this paper. Although Lucas’s calculations do

not make use of the observable consumption-wealth ratio, it is possible to calculate

the consumption-wealth ratio implied by his assumptions on the consumption process

and my assumptions on ρ and γ; the result is an implied consumption-wealth ratio

c/w = 0.0896. Substituting this value back into (42), we recover the far lower cost

estimate, φ ≈ 0.14%. Once one considers the consumption-wealth ratio as an observable,

the cost of uncertainty appears to be considerably higher.

ρ γ c(1) c/w φ

Baseline case 0.03 4 0.02 0.06 14%

High ρ 0.04 18%

Low ρ 0.02 10%

High γ 5 16%

Low γ 3 7.7%

High growth 0.025 20%

Low growth 0.015 7.5%

High c/w 0.07 8.4%

Low c/w 0.05 21%

Table IV: The cost of consumption fluctuations with power utility.

Table IV shows how different assumptions on preference parameters and on mean
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consumption growth and the consumption-wealth ratio affect the estimate of the cost

of uncertainty. Apart from the last two lines of the table, the consumption-wealth ratio

c/w is held constant in the calculations.

The cost of uncertainty is higher when agents are more impatient (high ρ). When

ρ is low, the (relatively) high consumption-wealth ratio signals that there is not too

much risk in the economy. When ρ is high, the (relatively) low consumption-wealth

ratio signals that there is considerable risk in the economy, or that risk aversion is high.

The case in which γ varies is somewhat more complicated. Suppose, first, that ρ is

low relative to c/w, as in the above table. If we imagine holding the level of risk constant,

then increasing γ from a low level will lead, first, to an increase in c/w because the rep-

resentative agent is less inclined to substitute consumption intertemporally. Ultimately,

however, increasing γ must lead to a decrease in c/w, once the precautionary saving

motive starts to dominate. (These statements are most easily understood if one keeps

Figure 1 in mind.) Turning the logic around, if γ increases but c/w remains constant,

the level of risk in the economy must first be increasing and then declining. It follows

that we may expect increases in γ to have ambiguous effects on the cost of uncertainty,

holding c/w constant. In Table IV, the former effect dominates.

When, on the other hand, ρ is large relative to c/w, the CGF must have significant

curvature—look at Figure 1. It follows that there is considerable risk in the economy; in

this case, for γ to increase while c/w remains constant, it can only be that the level of

risk is declining. Thus we expect to see that for low values of ρ, the cost of uncertainty is

first increasing and then decreasing in γ, while for larger values of ρ, the cost is declining

in γ.

These observations are borne out by Figure 6. When ρ = 0.03, the cost of uncertainty

is first increasing and then decreasing in γ. When ρ = 0.06 or 0.09, the cost of uncertainty

is decreasing in γ.

Finally, when ρ equals 0.03, γ must be at least 2.5 to be consistent with the assumed

mean consumption growth and consumption-wealth ratio. In Figure 6, the black line

hits zero at γ = 2.5 because the only possibility consistent with ρ = 0.03, γ = 2.5, c(1) =
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Figure 6: The cost of consumption uncertainty plotted against risk aversion, γ, when

ρ = 0.03 (in black), ρ = 0.06 (in red) and ρ = 0.09 (in blue). The cost of uncertainty

ultimately declines as γ increases: for very high values of γ, c/w can only equal 0.06 if

there is relatively little risk in consumption growth.

0.02, c/w = 0.06 is that consumption is deterministic.

IV.A.2 The cost of uncertainty with Epstein-Zin preferences

Figure 7a illustrates the effects of changes in ρ and ψ on the cost of uncertainty. When

ρ is high, the cost is high, for the same reasons as above. It is not possible to set ψ

and ρ arbitrarily while retaining consistency with observed values of the consumption-

wealth ratio. In Figure 7a, we see that we cannot have ψ between 0.4 and 1 if ρ = 0.03.

However, if ρ = c/w, then ψ can take any value. Figure 7b therefore sets ρ = c/w and

shows that the cost of uncertainty increases in ψ. When ψ is around one, the implied

cost of uncertainty is high, at about 40% of current wealth.

IV.B A reduction in the variance of consumption growth

The preceding section showed that there are significant costs due to uncertainty. This

section investigates the utility benefit of a reduction in variance of α2, holding all higher

cumulants fixed. (It is possible to adjust variance alone, leaving higher cumulants un-

changed, because the Brownian component of log consumption growth only affects the

second cumulant.)
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(a) Against ψ, with ρ = 0.03 (in black), ρ =

0.06 (in red) and ρ = 0.09 (in blue).
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(b) Against ψ, with ρ = c/w = 0.06.

Figure 7: The cost of uncertainty with Epstein-Zin preferences.

Under the new reduced-volatility process, the CGF is

c̃(θ) = c(θ) + α2θ/2− α2θ2/2 . (44)

The term of order θ2 decreases the variance of log consumption growth by α2. The term

of order θ adjusts the drift of log consumption growth to hold mean consumption growth

constant in levels, that is, to ensure that c̃(1) = c(1).

The cost of uncertainty, φα, solves

[(1 + φα)C0]
1−γ

1− γ ·
(

1 +
W0

C0

)
=
C1−γ

0

1− γ ·
eρ−ec(1−γ)

eρ−ec(1−γ) − 1
.

Substituting in from (44), and replacing ρ− c(1− γ) with the observable c/w = log(1 +

C/W ), we obtain after some simplification

φα =

{
1 +

W0

C0

[
1− e− 1

2
α2γ(γ−1)

]}1/(γ−1)

− 1 . (45)

Carrying out similar calculations in the Epstein-Zin case, we find

Proposition 7. In the Epstein-Zin case with elasticity of intertemporal substitution ψ,

a reduction in consumption variance of α2 is equivalent in utility terms to a proportional

increase in current consumption of φα, where

φα =

{
1 +

W0

C0

[
1− e− 1

2
α2γ( 1

ψ
−1)
]} 1

1/ψ−1

− 1 . (46)
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In the power utility case, the above equation holds with 1/ψ replaced by γ.

With log utility, we have

φα = exp

[
1

2
α2/ (eρ − 1)

]
− 1

= exp

[
1

2
α2W0

C0

]
− 1 .

In all cases, we have the first-order approximation for small α2

φα ≈ W0

C0

γα2

2
. (47)

Proof. See Appendix B for the Epstein-Zin calculations.

Obstfeld (1994) observes that (47) holds in the power utility case with i.i.d. lognormal

consumption growth, but does not show that it holds in the Epstein-Zin case or for

general i.i.d. consumption processes.

With γ = 4, and setting c/w = 0.06 as usual, it follows from (47) that a reduction in

variance of 0.0003—as would be associated with a decline in the standard deviation of

log consumption growth from 2% to 1%—is equivalent in welfare terms to an increase

in current consumption (or equivalently wealth) of 1.0%. These calculations suggest, by

comparison with the calculations of the previous subsection, that most of the cost of

uncertainty can be attributed to higher-order cumulants.

V Conclusion

As pointed out by Rietz (1988), Barro (2006a) and Weitzman (2007), the tails of the

distribution of consumption growth exert an enormous influence on asset prices. In this

paper, I have taken an agnostic approach to the existence and importance of disasters

by introducing a framework that handles general i.i.d. consumption growth processes.

I showed that the predictions of disaster models are sensitively dependent on the as-

sumptions made about the parameters governing the size and frequency of disasters.
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This is problematic, because these parameters cannot be accurately estimated given the

available data. I sidestepped this problem by deriving results that are valid no matter

what is going on in the tails of consumption growth. In particular, these results do not

depend on any assumptions about the size—or indeed existence—of disasters.

First, I derived bounds on the time preference rate and elasticity of intertempo-

ral substitution, which are of central importance in an wide range of economic mod-

els. The bounds depend on observed values of the riskless rate, risk premium, and

consumption-wealth ratio. Second, I showed that good-deal bounds can be combined

with the consumption-wealth ratio and riskless rate to provide bounds on risk aver-

sion for given time preference rate and elasticity of intertemporal substitution. Third,

I showed, under assumptions more general than those made by Lucas (1987), Obstfeld

(1994) or Barro (2006b), that it is possible to use the observed consumption-wealth ratio

to estimate the welfare cost of uncertainty without specifying a consumption process. I

estimate that the cost of uncertainty is on the order of 14%, and that almost all of this

cost can be attributed to higher cumulants.
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A Cumulants and cumulant-generating functions

This section lays out some important properties of cumulant-generating functions. It

turns out that c(θ) can be thought of as a power series in θ that encodes the cumulants

(equivalently, moments) of consumption growth. To preview the main result, we have

c(θ) = µ · θ
1!

+
σ2θ2

2!
+ skewness · σ

3θ3

3!
+ kurtosis · σ

4θ4

4!
+ . . .

µ and σ denote the unconditional mean and standard deviation of log consumption

growth.

Definition 2. The cumulants of G are the coefficients κn in the power series expansion
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of the CGF c(θ):

c(θ) =
∞∑
n=1

κn(G)θn

n!
. (48)

Proposition 8. We have the following properties.

1. EG = κ1; varG = κ2 ≡ σ2; skewness (G) = κ3/σ
3; excess kurtosis (G) = κ4/σ

4.

2. For any two independent random variables G and H, κn(G+H) = κn(G)+κn(H)

and cG+H(θ) = cG(θ) + cH(θ).

3. κ1(G) = c′G(0); κ2(G) = c′′G(0); κn(G) = c
(n)
G (0).

4. κn is a polynomial in the first n moments of G(and the nth moment of G is a

polynomial in the first n cumulants of G).

Proof. See Billingsley (1995, section 9).

B Calculations with Epstein-Zin preferences

The Epstein-Zin first-order condition leads to the pricing formula

P = E
∞∑
1

e−ρϑt
(
Ct
C0

)−ϑ/ψ
(1 +Rm,0→t)

ϑ−1 (Ct)
λ ,

where ϑ = (1−γ)/(1−1/ψ) and Rm,0→t is the cumulative return on the wealth portfolio

from period 0 to period t. I assume that ψ 6= 1 for convenience.

Now,

1 +Rm,s−1→s =
Cs +Ws

Ws−1

=
Cs
Cs−1

(
Cs−1

Ws−1

+
Ws

Cs

Cs−1

Ws−1

)
=

Cs
Cs−1

eν ,

where the last equality follows by making the assumption—provisional for the time being,

but subsequently shown to be correct—that the consumption-wealth ratio is constant.

I have defined 1 + C/W ≡ eν . It follows, then, that

1 +Rm,0→t =
Ct
C0

eνt ,
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and hence that

P = (C0)
λ · E

∞∑
1

e−ρϑt
(
Ct
C0

)λ−ϑ/ψ (
Ct
C0

)ϑ−1

eν(ϑ−1)t

= (C0)
λ ·

∞∑
1

e−[ρϑ+ν(1−ϑ)−c(λ−γ)]t

=
(C0)

λ

eρϑ+ν(1−ϑ)−c(λ−γ) − 1
,

and so, finally, that
D

P
= eρϑ+ν(1−ϑ)−c(λ−γ) − 1 .

Defining d/p as usual,

d/p = ρϑ+ ν(1− ϑ)− c(λ− γ) . (49)

Setting λ = 1, we get an expression for c/w ≡ ν which can be solved for ν:

ν = c/w = ρϑ+ ν(1− ϑ)− c(1− γ) ,

from which it follows that

ν = ρ− c(1− γ) · 1− ψ
ψ(γ − 1)

.

Note that this exercise confirms the provisional assumption made above that ν is con-

stant.

Substituting back into (49), we have

dp = ρ− 1− ψγ
ψ(γ − 1)

c(1− γ)− c(λ− γ) .

We also have, as before, that

1 +Rt+1 =
Dt+1

Dt

(
eρϑ+ν(1−ϑ)−c(λ−γ)) ,

so

er = ρϑ+ ν(1− ϑ) + c(λ)− c(λ− γ) .
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To summarize, we have

rf = ρ− c(−γ)− c(1− γ)

(
1

ϑ
− 1

)
c/w = ρ− c(1− γ)/ϑ

rp = c(1) + c(−γ)− c(1− γ) .

The objective function at time 0 satisfies

(U0)
(1−γ)/ϑ =

(
1− e−ρ) (C0)

(1−γ)/ϑ + e−ρ
(
E(U1)

1−γ)1/ϑ
or

a
(1−γ)/ϑ
0 = 1− e−ρ + e−ρE

[(
C1

C0

)1−γ

a1−γ
1

]1/ϑ

, (50)

where I have defined ai ≡ Ui/Ci.

I now conjecture that ai = a, some constant, solves (50). If so,

a(1−γ)/ϑ = 1− e−ρ + e−ρa(1−γ)/ϑec(1−γ)/ϑ ,

from which it follows that

a =

(
1− e−ρ

1− e−ρ+c(1−γ)/ϑ

)ϑ/(1−γ)
,

which confirms the conjecture that a was constant. Hence,

U0 = C0 ·
(

eρ − 1

eρ − ec(1−γ)/ϑ

)ϑ/(1−γ)
.

The cost of all uncertainty, φ, solves the equation

(1 + φ)C0 ·
(

eρ − 1

eρ − ec(1−γ)/ϑ

)ϑ/(1−γ)
= C0

(
eρ − 1

eρ − ec(1)·(1−γ)/ϑ

)ϑ/(1−γ)
,

from which (43) follows.

Similarly, φα solves

(1 + φα)C0 ·
(

eρ − 1

eρ − ec(1−γ)/ϑ

)ϑ/(1−γ)
= C0 ·

(
eρ − 1

eρ − eec(1−γ)/ϑ

)ϑ/(1−γ)
,

and after substituting in for c̃(θ) from equation (44), we obtain the expression (46).
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