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ABSTRACT

This paper explores the link between financial conditions and economic activity.  We first review existing
measures, including both single indicators and composite financial conditions indexes (FCIs).  We
then build a new FCI that features three key innovations.   First, besides interest rates and asset prices,
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 Third, we control for past GDP growth and inflation and thus focus on the predictive power of financial
conditions for future economic activity.  During most of the past two decades for which comparisons
are possible, including the last five years, our FCI shows a tighter link with future economic activity
than existing indexes, although some of this undoubtedly reflects the fact that we selected the variables
partly based on our observation of the recent financial crisis.  As of the end of 2009, our FCI showed
financial conditions at somewhat worse-than-normal levels.  The main reason is that various quantitative
credit measures (especially issuance of asset backed securities) remained unusually weak for an economy
that had resumed expanding. Thus, our analysis is consistent with an ongoing modest drag from financial
conditions on economic growth in 2010.
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1.  INTRODUCTION 

 

Starting in August of 2007, the U.S. economy was hit by the most serious financial disruption 

since the Great Depression period of the early 1930s.  The subsequent financial crisis, which 

receded during the course of 2009, was followed by the most severe recession in the post World 

War II period, with unemployment rising by over five and half percentage points from its lows, 

and peaking at over ten percent.   

 

This shock to the U.S. (and the world) economy has brought to the fore the importance of 

financial conditions to macroeconomic outcomes.  In this paper we examine why financial 

condition indexes might prove to be a useful tool for both forecasters and policymakers, analyze 

how they are constructed, and provide new econometric research to see how useful a tool they 

can be.   

 

2. THE WHYS AND HOWS OF FINANCIAL CONDITIONS INDEXES 

 

To understand the usefulness of financial condition indexes, we will start by discussing why 

financial conditions matter, and then will turn to how they have been constructed in practice.  

 

 

2.1 Why Financial Conditions Matter 

 

Financial conditions can be defined as the current state of financial variables that influence 

economic behavior and (thereby) the future state of the economy. In theory, such financial 

variables may include anything that characterizes the supply or demand of financial instruments 

relevant for economic activity. This list might comprise a wide array of asset prices and 

quantities (both stocks and flows), as well as indicators of potential asset supply and demand. 

The latter may range from surveys of credit availability to the capital adequacy of financial 

intermediaries. 

 

A financial conditions index (FCI) summarizes the information about the future state of the 

economy contained in these current financial variables. Ideally, an FCI should measure financial 

shocks – exogenous shifts in financial conditions that influence or otherwise predict future 

economic activity. True financial shocks should be distinguished from the endogenous reflection 

or embodiment in financial variables of past economic activity that itself predicts future activity. 

If the only information contained in financial variables about future economic activity were of 

this endogenous variety, there would be no reason to construct an FCI: Past economic activity 

itself would contain all the relevant predictive information.
1
 

                                                        
1
 For this reason, an assessment of the marginal predictive value of an FCI should purge the FCI of its endogenous 

predictive content. We will see later in the empirical section of this paper that existing FCIs include some mix of 

exogenous financial shocks and endogenous predictive components. In constructing a new FCI, we use standard 
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Of course, a single measure of financial conditions may be insufficient to summarize all the 

predictive content. To simplify the exposition, we assume in this section that a single FCI is an 

adequate summary statistic. Later, in the empirical section of the paper, we relax and examine 

that assumption.  

 

The vast literature on the monetary transmission mechanism is a natural starting place for 

understanding FCIs. In that literature, monetary policy influences the economy by altering the 

financial conditions that affect economic behavior. The structure of the financial system is a key 

determinant of the importance of various channels of transmission. For example, the large 

corporate bond market in the United States and its broadening over time suggest that market 

prices for credit are more powerful influences on U.S. economic activity than would be the case 

in Japan or Germany today, or in the United States decades ago. The state of the economy also 

matters: For example, financial conditions that influence investment may be less important in 

periods of large excess capacity. 

 

The recent analysis of the monetary transmission mechanism by Boivin et al. (2009) classifies 

these channels as neoclassical and non-neoclassical.
2
  The first category is comprised of 

traditional investment-, consumption- and trade-based channels of transmission. The investment 

channel contains both the impact of long-term interest rates on the user cost of capital and the 

impact of asset prices on the demand for new physical capital (Tobin‘s q). The consumption 

channel contains both wealth and intertemporal substitution effects. Both the investment- and 

consumption-based channels may be affected by changes in risk perceptions and risk tolerance 

that alter market risk premia. Finally, the trade channel captures the impact of the real exchange 

rate on net exports.  

 

The second category – or non-neoclassical set – of transmission channels includes virtually 

everything else.  Prominent among this category are imperfections in credit supply arising from 

government intervention, from institutional constraints on intermediaries and from balance sheet 

constraints of borrowers.  

 

These credit-related channels work in complex ways that depend on prevailing institutional and 

market practices. For example, factors that aggravate or mitigate information asymmetries 

between lenders and borrowers – such as an increase in aggregate uncertainty – can alter credit 

supply. In addition, the behavior of intermediaries is subject to threshold effects – like runs – that 

are sudden and highly nonlinear and may radically alter the link between the policy tool and 

economic prospects.  Consequently, factors that affect the vulnerability of financial arrangements  

– such as changing uncertainty about the risk exposures of leveraged intermediaries – also may 

play an important role in assessing financial conditions. 

 

                                                                                                                                                                                   
econometric procedures to remove the endogenous component in order to isolate and study the impact of exogenous 

financial shocks. 
2
 An alternative classification might distinguish between financial shocks that are directly related to monetary policy 

and those that are due to other factors.  In this taxonomy, an FCI could be designed to measure the impact of 

financial variables on real activity over and above the direct effects of monetary policy via a risk-free yield curve.  

We employ this approach in Section 5.2 below, where we show that most of the predictive power of financial 

conditions for real activity reflects influences other than the evolution of monetary policy. 
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Naturally, the importance of these different transmission categories may change over time. For 

example, a ―credit view‖ – which emphasizes some of the non-neoclassical factors – might 

highlight the impact of the depletion of bank capital and the decline in borrower net worth in 

explaining the weak response of the U.S. economy to low policy rates in the early 1990s. A 

neoclassical assessment of the 1998-2002 period might highlight the role of stock prices in 

driving investment and, to a lesser extent, consumption. 

 

Note that both categories of transmission channels allow for a loose link (or even for the loss of a 

link) between the setting of the policy tool – typically, the rate on interbank lending – and the 

behavior of the economy. The financial conditions that matter for future economic activity are 

subject to shocks from sources other than policy, in addition to policy influences. In the two 

examples in the previous paragraph, these shocks would include changes in the net worth of 

lenders and borrowers, or in the relationship between asset prices and economic fundamentals.  

 

The impact of the policy tool on financial conditions also need not be stable (let alone linear) 

over time. This consideration would seem particularly important when policy tools are used 

beyond the usual range of variation. Indeed, at the zero interest rate bound for monetary policy, 

the conventional policy tool itself is no longer available.  

 

Naturally, policymakers would like to know how less conventional policy tools affect financial 

conditions and the economy. Following the financial crisis of 2007-09, three unconventional 

policy approaches are of particular importance: (1) a commitment to keep policy rates low 

(hereafter, a policy duration commitment); (2) quantitative easing (QE; the supply of reserves in 

excess of the level needed to keep the policy rate at its target); and (3) credit easing (CE; changes 

in a central bank‘s asset mix aimed at altering the relative prices of the assets available to the 

private sector).
3
  

 

To understand the impact of such unconventional tools, it is again necessary to focus on the 

specific channels by which these tools affect financial conditions. In theory, a full and complete 

understanding of the channels of monetary transmission could allow us to anticipate the 

economic impact of unconventional policy shifts. We could try to address questions such as ―At 

the zero bound, what scale of QE or CE is expected to be equivalent in terms of future economic 

stimulus to a step-reduction of the conventional policy rate?‖ Or, ―how long a policy duration 

commitment is needed to achieve the same effect?‖ Or, how much does it matter if the 

commitment is conditional (say, on the evolution of inflation prospects) or unconditional (that is, 

fixed in time)? How different is the economic stimulus if the central bank purchases $1 trillion or 

$2 trillion of mortgage-backed securities?  

 

In practice, of course, our understanding of monetary policy transmission is far less evolved. 

First, in economies with sophisticated financial systems, the transmission channels are diverse 

                                                        
3
 Unlike the Bank of Japan in the late 1990s and earlier in this decade, the Federal Reserve did not target any 

specific level of reserves as a part of its unconventional policy apparatus. The Fed‘s policy focus was on credit 

policies that influence relative asset prices (yields), suggesting that the changing size of the balance sheet was 

principally a by-product of credit interventions. Nevertheless, for analytic purposes, it is useful to distinguish 

changes in the size of the central bank balance sheet (QE) from changes in the mix of the central bank balance sheet 

(CE). 
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and change over time. Some channels occasionally may be blocked (for example, when 

intermediaries are impaired or key markets fail to function), thereby altering the impact of policy 

changes. Second, across economies with different financial systems, the variance in the 

importance of specific transmission channels can be large. Third, our experience with 

unconventional policies is exceptionally brief and limited. At this stage, no central bank that 

undertook QE or CE in 2008-09 has exited from that policy stance. And, until this episode, no 

major central bank (aside from the Bank of Japan) had used such policies since the Great 

Depression. 

 

So how does the policy transmission framework help us understand and appreciate the potential 

utility of an FCI? To simplify, imagine that the link between a particular FCI and the future 

growth rate of the economy is one-for-one. In this stylized world – depicted in the schematic in 

Figure 2.1 – a one-unit rise (decline) in the FCI leads to a one-percentage-point increase 

(decrease) in the pace of economic activity. Then, since policy is transmitted to the economy 

solely via financial conditions, the FCI would indicate whether a change in policy will alter 

economic prospects. It would summarize all the information about financial conditions – arising 

from both policy and from non-policy influences – that is relevant for the economic outlook. If 

policymakers changed their policy tool – conventional or unconventional – with a goal of 

altering economic behavior, the FCI would inform them if they will succeed. 

 

Of course, nothing about monetary policy or its assessment is so simple. First, the link between 

financial conditions and economic activity evolves over time. Changing mechanisms of finance 

mean that the indicators needed to capture the financial state also change. As an example, 

consider how the rising share of ARMs over recent decades alters the impact of short-term 

interest rates on the cost of home mortgages and on housing activity. Or, consider how the 

expansion of highly leveraged shadow banks in the decades after 1980 altered the link between 

the level of interest rates and the supply of credit.  

 

Second, the importance of factors other than monetary policy on financial conditions varies over 

time. Bouts of euphoria and pessimism can prompt asset bubbles and crashes even in periods 

where monetary policy tools are set close to long-run norms. Long periods of stability can erode 

risk awareness (consider the impact of steadily rising house prices over the period from the 

Second World War to 2006). And, pro-cyclical aspects of regulation, accounting and institutional 

risk management can amplify the cyclicality of credit supply and the swings in market risk 

premia that affect economic prospects. In recent years, the impact of such non-monetary 

influences on financial conditions seems unusually high.  

 

Third, the response of financial conditions to policy changes – even aside from non-policy 

shocks – may change. Imagine, for example, that a central bank chooses to lower interest rates in 

response to an oil price shock. How will long-term interest rates and equity prices change? 

Presumably, a central bank that gains anti-inflation credibility over time will experience a 

changing response to its policy actions. 

 

Fourth, forces other than financial conditions also affect the performance of the real economy.  

Examples include productivity shocks, commodity prices, and the ―animal spirits‖ of consumers 
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and business managers.  While there is a financial aspect to most of these forces, the assumption 

that their only impact on the real economy occurs via financial conditions is clearly too strong. 

 

In light of these considerations, policymakers cannot know the extent to which a policy change 

will alter an FCI, or the extent to which a change in an FCI foreshadows a change in the 

economy. Even so, an effective FCI may provide policymakers with a useful guide, especially in 

periods when the link between policy setting and financial conditions seems weak, or when the 

policy tools in use are stretched beyond their normal range. Just as a Taylor-type rule can inform 

(and helpfully constrain) the use of policy discretion, an FCI can serve as one guide to the 

effective stance of policy, after taking into account all the other factors that affect financial 

variables. 

 

Consider, for example, the period of Federal Reserve rate hikes from 2004 to 2006. In this era of 

the ―Greenspan conundrum,‖ a number of FCIs in wide use suggested that broad financial 

conditions remained accommodative despite rising policy interest rates and a flattening yield 

curve. The same FCIs also showed the most extremely restrictive conditions in late 2008, even 

after the funds rate hit zero, the authorities had introduced a policy duration commitment, the 

Fed balance sheet had doubled in size, excess reserves had ballooned by a factor of 50, and 

policymakers had undertaken or announced plans for massive purchases of securities with some 

degree of credit risk. Indeed, a comparison of the paths for a specific FCI that we will construct 

later over previous periods of policy tightening or periods of policy easing shows that the 2004-

06 and 2007-09 episodes are outliers in opposite directions. Precisely for that reason, they 

provide useful information to policymakers. 

 

To be sure, FCIs are not underpinned by a structural model derived from stable underlying 

microeconomic foundations. As such, their stability and predictive power is questionable. They 

are certainly vulnerable to the Lucas critique: Policy changes (or, more precisely, policy regime 

changes) reduce their utility. However, structural models with a role for a credit sector and for 

unconventional monetary policy are only now beginning to be explored, and they remain 

rudimentary (see Gertler and Kiyotaki, 2009 and Brunnermeier and Sannikov, 2009). It may be 

many years before such structural models can provide a reasonable basis for assessing specific 

policy choices. From a practical point of view, then, the use of reduced-form statistical 

techniques like those employed in creating FCIs is virtually the only means currently available to 

assess the impact of specific unconventional policy choices at the zero bound. 

 

2.2 Which Variables to Include in an FCI 
 

In principle, the range of potential financial measures to include in an FCI is quite vast.  

Consider, for example, the neoclassical channels of transmission. There is a long list of financial 

price measures that influence the user cost of capital, including the interest rates that firms pay to 

borrow (both short- and long-term) and the price at which they could raise new equity capital. 

Not surprisingly, equity prices, the shape of the yield curve and measures of credit risk have long 

been used as financial indicators of future economic activity, and are common components of 

FCIs. Similarly, prices that affect household wealth – including those of equities and houses – or 

consumer interest rates that affect the tradeoff between consumption today and consumption 

tomorrow would be natural candidates for an FCI. 
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The non-neoclassical or credit channels point to an even broader array of possible FCI 

components, including measures of liquidity, of borrower risk, and of the capacity and 

willingness of intermediaries to lend. In light of information asymmetries, the value of collateral 

often is critical in determining whether borrowers can obtain credit, so the asset prices of key 

types of collateral may be useful in an FCI. Uncertainty about the value of collateral also can be 

an obstacle to obtaining credit, so the volatility of these asset prices may be relevant, too. Finally, 

liquidity conditions (including the ability to roll over debt and to sell assets easily) and the status 

of their own capital also influence the propensity of intermediaries to lend. For some 

intermediary-related indicators – like the excess cost of an interbank loan above the expected 

policy rate – it is difficult to disentangle the liquidity component from the borrower-risk 

component, but both matter for the credit channels of transmission. 

 

In contrast to the neoclassical channels, which are generally measured via asset prices or interest 

rates, some of the non-neoclassical channels may be measured via quantity indicators or even 

surveys. The volume of transactions helps to quantify actual access to credit. In addition, survey 

measures of lending standards and conditions may be useful in assessing prospective access to 

credit. 

 

 

2.3 How FCIs Have Been Constructed in Practice 

 

Early research on financial conditions centered on the slope of the yield curve. Studies published 

in the late 1980s and early 1990s found the yield curve to be a reliable predictor of economic 

activity (Estrella and Hardouvelis, 1991; Harvey 1988; Laurent 1989; Stock and Watson, 1989).   

The spread between the fed funds rate and 10-year Treasury yield has been a key component of 

the Conference Board‘s index of leading indicators since 1996.  Credit risk, as measured by the 

commercial paper-Treasury bill spread, has also been used as a leading indicator of output since 

the late 1980s (Friedman and Kuttner 1992; Stock and Watson, 1989), and Gilchrist, Yankov, 

and Zakrajšek (2009) have recently proposed improved credit risk spreads with good forecasting 

performance over the past decade.  The yield curve has been found to outperform other financial 

variables in terms of predicting recessions, though stock market performance has been found by 

some to be a useful recession predictor as well (Estrella and Mishkin, 1996).  Stock market 

variables have been included in indexes of leading indicators since the 1950s (Zarnowitz, 1992).  

 

The Bank of Canada (BOC) pioneered work on broader financial condition measures in the mid-

1990s, when it introduced its monetary conditions index (MCI, Freedman, 1994).  For the BOC, 

the exchange rate was the most important additional variable.  Its MCI, therefore, consisted of a 

weighted average of its refinancing rate and the exchange rate.  The weights were determined via 

simulations with macroeconomic models designed to quantify the relative effect of a given 

percentage change in each variable on GDP or final demand.  In the case of Canada, a relatively 

open economy, the exchange rate was given a weight equal to about one-third that of the 

refinancing rate.  For a more closed economy like the United States, the weight given to the 

exchange rate is considerably smaller.  The MCI was used to help evaluate how much adjustment 

in the refinancing rate might be needed to offset the macroeconomic effects of a swing in the 
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exchange rate in order to maintain a desired stance of monetary conditions or degree of monetary 

accommodation.   

 

Over the course of the late 1990s, MCIs along the lines constructed by BOC became a widely 

used tool to assess the stance of monetary policy in many countries.  Moreover, the scope of 

variables augmenting the effects of policy rates was broadened to include long-term interest 

rates, equity prices, and even house prices (on the grounds that rising house prices increased the 

borrowing capacity of households).  These broader measures became known as financial 

condition indexes (FCIs) in order to distinguish them from MCIs.   

 

A variety of methodologies for constructing FCIs have been developed over time, and tend to fall 

into two broad categories: a weighted-sum approach and a principal-components approach.  In 

the weighted-sum approach, the weights on each financial variable are generally assigned based 

on estimates of the relative impacts of changes in the variables on real GDP.  These estimates or 

weights have been generated in a variety of ways, including simulations with large-scale 

macroeconomic models, vector autoregression (VAR) models, or reduced-form demand 

equations.   

 

The second broad approach is a principal components methodology, which extracts a common 

factor from a group of several financial variables.  This common factor captures the greatest 

common variation in the variables and is either used as the FCI or is added to the central bank 

policy rate to make up the FCI (this latter method is a combination of the weighted-sum 

approach and the principal-components approach).   

 

In most cases, financial condition indexes are based on the current value of financial variables, 

but some take into account lagged financial variables as well.  Some FCIs can be interpreted as 

the summarizing the impact of financial conditions on growth, others can be interpreted as 

measuring whether financial conditions have tightened or loosened.   

 

Though the specific variables included in various FCIs differ considerably, there are 

commonalities.  Most FCIs include some measure of short-term interest rates, long-term interest 

rates, risk premia, equity market performance, and exchange rates.  In the weighted-average 

approach, some FCIs use the outright levels of each variable, and some standardize the variables 

by subtracting the variable‘s mean and dividing by its standard deviation in each case.  The 

components are predominantly rates or financial prices (or derivatives of prices).  In a few cases 

a stock market wealth or market capitalization variable is included.  One FCI uses a Federal 

Reserve survey of lending standards; another FCI incorporates energy prices and a measure of 

narrow money.  None of the FCIs include stock or flow measures of any broader categories of 

credit. 

 

In what follows, we consider seven well-established FCIs: the Bloomberg FCI, the Citi FCI, the 

Deutsche Bank (DB) FCI, the Goldman Sachs (GS) FCI, the Kansas City Federal Reserve 

Financial Stress Index (KCFSI), the Macroeconomic Advisers Monetary and Financial 

Conditions Index, and the OECD FCI.  While a number of other FCIs have been developed, 

these particular indexes span a wide range of construction methodologies and financial variables, 
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and most are generally available.
4
  Figure 2.2 plots the various FCIs.  Table 2.1 includes a 

comprehensive list of the variables included in each index considered and Table 2.2 provides a 

summary of each index‘s methodology.  A short description of each index follows.   

 

 

Bloomberg Financial Conditions Index 

The Bloomberg FCI is readily accessible to those in financial markets and updated daily, making 

it a convenient measure to track financial conditions.  The index is an equally weighted sum of 

three major sub-indexes: money market indicators (one-third weight), bond market indicators 

(one-third weight), and equity market indicators (one-third weight) (Rosenberg, 2009).  Each 

major sub-index is then made up of a series of underlying indicators, which receive an equal 

weight in that sub- index.  Each indicator is standardized to show the number of standard 

deviations above or below the index‘s 1991 to mid-2007 average (the Z-score).  The overall FCI 

is also standardized in that manner.  The index consists of 10 variables in total, with history 

available from 1991.   

 

Citi Financial Conditions Index 

The Citi FCI is a weighted sum of six financial variables, where the weights were determined 

according to reduced-form forecasting equations of the Conference Board‘s index of coincident 

indicators (the six-month percent change in the coincident index) (D‘Antonio, 2008).  The 

variables in the index include corporate spreads, money supply, equity values, mortgage rates, 

the trade-weighted dollar, and energy prices; all nominal values are deflated.  The FCI uses 

various transformations and lags of the indicators, according to what anticipates movements in 

the coincident index at a horizon of roughly six months.    This index is available from 1983. 

 

Deutsche Bank Financial Conditions Index  

Deutsche Bank utilizes a principal components approach in its FCI (Hooper, Mayer and Slok, 

2007; Hooper, Slok and Dobridge, 2010).  The first principal component is extracted from a set 

of seven standardized financial variables that include the exchange rate, and bond, stock, and 

housing market indicators.  The FCI is then set to the weighted sum of this principal component 

and the target federal funds rate, where the weights are determined in a regression of real GDP 

growth on the financial variables and lagged GDP growth.  The level of the index can be 

interpreted as the percentage point drag or boost to GDP from financial conditions at a point in 

time, depending on whether the index is negative or positive, respectively.  The Deutsche Bank 

index is available from 1983.   

 

Goldman Sachs Financial Conditions Index 

The Goldman Sachs FCI is a weighted sum of a short-term bond yield, a long-term corporate 

yield, the exchange rate, and a stock market variable (Dudley and Hatzius, 2000; Dudley, 

Hatzius and McKelvey, 2005).  The Federal Reserve Board‘s macroeconomic model (the 

FRB/US model), together with Goldman Sachs modeling, were used to determine the weights.  

Since 2005, the long-term corporate yield has been measured as a sum of the 10-year swap rate 

and the 10-year credit default swap spread (CDX); prior to 2005, the less-liquid Moody‘s A-

rated corporate bond index was used.  As the CDX only started trading in 2003, a longer-dated 

                                                        
4
 Other U.S. financial conditions indexes include those developed by Beaton, Lalonde and Luu (2009); Goodhart 

and Hoffmann (2001); Montagnoli and Napolitano (2006); and Swiston (2008).   
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FCI—from 1980—was created by splicing the old and new indexes.  An increase in the Goldman 

Sachs FCI indicates tightening of financial conditions, and a decrease indicates easing.  The 

index is set so that October 20, 2003 = 100.   Unlike the other indexes, the Goldman Sachs index 

exhibits a noticeable downward trend because it uses levels of the financial variables, as opposed 

to using spreads or using changes in the variables as in most other indexes. 

   

 

Federal Reserve Bank of Kansas City Financial Stress Index 

This index was developed in early 2009, and is a principal-components measure of 11 

standardized financial indicators (Hakkio and Keeton, 2009).  The financial variables chosen by 

the Federal Reserve Bank of Kansas City can be divided into two categories: yield spreads and 

asset price behavior.  They were chosen to satisfy three criteria: 1) be available monthly with a 

history extending back to at least 1990; 2) be market prices or yields; and 3) represent at least 

one of five financial stress features that were identified by the Kansas City Federal Reserve 

(including increased uncertainty about assets‘ fundamental values, or decreased willingness to 

hold risky assets).  A positive index value indicates that financial stress is higher than its longer 

term average, and vice versa for a negative value.  The series is updated monthly and history is 

available from 1990.  

  
Macroeconomic Advisers Monetary and Financial Conditions Index 

Macroeconomic Advisers constructed its monetary and financial conditions index in the late 

1990s to take into account the dynamic effects of financial variables on GDP over time 

(Macroeconomic Advisers, 1998).  They developed a ―surface impulse response‖ methodology 

in aggregating the five different financial variables into an FCI: a real short rate, real long rate, 

dividend ratio, real exchange rate, and real stock market capitalization.  Response functions were 

generated by estimating the partial effects of changes in the financial variable on real GDP 

growth over time using simulations with MA‘s large-scale macroeconomic model.  The response 

functions were then inverted and aggregated so that the MA FCI at any point in time shows the 

combined effects of current and past changes in each of the financial variables on real GDP 

growth in the current period.  The index incorporates 38 quarters of financial variable lags and is 

available from 1982:Q4.    

 

OECD Financial Conditions Index 

The OECD FCI was constructed in 2008 and is a weighted sum of six financial variables 

(Guichard and Turner, 2008), where the variables are weighted according to their effects on GDP 

over the next four to six quarters.  One major difference between this index and others is that it 

includes a variable for tightening of credit standards: the Federal Reserve Senior Loan Officer 

Survey‘s series for the net percent of banks tightening standards for large and medium-sized 

firms.  The OECD set the index weights from a regression of the output gap on a distributed lag 

of the financial indicators. The weights were normalized relative to the change in interest rates, 

so that a one unit increase in the FCI is equivalent to the GDP effects of a one-percentage-point 

increase in the real long-term interest rate.  A one-unit increase in the FCI indicates that tighter 

financial conditions could reduce real GDP by about 0.6 percentage points over the next 4 to 6 

quarters.  The OECD FCI has history back to 1995. 
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When we compare movements in these different indexes in Figure 2.2, we see the following: 

  

 Despite wide ranges of coverage and methodologies, all the indexes show a large 

deterioration of financial conditions during the past two years and a strong bounce back 

(to about neutral) by the latter part of 2009.   

 There is some noticeable disagreement about how stimulative financial conditions were 

during the years leading up to the current crisis, and about whether or not the 

deterioration in the recent crisis was unprecedented relative to experience over the past 

two decades. 

 Some of this disagreement may hinge on the relative weight placed on monetary policy, 

which tends to run counter to and mitigate the effects of swings in private market 

financial conditions.  Indexes that showed the deterioration of financial conditions during 

the recent crisis to be unprecedented did not include the level of fed funds or closely 

related short term rate.  Indexes that include the level of the policy rate or a close 

substitute showed the recent decline to be closer in magnitude to the decline that occurred 

around the beginning of the decade.  

 

 

3.  TESTING THE PREDICTIVE POWER OF FINANCIAL CONDITIONS 

 

In this section we turn to an empirical investigation of how well financial conditions anticipate 

movements in real economic activity.  We begin by assessing the predictive performance of 

single financial variables that have been viewed as useful leading indicators — the term spread, 

stock returns, and so on.  We then turn to the performance of the broader measures of financial 

conditions as captured by the FCIs discussed in Section 2.   

 

3.1 Prediction Tests with Single-Variable Financial  Indicators. 

 

To establish a baseline for judging performance, we begin by assessing the predictive 

performance of five individual financial variables that are commonly considered to be useful 

leading indicators: 

 

1. The term spread (the spread between 10-year Treasury notes and the federal funds rate). 

2. Real M2 (nominal M2 deflated by the personal consumption expenditures deflator). 

3. The S&P 500 stock price index. 

4. The level of the federal funds rate as a key indicator of monetary policy. 

5. The short-term credit spread (the spread between the three-month commercial paper rate and 

the three-month Treasury bill rate). 

 

The first three of these are well established as the financial components of the Conference 

Board‘s index of leading indicators.  The other two are commonly used as well.
5
 

 

                                                        
5
 The literature on the forecasting performance of these and other financial indicators is vast.  Stock and Watson 

(2003) surveys the pre-2003 literature. 
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To gauge the performance of these five indicators, we considered their ability to predict (over 

horizons of two and four quarters ahead) the growth of four different measures of real economic 

activity: real GDP, payroll employment, the index of industrial production (IP), and the civilian 

unemployment rate.   Our interest was in determining how well the financial variables would 

perform after taking into account each activity variable‘s autoregressive structure (the ability of 

the variable‘s recent historical movements to predict its future movements).  The analysis was 

done both in-sample and post-sample.  Our approach is in the spirit of Bernanke (1990), who 

tested the marginal forecasting power of various interest rate spreads for economic activity and 

inflation after taking into account the autoregressive structure of each variable. 

 

The in-sample regression specification we employed was:  

 

   0 1 1

1 1

x xp p

t h t i t i i t i t i

i i

y y y x e      (1) 

 

where yt  denotes the real activity indicator (the logarithms of real GDP, employment, or IP or 

the level of unemployment rate), and xt denotes the financial indicator (the first difference of the 

federal funds rate, the first difference of the logarithm of real M2, the first difference of the 

logarithm of the SP500, or the level of the interest rate spreads).  Our data are quarterly, and h 

denotes the forecast horizon (so that h = 2 or 4 quarters).  The parameters py and px denote the 

number of lags of y and x used in the regressions, which were fixed at py = px =  4 for the in-

sample analysis. 

 

In-sample results.   

Table 3.1 shows results for these in-sample regressions estimated using data for most of the past 

five decades, but not including the current recession (t = 1961:Q1 – 2006:Q4). (Forecasts for the 

current recession are examined in the post-sample results below.) The table is divided into two 

panels, the top panel showing the results for growth over the next two quarters and the bottom 

panel showing the results for growth over the next four quarters.  In each panel, the activity 

variable y being predicted is shown in the top row and the financial indicator x being used to 

predict it is listed in the left column. Three statistics are given for each regression: 

  

 
2

/x yR  is the partial R
2
 for the lags of x given the lags of y, which shows the 

proportion of the overall variance in the activity variable that is explained by the 

financial variables net of the variance explained by the autoregressive component of 

the regression.   

 F is the F-statistic testing the hypothesis that the coefficients on the lags of x are zero 

with its p-value shown in parentheses. (A p-value less than 0.05 means that the 

estimated coefficients on lags of x are statistically significantly different from zero at 

the 5% significance level.) 
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 QLR is the Quandt likelihood ratio F-statistic which tests the null hypothesis that the 

coefficients on lags of x are stable over the sample period.  Again, p-values are shown 

in parentheses, and a p-value that is less than 0.05 (corresponding to QLR statistics 

greater than 4.1) indicates statistically significant evidence of instability in the 

coefficients.
6
    

 

The results indicate that the financial variables are useful in explaining the variance in the two 

and four-quarter ahead growth of the activity variables.  The partial R
2
s generally fall in range of 

0.1 to 0.2, and the F-statistics are uniformly significant at the 5% level.  However, the QLR 

statistics show substantial evidence of instability (31 of the 40 QLR statistics are significant at 

the 5% level).  While the specific source of instability is unclear, the outcome should not be 

surprising. The potential for instability was highlighted in Section 2 that focused on the 

conceptual background of financial conditions indicators. Just to recall, such in-sample 

instability can arise for a wide variety of reasons, including financial innovation, structural 

changes in the economy, and threshold effects (and other nonlinearities that are not captured in 

the linear model). Inclusion of the lagged activity indicators may not eliminate these sources of 

instability. The statistical fit was generally at least as good for 4-quarter-ahead results as for 2-

quarter-ahead predictions, and there was no evidence of a greater incidence of instability at the 

longer horizon.  Among the five separate financial factors, the stock market index exhibited 

greater stability, especially at the 4-quarter horizon, but it also explained a somewhat smaller 

portion of the total variance than the others.   

 

Post-sample tests 

Our post-sample prediction analysis is carried out using ―pseudo-out-of-sample‖ calculations that 

rely on the same regression specification used above, but estimated recursively through the 

forecast period.
7
  Specifically, forecasts at time period t are constructed by estimating the 

regression coefficients using data from the beginning of the sample through period t; these 

estimated regression coefficients are then used to forecast yt+h.  The process is repeated to 

construct forecasts at time t+1, and so on through the end of the sample (2009:Q4). The lag 

lengths on the x’s and y’s were chosen (at each forecast date) by BIC, a standard method for 

estimating lag-lengths.
8
  The pseudo-of-sample predictions were started in 1971 to allow for a 

                                                        
6
 The QLR (Quandt Likelihood Ratio) test statistic is a version of the familiar Chow-test for structural instability, 

which is used when there is uncertainty about the potential break-date in the coefficients.  The QLR test statistic is 

the largest of the Chow F-statistics computed for every possible break-date in the middle 70% of the sample period.  

For a textbook discussion of the test see Stock and Watson (2007, Chapter 14). 

 
7
 These are called ―pseudo-‖ out-of-sample, because they were not actually computed in real-time over the sample 

period.  Importantly, in our context, they do not reflect revisions in the real activity indicators or real M2. 

 
8
 BIC (Bayes information criteria), also called the SIC (Schwartz information criteria), balances the tradeoff between 

improved model fit (reducing a regression‘s sum of squared residuals) and increases in sampling error (larger 

coefficient standard errors) associated with augmenting the forecasting model with additional lags. See Stock and 
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minimum of 40 quarterly observations in the regressions used for the initial forecast.  As a 

benchmark for comparison, we also constructed pseudo-out-of-sample forecasts using an 

autoregressive model (which had the same form of the model above, but excluded the financial 

variable (x) regressors).   

 

Table 3.2 shows the root mean square forecast errors (RMSE) computed for the post-sample 

predictions produced by the various equations.  The quarterly results are aggregated (averaged) 

into the eight 5-year subperiods since 1970 shown in the top row of the table.  As with the in-

sample results in Table 3.1, this table too is split in half, with the top half devoted to 2-quarter 

ahead predictions and the bottom half 4-quarter-ahead predictions.  In each half, the top panel of 

data shows the RMSE for the autoregressive (AR) models (excluding financial factors) for each 

of the four real activity variables.  The rows below show results for the equations with each of 

the five financial factors (listed in the first column).  In the top half of the table (for h = 2) we 

show somewhat more detailed results for the fed funds model to help explain the results below.  

Each of the rows for fed funds shows the root mean square forecast error relative to the 

associated RMSE for the AR model.  For example, in the first subperiod, 1970:Q1-1974:Q4, the 

RMSE for predicting real GDP was 1.03 (that is, the RMSE using fed funds was 1.03 times 

greater than the corresponding RMSE for the autoregressive model).  Similarly, the relative 

RMSEs for employment, IP, and unemployment were 1.08, 1.24 and 1.09, respectively.  The 

average of these four relative RMSEs, 1.11, is reported in the next line down.  And in the lines 

that follow, similarly constructed averages are reported for the other four financial indicators.  

The more detailed results underlying these averages for the other indicators are presented in the 

appendix tables. 

 

Several notable patterns emerge in the results: 

 

 First, in the benchmark autoregressive models, prediction errors dropped substantially 

after mid-1985 and remained low for the next 20 years. We view this pattern as evidence 

of the Great Moderation.  The recent reemergence of pronounced volatility of economic 

activity is evident in the substantial rise of the RMSE of the AR models in the latest 

subperiod.     

 Second, at both two and four-quarter forecast horizons, the models including financial 

indicators generally improved on AR forecasts (relative RMSEs  < 1) through the mid-

1980s, after which their performance was relatively worse.  The five simple financial 

indicators generally did not enhance – indeed they tended to worsen – the accuracy of 

post-sample prediction of economic activity during the Great Moderation.  During the 

most recent period, with increased economic volatility, the simple financial indicator 

models, on average, were about on a par with the AR models.         

                                                                                                                                                                                   
Watson (2007, Chapter 14).  In this application we allow py to take on values between 0 and 4, and px to take on 

values between 1 and 4 (so that at least one lag of x enters the regression). 
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 Third, the financial indicator models performed especially poorly relative to the AR 

models in the second half of 1980s.  The result should not come as a surprise in light of 

the in-sample results pointing to instability.
9
  While the specific reasons for this 

breakdown are not immediately evident, the discussion in Section 2.1 highlighted several 

potential explanations. 

 Fourth, among the five simple indicator models, the stock market variable outperformed 

the AR model over the past decade, perhaps reflecting the relative importance of wealth 

effects on private spending during the 2001 and 2007-09 recessions.  The credit spread 

also did relatively well during the most recent five years.
10

  These findings are consistent 

with our earlier observation that the credit spread and especially the stock market variable 

showed greater evidence of in-sample stability. 

 

These results − including the evidence of in-sample instability and, with some exceptions, the 

failure to outperform simple autoregressive relationships in post-sample predictions in recent 

decades – are consistent with results found by earlier researchers (Stock and Watson (2003)). 

 

We see two ways to account for the evidence of instability in using simple financial indicators to 

predict real economic activity.  Either ―financial conditions‖ are unstable predictors of activity, 

or the simple indicators we have considered are unstable indicators of financial conditions more 

broadly.  The tests we consider next should shed some light on this issue. 

 

3.2 Prediction Tests with Financial Conditions Indexes.   

 

As we discussed in Section 2, FCIs pool information across multiple financial indicators, and 

therefore tend to be more representative of broad financial conditions than any single indicator 

could be.  To see if this pooling of information improves performance in predicting real activity, 

we have used the same pseudo-out-sample analysis outlined above for the various FCIs 

described in Section 2. 

 

Before showing the results, we highlight two features of the FCIs previously discussed in Section 

2 that make this exercise different from the exercise using the individual financial indicators. 

                                                        
9
 The pattern of instability also surfaces when carrying out the analysis using regressions estimated over 40-quarter 

rolling samples (that is, 40-quarter fixed sample period lengths) rather than recursive estimates (that is, using fixed 

starting points with sample periods that lengthen with each new observation).  Overall, these rolling regressions did 

not perform better than the recursive results, but they marginally outperformed the recursive regressions during the 

latter 1980s.  
10

 We also carried out the analysis using the credit spreads constructed in Gilchrist, Yankov, and Zakrajšek (2009; 

hereafter GYZ) that are available for the post-1990 period. GYZ construct 20 spreads that differ in maturity and 

default risk. Over the final two five-year periods (2000:Q1-2004:Q4, and 2005:Q1-EOS), the average RMSEs were 

0.98 and 0.78 for h = 2 and 1.22 and 0.87 for h = 4.  Results using a single principal component from the 20 spreads 

were similar (0.96 and 0.71 for h = 2 and 1.13 and 0.83 for h = 4).  Thus, consistent with results reported in GYZ, 

we find that their default spreads forecast relatively well during the 2000‘s. 
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First, a long history is available for the individual indicators, but the available history for the 

FCIs is much shorter. The various FCIs are available over different sample periods; the 

Goldman-Sachs (GS) index starts in 1980:I and has the longest history, while the OECD index 

starts in 1995:I and has the shortest history.  The second feature is that several of the FCIs were 

constructed by fitting real activity measures over some portion of the period that we used for our 

post-sample tests. This may impart an upward bias to their measured forecasting accuracy in our 

tests of their performance in predicting real activity.
11

 

 

Pseudo-out-of-sample forecasts were computed as in the previous section, but with the various 

FCIs used as the x variables in the regressions.  The results for this forecasting exercise are 

summarized in Table 3.3, which shows the average relative RMSEs for each FCI over the same 

5-year periods used in Table 3.2.  The limited history of the FCIs leads to a large number of 

blank entries in the table because forecasts are constructed from regressions using a minimum of 

40 quarterly observations. Thus, for example, because the GS FCI begins in 1980:Q1, the first 2-

quarter ahead forecast was constructed in 1991:Q4 to allow for a maximum of 4 lags. 

 

The key findings in Table 3.3 can be summarized as follows: 

  

 Pooling of information appears to improve the predictive ability of financial indicators, at 

least during periods of unusual financial stress. The FCIs outperformed the single 

financial indicator models on average, and the best of the FCIs outperformed the stock 

market index (the best of the single indicator models). However, the average performance 

of the FCIs was not better than that of the stock market index. 

 During the 1990s, some of the available FCIs did not do as well as the AR model 

(relative RMSEs > 1.0) or the single indicator models. After 2000, the FCIs showed a 

noticeable improvement relative to both the AR model and the single financial indicator 

models.   

 There is some evidence that in-sample overfitting is not a significant factor: During the 

most recent five-year period, the DB (PC) and the DB (FCI) performed comparably 

despite the former‘s advantage of being constructed explicitly to predict GDP.  

 Over the past decade, the KCFSI performed near the average of the FCIs, so we use it 

below as representative. 

 

 

 

 

                                                        
11

 For this reason we also used the principal component (PC) portion of the DB index, which is not subject to such a 

bias and should therefore give us some indication on the potential significance of this bias. Because the GS index 

exhibits substantial low-frequency (―trending‖) behavior, we carried out the analysis using two versions of the 

index, level and first-difference.  Figure 2.2 shows the year-over year difference in the GS index. 
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4.  CONSTRUCTION OF A NEW FINANCIAL CONDITIONS INDEX 

 

We seek to address three limitations of earlier financial conditions indexes.  First, previous FCIs 

cover only a limited span of history.  Second, the narrowness of the underlying series included in 

the indexes results in the exclusion of potentially important financial conditions.  Third, previous 

FCIs do not purge their measures of endogenous movements related to business cycle 

fluctuations or of monetary policy influences and so are less representative of the shocks to the 

financial system.  

 

In this section we develop a new, broader index of financial conditions in an effort to overcome 

the limitations of previous indexes.  An important goal was to see if we could improve predictive 

performance compared to existing FCIs, especially in light of the perceived importance of shifts 

in financial conditions in driving the most recent recession and recovery.  Accordingly, we 

established two criteria for the design and construction of a new index.  First, it needed to cover a 

wide range of financial variables, substantially wider than the coverage of any of the existing 

FCIs covered.  Second, it needed to have a relatively long history, ideally going back at least to 

the early 1970s.  As we will see, there is a tension between wide coverage and long history 

(many interesting financial variables have become available only relatively recently), but we 

were able to overcome some of this tension by using econometric methods designed for 

unbalanced panel datasets.  Third, we purged the underlying series that make up the financial 

conditions index of cyclical influences. 

 

4.1 Selection of Financial Variables 

 

The 45 variables we selected to include in our index are listed in Table 4.1.  Our starting point 

for the selection of these variables was the coverage of existing FCIs – we wanted to begin with 

a relatively full representation of the variables included in the FCIs surveyed in Section 2 (as laid 

out in Table 2.1).  This did not mean complete coverage of all the variables in Table 2.1, as there 

is a fair amount of overlap of very similar but not identical variables used in the different FCIs; 

for example, while Table 2.1 lists several broad measures of the stock market, we felt that only 

one was needed.  We chose not to include the fed funds rate or a close substitute (such as the 

short-term Treasury rate). At a later stage in this analysis, we also purge the FCI of monetary 

policy influences that may arise from including the yield curve in the FCI.  
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Next, we wished to fill in areas that were not fully covered by existing FCIs.  Most FCIs are 

dominated by interest rate level or spread variables and by asset price variables, which we have 

captured as indicated in rows 1-20 of Table 4.1.  We have added several price and spread 

variables that were not included in other FCIs, including new-car loan rates, jumbo mortgage 

rates, and home prices.  (These variables are denoted by the ―X‖ in the third column of Figure 

4.1.)  

 

Existing FCIs also include few quantity or flow variables, and only one FCI included a survey 

variable.  During the recent financial meltdown, these indicators appeared to become much more 

important than they had been in the past.  At the same time, price signals became potentially less 

reliable as markets seized up, nonprice credit conditions tightened dramatically, and credit flows 

slowed abruptly.  In an effort to capture these effects, we added 15 financial stock and flow 

variables to the list, including a representative sample of bank and non-bank credit variables in a 

variety of markets.  We also included seven survey indicators of financial conditions from the 

Fed‘s Senior Loan Officer Survey of bank lending conditions, the University of Michigan‘s 

survey covering consumer credit conditions, and the National Federation of Independent 

Business survey of small business credit conditions.
12

 

 

4.2 Historical Coverage 

 

Not all of the financial indicators we selected have histories going back as far as desired.  This 

unbalanced nature of our data panel is exhibited in Figure 4.1. For clarity, the start date of each 

of our financial indicators is given in the fifth column of Table 4.1.   Only one-fourth of the 45 

series go back to the beginning of the 1970s, but two-thirds go back to the early 1980s, and about 

90% to the mid-1990s. Fortunately, nearly half of the variables in the new areas we have chosen 

to stress – stocks outstanding, flows, and surveys – go back to the 1970s.  Many of the more 

recent series have become available as new markets emerged over time, including, for example, 

those relating to securitized consumer and business credit and credit default swaps.   

 

4.3 Econometric Approach 

 

                                                        
12 A natural question is whether the richness of our FCI also allows us to capture the vulnerabilities associated with 

high levels of financial leverage, which have become so obvious during the financial crisis.  The answer is ―not 

really.‖  We do include broker-dealer leverage, measured as the ratio of total assets to total equity capital of broker-

dealers, as well as several indicators that proxy for leverage in the broader economy, such as the market 

capitalization of financial stocks and the economywide level of debt.  However, our empirical approach is only able 

to identify the predictive power of a decline in leverage for subsequent economic weakness, not that of a high level 

of leverage.  The reason is that most if not all leverage measures are statistically non-stationary, so we need to 

transform them into growth rates before including them in our analysis.  At least in theory, a different statistical 

approach that aims to capture ―cointegrating‖ relationships between the levels of different variables may be capable 

of capturing such information.  However, such an approach would probably need to impose considerably more 

theoretical structure on the relationship between financial measures and economic outcomes than we do in our more 

flexible econometric approach. 
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Like some of the FCIs discussed above, we summarize the information in the indicators using 

principal components. However, our methods differ from standard applications in three key 

ways.  First, we allow for unbalanced panels (that is, for data series that begin and end at 

different points in the sample).  Second, we eliminate variability in the financial variables that 

can be explained by current and past real activity and inflation so that the principal components 

reflect exogenous information associated with the financial sector rather than feedback from 

macroeconomic conditions.
13

 Third, we summarize the financial variables using more than a 

single principal component.  This subsection summarizes the methods used to compute the 

principal components of the 45 financial series.  The forecasting performance of these principal 

components is discussed in the next subsection. 

 

Let Xit denote the i‘th financial indicator at time t, Yt denote a vector of macroeconomic 

indicators (the growth rate of real GDP and inflation in our implementation) and consider the 

regression equation  

 

    Xit = Ai(L)Yt + vit    (2) 

 

where vit is uncorrelated with current and lagged values of Yt, and thus represents the financial 

variable purged of its relation with current and lagged Y.  Suppose that vit can be decomposed as 

 

vit =  i′Ft + uit.    (3) 

 

where Ft  is a k×1 vector of unobserved financial factors, and uit captures ―unique‖ variation in vit 

that is unrelated to Ft and Yt.  Under the assumption that the uit are uncorrelated (or ―weakly‖ 

correlated) across the financial variables, the vector Ft captures the covariation or comovement 

in the financial indicators.  Thus, the goal of the econometric analysis is to estimate Ft. 

 

There is a large literature on estimating common factors in models such as this.  Much of the 

modern literature (see surveys in Bai and Ng (2008) and Stock and Watson (2006, 2010)) studies 

so called ―approximate dynamic factor models‖ in which Ft and uit are serially correlated, and 

data are available on a reasonably large number of indicators (i = 1, …, n where n is large) over a 

reasonably large sample period (t = 1, …, T where T is large).  A key result in this literature is 

that least squares estimators of F (principal components) are sufficiently accurate that they can 

be used in subsequent regression analysis (including predictive regressions like ours) with no 

first-order loss in efficiency or modification of standard regression inference procedures.  

Moreover, a large empirical literature, has found these estimates useful for structural analysis 

(e.g., Bernanke, Boivin, Eliasz (2005), Boivin and Giannone (2006)) and forecasting (see the 

                                                        
13

 In effect, we measure financial conditions relative to the setting that would be typical at a particular stage of the 

business cycle.  For example, this approach means that the impact on our FCI of a 250-basis-point spread between 

the yields of Baa corporate bonds and 10-year Treasuries may be restrictive during an economic expansion and 

accommodative during a recession. 
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surveys Stock and Watson (2006) and Eickmeier and Zielger (2008) surveys).  Motivated by 

these results, we will consider least squares estimates of F.  

 

The details of our calculations are as follows.  Each of the variables listed in Table 4.1 is 

transformed as indicated in the fourth column in the table (differenced, log-differenced, etc.), and 

then standardized to have mean zero and unit variance.  Each series was then regressed on 

current and two lagged values of growth in real GDP and inflation (constructed from the GDP 

price deflator).  The residuals from these regressions, say îtv , are estimates of vit. The factors are 

then estimated by least squares. That is, ˆ
tF  solves 

2

{ },{ } ,
ˆmin '

i tF it i ti t
v F .  The unbalanced 

panel nature of our dataset is accommodated by summing over non-missing observations.
14,15,16

  

 

Solving the least squares requires that k, the number elements in F, be specified.  In the balanced 

panel model, Bai and Ng (2002) propose estimators of k based on the minimized sum of squared 

residuals (equivalently the maximized average R
2
) that results from different value of k.  The 

columns labeled R
2
 in Table 4.1 shows how the R

2
 for each indicator varies as k increases from k 

= 0 factors (so that only Y is included in the regression) to k = 4 factors.  As k increases from 0 to 

4, the average R
2
 (shown in the last row of Table 4.1) increases steadily from 0.29 to 0.65, 

suggesting considerable uncertainty in the appropriate value of k. Our examination of the fits for 

the individual series suggested that substantial differences between the fit of the 1-factor and 2-

factor models for several series, but less substantial differences between the 2-factor and 3- or 4-

factor fits.  Because of this uncertainty, we will consider 1, 2, and 3 factor models in our 

empirical work. 

 

The final column of Table 4.1 shows the estimated values of of the  is for the one-factor model.   

In this case,
 

ˆ
tF
 
 is the financial conditions index, and the weight that each financial indicator i 

has in the index is proportional to its lambda coefficient.   Figures 4.2 and 4.3 show rankings of 

the indicators by their lambda values.  In Figure 4.2 the ranking is by the absolute values of the 

lambdas, and in Figure 4.3 it is by the actual values.  In about half the cases, lambda is negative, 

indicating a worsening of financial conditions when the indicator increases.  This was generally 

the case for interest rates and spreads, for example.  Positive lambdas (where an increase 

                                                        
14

 When the panel is balanced, the solution to the least squares problem provides the principal components of îtv  

which can be computed as the eigenvectors of the sample covariance matrix.  In the unbalanced panel, iterative 

methods can be used to find the least squares solution. 

 
15

 Because i′Ft = i′H
−1

HFt for any non-singular matrix H, only the column space of the factors can be identified 

from the data, and so an arbitrary normalization is imposed on the least squares problem.  However, only the column 

space of Ft matters for our predictive regressions (the fitted value from a regression of y onto F  is the same as the 

fitted value from the regression of  y onto HF), so the normalization has no effect on the forecasts. 

 
16

 We carried out estimation of the factors for all dates in which we have data on 11 or more financial indicators. 
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indicates an improvement in financial conditions) generally prevailed among credit flows and 

asset prices.    

 

 

 

 

5. EVALUATION OF THE NEW FINANCIAL CONDITIONS INDEX 

 

In this section, we evaluate our new FCI by first seeing how well it predicts the growth of 

economic activity relative to the AR model, the five single-variable indicators and the existing 

financial conditions indexes.  We also assess the extent to which the wider coverage of our index 

and the econometric enhancements used in constructing the new index improved its predictive 

performance.  The breadth of the new index allows us to consider whether some types of 

financial variables do better than others by assessing the relative predictive performance of 

various subsets of the included variables.  Next, we consider factors that may have contributed to 

the pervasive finding of forecasting instability among FCIs, including our new one.  Finally, we 

review what the index portends for the period ahead in 2010.   

 

5.1 Prediction Tests with New FCI  
 

The one-factor variant of our FCI is shown in Figure 5.1.  The series is standardized to have 

mean zero and unit standard deviation over the sample period, so that it is measured in standard 

deviation units.  With one notable exception, the new FCI follows a pattern that is broadly 

similar since the early 1990s to those we reviewed in Figure 2.2: both showed a substantial 

deterioration in financial conditions near the start of the millennium and more recently, with the 

recent move being somewhat more severe.  Both also show a substantial rebound over the past 

year from crisis lows.  The one notable exception is that most recently (in the second half of 

2009, our index shows a substantial deterioration whereas the alternative FCIs did not.  We will 

discuss the reasons for this deterioration, an interesting result, at the end of this section.
17

  Going 

back further, our index showed substantial deteriorations in the mid-1970s and early 1980s, both 

periods of severe recession, and an impressive spike down in 1987 coinciding with the stock 

market crash in October of that year.     

 

How well does the new index predict economic activity?  Table 5.1 summarizes the pseudo-out-

of-sample forecasting results based on regression models with one, two and three factors.  The 

results are shown in the same format as we discussed for Tables 3.2 and 3.3 (the data entries are 

the average relative RMSEs using those for the AR models in Table 3.2 as the benchmark).  For 

purposes of comparison, the table also shows the average prediction errors of the AR model, 

                                                        
17

 To update our FCI through the fourth quarter of 2009, we estimated a number of series obtained from the Flow of 

Funds, as described in the data Annex.  
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representative single variable and existing FCI models (the S&P 500 and the KCFSI) from Table 

3.2, as well as the averages across the single variables and all the existing FCIs we surveyed.  

 

The key results can be summarized as follows: 

 

 The one-factor variant generally performed at least as well as the two- and three-factor 

versions.  Evidently, while more than a single factor is needed to capture the co-

movement in the 45 financial variables, only the dominant factor helps forecast future 

real activity.  In what follows, we focus on the one-factor version. 

 The one-factor FCI generally tracked future GDP growth better than the AR model—this 

was especially so during the recent downturn as evident in Table 5.1 and Figure 5.2 

(which compares the new FCI and AR predictions of GDP growth).  However, the FCI 

substantially underperformed the AR model during the late 1990s, a period when 

financial conditions appeared to be worsening but economic growth was robust.  

 The new FCI did better than the average single financial indicator in most subperiods, 

including both the period of the early 1990s and the past decade.  It also outperformed the 

best of the single-factor indicators, the stock market index, over the past five years, but 

underperformed significantly in a couple of the earlier subperiods.  These patterns are 

evident both in Table 5.1, which compares prediction errors averaged across activity 

variables and in Figures 5.3a and 5.3b, which show the predicted and actual rates of real 

GDP growth using the new FCI, the S&P500 and the existing FCIs.  

 Our FCI did somewhat better than other FCIs over three of the four subperiods for which 

we have results for both sets, but worse during one (the second half of the 1990s).   

 Like the other FCIs, our new FCI performed noticeably better after 2000, especially over 

the most recent five-year period, than it did earlier.    

 

While constructive, these findings cause us to raise several notes of caution.  First, the variability 

of the results over time, with noticeable degradation of relative performance in the late 1980s and 

latter 1990s, is once again indicative of instability in the relationship between financial 

conditions and real economic activity.  Second, the relatively poor performance of our FCI 

during the second half of the 1990s in particular suggests that that period merits closer 

inspection.  Third, the better performance during the most recent five years (relative to both the 

average of the alternative FCIs and KC Fed‘s index as representative of one of the better 

performing FCIs) may reflect selection bias in our choice of variables to include in the index: 

naturally, our selection was governed in part by an understanding of the types of financial 

variables that were used for monitoring and measuring the recent financial crisis. In this sense, 

we did not seek to mitigate observer bias. 

 

5.2 Testing the new FCI’s enhancements of the existing technology 
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The key features of our FCI that distinguish it from extant FCIs are (1) its broader coverage of 

existing and more recent financial variables, including indicators other than rates, spreads and 

asset prices, (2) the use of unbalanced panel estimation techniques to substantially lengthen the 

history of the FCI, and (3) the purging of financial variables of macroeconomic influences 

(represented by A(L)Yt in equation 2, Section 4.2 above) .    

 

To gauge the effects of these enhancements, we ran prediction tests with several different 

versions of the new FCI, including a (nearly) balanced panel variant, a decomposition of the 

index by type of financial variable, and a version that was not purged of macroeconomic 

influences.  The results of these tests are presented in Table 5.2.  

 

Balanced panel.  We constructed a variant of our new FCI that limited the financial variables 

included to those with histories going back to at least 1980 (that is, 29 of the 45 variables), so 

that the panel was ―balanced‖ back to 1980 but not before.  The relative predictive performance 

of this variant provides some indication of how increasing the number of financial variables in 

the index, especially in more recent years, may have affected new FCI‘s performance.  

 

The baseline new FCI outperforms the narrower, balanced panel variant over the past two 

decades on average, including the most recent period, suggesting meaningful gains from the 

wider coverage.  However, during the 1980s, the balanced panel variant outperformed 

signficantly.  

 

Decomposition tests.  The richness of the coverage of our FCI across a variety of types of 

financial variables allows us considerable latitude to test whether some types of variables do 

better than others in predicting movements in economic activity.  Table 4.1 groups the 45 

financial series underlying our FCI into five categories (interest rate levels and spreads (15 

series), asset prices (5 series), stock and flow quantities (16 series), surveys (7 series), and 2
nd

 

moment or risk measures (3 series)).  Figure 5.4 decomposes the FCI into components associated 

with variables in these categories.
18

  A cursory inspection of the panels in this figure indicates 

that historically, interest rate spreads have been the most important source of movement of our 

FCI. They explain most of the steady decline in the FCI during the later 1990s and more 

recently.  In the most recent period of the financial crisis, all five categories contributed to the 

decline in our FCI. 

 

The results shown in Table 5.2 summarize our forecast tests for a slightly more nuanced 

decomposition of the individual series, where the interest rate or spread variables have been 

subdivided into liquidity indicators and credit indicators.  The specific indicators in each 

                                                        
18  At each date, the FCI is a linear combination of the 45 variables, where the weights change through time because 

of the unbalanced nature of the data set.  Each panel in Figure 5.4 shows the contribution to the overall FCI of the 

group of variables indicated in the headline.   
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category are listed in the appendix.  The results indicate that no single component stood out as 

consistently better:  Some outperformed in some subperiods and others in other subperiods.  The 

overall FCI often did better than any of its major components.  This was especially true during 

the most recent period when the overall FCI outperformed each of the separate categories (as 

well as the star performer among individual financial variables, the stock market index) by wide 

margins.  This result suggests that there are significant benefits to be gained from pooling a large 

set of financial indicators.  But the force of this observation may be weakened by the 

aforementioned selection bias in our construction of the new FCI.   Moreover, in at least one 

subperiod (the latter 1990s), the overall index did significantly worse than its subcomponents. 

  

Purging macro influences.  Our third test entailed using the index constructed with all 45 

variables, but where the input variables were not purged of the effects of movements in 

economic activity (GDP growth and inflation--i.e., those effects represented by A(L)Yt in 

equation 2,  as discussed in Section 4.2 above).  The second to last row in each half of Table 5.2 

shows prediction results for the unpurged index.  A comparison with the top row of each table 

indicates that purging the underlying variables of macro influences yields noticeably better 

forecasting results during the early 1990s and over the past ten years, especially the most recent 

period.  But purging yields worse results (than the unpurged variant) during other periods.
19

  

 

Figure 5.5 displays the effects of purging the FCI of macro influences in a bit more detail.  

During the mid-1970s and early 1980s the unpurged index was significantly more negative than 

the purged index.  That is, the financial indicators (particularly the interest rates and spreads, 

which dominate the index in this period) suggested severe disruptions in the financial sector, but 

much of this could be explained by the prevailing level of real activity and inflation. Looking at 

the most recent (2009:Q4) values of the indexes, the unpurged index is essentially neutral, 

while the purged index shows a significant drop from 2009:Q2 to 2009:Q4.  The unpurged 

index shows that, viewed in isolation, financial conditions are near their average values.  In 

contrast, the purged index suggests that, conditional on the pace of the recovery in the 

second half of 2009, financial conditions remain a drag on future real activity.   

 

Purging the funds rate. Our fourth test was to include the federal funds rate in the list of macro 

influences to be purged before constructing our FCI.  The resulting FCI is shown graphically in 

Figure 5.6, and the forecast performance is shown in the last row of each half of Table 5.2.  The 

results show that the forecast performance of the alternative FCI is generally not too different 

                                                        
19 There were two local minima in the least squares function defining the non-purged FCI. The index corresponding 

to the lowest of these had unusual variation patterns over the last decade in the sample while the index 

corresponding to the largest of the two local minima behaved much like the FCI plotted in Figure 5.1.  Moreover, 

the index associated with the larger of two minima produced more accurate forecasts than the other index.  For these 

reasons we used the index associated with the largest of the two local minima as the non-purged index. The purged 

FCI corresponds to usual principal component. 
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from our benchmark FCI; it is modestly worse for most subperiods, but less bad for the 1995-

1999 period. 

 

Combined with the poor performance of the fed funds rate in the single-indicator results shown 

in Tables 3.1 and 3.2, these results suggest that pure monetary shocks contributed relatively little 

to the prediction of future economic activity during our sample period – a result consistent with 

structural VAR exercises that show that monetary policy shocks explain little of the variance of 

output (e.g., Christiano, Eichenbaum, and Evans (1999)).  Consequently, purging the FCI of their 

influence has only a slight impact on its utility as a forecasting tool.  In light of the perceived 

utility of the term structure as an economic predictor, this result may come as somewhat of a 

surprise.  But it is also consistent with our finding (Section 3, Table 3.2) that the term structure 

has not been particularly useful as a single-variable financial indicator in predicting economic 

activity since the mid-1980s. 

 

At the same time, there is evidence that monetary policy actions have been substantially more 

important in specific episodes.  Figure 5.6 shows that some of the biggest supportive effects from 

the funds rate – i.e., the biggest gaps between the purged and unpurged FCI – occurred around 

the stock market crash of 1987 and during the recent financial crisis.  Moreover, our exclusive 

focus on the federal funds rate as a gauge of monetary policy probably understates policy‘s 

impact during these episodes.  In the fall of 1987, for example, the FOMC‘s statement affirming 

its ―readiness to serve as a source of liquidity‖ to the financial system may have been more 

important in cushioning the impact of the crash than the 50-basis-point cut in the federal funds 

rate target.  Similarly, in late 2008 and early 2009, the sharp cut in the funds rate to near zero 

percent was only one aspect of the Fed‘s response to the crisis.  Other measures – including the 

various liquidity facilities, the asset purchases, and the ―stress test‖ for major banks – were also 

very important.  If we were able to include these adequately in our index, we would probably 

find an even bigger impact from monetary policy during crisis episodes. 

 

5.3 Possible sources of instability  

 

Our tests indicate that our new FCI is a more reliable predictor of activity during recent periods, 

especially the crisis episode, but was less so earlier.  This instability may be cause for concern. It 

points to the need to understand both the evolution of financial conditions and its underlying 

causes in order to use FCIs effectively.  For example, we find that purging the index of 

macroeconomic influences yields substantially better results (than not purging) in some periods 

(the early 1990s and the 2000s, especially most recently), but worse results in other periods.  The 

periods of success have been associated with episodes of considerable financial distress—the 

S&L crisis of the early 1990s, the dot-com bubble burst of the early 2000s, and the more severe 

financial crisis in recent years. While these episodes may have been triggered by monetary 

policy restraint, the scale of turmoil was not closely related to the degree of restraint.  
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Our discussion in Section 2.1 noted the extent to which FCIs historically have been considered as 

a way to broaden measurement of the monetary transmission mechanism.  But it also noted that 

at times, exogenous influences other than changes in monetary policy can be the dominant driver 

of broad financial conditions.  This pattern has prevailed in recent years, and may help to explain 

why several FCIs functioned better more recently.  To illustrate this point empirically, Figure 5.7 

shows the path of the new FCI and the fed funds target in recent decades.  The shading in Figure 

5.7 denotes periods of Fed policy easing and the non-shaded areas periods of Fed tightening.  

Until the recent episode, financial conditions generally deteriorated when the Fed tightened, and 

improved when the Fed eased.  During the recent crisis, however, financial conditions tightened 

dramatically even as the Fed eased aggressively.  The episodes of Fed tightening are summarized 

in Figure 5.8, which shows the maximum, minimum, and average paths of the FCI during 

periods of Fed tightening prior to the most recent one (which began in 2004).
20

  The path of the 

FCI beginning in 2004 does show a slight deterioration of financial conditions as the Fed 

tightened, but the response is unusually weak.  The results for easing cycles summarized in the 

same format in Figure 5.9 are more dramatic: In the most recent cycle, the FCI worsens for much 

of the period more than in any prior easing cycle.   

 

These observations suggest that financial conditions indexes do better in predicting activity 

during periods dominated by exogenous financial disturbances. This pattern favors the strategy 

of purging macroeconomic influences from financial conditions measures in order to focus on 

the pure financial shocks. 

 

5.4  What our FCI tells us about the period ahead. 

 

We noted at the outset of this section that our FCI shows an evolution of financial conditions 

after the spring of 2009 that differs from the pattern of other FCIs.  Whereas the existing FCIs 

show the current level of financial conditions to be back at or slightly better than ―normal‖ 

levels, our index has deteriorated substantially over the past two quarters.  Indeed, it has retraced 

more than a third of the sharp rebound that had occurred earlier in 2009.  This setback suggests 

that financial conditions are somewhat less supportive of growth in real activity than suggested 

by other FCIs.    

 

How do we explain this result?  We cannot rule out statistical variance in the data around a 

turning point as a contributing factor.  However, there may very well be an important behavioral 

explanation for the retreat of financial conditions.  To show this, Figure 5.10 decomposes the 

changes from 2009:Q2 to 2009:Q4  in both the unpurged and purged versions of our FCI into the 

five main indicator categories: interest rates, asset prices, quantitative indicators, surveys, and 

second moments.  On an unpurged basis, the interest rate, survey, and second moment indicators 

                                                        
20

 The maximums and minimums are across all cycles (except for the most recent one) for any given period. 
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improved, although some of this improvement was offset by a deterioration elsewhere.
21

  

However, on a purged basis, the interest rate and second moment indicators show only a modest 

improvement, while the asset price, survey and especially quantitative indicators deteriorated 

substantially.  The deterioration in the quantitative indicators was concentrated in non-mortgage 

ABS issuance, commercial mortgage debt, and repo loans. 

 

By way of interpretation, we see two main reasons for the difference between the new FCI and 

other measures: 1) the broader range of indicators included and 2) the purging of the direct 

impact of the business cycle on financial conditions.  Regarding 1), the improvement in financial 

conditions since the spring of 2009 has been concentrated in indicators that are included in 

virtually all financial conditions indexes, namely interest rates, credit spreads, and stock prices.  

In contrast, several components of our FCI that have not been previously included – particularly 

quantity indicators related to the performance of the ―shadow banking system‖ such as ABS 

issuance and repo loans, as well as total financial market cap and surveys of bank lending 

standards –  failed to improve much (or at least anywhere near as much as normally could be 

anticipated during an economic recovery).  This is seen in Table 5.3 and Figure 5.11.   The table 

shows the top contributors (across components of our FCI) to the decline in the overall FCI 

during the second half of 2009.  ABS issuance is clearly at the top of the list.  Figure 5.11 

indicates that ABS issuance remained relatively subdued during the second half of 2009.  This 

suggests that the continued woes of the shadow banking system could continue to weigh on the 

pace of the recovery, despite the recovery in more traditional measures of financial conditions. 

 

Regarding the second factor, it is noteworthy that the purged FCI has deteriorated relative to the 

unpurged index. This gap means that the evolution of financial conditions since mid-2009 has 

fallen short of past experience in the presence of a GDP rebound.  In other words, any 

improvement of financial conditions was more than accounted for by the impact of past 

economic growth. Consequently, the implications of current financial conditions for future 

growth appear somewhat less favorable than traditional FCIs may imply. 

 

  

 

6. CONCLUDING REMARKS 

 

In this paper, we studied financial condition indexes and find that they can help predict economic 

activity.  Among single-variable indicators, a broad stock market index outperforms as a 

predictor over the next two to four quarters.  A representative sample of available FCIs typically 

                                                        
21

 It may seem surprising that the asset price indicators show no net improvement, given the large increase in equity 

prices since the spring.  However, note that our asset price indicators generally enter the FCI as (log) changes rather 

than levels, and the pace of asset price improvement has slowed since the spring. 
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outperformed the single-variable indicators (yield curve, credit spreads, and so on), but some did 

not outperform the stock market index.  

 

We focused on improving the predictive capabilities of FCIs by: (1) expanding the data history; 

(2) expanding the data coverage; and (3) disentangling macroeconomic and policy influences 

from pure financial shocks.  Accordingly, we developed and tested a new FCI that addresses 

these matters.  While our analysis was done at a quarterly frequency, it would be possible to 

construct a broad FCI at a monthly interval, using both monthly and quarterly data. One notable 

disadvantage of the new FCI is that its size and estimation make it more cumbersome to update 

and use.  

 

In forecasting tests, the new FCI outperformed a variety of alternative measures in recent years, 

but not so during earlier periods.  In analyzing this performance, we found that both purging the 

FCI of macroeconomic influences and expanding coverage to a wide number and variety of 

variables contributed to its relatively better performance in recent years. The exclusion of 

macroeconomic influences contributed to this improvement somewhat more  than the expansion 

of coverage.  The overall index performed noticeably better in recent years than any of its major 

subcomponents (rates/spreads, asset prices, surveys, quantities, and so on).  

 

Our finding that the relative predictive performance of our new FCI was unstable over time 

reconfirmed earlier findings of instability for an array of financial indicators.  Our index seemed 

to work especially well in times of unusual financial stress emanating from within asset markets. 

Purging our index of macroeconomic influences seemed to be most effective in improving its 

performance during these periods.  

 

Finally, given the nature of the recent financial and economic crisis, gauging the path of financial 

conditions overall as they bear on prospects for economic activity will be an especially important 

ingredient in the economic forecasts prepared for policymakers and investors alike.  The 

estimated level of our FCI as of the end of 2009 pointed to credit conditions that remained 

somewhat tighter than the norm, implying a continuing, if modest, drag from overall financial 

conditions on economic growth during 2010.  
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Appendix:  

 

Variables used in the subindexes in Table 5.2: 

 

Price Subindex: 

1 10-Year Treasury Note Yield at Constant Maturity 

2 FedFunds/3monthTBill Spread 

3 2YrT-note/3monthTbill Spread 

4 10YrT-note/3monthTbill Spread 

5 Baa/10yr T-note Spread 

6 High Yield / Baa Spread 

7 Auto finance company loan rate, new Car/Two-yr Treasury Spread 

8 30-yr Conventional mortgage/ 10yrTBond Spread 

9 Jumbo/30yr Conventional Spread 

10 TED Spread (Using Constant Maturity T-bill) 

11 3-month LIBOR/OIS 

12 Bank rate on new Car Loans, 48-month/Two-year Treasury Spread 

13 Bank rate on Personal Loans, 24-month/Two-year Treasury Spread 

14 Citigroup Bond Yields:Credit {Corp} Spread/Finance 

15 Banks CDS Spread 

16 Real Broad Trade-Weighted Exchange Value of the US$  

17 Wilshire 5000 

18 Financial Market Cap (percent of S&P 500) 

19 Loan Performance National House Price Index (SA) 

20 Price of Oil Relative to 2Year MA (PPI Crude Oil) 

21 Correlation of Returns on Equities and Treasuries 

22 Idiosyncratic Bank Stock Volatility 

23 Monthly Average VIX  

 
Quantity Subindex: 

1 Bank Credit: All Commercial Banks (SA) 

2 Commercial Paper Outstanding:All Issuers (SA) 

3 Commercial Paper Issuance (Relative to 24Month MA) 

4 ABS Issuance (Relative to 24Month MA) 

5 CMBS Issuance (Alert Database) (Relative to 24Month MA) 

6 Money Stock:MZM {Zero Maturity} (SA) 

7 State & local Government:Liability:Credit Market  Instruments (SA) 

8 Nonfederal Sectors:Liability:Credit Market Debt  Outstanding (SA) 

9 Private Nonfinancial Debt, SA 

10 Total Finance:Liabilities:Security RPs (NSA)   

11 ABS Issuers:Assets; Consumer Credit (NSA)  

12 ABS Issuers:Asset; Mortgages on 1-4 Family Structures (NSA)  

13 ABS Issuers:Asset; Commercial Mortgages (NSA)  

14 Total Non-monrtgage ABS Issuance (NSA) Relative to 8Q MA) 

15 Broker Dealer Leverage 
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Survey Subindex: 

1 NFIB:%Reporting that Credit Was Harder to Get Last Time, Net (SA) 

2 Michigan Survey:Interest Rates/Credit Reason Good/Bad Conditions for Buying Large 

HH Goods Spread 

3 Michigan Survey:Interest Rates/Credit Reason for Good/Bad Conditions for Buying 

Houses Spread 

4 Michigan Survey:Interest Rates/Credit Reason for Good Less Bad Conditions for Buying 

Autos Spread 

5 FRB Sr. Of. Banks Tightening C&I Loans to Large Firms (%) 

6 FRB Sr. Of.:Banks Tightening C&I Loans to Small Firms (%) 

7 FRB Sr. Of.:Banks Willingness to Lend to Consumers (%) 

 
Liquidity Subindex: 

1 FedFunds/3monthTBill Spread 

2 2YrT-note/3monthTbill Spread 

3 10YrT-note/3monthTbill Spread 

 
Credit Subindex: 

1 Baa/10yr T-note Spread 

2 High Yield/Baa Spread 

3 Auto finance company loan rate, New Car/2Yr T-note Spread 

4 30-yr Conventional mortgage/ 10yr T-note Spread 

5 Jumbo/30yr Conventional Spread 

6 Citigroup Bond Yields: Credit {Corp} 

7 Banks CDS Spread 

8 Bank rate on new car loans, 48-month/Two-year Treasury Spread 

9 Bank rate on personal loans, 24-month/Two-year Treasury Spread 
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Data Availability: 

 

The majority of our data are publicly available and are included in the paper‘s replication files.  

However, some series are from proprietary sources; in these cases, the table below indicates the 

source, series name (where applicable), and calculation. 

 

Description Data Source Series 1        Less Series 2 

High Yield / Baa Spread Haver Analytics FMLHY@USECON FBAA@USECON 

Jumbo/30yr Conventional 
Spread 

Bloomberg/ Haver 
Analytics 

ILMJNAVG Index FMC@USECON 

3-month LIBOR/OIS Spread Haver Analytics/ 
Bloomberg (DB) 

FLOD3@USECON USSOC CMPT Curncy 

Bank rate on new car loans, 48  
months/Two-year Treasury 
Spread 

Haver Analytics FFINC@USECON FCM2@USECON 

Credit spread Corporate/ 
Financial Sector (Citi) 

Haver Analytics SYCF@USECON SYCT@USECON 

Banks CDS Spread Bloomberg GCDS  

Wilshire 5000 stock price index Bloomberg W5000FLT  

Financial Market Cap (percent 
of S&P 500) 

Compustat n.a.  

Loan Performance National 
House Price Index (SA) 

Haver Analytics USLPHPIS@USECON  

ABS Issuance (Relative to 24 
Month MA) 

Bloomberg IABS  

CMBS Issuance (Alert 
Database) (Relative to 
24Month MA) 

SIFMA n.a.  

Total Non-mortgage ABS 
Issuance (NSA Relative to 8Q 
MA) 

SIFMA n.a.  

NFIB: % Reporting that credit 
was harder to get last time, Net 
(SA) 

Haver Analytics NFIB20@SURVEYS  

Michigan: Interest rates/credit 
reason good/bad conditions for 
buying Large HH Goods 
Spread 

Haver Analytics MCCPLW2@UMSCA MCCPLB3@UMSCA 

Michigan: Interest rates/credit 
reason for good/bad conditions 
for buying houses spread 

Haver Analytics MCCPHW2@UMSCA MCCPHB3@UMSCA 

Michigan: Interest rates/credit 
reason for good less bad 
conditions for buying autos 
spread 

Haver Analytics MCCPVW2@UMSCA MCCPVB3@UMSCA 
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Table 3.1:Results from In-Sample Regressions 

1961:1 – 2006:IV 

       

4 4

0 1 1

1 1

t h t i t i i t i t i

i i

y y y x u  

 
(a) h = 2 

 Real GDP IP Employment Unemployment Rate 

Financial 
Indicator 

2

/x yR  F QLR 2

/x yR  F QLR 2

/x yR  F QLR 2

/x yR  F QLR 

FedFunds 0.20 11.38 
(0.000) 

6.12 
(0.002) 

0.14 8.36 
(0.000) 

3.00 
(0.212) 

0.07 7.65 
(0.000) 

3.75 
(0.078) 

0.11 
 

5.08 
(0.000) 

5.23 
(0.008) 

Term 
Spread 

0.08 4.08 
(0.003) 

9.03 
(0.000) 

0.05 2.85 
(0.022) 

8.21 
(0.000) 

0.03 3.75 
(0.005) 

7.36 
(0.000) 

0.12 5.50 
(0.000) 

4.48 
(0.026) 

Credit 
Spread 

0.20 14.71 
(0.000) 

10.71 
(0.000) 

0.26 14.92 
(0.000) 

10.72 
(0.000) 

0.11 10.61 
(0.000) 

10.75 
(0.000) 

0.24 9.79 
(0.000) 

12.37 
(0.000) 

Real M2 0.18 8.75 
(0.000) 

6.38 
(0.001) 

0.17 6.94 
(0.000) 

4.64 
(0.021) 

0.06 5.06 
(0.000) 

5.99 
(0.002) 

0.08 3.26 
(0.011) 

2.08 
(0.567) 

SP500 0.09 6.72 
(0.000) 

5.83 
(0.003) 

0.16 5.55 
(0.000) 

3.81 
(0.072) 

0.09 6.47 
(0.000) 

5.50 
(0.005) 

0.15 5.83 
(0.000) 

2.57 
(0.350) 

 
 

(b) h = 4 

 

Notes:
2

/x yR  denotes the partial R
2
 for the lags of x conditional on the lags if y.  F denotes the F-statistic 

associated with the null hypothesis that all of the i coefficients are equal to zero, where the p-value is shown in 

parentheses. QLR is the ―sup-Chow‖ F-statistic testing for stability of the i coefficients (p-value in 

parentheses).  These test statistics using HAC covariance estimators with 2 lags for h = 2 and 8 lags for h = 4.

 Real GDP IP Employment Unemployment Rate 

Financial 
Indicator 

2

/x yR  F QLR 2

/x yR  F QLR 2

/x yR  F QLR 2

/x yR  F QLR 

FedFunds 0.26 10.74 
(0.000) 

6.38 
(0.001) 

0.27 10.27 
(0.000) 

4.87 
(0.014) 

0.15 9.17 
(0.000) 

5.15 
(0.009) 

0.26 8.66 
(0.000) 

8.41 
(0.000) 

Term 
Spread 

0.13 2.82 
(0.024) 

10.81 
(0.000) 

0.10 2.64 
(0.032) 

11.01 
(0.000) 

0.08 3.32 
(0.010) 

12.73 
(0.000) 

0.26 5.48 
(0.000) 

9.13 
(0.000) 

Credit 
Spread 

0.12 10.17 
(0.000) 

11.56 
(0.000) 

0.21 12.21 
(0.000) 

21.85 
(0.000) 

0.11 8.28 
(0.000) 

16.41 
(0.000) 

0.24 10.27 
(0.000) 

19.56 
(0.000) 

Real M2 0.23 7.78 
(0.000) 

9.96 
(0.000) 

0.23 6.76 
(0.000) 

6.05 
(0.002) 

0.10 4.63 
(0.001) 

8.53 
(0.000) 

0.15 2,84 
(0.023) 

2.64 
(0.326) 

SP500 0.07 3.97 
(0.003) 

2.72 
(0.297) 

0.16 5.78 
(0.000) 

3.42 
(0.123) 

0.10 5.09 
(0.000) 

4.56 
(0.023) 

0.17 4.57 
(0.001) 

3.02 
(0.207) 
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Table 3.2:  Pseudo-out-of sample root mean square forecast errors 

for AR and single indicator models. 

 
 (a) h = 2 

 1970.I - 
1974.IV   

1975.I - 
1979.IV   

1980.I - 
1984. IV   

1985.I -  
1989. IV   

1990.I -  
1994. IV  

1995.I -   
1999. IV   

2000.I -  
2004. IV   

2005.I - 
EOS  

 Root MSE for AR Forecasts 

GDP 3.88 3.36 4.02 0.90 2.04 1.28 1.63 3.07 

Employment 2.10 1.93 2.00 0.55 1.06 0.39 1.07 1.74 

IP 8.70 5.09 6.73 2.43 3.26 2.21 3.51 6.73 

Unemp Rate 0.75 0.69 0.76 0.23 0.38 0.21 0.35 0.64 

Average 3.86 2.77 3.38 1.03 1.69 1.02 1.64 3.05 

 Relative Root MSE for Fed Funds Model Forecasts  

GDP 1.03 
1.08 
1.24 
1.09 

1.00 
0.95 
0.87 
0.95 

0.84 
1.01 
1.18 
0.97 

1.51 
1.38 
1.04 
0.97 

1.19 
1.11 
1.18 
1.15 

1.03 
0.91 
0.94 
1.08 

1.21 
1.00 
1.01 
1.14 

1.15 
1.14 
1.15 
1.19 

IP 

Employment 

Unemp Rate 

 Average Relative Root MSE for Financial Indicator Model Forecasts 

Fed Funds 1.11 0.94 1.00 1.22 1.16 0.99 1.09 1.16 

Term Spread 0.86 0.94 0.96 1.71 1.13 1.21 1.07 1.08 

Short-term Credit Spread 0.67 0.67 0.79 1.75 1.41 1.07 1.42 0.83 

Real M2 0.65 0.96 0.99 1.67 1.27 1.13 1.39 1.19 

SP500 0.74 1.06 0.88 1.88 1.00 1.18 0.87 0.84 

         

Average 0.81 0.92 0.92 1.65 1.19 1.11 1.17 1.02 

(b) h = 4 
 1970.I - 

1974.IV   
1975.I - 
1979.IV   

1980.I - 
1984. IV   

1985.I -  
1989. IV   

1990.I -  
1994. IV  

1995.I -   
1999. IV   

2000.I -  
2004. IV   

2005.I - 
EOS  

 Root MSE for AR Forecasts 

GDP 3.55 2.46 3.33 0.99 1.75 1.01 1.41 3.17 

Employment 2.13 1.78 2.20 0.65 1.33 0.38 1.46 2.52 

IP 8.19 4.13 5.64 2.33 2.50 2.16 3.54 6.87 

Unemp Rate 1.58 1.08 1.56 0.51 0.75 0.32 0.69 1.63 

Average 3.86 2.36 3.18 1.12 1.58 0.97 1.78 3.55 

Financial 
Indicator 

Average Relative Root MSE  

Fed Funds 0.84 1.02 0.84 1.36 1.25 1.06 1.12 1.15 

Term Spread 0.75 0.87 0.90 1.98 1.26 1.40 1.09 1.05 

Short-term Credit Spread 0.71 0.78 0.80 1.43 1.33 0.90 1.40 0.89 

Real M2 0.47 0.95 0.89 1.63 1.38 1.19 1.43 1.14 

SP500 0.76 1.14 0.89 1.73 1.00 1.04 0.87 0.89 

         

Average 0.71 0.95 0.86 1.63 1.24 1.12 1.18 1.02 

 
Notes: The top panels of the tables show the root mean square forecast errors (RMSE) for the AR models 

over the indicated sample periods for the real activity variable listed in the first column of the table.  The 

bottom panels shows the corresponding RMSE of the forecasts based on the financial indicators relative 

to the AR forecasts.  The four entries for each financial indicator correspond to the four real activity 

variables (GDP, IP, Employment, Unemployment Rate).  The last rows the table shows the average 

relative RMSE across the real activity and financial indicators.
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Table 3.3: Average Relative RMSE for Various FCI forecasting models 

 
(a) h = 2 

FCI 1970.I - 
1974.IV   

1975.I - 
1979.IV   

1980.I - 
1984. IV   

1985.I -  
1989. IV   

1990.I -  
1994. IV  

1995.I -   
1999. IV   

2000.I -  
2004. IV   

2005.I - 
EOS  

BLOOMBERG       0.94 0.92 

CITI      0.93 0.78 0.88 

DB (PC)       0.91 0.91 

DB (FCI)       0.90 0.87 

GS      1.26 1.02 0.84 0.94 

KCFSI       0.95 1.00 

MA      1.17 0.96 0.95 

OECD        1.11 

         

Average all FCIs     1.26 1.04 0.90 0.95 

Average from  
Table 3.2 

0.81 0.92 0.92 1.65 1.19 1.11 1.17 1.02 

 
(b) h = 4 

FCI 1970.I - 
1974.IV   

1975.I - 
1979.IV   

1980.I - 
1984. IV   

1985.I -  
1989. IV   

1990.I -  
1994. IV  

1995.I -   
1999. IV   

2000.I -  
2004. IV   

2005.I - 
EOS  

BLOOMBERG       1.41 0.80 

CITI      1.02 0.75 0.83 

DB (PC)       1.15 0.78 

DB (FCI)       1.18 0.78 

GS      1.28 1.03 0.81 0.91 

KCFSI       0.81 0.84 

MA      1.29 0.92 0.83 

OECD        0.90 

         

Average all FCIs     1.28 1.12 1.00 0.83 

Average from  
Table 3.2 0.71 0.95 0.86 1.63 1.24 1.12 1.18 1.02 

 

 

Notes: GS refers to the Goldman Sachs FCI in first difference. DB (PC) and DB (FCI) refer to 

the Deustche Bank principal component and FCI.  See Table 3.2 for additional notes.
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Table 4.1:  Financial Indicators 

 
 Description NU T Source Start End R

2
 – Number of Factors 1 

 Interest Rates      0 1 2 3 4  

1 10-Year Treasury Note Yield at Constant Maturity   2  Federal Reserve Board 1970:2  2009:4  0.15  0.32  0.40  0.43   0.46  -0.36  

2 FedFunds/3monthTBill Spread X  1  Federal Reserve Board 1970:2  2009:4  0.42  0.62  0.62   0.68   0.68  -0.43  

3 2YrT-note/3monthTbill Spread X  1  Federal Reserve Board 1976:3  2009:4  0.03  0.27  0.34   0.48   0.76   0.25  

4 10YrT-note/3monthTbill Spread X  1  Federal Reserve Board 1970:2  2009:4  0.21  0.39  0.57   0.75   0.77   0.38  

5 Baa/10yr T-note Spread   1  Federal Reserve Board 1970:2  2009:4  0.39  0.44  0.82   0.82   0.83  -0.06  

6 High Yield / Baa Spread   1  Merrill Lynch/Federal Reserve 
Board 

1997:1  2009:4  0.73  0.92  0.95   0.95   0.95  -0.17  

7 Auto finance company loan rate, new Car/Two-yr 
Treasury Spread 

X  1  Federal Reserve Board 1976:3  2009:4  0.06  0.40  0.41   0.71   0.73   0.46  

8 30-yr Conventional mortgage/ 10yrTBond Spread   1  Federal Reserve Board 1971:2  2009:4  0.23  0.34  0.42   0.54   0.66  -0.23  

9 Jumbo/30yr Conventional Spread X  1  Deutsche Bank 1998:3  2009:4  0.60  0.94  0.94   0.96   0.96  -0.44  

10 TED Spread (Using Constant Maturity T-bill)   1  Federal Reserve Board 1981:4  2009:4  0.32  0.72  0.76   0.75   0.84  -0.61  

11 3-month LIBOR/OIS   1  Bloomberg/Federal Reserve 
Board 

2002:1  2009:4  0.71  0.97  0.97   0.97   0.98  -0.35  

12 Bank rate on new Car Loans, 48-month/Two-year 
Treasury Spread 

X  1  Wall Street Journal/Federal 
Reserve Board 

1976:3  2009:4  0.37  0.59  0.81   0.80   0.87   0.37  

13 Bank rate on Personal Loans, 24-month/Two-year 
Treasury Spread 

X  1  Federal Reserve Board 1976:3  2009:4  0.72  0.81  0.85   0.84   0.93   0.22  

14 Citigroup Bond Yields:Credit {Corp} Spread/Finance X  1  Citi 1980:1  2009:4  0.28  0.73  0.75   0.73   0.78  -0.65  

15 Banks CDS Spread X  1  Deutsche Bank 2004:4  2009:4  0.88  0.99  0.99   0.99   0.99  -0.10  

 Prices            

16 Real Broad Trade-Weighted Exchange Value of the 
US$  

  5  Federal Reserve Board 1973:2  2009:4  0.02  0.19  0.20   0.21   0.29  -0.24  

17 Wilshire 5000   5  Wilshire Associates 1971:2  2009:4  0.09  0.36  0.46   0.46   0.49   0.48  

18 Financial Market Cap (percent of S&P 500) X  5  Standard and Poor’s 1976:4  2009:4  0.04  0.34  0.41   0.41   0.40   0.38  

19 Loan Performance National House Price Index (SA) X  5  FirstAmerican Core Logic 1976:2  2009:4  0.31  0.57  0.60   0.66   0.69   0.43  

20 Price of Oil Relative to 2Year MA (PPI Crude Oil) X 4  Wall Street Journal 1970:2  2009:4  0.13  0.18  0.28   0.30   0.26  -0.18  

 Quantities            

21 Bank Credit: All Commercial Banks (SA) X  5  Federal Reserve Board 1970:2  2009:4  0.28  0.32  0.33   0.53   0.59   0.02  

22 Commercial Paper Outstanding:All Issuers (SA) X  5  Federal Reserve Board 1970:2  2009:4  0.32  0.39  0.52   0.58   0.71  -0.17  

23 Commercial Paper Issuance (Relative to 24Month 
MA) 

  1  Federal Reserve Board 2002:1  2009:4  0.79  0.97  0.98   0.98   0.99  -0.14  

24 ABS Issuance (Relative to 24Month MA)   1  Bloomberg 1997:1  2009:4  0.32  0.92  0.92   0.93   0.96   0.68  

25 CMBS Issuance (Alert Database) (Relative to 
24Month MA) 

  1  Deutsche Bank 1992:1  2009:4  0.29  0.79  0.79   0.82   0.90   0.51  

26 Money Stock:MZM {Zero Maturity} (SA)   5  Federal Reserve Bank of St. 
Louis 

1974:2  2009:4  0.13  0.30  0.49   0.55   0.52   0.21  

27 State & local Government:Liability:Credit Market  
Instruments (SA) 

X  5  Federal Reserve Board 1970:2  2009:4  0.04  0.13  0.22   0.54   0.55   0.21  

28 Nonfederal Sectors:Liability:Credit Market Debt  
Outstanding (SA) 

X  5  Federal Reserve Board 1970:2  2009:4  0.47  0.50  0.50   0.88   0.88   0.06  
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29 Private Nonfinancial Debt, SA X  5  Federal Reserve Board 1970:2  2009:4  0.52  0.54  0.55   0.85   0.85   0.02  

30 Total Finance:Liabilities:Security RPs (NSA)   X  5  Federal Reserve Board 1974:2  2009:4  0.07  0.31  0.42   0.43   0.50   0.36  

31 ABS Issuers:Assets; Consumer Credit (NSA)  X  5  Federal Reserve Board 1992:2  2009:3  0.16  0.67  0.73   0.75   0.85   0.30  

32 ABS Issuers:Asset; Mortgages on 1-4 Family 
Structures (NSA)  

X  5  Federal Reserve Board 1988:2  2009:4  0.22  0.73  0.76   0.76   0.88   0.62  

33 ABS Issuers:Asset; Commercial Mortgages (NSA)  X  5  Federal Reserve Board 1993:2  2009:4  0.28  0.75  0.75   0.81   0.92   0.34  

34 Total Non-monrtgage ABS Issuance (NSA) Relative 
to 8Q MA) 

  1  Deutsche Bank 1994:1  2009:4  0.28  0.90  0.90   0.89   0.94   0.78  

35 Broker Dealer Leverage X 5 Federal Reserve Board 1970:2  2009:4  0.03  0.14  0.20   0.19   0.23   0.24  

 Surveys            

36 NFIB:%Reporting that Credit Was Harder to Get Last 
Time, Net (SA) 

X 1 National Federation of 
Independent Business 

1986:1  2009:4  0.42  0.69  0.69   0.84   0.84  -0.22  

37 Michigan Survey:Interest Rates/Credit Reason 
Good/Bad Conditions for Buying Large HH Goods 
Spread 

X 1 University of Michigan 1978:1  2009:4  0.68  0.81  0.82   0.83   0.91  -0.29  

38 Michigan Survey:Interest Rates/Credit Reason for 
Good/Bad Conditions for Buying Houses Spread 

X 1 University of Michigan 1980:2  2009:4  0.70  0.86  0.87   0.86   0.93  -0.35  

39 Michigan Survey:Interest Rates/Credit Reason for  
Good Less Bad Conditions for Buying Autos Spread 

X 1 University of Michigan 1978:1  2009:4  0.56  0.75  0.80   0.82   0.89  -0.36  

40 FRB Sr. Of. Banks Tightening C&I Loans to Large 
Firms (%) 

X 1 Federal Reserve Board 1990:2  2009:4  0.45  0.81  0.83   0.83   0.88  -0.45  

41 FRB Sr. Of.:Banks Tightening C&I Loans to Small  
Firms (%) 

X 1 Federal Reserve Board 1990:2  2009:4  0.54  0.86  0.87   0.87   0.91  -0.48  

42 FRB Sr. Of.:Banks Willingness to Lend to Consumers 
(%) 

X 1 Federal Reserve Board 1970:2  2009:4  0.24  0.59  0.60   0.63   0.66   0.58  

 2
nd

 Moments            

43 Correlation of Returns on Equities and Treasuries   1  Authors’ calculations based  
on Standard and Poor’s  
and US Treasury data 

1976:3  2009:4  0.18  0.38  0.47   0.51   0.69   0.23  

44 Idiosyncratic Bank Stock Volatility   1  Goldman Sachs 1973:1  2009:4  0.20  0.52  0.71   0.72   0.77  -0.53  

45 Monthly Average VIX    1  Chicago Options Exchange 1986:1  2009:4  0.24  0.73  0.81   0.8   0.82  -0.64 

 Average R
2 

     0.29 0.41 0.49 0.57 0.65  

 

Notes: In the column labeled NU, an ―X‖ denotes variable was not used in any of the alternative FCIs we have surveyed. The column 

labeled T shows the transformation (1=level, 2=first difference, 4 = logarithm, 5 = first difference of logarithm).  The start and end dates 

indicate the periods the series was used in to estimate the factors. The five columns labeled R
2
 show the R

2
 for model including A(L)Y, 

and then sequentially adding 0, 1, and 4 factors.  The column labeled 1 shows the estimated value of  for the single factor model.
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Figure 4.1: Number of Financial Indicators by Date 
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Figure 4.2:  Ranking of variables by their lambdas in single factor model 

 

                     Financial indicator( lambda absolute value) *           Absolute value of lambda  

 
 

 

*Numbers preceding  variable name correspond to line numbers in table 4.1. 

 

 

  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

21. Bank Credit: All Commercial Banks (0.02)
29. Private Nonfinancial Debt (0.02)

5. Baa/10yr T-note Spread (0.06)
28. Nonfed Sectors: Credit Market Debt Outst. (0.06)

15. Banks CDS Spread (0.1)
23. Comm. Paper Issuance  (0.14)

6. High Yld / Baa Spread (0.17)
22. Comm. Paper Outst: All Issuers (0.17)

20. Price of Oil  (PPI Crude Oil) (0.18)
26. Money Stock: MZM (0.21)

27. S&L Govt: Liability: Credit Market Instruments (0.21)
13. Bank Rate on Personal Loans, Treas Spread (0.22)

36. NFIB: %Reporting Credit Harder to Get (0.22)
8. 30-yr Conv. mtg/ 10-yrTBond Spread (0.23)

43. Correl of Returns on Equities and Treas (0.23)
16. Real Broad TW Exchange Value of the US$ (0.24)

35. Broker Dealer Leverage (0.24)
3. 2Yr T-note/3m Tbill Spread (0.25)

37. U. Mich: Buying Conditions Large HH Goods (0.29)
31. ABS Issuers: Assets; Cons. Credit (0.3)

33. ABS Issuers: Asset; Comm. Mtgs. (0.34)
11. 3-m LIBOR/OIS (0.35)

38. U. Mich: Buying Conditions Houses (0.35)
1. 10-Yr Treas Note Yld at Constant Maturity (0.36)

30. Total Finance:Liabilities:Security RPs (0.36)
39. U. Mich: Buying Conds. Autos (0.36)

12. Bank Rate: New Car Loans, Treas Spread (0.37)
4. 10-YrT-note/3monthTbill Spread (0.38)

18. Financial Market Cap (percent of S&P 500) (0.38)
2. FedFunds/3monthTBill Spread (0.43)

19. Loan Performance National House Price Index (0.43)
9. Jumbo/30yr Conventional Spread (0.44)

40. FRB: Banks Tight. C&I Loans to Large Firms (0.45)
7. Auto fin company loan rate, new Car Treas Spread

17. Wilshire 5000 (0.48)
41. FRB: Banks Tight. C&I Loans to Small Firms (0.48)

25. CMBS Issuance (Alert Database)  (0.51)
44. Idiosyncratic Bank Stock Volatility (0.53)

42. FRB: Banks Willingness to Lend to Cons. (0.58)
10. TED Spread (Constant Maturity T-bill) (0.61)

32. ABS Issuers:Asset: Home Mtgs. (0.62)
45. Monthly Average VIX  (0.64)

14. Citigroup Bond Yields:Credit {Corp} Spread (0.65)
24. ABS Issuance (0.68)

34. Total Non-mortgage ABS Issuance (0.78)

L1 (ABS)
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Figure 4.3:  Ranking of variables by their lambdas in single factor model 

 

 

                 Financial indicator  (lambda value) *                                                        lambda value 

 
 

*Numbers preceding variable name correspond to line numbers in table 4.1. 
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Figure 5.1: New FCI: First Principal Component of 45 Financial Indicators 
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Table 5.1: Relative RMSE for Forecasting Models Using Financial Indicator Factors 

 

(a) h = 2 

FCI 1970.I - 
1974.IV   

1975.I - 
1979.IV   

1980.I - 
1984. IV   

1985.I -  
1989. IV   

1990.I -  
1994. IV  

1995.I -   
1999. IV   

2000.I -  
2004. IV   

2005.I - 
EOS  

1 PC   0.87  1.55  0.88  1.60  0.93  0.66  

2 PCs   0.82  1.89  1.04  1.87  1.01  0.69  

3 PCs   0.90  1.64  1.02  2.03  0.89  0.73  

Average   0.86  1.69  0.98  1.83  0.94  0.69 

         

AR Model RMSE 
Avg (Tab 3.2)   
 

3.86 2.77 3.38 1.03 1.69 1.02 1.64 3.05 

SP500 (Tab. 3.2)  0.74 1.06 0.88 1.88 1.00 1.18 0.87 0.84 

KCFSI (Tab. 3.3)       0.95 1.00 

Avg (Tab. 3.2) 0.81 0.91 0.92 1.65 1.19 1.12 1.17 1.02 

Avg (Tab. 3.3)     1.26 1.04 0.90 0.95 

 

(b) h = 4 

FCI 1970.I - 
1974.IV   

1975.I - 
1979.IV   

1980.I - 
1984. IV   

1985.I -  
1989. IV   

1990.I -  
1994. IV  

1995.I -   
1999. IV   

2000.I -  
2004. IV   

2005.I - 
EOS  

1 PC   1.04 1.46 0.82 1.83 0.83 0.60 

2 PCs   0.93 1.61 0.99 3.01 0.93 0.63 

3 PCs   0.92 1.49 1.00 3.51 0.78 0.68 

Average   0.96 1.52 0.94 2.78 0.85 0.63 

         

AR Model RMSE 
Avg (Tab 3.2)   
   

3.86 2.36 3.18 1.12 1.58 0.97 1.78 3.55 

SP500 (Tab. 3.2)  0.76 1.14 0.89 1.73 1.00 1.04 0.87 0.89 

KCFSI (Tab. 3.3)       0.81 0.84 

Avg (Tab. 3.2) 0.71 0.95 0.86 1.63 1.24 1.12 1.18 1.02 

Avg (Tab. 3.3)     1.28 1.12 1.00 0.83 
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 Figure 5.2: Real GDP Growth: Forecast using Autoregressive and New FCI Models (h=2)* 

 

  
 

Figure 5.3 a  Real GDP Growth: Forecast using SP500 and New FCI (h =2)* 
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Figure 5.3 b.  Real GDP Growth: Forecast using Alternative FCIs (h =2)* 
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Table 5.2: Relative RMSE for Subsets of Financial Indicators 

(a) h = 2  

Subset 1970.I - 
1974.IV 

1975.I - 
1979.IV 

1980.I - 
1984. IV 

1985.I - 
1989. IV 

1990.I - 
1994. IV 

1995.I - 
1999. IV 

2000.I - 
2004. IV 

2005.I - 
EOS 

New FCI   0.87  1.55  0.88  1.60  0.93  0.66  

         

Balanced Panel   0.82  1.35  0.91  2.20  0.88  0.75  

         

Price     2.29  1.13  1.54  0.82  0.80  

Quantity        .     .     .     .  1.08  

Surveys       .     .     .  1.17  0.91  

Liquidity     1.43  0.89  1.81  0.84  0.98  

Credit       .  1.42  1.11  0.96  0.90  

         

Not purged of 
either macro 
influence or fed 
funds 

  0.73  1.38  1.08  0.97  1.10  0.86  

Purged of both 
macro influence 
and fed funds 

  1.01  1.58  0.95  1.30  0.94  0.74  

 

 

 

 (b) h = 4  

Subset 1970.I - 
1974.IV 

1975.I - 
1979.IV 

1980.I - 
1984. IV 

1985.I - 
1989. IV 

1990.I - 
1994. IV 

1995.I - 
1999. IV 

2000.I - 
2004. IV 

2005.I - 
EOS 

New FCI   1.08 1.40 0.81 1.93 0.77 0.60 

         

Balanced Panel   0.85 1.22 0.90 3.01 0.73 0.68 

         

Price     0.97 1.04 1.61 0.75 0.72 

Quantity     . . . . 0.80 

Surveys    . . . 1.62 0.77 

Liquidity     0.85 0.72 2.95 0.75 0.87 

Credit    . 1.50 1.19 0.92 0.89 

         

Not purged of 
either macro 
influence or fed 
funds 

  0.89 1.30 1.03 0.84 1.09 0.89 

Purged of both 
macro influence 
and fed funds 

  1.21 1.29 0.87 1.22 0.86 0.73 
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Figure 5.4 Decomposition of  FCI  
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Figure 5.5:  FCI with and without purging of business cycle 
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Figure 5.6:  FCI and FCI purged of Fed Funds Shocks 
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Figure 5.7: Federal Funds and FCI During Periods of Fed Policy Easing and Tightening* 
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Figure 5.8: New FCI During Periods of Fed Policy Tightening  

 

 
 

Figure 5.9: New FCI During Periods of Fed Policy Easing 
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Figure 5.10: Changes in Financial Conditions from 2009Q2 to 2009Q4 
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Table 5.3: Top contributors to decline in new FCI (2009:Q2 to 2009:Q4) 

 

 

Indicator FCI 

(purged) 

FCI (non 

purged) 

Difference 

Total Non-mortgage ABS Issuance (Relative to 

8Q MA) 

-0.20 -0.01 -0.19 

Financial Market Cap (percent of S&P 500) -0.19 -0.02 -0.17 

ABS Issuers: Assets; Consumer Credit -0.10 -0.03 -0.08 

Total Finance: Liabilities - Security RPs -0.10 -0.01 -0.10 

Wilshire 5000 -0.10 -0.02 -0.08 

ABS Issuers: Asset - Commercial Mortgages -0.09 -0.01 -0.08 

FRB SLO: Banks Tightening C&I Loans to 

Small Firms 

-0.08 0.06 -0.14 

FRB SLO: Banks Tightening C&I Loans to 

Large Firms 

-0.08 0.05 -0.12 

ABS Issuance (Relative to 24M MA) -0.07 0.02 -0.09 

Loan Performance National House Price Index -0.07 0.00 -0.07 

    

Sum -1.08 0.02 -1.11 

 

 

Notes: Columns 2 and 3 show the change from 2009:Q2 to 2009:Q4 in the contribution to the 

FCI from the indicator shown in column 1. 
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Figure 5.11: ABS issuance still subdued 
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