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1 Introduction

Is the central bank’s objective best achieved by a policy that responds to fluctuations in inflation or

the price level? This remains an open question that has regained attention recently among central

banks, such as the Bank of Canada which is about to renew its “inflation targeting” mandate.

Several early studies have found that it is preferable for the interest rate to respond to inflation

fluctuations than to price-level fluctuations in order to minimize the short-run variability of inflation

and output (e.g., Lebow et al., 1992; Haldane and Salmon, 1995). The intuition for this result is

simple: in the face of an unexpected temporary rise in inflation, price-level targeting requires

the policymaker to bring inflation below the target in subsequent periods. With nominal rigidities,

fluctuations in inflation result in turn in fluctuations in output. In contrast, with inflation targeting,

the drift in the price level is accepted: bygones are bygones. Price-level targeting is a “bad idea”

according to this conventional view because it would “add unnecessary short term fluctuations to

the economy” (Fischer, 1994, p. 282), while it would only provide a small gain in long-term price

predictability in the US (McCallum, 1999).

However, when agents are forward-looking, it is highly desirable for policy to be history-

dependent, as explained in Woodford (2003a,b). Committing to a monetary policy of this kind

allows the central bank to affect the private sector’s expectations appropriately, hence to improve

the performance of monetary policy. This suggests that past deviations of the inflation rate should

not be treated as bygones.

In this paper, we consider a basic forward-looking New Keynesian model in which the social

welfare loss function depends on the variability of inflation, the output gap and the interest rate.1

We seek to determine whether it is best for policy to respond to fluctuations in inflation or in

the price level in this model, by comparing the properties of simple interest-rate rules. Simple

monetary policy rules are often prescribed as useful guides for the conduct of monetary policy.

Most prominently, a commitment to a Taylor rule (after Taylor, 1993) – according to which the

short-term policy rate responds to fluctuations in inflation and some measure of the output gap

– is known to yield a good welfare performance a large class of models (see, e.g., papers collected

in Taylor, 1999a; Taylor and Williams, 2010). We thus compare the performance of such Taylor

rules to that of so-called Wicksellian rules according to which the short-term policy rate depends

1This objective function can be viewed as a quadratic approximation to the underlying representative agent’s

expected utility.

1



on deviations of the price level from a trend and the output gap.2

In our model, as in Woodford (2003a), Goodfriend and King (2001) and Kahn, King and

Wolman (2003), optimal policy – i.e., the policy that minimizes the assumed social welfare loss

function subject to the restrictions imposed by the modelled private sector behavior – involves

strong price-level stabilization, though it requires some drift of the price level in the face of some

shocks. Wicksellian rules perform however very well in terms of welfare by introducing a desirable

amount of history dependence in policy. In fact, we show that Wicksellian rules perform better than

optimal Taylor rules in our model. Under price-level stabilization, forward-looking agents expect

relatively low inflation in subsequent periods in the face of a temporary increase in inflation, as they

understand that the policymaker will have to bring inflation below trend. This in turn dampens the

initial increase in inflation, lowers the variability of inflation and welfare losses.3 While Williams

(2003) finds a similar result by simulating the large-scale FRB/US model under alternative simple

interest-rate rules when assuming rational expectations, our analysis of a simple macroeconomic

model – yet a model that incorporates key tradeoffs faced by policymakers – allows us to derive a

number of analytical results that provide a clear intuition about the welfare implications of simple

Taylor rules and Wicksellian rules, and their sensitivity to various assumptions.4

In addition, while simple Taylor rules are often argued to be robust to various types of model

2Wicksellian rules are named after Wicksell (1907) who argued that “price stability” could be obtained by letting

the interest rate respond positively to fluctuations in the price level.
3 It is important to note that the inflation rate used in much of John Taylor’s work (e.g., in Taylor, 1993) is a

moving average of past quarterly inflation rates, so that his proposed rule incorporates in fact some degree of history

dependence. To understand the role of history dependence introduced by the price level, we consider here "Taylor

rules" that involve only the contemporaneous inflation rate.
4We assume that the central bank is able to credibly commit to a policy rule for the entire future, so as to achieve

a better performance of monetary policy. Another branch of the literature assumes instead that the policymaker

cannot commit but that it acts under full discretion. These studies generally compare the effects of a regime in which

the policymaker is assigned a loss function that involves inflation variability (called inflation targeting), to a regime in

which the loss function involves price-level variability (price-level targeting). Svensson (1999), Dittmar et al. (1999),

and Cecchetti and Kim (2004) show that when the perturbations to output are sufficiently persistent, price-level

targeting results in lower inflation variability than inflation targeting. (However under commitment, Svensson (1999)

obtains the conventional result that price-level targeting is responsible for a higher variability of inflation.) While

these authors use a Neoclassical Phillips curve or a backward-looking model, Vestin (2006), and Dittmar and Gavin

(2000) show that these results hold also in a simple “New Keynesian” model. Specifically, they show that when the

central bank acts under discretion, price-level targeting results in a more favorable trade-off between inflation and

output gap variability relative to inflation targeting, even when perturbations to output are not persistent.
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misspecifications (Levin, Williams and Wieland, 1999; Levin and Williams, 2003), we show that

their welfare performance can however be very sensitive to the particular assumptions made about

the shock processes. Instead, Wicksellian rules are more robust to alternative shock processes.

Specifically, we show that (i) optimized coefficients of simple Taylor rules depend critically on the

assumed degree of persistence of exogenous disturbances; (ii) such optimized Taylor rules result

in an indeterminate equilibrium for some parameter configurations; (iii) the welfare performance

relative to the first best deteriorates sharply in the event that the economy is hit by shocks with a

higher persistence than the typical historical shocks. In contrast, optimized Wicksellian rules (i) are

less sensitive to the assumed shock persistence, (ii) generally result in a determinate equilibrium,

and (iii) maintain a very good welfare performance in the face of changes in shock processes or in

the face of misspecified shocks.

This sensitivity of optimized simple Taylor rules is arguably undesirable to the extent that in

practice central banks may not want to commit to policy rules that perform well only in the face

of a few typical shocks, as they may not be able to conceive at the time of commitment all possible

shocks that will affect the economy in the future. Policymakers might thus be more inclined to

commit to a rule that is robust to the statistical properties of the exogenous disturbances.

As shown in Giannoni and Woodford (2003a,b, 2010), it is possible under general conditions

to derive a robustly optimal rule that implements the optimal equilibrium and that is completely

independent of the specification of the exogenous shock processes. We report this rule here for the

model considered and argue that it is a close cousin of the simple Wicksellian rule augmented with a

large amount of interest-rate inertia. This latter rule remains extremely simple and introduces about

the right amount of history dependence, regardless of the persistence of exogenous disturbances.

Such a rule should thus be particularly appealing to policymakers who search for simple rules but

worry about unforeseeable circumstances (shocks) affecting the economy in the future.

The rest of the paper is organized as follows. Section 2 reviews the model used in our analysis.

Section 3 characterizes the optimal plan. Section 4 determines simple optimal Taylor rules and

discusses their properties. Section 5 derives simple optimal Wicksellian rules and compare their

implications to optimal Taylor rules and the optimal plan, in terms of their dynamic responses

to disturbances, their welfare implications, the sensitivity of the optimal policy coefficients to the

degree of persistence in the exogenous disturbances. Section 6 introduces interest-rate inertia. It

first presents a simple rule that implements the optimal equilibrium and that is robust to the spec-

ification of the process of exogenous disturbances, and then argues that it resembles a Wicksellian
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rules with a large degree of interest-rate inertia. Section 7 concludes.

2 A Simple Structural Model

We consider a variant of the simple New Keynesian model that has been widely used in recent

studies of monetary policy, following Goodfriend and King (1997), Rotemberg andWoodford (1997),

Clarida, Galí and Gertler (1999), and Woodford (2003a,b).

2.1 Structural equations

The behavior of the private sector is summarized by two structural equations, an intertemporal IS

equation and a New Keynesian aggregate supply equation.5 The intertemporal IS equation, which

relates spending decisions to the interest rate, is given by

yt − gt = Et (yt+1 − gt+1)− σ−1 (it − Etπt+1) , (1)

where yt denotes the log of (detrended) real output, πt is the quarterly inflation rate, it is the

nominal interest rate (all three variables expressed in deviations from their values in a steady-

state with zero inflation and constant output growth), and gt is an exogenous variable representing

autonomous variation in spending such as government spending. This equation can be obtained by

performing a log-linear approximation to the representative household’s Euler equation for optimal

timing of expenditures, using the market clearing condition on the goods market. The parameter

σ > 0 represents the inverse of the intertemporal elasticity of substitution. As we will also be

interested in describing the evolution of the log of the price level pt, we note that by definition of

inflation, we have

pt = πt + pt−1. (2)

It is assumed that prices are sticky, as in Calvo (1983), and that suppliers are in monopolistic

competition. It follows that a log-linear approximation to the first-order condition for the suppliers’

optimal price-setting decisions yields the familiar New Keynesian supply equation

πt = κ (yt − ynt ) + βEtπt+1, (3)

where κ > 0 depends on the speed of price adjustment, β ∈ (0, 1) denotes the discount factor of
the representative household, and ynt represents the natural rate of output, i.e., the equilibrium

5Derivations of the structural equations from first principles can be found, e.g., in Woodford (2003a, chap. 3).
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rate of output under perfectly flexible prices. This natural rate of output is a composite exogenous

variable that may depend on a variety of perturbations such as productivity shocks, shifts in labor

supply, but also fluctuations in government expenditures and shifts in preferences. We also allow

for exogenous time variation in the degree of inefficiency of the natural rate of output, yet − ynt ,

where yet is the rate of output that would maximize the representative household’s welfare in the

absence of distortions. Fluctuations in yet − ynt could be due, e.g., to exogenous variation in the

degree of market power of firms or in distortionary taxation. As we will evaluate monetary policy

in terms of deviations of output from the efficient rate, it will be convenient to define the “output

gap” as

xt ≡ yt − yet .

We can then rewrite the structural equations (1) and (3) as

xt = Etxt+1 − σ−1 (it − Etπt+1 − ret ) (4)

πt = κxt + βEtπt+1 + ut, (5)

where we now have two composite exogenous variables

ret ≡ σEt
£¡
yet+1 − yet

¢− (gt+1 − gt)
¤

ut ≡ κ (yet − ynt ) .

In (4), ret denotes the “efficient” rate of interest, i.e., the equilibrium real interest rate that would

prevail in the absence of distortions.

2.2 Shock processes

We think of the composite shocks ret and ut as being functions of a potentially large number of

underlying disturbances, with each of the underlying disturbance having a different degree of persis-

tence. We assume that the central bank knows perfectly the shocks that have hit the economy until

the present, but may not be able to assess the realization of all possible future shocks. Following

Giannoni and Woodford (2003a), we let the shocks ret and ut be composites of an infinity of types

of disturbances, each having a Wold representation

ret =
∞X
j=0

ρjrεr,t−j +
∞X

m=0

∞X
j=0

ρ̂jmε̂r,m,t−j (6)

ut =
∞X
j=0

ρjuεu,t−j +
∞X

m=0

∞X
j=0

ρ̂jmε̂u,m,t−j (7)
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where εk,t, and ε̂k,m,t are iid, mean-zero random variables, for all k ∈ {r, u} and m, t ≥ 0, but

where the innovations ε̂k,m,t have a distribution with a large atom at zero, and the parameters

ρk, ρ̂k ∈ [0, 1) determine the persistence of each of these innovations. The composite shocks ret and
ut are thus affected in each period by typical innovations εr,t and εu,t, with a persistence given by

ρr, ρu, and they may be infrequently affected by a large number of other types of unforecastable

disturbances, ε̂r,m,t and ε̂u,m,t each of which may have a different degree of persistence. To simplify

the analysis, we furthermore assume that such infrequent innovations have not been observed in

the past, up to the date 0 at which the policymaker will set policy, so that the historical exogenous

processes can be correctly characterized by stationary AR(1) processes

ret = ρrr
e
t−1 + εrt (8)

ut = ρuut−1 + εut. (9)

up to date 0, and the conditional forecasts are given by

E0r
e
t = ρtrr

e
0 (10)

E0ut = ρtuu0 (11)

for all t ≥ 0. Since it is impractical for the central bank to catalog all of the possible disturbances
ε̂r,m,t, ε̂r,m,t before they are realized, and since the policymaker cannot reject the hypothesis that

the past shocks and conditional forecasts of future shocks are described by (8)—(11), we assume that

the central bank wants to choose at date 0 a rule that would be optimal (at least within the class

of rules that it considers) under the assumption that the shock processes are given by (8)—(9).6

2.3 Policy objective

We assume that the policymaker seeks to minimize the expected loss criterion

E[L] = E

(
(1− β)

∞X
t=0

βt
h
π2t + λx (xt − x∗)2 + λi (it − i∗)2

i)
, (12)

where λx, λi > 0 are weights placed on the stabilization of the output gap and the nominal interest

rate, β ∈ (0, 1) is the discount factor mentioned above, and where x∗ ≥ 0 and i∗ represent some
6The central bank does not need to regard it as certain that (8)—(9) are correct. However, we assume that it

will only consider rules that would be optimal in the case that (8)—(9) were correct. Subject to that requirement,

we assume that it would also like its rule to be as robust as possible to alternative shock processes within the more

general family (6)—(7).
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optimal levels of the output gap and the nominal interest rate. The expectation E[·] is conditional
on the state of the economy at the time that the policy is evaluated, which we assume takes place

before the realization of the shocks at that date. This loss criterion can be viewed as a second-

order Taylor approximation to the lifetime utility function of the representative household in the

underlying model (see Woodford, 2003a, chap. 6). The concern for interest rate variability in (12)

reflects both welfare costs of transactions and an approximation to the zero lower bound on nominal

interest rates. The approximation of the utility function allows us furthermore to determine the

relative weights λx, λi, and the parameters x∗, i∗ in terms of the parameters of the underlying

model.7

The inefficient supply shock is responsible for a trade-off between the stabilization of inflation

on one hand, and the output gap on the other hand. Indeed, in the face of an increase in ut, the

policymaker could completely stabilize the output gap by letting inflation move appropriately, or

he could stabilize inflation, by letting the output gap decrease by the right amount, but he could

not keep both inflation and the output gap constant. By how much he will let inflation and the

output gap vary depends ultimately on the weight λx. In the absence of inefficient supply shocks,

however, both inflation and the output gap could be completely stabilized by letting the interest

rate track the path of the efficient rate of interest, ret (which incidentally is equal to the natural

rate of interest in the absence of inefficient supply shocks, as yet = ynt ). But when λi > 0 in (12),

welfare costs associated to fluctuations in the nominal interest rate introduce a tension between

stabilization of inflation and the output gap on one hand and stabilization of the nominal interest

rate on the other hand.

2.4 Calibration

In the rest of the paper, we characterize optimal monetary policy for arbitrary positive values of

the parameters. At times however we focus on a particular parametrization of the model, using

the parameter values estimated by Rotemberg and Woodford (1997) for the U.S. economy, and

7Woodford (2003a, chap. 6)’s derivation of the loss criterion from first principles accounts for transaction frictions

and the approximation of the lower bound on interest rates, but abstracts from inefficients supply shocks ut. The

welfare function (12) remains a valid approximation of the underlying utility in the presence of inefficient supply shocks

to the extent that we consider only small deviations from the efficient steady state, and evaluate all derivatives at

that steady state.
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summarized in Table 1.8 The weights λx and λi are calibrated as in Woodford (2003a), using

the calibrated structural parameters and the underlying microeconomic model. Rotemberg and

Woodford (1997) provide estimated time-series for the disturbances ynt and gt. They do however

not split the series for the natural rate of output in an efficient component yet , and an inefficient

component. For simplicity, we calibrate the variance of ret by assuming that all shifts in the

aggregate supply equation are efficient shifts, so that the variance of the efficient rate of interest

is the same as the variance of the natural rate of interest reported in Woodford (2003a). In our

benchmark calibration, we set var (ut) to its upper bound κ2 var (ynt ) , assuming that all shifts in

the aggregate supply equation are due to inefficient shocks. We however verify that our conclusions

are not sensitive to alternative calibrations of var (ut).

3 Optimal Plan

Before evaluating alternative policies below, it will be useful to consider as a benchmark the opti-

mal state-contingent plan. This plan characterizes the optimal stochastic processes of endogenous

variables {πt, xt, it} , i.e., those that minimize the unconditional expectation of the loss criterion
(12) subject to the constraints (4) and (5) imposed by the private sector’s behavior at all dates,

assuming that the policymaker can commit to the plan for the entire future.9 Following Currie and

Levine (1993) and Woodford (2003b), we write the policymaker’s Lagrangian as

L = E

( ∞X
t=0

βt
µ
1

2

h
π2t + λx (xt − x∗)2 + λi (it − i∗)2

i
+φ1t

£
xt − xt+1 + σ−1 (it − πt+1 − ret )

¤
+ φ2t [πt − κxt − βπt+1 − ut]

¢ª
. (13)

The first-order necessary conditions with respect to πt, xt, and it are

πt − (βσ)−1 φ1t−1 + φ2t − φ2t−1 = 0 (14)

λx (xt − x∗) + φ1t − β−1φ1t−1 − κφ2t = 0 (15)

λi (it − i∗) + σ−1φ1t = 0 (16)

8While the econometric model of Rotemberg and Woodford (1997) is more sophisticated than the present model,

their structural equations correspond to (1) and (3) when conditioned upon information available two quarters earlier

in their model.
9This section generalizes slightly the results of Clarida et al. (1999), and Woodford (2003a, 2003b) who consider

the optimal plan either in the presence of inefficient supply shocks, or with a concern of interest-rate stabilization

(λi > 0), but not both at the same time.
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at each date t ≥ 0, and for each possible state. In addition, we have the initial conditions

φ1,−1 = φ2,−1 = 0 (17)

indicating that the policymaker has no previous commitment at time 0.

The optimal plan is a bounded solution {πt, xt, it, φ1t, φ2t}∞t=0 to the system of equations (4),

(5), (14) — (16) at each date t ≥ 0, and for each possible state, together with the initial conditions
(17). To characterize the optimal responses to perturbations, we rewrite the equations above in

terms of deviations from the optimal steady-state: π̂t ≡ πt − πop, x̂t ≡ xt − xop, ı̂t ≡ it − iop, and

p̂t ≡ pt − popt .
10 We note that the same equations (4), (5), (14) — (16), and (2) hold now in terms

of the hatted variables, but without the constant terms. Using (16) to substitute for the interest

rate, we can rewrite the dynamic system (4), (5), (14), and (15) in matrix form as

Et

⎡⎣ q̂t+1

φ̂t

⎤⎦ =M

⎡⎣ q̂t

φ̂t−1

⎤⎦+met, (18)

where q̂t ≡ [π̂t, x̂t]0 , φ̂t ≡
h
φ̂1t, φ̂2t

i0
, et is a vector of exogenous disturbances, and M and m are

matrices of coefficients. Investigation of the matrix M reveals that if a bounded solution exists, it

is unique.11 In this case the solution for the endogenous variables can be expressed as

ẑt = Dφ̂t−1 +
∞X
j=0

djEtet+j , (19)

where ẑt ≡ [π̂t, x̂t, ı̂t, p̂t]0 , and the Lagrange multipliers follow the law of motion

φ̂t = Nφ̂t−1 +
∞X
j=0

njEtet+j (20)

for some matrices D, N, dj , nj that depend upon the parameters of the model. Woodford (2003b)

has emphasized that in the optimal plan, the endogenous variables should depend not only upon

expected future values of the disturbances, but also upon the predetermined variables φ̂t−1.
10The steady-state values of the endogenous variables, which satisfy the previous equations at all dates in the

absence of perturbations, are given by iop = πop = λii
∗

λi+β
, and xop = 1−β

κ
λii
∗

λi+β
. The optimal steady-state inflation is

independent of x∗ though not of i∗. When i∗ 6= 0, the log price level follows a deterministic trend popt = πop + popt−1.
11This dynamic system has a unique bounded solution (given a bounded process {et}) if and only if the matrix M

has exactly two eigenvalues outside the unit circle. The matrix M has two eigenvalues with modulus greater than

β−1/2 and two with modulus smaller than β−1/2.
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4 Commitment to an Optimal Taylor Rule

We next consider an optimal policy problem in the case that the policymaker restricts its policy

by setting the interest rate according to the standard “Taylor rule”

it = ψππt + ψxxt + ψ0, (21)

at all dates t ≥ 0, where ψπ, ψx, and ψ0 are policy coefficients. As mentioned in the introduction,

such a simple rule while not fully optimal is known to perform well in a wide range of models. We

focus here on the simplest Taylor rule without inertia, but we discuss an extension of this rule that

includes the lagged interest rate in section 6.2.

The policymaker is assumed to commit to the rule (21), in which the coefficients ψπ, ψx, and

ψ0 are chosen so as to maximize the expected welfare (12), subject to the structural equations (4)

and (5), and assuming that the shock processes are given by (8)—(9). To determine the optimal

policy coefficients, it is useful to proceed in two steps: we first characterize the optimal equilibrium

that is consistent with the given rule, and second we determine policy coefficients that correspond

to that equilibrium.

Using (21) to substitute for the interest rate in the structural equations (4) and (5), we observe

that inflation and the output gap must satisfy the following system of difference equations

Etzt+1 = Azt + aet, (22)

where zt ≡ [πt, xt, 1]0 , and et ≡ [ret , ut]0 and A and a are matrices of coefficients. Given that zt does
not involve any predetermined variable, the resulting equilibrium, if it exists, must be non inertial.

The evolution of the endogenous variables can then be described by

πt = πni + πrr
e
t + πuut, xt = xni + xrr

e
t + xuut, it = ini + irr

e
t + iuut, (23)

where πni, xni, ini are the steady-state values of the respective variables in this equilibrium, and

πr, πu, and so on, are the equilibrium response coefficients to fluctuations in ret and ut.

As we show in Appendix A.1, both ir and iu are positive for any positive weights λi, λx. Thus

the optimal non-inertial plan involves an adjustment of the nominal interest rate in the direction

of the perturbations. Furthermore, the response coefficients πr, xr are positive if and only if

σ

κ
>

ρr
(1− βρr) (1− ρr)

, (24)
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that is, whenever the fluctuations in the efficient rate are not too persistent (relative to the ratio

σ
κ). Thus when (24) holds, a positive shock to the efficient rate stimulates aggregate demand, so

that both the output gap and inflation increase. In the limiting case that the interest rate does not

enter the loss function (λi → 0), or when the persistence of the perturbations is such that (24) holds

with equality, we obtain πr = xr = 0 and ir = 1. As a result, in the absence of inefficient supply

shocks, the central bank optimally moves the interest rate by the same amount as the efficient rate

in order to stabilize the output gap and inflation completely.

When the disturbances to the efficient rate are sufficiently persistent (ρr large enough but still

smaller than 1) for the inequality (24) to be reversed, inflation and the output gap decrease in the

face of an unexpected positive shock to the efficient rate in the optimal non-inertial plan. Even if

the nominal interest rate increases less than the natural rate, optimal monetary policy is restrictive

in this case, because the real interest rate (it − Etπt+1) is higher than the efficient rate of interest
ret .

For the Taylor rule to be consistent with an optimal equilibrium of the form (23), we show in

Appendix A.1 that the policy coefficients must satisfy

ψπ =
xuir − iuxr
xuπr − πuxr

(25)

ψx =
πriu − irπu
xuπr − πuxr

, (26)

Substituting the coefficients πr, xr, ... with their values characterizing the optimal non-inertial equi-

librium, yields the coefficients of the optimal Taylor rule as functions of the underlying structural

problem. However, for the optimal Taylor rule to implement the optimal non-inertial equilibrium,

it must guarantee that the dynamic system (22) admits a unique bounded solution. Since both

πt and xt are non-predetermined endogenous variables at date t, and {et} is bounded, this is the
case if and only if A has exactly two eigenvalues outside the unit circle. It is well known (see, e.g.,

Woodford, 2003a, chap. 4) that if we restrict our attention to the case in which ψπ, ψx ≥ 0, then
the policy rule (21) results in a determinate equilibrium if and only if

ψπ +
1− β

κ
ψx > 1. (27)

4.1 Optimal Taylor rule and sensitivity to shock processes

To get some intuition about the optimal Taylor rule, let us consider the special case in which both

perturbations have the same degree of persistence, i.e., ρr = ρu ≡ ρ. In this case, the optimal Taylor
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rule coefficients reduce to

ψπ =
κ

λi (σ (1− ρ) (1− βρ)− ρκ)
(28)

ψx =
λx (1− βρ)

λi (σ (1− ρ) (1− βρ)− ρκ)
. (29)

When (24) holds, both optimal Taylor-rule coefficients are positive. The optimal coefficient on

inflation, ψπ, increases with the slope to the aggregate supply, κ, to prevent a given output gap

from creating more inflation. Similarly the optimal coefficient on output gap, ψx, increases when

λx increases, as the policymaker is more willing to stabilize the output gap. In addition, the

optimal Taylor rule becomes more responsive to both inflation and output gap fluctuations, when

the weight λi decreases, as the policymaker is willing to let the interest rate vary more, and when

the intertemporal IS curve becomes flatter (σ is smaller), as shocks to the efficient rate of interest

have a larger impact on the output gap and inflation.

These expressions reveal that the optimal Taylor coefficients are particularly sensitive to the

assumed degree of persistence of the shocks. As ρ increases to approach the bound (24), which

corresponds to ρ ' 0.68 in our calibration, the optimal Taylor rule coefficients become in fact

unboundedly large, and become negative when the inequality in (24) is reversed, i.e., when ρ > 0.68.

Table 2 reports the optimal coefficients (given by (A.55) and (A.56) in Appendix A.1) for different

degrees of persistence of the perturbations, using the calibration summarized in Table 1. As shown

in Figure 1, these optimal Taylor coefficients may change substantially with different degrees of

shock persistence. Again, optimal policy coefficients approach infinity for ρ around 0.68.

While the white region of Figure 1 indicates the set of Taylor rules that result in a unique

bounded equilibrium, the gray region indicates combinations (ψπ, ψx) that result in indeterminacy

of the equilibrium. Figure 1 reveals for example that when both shocks are purely transitory

(ρr = ρu = 0), the “optimal” Taylor rule lies in the region of indeterminacy. In fact, the “optimal”

coefficients ψπ, ψx, while positive, are not large enough to satisfy (27). This means that for any

bounded solution {zt} to the difference equation (22), there exists another bounded solution of the
form

z0t = zt + vξt

where v is an appropriately chosen (nonzero) vector, and the stochastic process {ξt} may involve
arbitrarily large fluctuations, which may or may not be correlated with the fundamental distur-

bances ret and ut. Committing to an “optimal” Taylor rule that lies in the region of indeterminacy
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can thus result in a large set of bounded equilibria, including some that involve an arbitrarily large

value of the loss criterion (12). Note from Figure 1 that the problem of indeterminacy arises not

only when ρr = ρu = 0, but also in some cases when the disturbances are more persistent (e.g.,

when ρr = 0.35 and ρu = 0, or when ρr = ρu = 0.9).

4.2 Desirability of history dependence

Even if we abstract from equilibrium indeterminacy, the optimal Taylor rule may yield substantially

higher welfare losses than the first best. Table 2 reports the policymaker’s loss, E [L] , in addition

to the following measure of variability

V [z] ≡ E
"
(1− β)

∞X
t=0

βtẑ2t

#

for the four endogenous variables, π, x, i, and p, so that E [L] is a weighted sum of V [π] , V [x] ,

and V [i] with weights being the ones of the loss function (12).12 When ρr = ρu = 0.35, as in the

baseline calibration, the loss is 1.28 in the optimal plan, while it is 2.63 when committing to an

optimal Taylor rule. The welfare losses of generated by this simple policy rule stem primarily from

a higher variability of inflation and of interest rates.

To understand better the source of the welfare losses under the simple Taylor rule, we show in

Figure 2 the response of endogenous variables to an unexpected disturbance to the efficient rate of

interest, using again calibration summarized in Table 1 and assuming for illustrative purposes no

shock persistence (ρr = 0). Under the optimal Taylor rule (dashed lines), the nominal interest rate

increases by less than the natural rate of interest, in order to dampen the variability of the nominal

interest rate. Monetary policy is therefore relatively expansionary so that inflation and the output

gap increase at the time of the shock. In later periods however, these variables return to their initial

steady-state as the perturbation vanishes. In contrast, in the optimal plan (solid lines), the short-

term interest rate is more inertial than the efficient rate. Inertia in monetary policy is especially

desirable here because it induces the private sector to expect future restrictive monetary policy,

12The table reports the statistics in the case in which x∗ = i∗ = 0, so that the steady state is the same for each plan

(and is zero for each variable). The statistics measure therefore the variability of each variable around its steady state,

and the column labeled with E [L] indicates the loss due to temporary disturbances in excess of the steady-state loss.

All statistics in Table 2 are reported in annual terms. The statistics V [π] , V [i] , and E [L] are therefore multiplied

by 16. Furthermore, the weight λx reported in Table 1 is also multiplied by 16 in order to represent the weight

attributed to the output gap variability (in annual terms) relative to the variability of annualized inflation and of the

annualized interest rate.
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hence future negative output gaps which in turn have a disinflationary effect already when the

shock hits the economy. Thus the expectation of an inertial policy response allows the policymaker

to offset the inflationary impact of the shock by raising the short-term interest rate by less than

with the simple Taylor rule.13

Similarly, in the face of an unexpected transitory inefficient supply shock ut (with ρu = 0),

Figure 3 shows that the optimal Taylor rule induces the nominal interest rate to increase, so as to

reduce output (gap), and therefore to mitigate inflationary pressures. In the optimal plan (solid

lines), however, it is optimal to maintain the output gap below steady state even after the shock

has vanished. This generates the expectation of a slight deflation in later periods and thus helps

dampening the initial increase in inflation. The last panel confirms that the price level initially rises

with the adverse shock but then declines back to almost return to its initial steady-state level. In

fact the new steady-state price level is slightly below the initial one. The optimal interest rate that

is consistent with the paths for inflation and the output gap hardly deviates from the steady-state,

but it remains above steady-state for several periods, so as to achieve the desired deflation in later

periods.

Figures 2 and 3 reveal that with the optimal Taylor rule of the form (21), the policy response

does not introduce any inertia so that the interest rate deviates from the steady state only as long

as the shocks last. In contrast, in the optimal plan, the effects of disturbances are mitigated more

effectively on impact by being spread out over a longer period of time, through an inertial policy.

4.3 Welfare implications of alternative shock processes

We have shown above that the optimal Taylor rule coefficients are sensitive to the degree of per-

sistence of shocks. This does not imply however that this sensitivity has important welfare im-

plications, as two simple Taylor rules with different coefficients may in principle result in similar

outcomes. To evaluate the welfare implications of alternative shock processes, we suppose that the

central bank has committed to a simple Taylor rule, optimized under a correct assumption about

the past shocks – i.e., that their law of motion is given by (8)—(9), with degrees of series correlation

13When shocks are more persistent, the nominal interest rate also increases modestly on impact, in the optimal

plan, but is expected to be higher than the efficient rate in later periods, so that agents can expect a tight monetary

policy in the future, with negative output gaps and a decline of price level then. However to achieve a similar future

path of the output gap and the price level, the optimal Taylor rule needs raise the interest rate sufficiently on impact,

so as to bring down inflation and the output gap already at the time of the shock. This is why the optimal Taylor

rule coefficients become negative when ρr is sufficiently large.
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ρr = ρu = 0.35– but that it now faces new disturbances ε̂r,m,t and ε̂u,m,t which propagate through

the economy with a different persistence ρ̂.14

Figure 4 plots welfare losses E[L] for various policy rules as a function of the degree of persistence

of the shocks ret and ut. The dashed line represents the welfare losses implied by the commitment

to the Taylor rule optimized in our benchmark calibration, i.e., with ρr = ρu = 0.35. Note that

this policy rule which has coefficients ψπ = 1.72, ψx = 0.57 is not too different from the policy rule

initially proposed by Taylor (1993). The figure shows again that in the benchmark case, the welfare

loss under the optimal Taylor rule (2.63) is about twice as large as in the optimal plan (1.28) denoted

here by the solid line, as documented in Table 2. However, as the shock persistence ρ increases, the

welfare performance of this simple Taylor rule deteriorates considerably with losses approaching

50, i.e., about 15 times the loss under optimal policy, as ρ approaches 1. Figure 5 shows that the

welfare deterioration is due to dramatic increases in inflation and interest-rate volatility under the

simple Taylor rule when the shocks become more persistent. While the Taylor rule is relatively

successful at stabilizing the output gap, this does not contribute much to the overall welfare given

the low value of λx. Figures 4 and 5 consider changes in the persistence of both shocks ret and ut.

Similar figures emerge however when one considers changes in the persistence of one shock at a

time.

5 Commitment to a Simple Wicksellian Rule

As emphasized in the previous section, simple Taylor rules of the form (21) lack history dependence,

a key property of optimal policy in forward-looking models, and involve optimal policy coefficients

that are sensitive to the degree of persistence of exogenous disturbances. We now turn to an

alternative very simple rule that introduces a desirable amount of history dependence and that

turns out to be less sensitive to shock persistence. It is given by

it = ψp (pt − p̄t) + ψxxt + ψ0 (30)

at all dates t ≥ 0, where p̄t is some deterministic trend for the (log of the) price-level satisfying

p̄t = p̄t−1 + π̄, (31)

14We focus here on the properties of policy rules that have been optimized in a particular model, but we do not

evaluate policy rules that would be robust to uncertainty about the underlying model, or uncertainty about driving

shock processes. For the characterization of policy rules that are robust to model uncertainty, see e.g., Giannoni

(2002, 2007), Hansen and Sargent (2008).
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and π̄ is a constant. Following Woodford (2003a, chap. 2) we call such a rule a Wicksellian rule. The

price level depends by definition not only on current inflation but also on all past rates of inflation.

It follows that the rule (30) introduces history dependence in monetary policy, as it forces the

policymaker to compensate any shock that might have affected inflation in the past. While rules of

this form are as simple as standard Taylor rules, they have received less attention in recent studies

of monetary policy. One reason may be because it is widely believed that such rules would result

in a larger variability of inflation (and the output gap), as the policymaker would respond to an

inflationary shock by generating inflation below target in subsequent periods. However, as we show

below, this is not true when agents are forward-looking and they understand that the policymaker

commits to a rule of the form (30). Although the policymaker and the private sector do not care

about the price level per se, as the latter does not enter the loss criterion (12), we shall argue that

a Wicksellian rule has desirable properties for the conduct of monetary policy.

To characterize the equilibrium that obtains if the policymaker commits to (30), we consider

a steady state in which in which inflation, the output gap and the nominal interest rate take

respectively the constant values πwr, xwr, iwr, we define the deviations from the steady state as

π̂t ≡ πt − πwr, x̂t ≡ xt − xwr, ı̂t ≡ it − iwr, and we let p̂t ≡ pt − p̄t be the (percentage) deviation of

the price level from its trend. As discussed in Appendix A.2, using (30) to substitute for ı̂t in the

intertemporal IS equation, we can rewrite (4), (5), and (2) in matrix form as

Etzt+1 = Âzt + âet, (32)

where zt ≡ [π̂t, x̂t, p̂t−1]0 , et ≡ [ret , ut]0 , and Â and â are matrices of coefficients. Assuming again

that the law of motion of the disturbances is given by (8) and (9), the resulting equilibrium is then

of the form

ẑt = zrr
e
t + zuut + zpp̂t−1 (33)

for any variable ẑt ∈ {π̂t, x̂t, ı̂t, p̂t} , where zr, zu, zp are equilibrium response coefficients to fluctu-

ations in ret , ut, and pt−1. As further shown in Appendix A.2, the policy coefficients ψp and ψx

relate in turn to the equilibrium coefficients as follows

ψp =
xuir − iuxr
xupr − xrpu

(34)

ψx =
priu − irpu
xupr − xrpu

. (35)

The optimal equilibrium resulting from a Wicksellian rule (30) is therefore characterized by the

optimal steady state and the optimal response coefficients zr, zu, zp in (33) that minimize the loss
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function (12) subject to the constraints (2), (4), (5), and (30), where ψp and ψx are given by (34)

and (35). For the Wicksellian rule to implement the desired equilibrium, though, it must guarantee

that the dynamic system (32) admits a unique bounded solution. This is the case if and only if Â

admits exactly two unstable eigenvalues. An analysis of the matrix Â yields the following result.

Proposition 1 In the model composed of (4), (5), (2), with σ, κ > 0 and 0 < β < 1, a commitment

to the Wicksellian policy rule (30) results in a unique bounded rational expectations equilibrium

{πt, xt, it, pt} , if
ψp > 0 and ψx ≥ 0. (36)

Proof. See Appendix A.3.

Hence any Wicksellian rule with positive coefficients implies a determinate equilibrium.15 In

general, the coefficients of optimal Wicksellian rule are complicated functions of the parameters

of the model. Moreover, unlike those of the optimal Taylor rule, they are also function of the

variance of the shocks. Rather than trying to characterize analytically the optimal Wicksellian

rule, we proceed with a numerical investigation of its properties and its implications for equilibrium

inflation, output gap and the nominal interest rate.

5.1 A comparison of Taylor rules and Wicksellian rules

Figure 6 reports optimal coefficients of the Wicksellian rule for different degrees of shock persistence

(ρr; ρu). It is noteworthy that all optimal policy coefficients are positive for this wide range of shock

persistence. It follows from Proposition 1 that these policy rules result in a determinate equilibrium.

This contrasts with the optimal Taylor rules presented in Figure 1, which for some combinations

yield an indeterminate equilibrium. Furthermore, while the optimal Taylor rule coefficients vary

importantly with different degrees of shock persistence, Figure 6 shows that the optimal coefficients

of Wicksellian rules are concentrated in a narrower area that those of optimal Taylor rules (Figure

1). The optimal Wicksellian rules are thus less sensitive to the different assumptions about serial

correlation of the disturbances.

In addition, optimal Wicksellian rules also introduce a kind of history dependence that is de-

sirable for monetary policy. In fact, as shown in Figures 2 and 3, transitory increases in ret and

ut do generate persistent deviations of the endogenous variables when policy is set according to

the optimal Wicksellian rule (dashed-dotted lines). Commitment to an optimal Wicksellian policy

15A similar result is mentioned in Kerr and King (1996), in the case that ψx is set to 0.
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allows the policymaker to achieve a response of endogenous variables that is closer to the optimal

plan than is the case with the optimal Taylor rule.

One particularity of the equilibrium resulting from a Wicksellian policy, of course, is that

the price level is stationary, unlike the Taylor rule which does not offset shifts in the price level

following exogenous disturbances. In the optimal plan, policy also eventually brings the price level

to its original trend in the face of inefficient supply shocks ut. However, when the economy is hit

by exogenous fluctuations in ret and there is a concern for interest-rate stabilization (λi > 0), it is

not optimal for the price level to be stable. In fact, in the optimal plan, Figure 2 shows that the

price level is expected to end up at a slightly lower level in the future. While not fully optimal,

the Wicksellian policy reduces welfare losses considerably by introducing history dependence and

offsetting fluctuations in the price level. Another notable feature of optimal Wicksellian policy in

Figure 3 is that the interest rate rises importantly, so that the response of inflation remains close

to the optimal response. While this of creates a significant drop in output (gap) in our calibration,

the welfare loss is only moderately affected by the recession, given the low weight λx.

In fact a comparison of the welfare implications for both Taylor and Wicksellian rules suggests

that Wicksellian rules result in general in a lower welfare loss, in the model considered here. We

first show this analytically in a simple case and then proceed with a numerical investigation of the

more general case.

A special case. To simplify the analysis, we consider the special case in which the short-term

aggregate supply equation is perfectly flat so that κ = 0, and both shocks have the same degree of

serial correlation ρ. In this case, we can solve for equilibrium inflation using (5), and we obtain

πt = βEtπt+1 + ut =
∞X
j=0

βjEtut+j = (1− βρ)−1 ut.

Inflation is perfectly exogenous in this case. The best the policymaker can do is therefore to

minimize the variability of the output gap and the interest rate.

Using (28) and (29), we note that the optimal Taylor rule reduces in this case to

ı̂t =
λx

λiσ (1− ρ)
x̂t,

and so involves no response to inflation. Since inflation is cannot be affected by monetary policy

in this case, it would be desirable to respond to inflation only if this would help dampening fluctu-

ations in the output gap and the interest rate. However, since the Taylor rule is non inertial, the
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equilibrium endogenous variables depend only on contemporaneous shocks (see (23)). It follows

that one cannot reduce the variability of future output gaps and interest rates by responding to

current shocks in inflation. Responding to contemporaneous fluctuations in inflation would only

make the interest rate and the output gap more volatile.

In contrast, with a Wicksellian rule, the policymaker’s response to contemporaneous price-level

fluctuations and the belief that he will respond in the same way to price-level fluctuations in the

future have a desirable effect on the expected future path of the output gap and the interest rate.

We can establish the following result.

Proposition 2 When κ = 0 and ρr = ρu ≡ ρ > 0, there exists a Wicksellian rule of the form (30)

that results in a unique bounded equilibrium, and that achieves a lower loss than the one resulting

from the optimal Taylor rule.

Proof. See Appendix A.4.

General case: A numerical investigation. In the more general case in which κ > 0 and

we allow for arbitrary degrees of serial correlation of the shocks, the analytical characterization is

substantially more complicated. However a numerical investigation suggests again that appropriate

Wicksellian rules perform better than the optimal Taylor rule in terms of the loss criterion (12).

Using the calibration of Table 1, and for various degrees persistence of the disturbances, Table

2 reveals that the loss is systematically lower with the optimal Wicksellian rule than it is with

the optimal Taylor rule. For instance, when ρr = ρu = .35, the loss is 1.67 with the Wicksellian

rule, compared to 2.63 with the Taylor rule, and 1.28 with the fully optimal rule.16 This relatively

good performance of the Wicksellian rules is due to the low variability of inflation and the nominal

interest rate. On the other hand, the output gap is in general more volatile under the optimal

Wicksellian rule. Of course the variability of the price level is much higher for fully optimal rules

and optimal Taylor rules, but this does not affect the loss criterion. While the results of Table

2 are based on our benchmark calibration, we still find, for alternative assumptions about the

parameters λx, ρr, ρu, and the variances of the shocks, that the welfare loss E [L] implied by the

optimal Wicksellian rule is lower than that implied by the optimal Taylor rule, and is only slightly

higher than in the optimal plan.
16Recall that Table 2 indicates the losses due to fluctuations around the steady state. However, since the steady

states are the same for the optimal Taylor rule and the optimal Wicksellian rule, the comparison of statistics is also

relevant for levels of the variables, for any values x∗, i∗.
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In addition, the simple Wicksellian rules turn out to be very robust to alternative specifications

of the shock processes. Looking again at Figures 4 and 5, we observe that an optimal Wicksellian

rule – optimized under the assumption that the serial correlation of the shocks is ρr = ρu =

0.35 – performs again very well when the economy is hit by new disturbances ε̂r,m,t and ε̂u,m,t

which propagate through the economy with a different persistence ρ̂. The welfare losses under

the Wicksellian rule (dashed-dotted line) remain only slightly above the losses in the first best,

even for very high degrees of shock persistence. This is very different from the performance of

simple Taylor rules which imply very high losses when ρ approaches 1, and suggests that the

commitment to bringing the price level back to its original trend is an effective way of guarding

against misspecifications or changes of the shock processes.

6 Introducing Interest-Rate Inertia

Wicksellian rules have the desirable feature of introducing history dependence while the simple

Taylor rules considered so far are by assumption not inertial. One natural question is thus whether

the performance of simple Taylor rules could not be dramatically improved by letting the interest

rate respond also to past interest rates, as this would introduce at least some form of history

dependence in policy. To answer this question, we first characterize a fully optimal rule.

6.1 A Robustly Optimal Policy Rule

As argued in Giannoni (2001, Chap. 1) and Giannoni and Woodford (2003a,b, 2010), it is possible

under general conditions to find a policy rule that is optimal – i.e., that minimizes the welfare loss

E [L] subject to the constraints (4) and (5) imposed by the private sector – and that is also robust

to alternative specifications of the shock processes. This robustly optimal policy rule is obtained by

combining the first-order necessary conditions (14)—(17) characterizing the optimal state-contingent

plan. These first-order conditions involve only two types of variables: variables entering the poli-

cymakers’ objective function (i.e., target variables) and Lagrange multipliers. Combining them to

eliminate the Lagrange multipliers yields a single equation involving only target variables, which

can be interpreted as an implicit policy rule. We thus solve (16) for φ1t as a function of it, and (15)

for φ2t as a function of xt, it, it−1, and use the resulting expressions to substitute for the Lagrange
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multipliers in (14). This yields the instrument rule17

it = ψππt + ψx∆xt + (1 + ψi) it−1 + ψ∆i∆it−1 − ψii
∗ (37)

where ∆xt ≡ xt − xt−1 denotes first differences, and the policy coefficients are given by

ψπ =
κ

λiσ
> 0, ψx =

λx
λiσ

> 0, ψi =
κ

βσ
> 0, ψ∆i = β−1 > 1. (38)

This rule necessarily holds in the optimal plan in all period t ≥ 2, for it is consistent with

the first-order conditions (14)—(16) at these dates. For this policy rule to implement the optimal

equilibrium, it must not merely be consistent with with the optimal plan, it must also determine

a unique bounded equilibrium. Remarkably, the rule (37) also has this very desirable property.

In fact, a commitment to the policy rule (37) at all dates t ≥ 0 implies a determinate rational-
expectations equilibrium (see Giannoni and Woodford, 2003b, Proposition 1).18

The equilibrium implied by a commitment to the time-invariant policy rule (37) at all dates

t ≥ 0 is the unique bounded solution the structural equations (4)—(5), the first-order conditions
(14)—(16) at all dates t ≥ 0, where the initial Lagrange multipliers φ1,−1, φ2,−1 are not given by (17)
but depend instead on the historical values x−1, i−1, and i−2, through the equations (14)—(16). Such

a policy involves the same response to random shocks in periods t ≥ 0 as in the optimal (Ramsey)
plan, and is a rule that is optimal from a timeless perspective (see, e.g., Woodford 1999).19

A further very interesting feature of this policy rule is that it does not involve any shock.20

The optimal policy rule (37) has thus the very desirable property of being completely robust to the

specification of the shock processes, even if the latter are of the form specified in (6)—(7), as long

as they are bounded.

An implication of this is that a commitment to the optimal rule (37) with coefficients given by

(38) does not only implement the optimal plan in the case of the assumed autocorrelation of the

17This rule is analogous to what Svensson (2003) calls an optimal specific targeting rule.
18As further shown in Giannoni and Woodford (2010), a policy rule (or target criterion) constructed in this fashion

from the first-order conditions associated with the optimal policy problem implies a locally determinate equilibrium

under very general conditions, even in the context of large-scale nonlinear models.
19The optimal (Ramsey) plan is the bounded solution to the structural equations (4)—(5), the first-order conditions

(14)—(16) at all dates t ≥ 0, where the initial Lagrange multipliers φ1,−1, φ2,−1are given by (17). Such a plan can be
implemented by the time-varying rule given by i0 = ψππ0+ψxx0, in period 0, i1 = ψππ1+ψx (x1 − x0)+(1 + ψi1) i0

in period 1 and (37) at all dates t ≥ 2.
20More generally, as long as the shocks enter in an additively separable fashion in the policymaker’s objective

function and in the constraints imposed by the private sector, the first-order conditions to the optimal policy problem

don’t involve any exogenous shocks or even any properties of their driving processes.
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shocks, but also for any other degree of shock persistence. As a result, the policymaker would not

need to reconsider its commitment and change the rule in the event that the economy would be

hit by shocks that have different properties than then ones observed prior to the commitment. By

keeping the policy rule unchanged, it would continue to achieve the optimal equilibrium, hence the

lowest possible loss for any value of ρ. The welfare losses associated with the rule (37)—(38) are

therefore the ones associated with the optimal plan, and displayed by the solid line in Figures 4

and 5, for different values of ρ.21

Equation (37) indicates that to implement the optimal plan, the central bank should relate the

interest rate positively to fluctuations in current inflation, in changes of the output gap, and in

lagged interest rates.22 Note finally that the interest rate should not only be inertial in the sense of

being positively related to past values of the interest rate, it should be super-inertial, as the lagged

polynomial for the interest rate in (37)

1−
µ
1 +

κ

βσ
+ β−1

¶
L + β−1L2 = (1− z1L) (1− z2L)

involves a root z1 > 1 while the other root z2 ∈ (0, 1) . A reaction greater than one of the interest rate
to its lagged value has initially been found by Rotemberg and Woodford (1999) to be a desirable

feature of a good policy rule in their econometric model with optimizing agents. As explained

further in Woodford (2003b), it is precisely such a super-inertial rule that the policymaker should

follow to bring about the optimal responses to shocks when economic agents are forward-looking.

Optimal policy requires rapidly raising the interest rate to deviations of inflation and the output

gap from the target (which is 0), if such deviations are not subsequently undone. But of course,

21While assume here that the policymaker knows with certainty the model of the economy, though it may face

uncertainty about the shock processes, Walsh (2004) has shown that the same rule turns out to be robust to mis-

specifications of the structural model of the kind considered by Hansen and Sargent (2008). According to Hansen

and Sargent’s robust control approach, the policymaker views its model as an approximation to the true model, with

the true model being in a neighborhood of the approximating model. Such a problem can be represented by a game

between the policymaker who seeks to minimize the loss function (12) while a malevolent agent tries to maximize

it. The central bank thus attempts to characterize a robust rule that performs as well as possible in this worst-case

scenario. As Walsh (2004) has shown, such a robust rule in our model would take exactly the same form as (37)— (38).

However, as Walsh (2004) emphasizes, while the rule is the same in the two approaches, different macroeconomic

behavior would be observed, as expectations are formed differently in the two approaches.
22From a practical point of view, it might be an advantage to respond to changes in the output gap rather than the

level as the change in the output gap may be known with greater precision. For example, Orphanides (2003) shows

that subsequent revisions of U.S. output gap estimates have been quite large (sometimes as large as 5.6 percentage

points), while revisions of estimates of the quarterly change in the output gap have been much smaller.
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such a policy is perfectly consistent with a stationary rational expectations equilibrium, and in

fact is the one generating the lowest overall welfare loss and a low variability of the interest rate

in equilibrium. In fact, the interest rate does not explode in equilibrium because the current and

expected future optimal levels of the interest rate counteract the effects of an initial deviation in

inflation and the output gap by generating subsequent deviations with the opposite sign of these

variables, as shown in Figures 2 and 3.23

The coefficients of the optimal policy rule are reported in the upper right panel of Table 2,

for our benchmark calibration.24 For comparison, the last panel of Table 2 reports the coefficients

derived from Judd and Rudebusch’s (1998) estimation of actual Fed reaction functions between

1987:3 and 1997:4, along with the statistics that such a policy would imply if the model provided a

correct description of the actual economy.25 As shown on Table 2, the estimated historical rule in

the baseline case involves only slightly smaller responses to fluctuations in inflation and the output

gap than the optimal rule. However the estimated response to lagged values of the interest rate is

sensibly smaller that the optimal one.

6.2 Simple Rules and Interest Rate Inertia

The analysis of the optimal policy rule (37) suggests that it is desirable for the current interest rate

to respond strongly to movements in the past interest rate. While the policy rule (37) achieves

the lowest possible loss in the model considered and remains relatively simple, recent research has

given considerable attention to even simpler policy rules (see, e.g., contributions collected in Taylor,

1999). As we now show, even if we allow for considerable inertia in interest rate in the policy rule,

it remains preferable to respond to fluctuations in the price level than in the inflation rate. To

see this, consider a minor departure from the optimal rule (37) with coefficients given by (38),

neglecting the term ψi (it−1 − ı̄) and setting ψ∆i to 1 instead of β
−1.26 After this simplification,

23Optimal interest-rate rules are super-inertial under general conditions, as long as the private sector is sufficiently

forward-looking (see, Giannoni and Woodford, 2003a). Some authors have however criticized such rules, on the

grounds that they perform poorly in non-rational expectations, backward-looking, models (e.g., Taylor, 1999b). This

should not be surprising since super-inertial rules rely precisely on the private sector’s forward-looking behavior.
24The coefficients ψx reported here are multiplied by 4, so that the response coefficients to output gap, and to

annualized inflation are expressed in the same units. (See footnote 12.)
25The estimated historical policy rule refers to regression A for the Greenspan period in Judd and Rudebusch

(1998).
26Doing so prevents the rule from being super-inertial, a feature that has been criticized on the grounds that such

rules lead to explosive behavior in models which involve no rational expectations and no forward-looking behavior
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and using (2), the rule (37) reduces to

∆it = ψπ (∆pt − π̄) + ψx∆xt +∆it−1 (39)

where ψπ and ψx are again given by (38), and the steady-state inflation rate is given by π̄ = λii
∗/β.

Assuming furthermore that at some point t0 − 1 in the past, the interest rate satisfied it0−1 =

ψπ (pt0−1 − p̄t0−1) +ψxxt0−1 + it0−2 and using (31) implies that a commitment to (39) at all dates

t ≥ t0 is equivalent a commitment to the rule

it = ψπ (pt − p̄t) + ψxxt + it−1 (40)

at all dates t ≥ t0. This of course is none else than a Wicksellian rule augmented with the

lagged interest rate. Given that the coefficient on the lagged interest rate is 1, this quasi-optimal

rule specifies how changes in the interest rate ∆it should be set as a function of fluctuations in

the price level (in log deviations from a trend) and the output gap. The rule (40) reveals that

a desirable policy involves even more history dependence than we had considered in the case of

simple Wicksellian rules.

Table 3 quantifies the welfare losses implied by a commitment to the quasi-optimal rule (40) for

different degrees of shock persistence. Figures 4 and 5 also plot the welfare losses (with black dots)

as a function the shocks’ autocorrelation. Importantly, this very simple rule performs remarkably

well, with welfare losses appear only marginally higher than in the fully optimal rule for a very wide

range of shock persistence, given that the policy coefficients are totally invariant to the assumed

properties of the shock process.

To contrast, we consider now an expanded version of the Taylor rule that allows for interest

rate inertia

it = ψπ (πt − π̄) + ψxxt + it−1, (41)

where ψπ and ψx are again given by (38). Clearly, introducing a large amount of interest rate inertia

contributes to reducing the welfare losses substantially: comparing Tables 2 and 3, we note that

the welfare losses drop from 2.63 to 1.38 when introducing the lagged interest rate in the Taylor

rule and ρr = ρu = 0.35. This is not surprising, in light of the discussion in sections 2 and 3, as the

rule (41) resembles closely the simple Wicksellian rule, were it not for the response to the output

gap.27 In addition, Levin et al. (1999) show that rules that have a coefficient of one on the lagged

(see, e.g., Taylor 1999b).
27 Indeed, assuming that at some point t0 − 1 in the past the interest rate satisfied it0−1 = ψπ (pt0−1 − p̄t0−1) +
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interest rate tend to perform well across models, and Orphanides and Williams (2007) show that

such rules are robust to potential misspecification of private sector learning, in a model in which

agents have imperfect knowledge about the the structure of the economy. However, as Figure 4

and 5 show, the performance of the rule (41) deteriorates also markedly as the shock persistence

increases. So, while allowing for high degree of interest inertia in interest rates allows to improve

the performance of simple policy rules, our results show that it remains preferable for the interest

rate to respond to price-level fluctuations than to inflation fluctuations in the model considered,

and the gains from price-level stabilization are larger in the face of misspecifications of the shock

processes.

7 Conclusion

This paper has characterized the properties of various simple interest-rate rules in the context of

a stylized structural forward-looking model of the economy. We have compared the performance

of simple Taylor rules and simple Wicksellian rules – which determine the interest rate as a

function of deviations of the price level from its trend and an output gap – to determine whether

the central bank’s objective function, which is assumed to depend on the volatility of inflation,

output gap and interest rate, is best achieved by a policy that responds to fluctuations in inflation

or the price level. We have shown that appropriate Wicksellian rules result systematically in a

lower welfare loss, a lower variability of inflation and of the nominal interest rate than optimal

Taylor rules, by introducing desirable history dependence in monetary policy. The coefficients of

optimal Wicksellian rules have the further advantage of being less sensitive to alternative degrees of

persistence in the shock processes. An implication of this is that Wicksellian rules perform better

than simple Taylor rules in the face of changes in shock processes. This makes a commitment to

simple Wicksellian rules more appealing as their robustness property provides little ground for a

reconsideration of the commitment when the economy is affected by new kinds of disturbances.

Moreover, Wicksellian rules are less prone to equilibrium indeterminacy than optimal Taylor rules.

The fact that simple Wicksellian rules perform so well in our model becomes clear when we

observe a simple Wicksellian rule augmented with a large amount of interest-rate inertia (40)

resembles a robustly optimal rule which, as argued in Giannoni and Woodford (2003a,b, 2010),

ψxxt0−1, a commitment to the “difference rule” ∆it = ψπ (πt − π̄) + ψx∆xt at all dates t ≥ t0 is equivalent a

commitment to the Wicksellian rule it = ψπ (pt − p̄t) + ψxxt at all dates t ≥ t0.
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implements the optimal plan and is also completely robust to the specification of exogenous shock

processes. A Wicksellian rule of this form states that changes (and not the level) of the policy

rates should depend positively on the deviations of the price level from trend, and the output gap.

This rule remains very simple, is again fully robust to the specification of the shock processes,

and introduces an even great amount of history dependence than simple Wicksellian rules, which

yields a remarkable welfare performance in the model considered. Such a rule should thus be

particularly appealing to policymakers who search for a simple rule, yet worry about unforeseeable

circumstances (shocks) affecting the economy in the future.

Our results have been derived here in an arguably very stylized model, in which agents have full

information about the current state of the economy, and are completely rational. This has allowed

us to emphasize that the history dependence generated by the price-level stabilization results in

important welfare gains and has good robustness properties to the assumed shock processes. Recent

research suggests that the benefits from price-level stabilization hold in more general setups. In

fact, Preston (2008) assumes in a similar model that private agents are non-rational and learn

adaptively. He shows that a price-level target corrects past mistakes and yields better welfare results

than inflation stabilization when the central bank cannot perfectly understand private agents’

behavior. This is consistent with Orphanides and Williams (2007)’s conclusion on the desirability

of “difference” interest-rate rules, which resemble our Wicksellian rules. Gaspar, Smets and Vestin

(2007), using in a medium-scale model involving a number of rigidities and inertial behavior of the

private sector find that the stabilization of the price-level path is a simple and effective way of

implementing a desirable equilibrium. A concern raised by Mishkin and Schmidt-Hebbel (2001) is

that a commitment to price-level stabilization may propagate iid measurement errors in inflation.

However Gorodnichenko and Shapiro (2007) considering a forward-looking model with backward-

looking features show that a rule akin to our Wicksellian rule can effectively stabilize the economy

in the face of imperfectly observed shifts in potential output growth or surprises in the price

level. Boivin (2009) and Woodford (2010) similarly argue that stabilizing the price level might be

more desirable in the event that the price level is not perfectly observed, provided that the public

is sufficiently forward looking and understands the policy regime. In addition, Eggertsson and

Woodford (2003), Wolman (2005) and Billi (2008) have argued that a commitment to price-level

stabilization (possibly around a drifting path), may be an effective way of preventing deflations,

and exiting from deflationary traps. While these papers emphasize different desirable features of

price-level stabilization, they all point to some robustness property of price-level stabilization.
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A Appendix

A.1 Optimal non-inertial plan and optimal Taylor rule

In a non-inertial equilibrium, the coefficients πni, πr, πu, and so on characterizing the solution (23)
need to satisfy the structural equations (4) and (5) at each date, and for every possible realization of
the shocks. These coefficients need therefore to satisfy the following feasibility restrictions, obtained
by substituting (23) into the structural equations (4) and (5):

(1− β)πni − κxni = 0 (A.42)

πni − ini = 0 (A.43)

(1− ρr)xr + σ−1 (ir − ρrπr − 1) = 0 (A.44)

(1− βρr)πr − κxr = 0 (A.45)

(1− ρu)xu + σ−1 (iu − ρuπu) = 0 (A.46)

(1− βρu)πu − κxu − 1 = 0. (A.47)

Similarly, substituting (23) into (12), and using E(retut) = 0, we can rewrite the loss function as

E [L0] =
h¡
πni
¢2
+ λx

¡
xni − x∗

¢2
+ λi

¡
ini − i∗

¢2i
+
¡
π2r + λxx

2
r + λii

2
r

¢
var (ret )

+
¡
π2u + λxx

2
u + λii

2
u

¢
var (ut) .

To determine the optimal non-inertial plan, we choose the equilibrium coefficients that minimize the
loss E [L0] subject to the restrictions (A.42) — (A.47). The steady-state of the optimal non-inertial
equilibrium is then given by

ini = πni =
(1− β)κ−1λxx∗ + λii

∗

1 + (1− β)2 κ−2λx + λi
, xni =

1− β

κ

(1− β)κ−1λxx∗ + λii
∗

1 + (1− β)2 κ−2λx + λi
, (A.48)

and the optimal response coefficients to fluctuations in ret and ut in the optimal non-inertial equi-
librium are given by

πr =
λi (σγr − ρrκ)κ

hr
, πu =

λiσ (σγu − ρuκ) (1− ρu) + λx (1− βρu)

hu
(A.49)

xr =
λi (σγr − ρrκ) (1− βρr)

hr
, xu = −κ− ρuλi (σγu − ρuκ)

hu
(A.50)

ir =
λx (1− βρr)

2 + κ2

hr
> 0, iu =

σκ (1− ρu) + λx (1− βρu) ρu
hu

> 0, (A.51)

where

γj ≡
¡
1− ρj

¢ ¡
1− βρj

¢
> 0

hj ≡ λi
¡
σγj − ρjκ

¢2
+ λx

¡
1− βρj

¢2
+ κ2 > 0,
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and where j ∈ {r, u} .
For the Taylor rule to be consistent with an equilibrium of the form (23), the policy coefficients

must satisfy the following restrictions

ir = ψππr + ψxxr (A.52)

iu = ψππu + ψxxu (A.53)

ini = ψππ
ni + ψxx

ni + ψ0 (A.54)

obtained by substituting the solutions (23) into (21). Solving (A.52)—(A.53) for the policy coeffi-
cients and substituting the coefficients πr, xr, ..., with the expressions in (A.49)—(A.51) character-
izing the optimal non-inertial equilibrium, yields the optimal Taylor coefficients

ψπ =
(κ− ρuλi (σγu − ρuκ))

¡
ξr (1− βρr) + κ2

¢
+ (σκ (1− ρu) + ρuξu)λi (σγr − ρrκ) (1− βρr)

λi (σγr − ρrκ) ((κ− ρuλi (σγu − ρuκ))κ+ (λiσ (σγu − ρuκ) (1− ρu) + ξu) (1− βρr))

(A.55)

ψx =
(λiσ (σγu − ρuκ) (1− ρu) + ξu)

¡
ξr (1− βρr) + κ2

¢− λi (σγr − ρrκ)κ (σκ (1− ρu) + ρuξu)

λi (σγr − ρrκ) ((κ− ρuλi (σγu − ρuκ))κ+ (λiσ (σγu − ρuκ) (1− ρu) + ξu) (1− βρr))

(A.56)

where γj ≡
¡
1− ρj

¢ ¡
1− βρj

¢
> 0, ξj ≡ λx

¡
1− βρj

¢
> 0, and j ∈ {r, u} . Note that these

expressions are well defined provided that σγr − ρrκ 6= 0.
The constant ψ0 is then obtained by solving (A.54), using the preceding expressions for ψπ and

ψx.

A.2 Optimal Wicksellian rule

We observe from (4) and (5) that in a steady state

iwr = πwr, xwr =
1− β

κ
πwr. (A.57)

The structural equations (4), (5) can then be expressed in terms of the hatted variables representing
deviations from the steady state, and the policy rule (30) may be written as28

ı̂t = ψpp̂t + ψxx̂t. (A.58)

Using the latter equation to substitute for ı̂t in (4), we can write the resulting system in matrix
form as:

Et

⎡⎣ π̂t+1
x̂t+1
p̂t

⎤⎦ = Â

⎡⎣ π̂t
x̂t
p̂t−1

⎤⎦+ â

∙
ret
ut

¸
(A.59)

where the matrix Â is given by

Â =

⎡⎢⎣ β−1 −κβ−1 0

σ−1
¡
ψp − β−1

¢ ³
1 + σ−1

³
κ
β + ψx

´´
ψpσ

−1

1 0 1

⎤⎥⎦ . (A.60)

28To obtain (A.58), we make an implicit assumption on the coefficient ψ0 which has no effect on the welfare analysis
that follows. First, note from (30) that p̂t must be constant in the steady state. For convenience, we set this constant
to zero. The optimal policy coefficient ψ0 is the only coefficient affected by this normalization, but this has no effect
on optimal monetary policy. Comparing (30) and (A.58) one can see that ψ0 is implicitly given by ψ0 = iwr−ψxx

wr.
Note also from the definition of inflation that πt = pt − pt−1 = p̂t − p̂t−1 + π̄. Hence, in the steady state, we have
πwr = π̄.
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Assuming again that the law of motion of the disturbances is given by (8) and (9), the resulting
equilibrium is of the form (33).

Using the solution (33) and noting that E
£
(1− β)

P∞
t=0 β

tẑt
¤
= 0, we can write the loss criterion

(12) as

E [L] =
h
(πwr)2 + λx (x

wr − x∗)2 + λi (i
wr − i∗)2

i
+E

h
L̂
i
. (A.61)

where

E[L̂] ≡ E
(
(1− β)

∞X
t=0

βt
£
π̂2t + λxx̂

2
t + λiı̂

2
t

¤)
. (A.62)

The optimal steady state is then found by minimizing the first term in brackets in (A.61) subject
to (A.57). Since this is the same problem as the one encountered for the optimal non-inertial plan,
we have

πwr = πni, xwr = xni, and iwr = ini. (A.63)

where πni, xni, and ini are given in (A.48).
To determine the optimal equilibrium responses to disturbances, we note, as in the optimal non-

inertial plan, that the solution (33) may only describe an equilibrium if the coefficients zr, zu, zp
satisfy the structural equations (4) and (5) at each date, and for every possible realization of the
shocks. These coefficients need therefore to satisfy the following feasibility restrictions, obtained
by substituting (33) into the structural equations (4), (5), and using (2):

xr (1− ρr)− xppr + σ−1 (ir + (1− pp − ρr) pr − 1) = 0 (A.64)

xu (1− ρu)− xppu + σ−1 (iu + (1− pp − ρu) pu) = 0 (A.65)

xp − xppp + σ−1 (ip + (1− pp) pp) = 0 (A.66)

(βρr + βpp − 1− β) pr + κxr = 0 (A.67)

(βρu + βpp − 1− β) pu + κxu + 1 = 0 (A.68)

(βpp − 1− β) pp + κxp + 1 = 0. (A.69)

Similarly, substituting the solution (33) into the policy rule (A.58) yields

ir = ψppr + ψxxr (A.70)

iu = ψppu + ψxxu (A.71)

ip = ψppp + ψxxp. (A.72)

Using (A.70) and (A.71), we can then determine the policy coefficients ψp and ψx, to obtain

ψp =
xuir − iuxr
xupr − xrpu

(A.73)

ψx =
priu − irpu
xupr − xrpu

, (A.74)

provided that xupr − xrpu 6= 0. Substituting (A.73) and (A.74) into (A.72), we obtain

ip − xuir − iuxr
xupr − xrpu

pp − priu − irpu
xupr − xrpu

xp = 0, (A.75)

which is an additional constraint that must be satisfied by the equilibrium coefficients, for the
structural equations and the policy rule to be satisfied at each date and in every state.
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Finally using (2), the solution (33), and the laws of motion (8) and (9), we can rewrite the loss
(A.62) as

E[L̂] = var (ret )

µ¡
p2r + λxx

2
r + λii

2
r

¢
+ (pr (pp − 1) + λxxrxp + λiirip)

2βρrpr
1− βρrpp

¶
+var (ut)

µ¡
p2u + λxx

2
u + λii

2
u

¢
+ (pu (pp − 1) + λxxuxp + λiiuip)

2βρupu
1− βρupp

¶
(A.76)

+
³
(pp − 1)2 + λxx

2
p + λii

2
p

´µ
var (ret )

βp2r
1− βp2p

1 + βρrpp
1− βρrpp

+ var (ut)
βp2u

1− βp2p

1 + βρupp
1− βρupp

¶
.

The optimal equilibrium resulting from a Wicksellian rule (30) is therefore characterized by the
optimal steady state (A.63), and the optimal response coefficients pr, pu, and so on, that minimize
the loss function (A.76) subject to the constraints (A.64) — (A.69) and (A.75). The coefficients of
the optimal Wicksellian rule that are consistent with that equilibrium are in turn determined by
(A.73) and (A.74).

A.3 Proof of Proposition 1

The model composed of (4), (5), (2), with a commitment to the Wicksellian policy rule (30) can
be expressed in matrix form as the dynamic system (A.59) with transition matrix (A.60). The
characteristic polynomial associated to Â is

P (X) = X3 +A2X
2 +A1X +A0

where

A0 = −σ + ψx

βσ

A1 =
κ+ σβ + 2σ + ψxβ + κψp + ψx

βσ

A2 = −2σβ + σ + κ+ ψxβ

βσ
.

The system (A.59) results in a determinate equilibrium if and only if the characteristic polynomial
P (X) admits two roots outside and one root inside the unit circle. Using Proposition C.2 of
Woodford (2003a), P (X) has one root inside the unit circle and two roots outside if

P (1) > 0, P (−1) < 0, and |A2| > 3.

Assume that ψp and ψx satisfy (36). This implies

P (1) =
κ

βσ
ψp > 0

P (−1) = −2κ+ 4σ (1 + β) + κψp + 2 (1 + β)ψx

βσ
< 0

|A2| = 2 + β−1 +
κ+ ψxβ

βσ
> 3.

Hence P (X) has exactly 2 roots outside the unit circle, and (A.59) results in a determinate equi-
librium.
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A.4 Proof of Proposition 2

In this proof, we show that the loss criterion (12) for the optimal Taylor rule is higher than the
one for a particular Wicksellian rule. Since the optimal steady-state is the same for both families
of rules, it is sufficient to compare the loss E[L̂] resulting from deviations from the steady-state.

Loss for optimal Taylor rule. When κ = 0, and ρr = ρu = ρ the equilibrium resulting from
the optimal Taylor rule, i.e., the optimal non-inertial equilibrium characterized in (A.49) — (A.51),
reduces to

πr = 0, πu = (1− βρ)−1

xr =
λiσ (1− ρ) (1− βρ)2

h
, xu =

λiσ (1− ρ) (1− βρ) ρ

h

ir =
λx (1− βρ)2

h
, iu =

λx (1− βρ) ρ

h

where h ≡ λiσ
2 (1− ρ)2 (1− βρ)2 + λx (1− βρ)2 > 0. It follows from (2) that pr = 0, pu =

(1− βρ)−1 and pp = 1, in this equilibrium. Using these expressions to substitute for the equilibrium
coefficient in the loss function (A.76), we obtain29

E[L̂tr] =
λiλx

λiσ2 (1− ρ)2 + λx
var (ret ) +

λx
¡
1 + λiρ

2
¢
+ λiσ

2 (1− ρ)2³
λiσ2 (1− ρ)2 + λx

´
(1− βρ)2

var (ut) . (A.77)

Loss for some particular Wicksellian rule. In the case in which κ = 0 and ρr = ρu =
ρ > 0, the restrictions (A.64) — (A.69) and (A.75) constraining the equilibrium resulting from any
Wicksellian rule (A.58) can be solved in terms of xr, xu to yield:

pr = 0, pu =
1

1− βρ
, pp = 1 (A.78)

xp =
xu (1− βρ)− xrρ

1 + xrσρ
(A.79)

ir = 1− xrσ (1− ρ) , iu = ρ
(1− xrσ (1− ρ)) (1 + xuσ (1− βρ))

(1 + xrσρ) (1− βρ)
, ip = 0. (A.80)

There is also a second solution which is not admissible as it involves pp = β−1 > 1, hence an
explosive price level (in terms of deviations from a trend). Consider now an equilibrium in which
xr and xu satisfy

xr =
λiσ (1− ρ)

λiσ2 (1− ρ)2 + λx
(A.81)

xu = λiσρ

³
λiσ

2 (1− ρ)2 + λx

´
β
¡
1− βρ2

¢− λxρ (1− β)

(1− βρ)∆
, (A.82)

where
∆ ≡

³
λiσ

2 (1− ρ)2 + λx

´ ¡
λiσ

2
¡
1− βρ2

¢
(1− βρ) + λx (1 + βρ)

¢
,

29Note that the equilibrium characterized here is a special case of the equilibrium (33) used to derive the loss
function (A.76).
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and where (A.78) — (A.82) are used to compute the remaining coefficients. The latter are given by
(A.78) and

xp = −λiσρ
³
λiσ

2 (1− ρ)2 + λx

´ ¡
1− βρ2

¢
(1− β)

∆

ir =
λx

λiσ2 (1− ρ)2 + λx

iu = ρλx
λiσ

2
¡
1− βρ2

¢
(1− ρ) + λx (1 + βρ)

(1− βρ)∆

ip = 0

Expressions (A.81) and (A.82 do in general not correspond to the values of xr and xu that would
minimize the loss criterion (A.76). (In fact they would minimize (A.76) in the special case that
var (ut) = 0.) As a result this equilibrium is not the optimal equilibrium that might be obtained
with a Wicksellian rule. We focus here on a suboptimal equilibrium because it is easier to charac-
terize analytically. We will call this equilibrium a “quasi-optimal equilibrium”. One implication of
course is that the resulting loss, E[L̂qwr], cannot be smaller than the one obtained in the optimal
equilibrium, E[L̂wr], so that

E[L̂qwr] ≥ E[L̂wr].

The Wicksellian rule of the form (A.58) that implements this quasi-optimal equilibrium is
obtained by using (A.73) and (A.74). Substituting for the above equilibrium coefficients in (A.73)
and (A.74) yields:

ψp =
ρλx (1− β)

¡
1− βρ2

¢
(1− ρ) (λiσ2 (1− βρ2) (1− βρ) + λx (1 + βρ))

, ψx =
λx

λiσ (1− ρ)
.

Since ψp > 0 and ψx > 0, it follows from proposition 1 (in Appendix A.3) that this rule results in
a unique bounded equilibrium.

Next, substituting the above equilibrium coefficients in the loss criterion (A.76), we obtain

E[L̂qwr] =
¡
λxx

2
r + λii

2
r

¢
var (ret )

+

µ
1

(1− βρ)2
+ λx

µ
x2u + 2xuxp

βρ

(1− βρ)2
+ x2p

β (1 + βρ)

(1− βρ)3 (1− β)

¶
+ λii

2
u

¶
var (ut)

=
λiλx

λiσ2 (1− ρ)2 + λx
var (ret )

+

Ã
1

(1− βρ)2
+ λiλxρ

2λiσ
2β (1− ρ)2

¡
1− βρ2

¢
+ λx

¡
1− β2ρ2

¢
(1− βρ)3∆

!
var (ut) (A.83)

Comparing the losses. Comparing (A.77) and (A.83), we obtain after some algebraic manipu-
lations: E[L̂tr] > E[L̂qwr]. Thus

E[L̂tr] > E[L̂qwr] ≥ E[L̂wr],

which completes the proof. ¥
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Table 1: “Calibrated” Parameter values

Structural parameters
β σ κ

0.99 0.1571 0.0238

Shock processes
ρr ρu var (ret ) var (ut)

0.35 0.35 13.8266 0.1665

Loss function
λx λi
0.048 0.236
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Table 2: Statistics and Optimal Policy Rules

Statistics Coefficients of optimal policy rule
V[π ] V[x ] V[i ] V[p ] E[L ] p t π t x t x t- 1 i t- 1 i t- 2

Optimal Plan / Optimal Rule
ρ r  = 0 ρ u  = 0 0.157 10.215 0.983 0.938 0.883 -- 0.641 0.325 -0.325 2.163 -1.010

ρ u  = 0.35 0.192 10.994 0.983 0.951 0.956 -- 0.641 0.325 -0.325 2.163 -1.010
ρ u  = 0.9 0.195 20.057 0.983 1.098 1.397 -- 0.641 0.325 -0.325 2.163 -1.010

ρ r  = 0.35 ρ u  = 0 0.217 11.056 1.922 2.727 1.206 -- 0.641 0.325 -0.325 2.163 -1.010
ρ u  = 0.35 0.252 11.835 1.922 2.740 1.279 -- 0.641 0.325 -0.325 2.163 -1.010
ρ u  = 0.9 0.255 20.898 1.922 2.887 1.720 -- 0.641 0.325 -0.325 2.163 -1.010

ρ r  = 0.9 ρ u  = 0 0.487 5.196 6.765 46.597 2.337 -- 0.641 0.325 -0.325 2.163 -1.010
ρ u  = 0.35 0.522 5.975 6.765 46.610 2.410 -- 0.641 0.325 -0.325 2.163 -1.010
ρ u  = 0.9 0.525 15.038 6.766 46.757 2.851 -- 0.641 0.325 -0.325 2.163 -1.010

Optimal Non-Inertial Plan / Optimal Taylor Rules
ρ r  = 0 ρ u  = 0 0.269 13.495 2.030 1.680 1.401 -- 0.641 0.325 -- -- --

ρ u  = 0.35 0.391 13.957 2.233 4.224 1.593 -- 1.291 0.263 -- -- --
ρ u  = 0.9 0.144 30.354 2.159 3.217 2.122 -- 3.658 0.038 -- -- --

ρ r  = 0.35 ρ u  = 0 0.358 9.989 6.747 3.631 2.435 -- 0.888 0.694 -- -- --
ρ u  = 0.35 0.479 10.451 6.949 6.175 2.627 -- 1.724 0.572 -- -- --
ρ u  = 0.9 0.233 26.848 6.876 5.168 3.156 -- 5.041 0.089 -- -- --

ρ r  = 0.9 ρ u  = 0 0.500 0.529 10.437 39.175 2.993 -- -1.743 -3.222 -- -- --
ρ u  = 0.35 0.622 0.991 10.640 41.719 3.185 -- -2.575 -2.495 -- -- --
ρ u  = 0.9 0.375 17.388 10.566 40.712 3.714 -- -5.108 -0.283 -- -- --

Optimal Wicksellian Rules
ρ r  = 0 ρ u  = 0 0.122 13.923 1.237 0.008 1.087 1.997 -- 0.182 -- -- --

ρ u  = 0.35 0.146 15.191 1.294 0.015 1.186 1.383 -- 0.228 -- -- --
ρ u  = 0.9 0.142 24.466 1.391 0.090 1.653 0.853 -- 0.274 -- -- --

ρ r  = 0.35 ρ u  = 0 0.149 15.898 2.646 0.013 1.543 2.872 -- 0.139 -- -- --
ρ u  = 0.35 0.161 17.597 2.778 0.018 1.669 2.338 -- 0.201 -- -- --
ρ u  = 0.9 0.096 28.790 2.761 0.012 2.140 3.323 -- 0.140 -- -- --

ρ r  = 0.9 ρ u  = 0 0.158 7.072 10.459 0.089 2.973 2.613 -- 0.134 -- -- --
ρ u  = 0.35 0.166 8.239 10.699 0.102 3.093 2.426 -- 0.241 -- -- --
ρ u  = 0.9 0.110 18.822 10.779 0.094 3.567 2.626 -- 0.259 -- -- --

Estimated  Historical Rule
ρ r  = 0 ρ u  = 0 0.178 10.531 1.313 0.833 0.997 -- 0.424 0.297 -0.032 1.160 -0.430

ρ u  = 0.35 0.330 10.639 1.351 3.586 1.164 -- 0.424 0.297 -0.032 1.160 -0.430
ρ u  = 0.9 5.182 13.019 5.078 555.455 7.012 -- 0.424 0.297 -0.032 1.160 -0.430

ρ r  = 0.35 ρ u  = 0 0.215 11.941 2.961 1.218 1.492 -- 0.424 0.297 -0.032 1.160 -0.430
ρ u  = 0.35 0.367 12.049 2.999 3.972 1.659 -- 0.424 0.297 -0.032 1.160 -0.430
ρ u  = 0.9 5.219 14.429 6.726 555.841 7.507 -- 0.424 0.297 -0.032 1.160 -0.430

ρ r  = 0.9 ρ u  = 0 3.080 9.485 21.954 317.172 8.728 -- 0.424 0.297 -0.032 1.160 -0.430
ρ u  = 0.35 3.232 9.592 21.993 319.926 8.895 -- 0.424 0.297 -0.032 1.160 -0.430
ρ u  = 0.9 8.084 11.973 25.719 871.794 14.743 -- 0.424 0.297 -0.032 1.160 -0.430

Notes: The gray cases indicate that the policy rule results in an indeterminate equilibrium
The estimated historical rule refers to Judd and Rudebusch (1998).



Table 3: Statistics and Quasi-Optimal Policy Rules

Statistics Coefficients of optimal policy rule
V[π ] V[x ] V[i ] V[p ] E[L ] p t π t x t x t- 1 i t- 1 i t- 2

Quasi-Optimal Rule (p)
ρ r  = 0 ρ u  = 0 0.128 10.214 1.222 0.011 0.911 0.641 -- 0.325 -- 1.000 --

ρ u  = 0.35 0.163 10.995 1.222 0.024 0.984 0.641 -- 0.325 -- 1.000 --
ρ u  = 0.9 0.164 20.097 1.223 0.171 1.425 0.641 -- 0.325 -- 1.000 --

ρ r  = 0.35 ρ u  = 0 0.146 11.025 2.527 0.015 1.276 0.641 -- 0.325 -- 1.000 --
ρ u  = 0.35 0.181 11.806 2.528 0.028 1.349 0.641 -- 0.325 -- 1.000 --
ρ u  = 0.9 0.182 20.907 2.528 0.175 1.790 0.641 -- 0.325 -- 1.000 --

ρ r  = 0.9 ρ u  = 0 0.134 4.898 10.069 0.018 2.751 0.641 -- 0.325 -- 1.000 --
ρ u  = 0.35 0.170 5.679 10.069 0.030 2.824 0.641 -- 0.325 -- 1.000 --
ρ u  = 0.9 0.171 14.780 10.069 0.177 3.265 0.641 -- 0.325 -- 1.000 --

Quasi-Optimal Rule (π )
ρ r  = 0 ρ u  = 0 0.179 9.923 1.089 1.138 0.916 -- 0.641 0.325 -- 1.000 --

ρ u  = 0.35 0.293 10.151 1.123 2.987 1.049 -- 0.641 0.325 -- 1.000 --
ρ u  = 0.9 1.848 15.403 2.346 181.241 3.147 -- 0.641 0.325 -- 1.000 --

ρ r  = 0.35 ρ u  = 0 0.215 10.964 2.137 1.979 1.250 -- 0.641 0.325 -- 1.000 --
ρ u  = 0.35 0.329 11.192 2.171 3.828 1.383 -- 0.641 0.325 -- 1.000 --
ρ u  = 0.9 1.885 16.444 3.394 182.082 3.482 -- 0.641 0.325 -- 1.000 --

ρ r  = 0.9 ρ u  = 0 0.234 5.354 8.871 6.154 2.590 -- 0.641 0.325 -- 1.000 --
ρ u  = 0.35 0.348 5.582 8.905 8.003 2.723 -- 0.641 0.325 -- 1.000 --
ρ u  = 0.9 1.903 10.835 10.129 186.257 4.821 -- 0.641 0.325 -- 1.000 --
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Figure 1: Optimal Taylor rules for different degrees of shock persistence (ρr; ρu)

Notes: Each × denotes an optimal pair of Taylor-rule coefficients (ψπ, ψx) for degrees of serial
correlation of the exogenous shocks given by (ρr; ρu) and indicated in the figure. The optimal
policy coefficients are computed using (A.55)—(A.56). Taylor rules in the gray region result in an
indeterminate equilibrium.
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Figure 2: Impulse responses to an innovation in re with autocorrelation of �r = 0:

Notes: The responses of {̂t and �̂t are multiplied by 4 so that the responses of all variables are
reported in annual terms.
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reported in annual terms.
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Figure 4: Welfare losses of alternative policy rules as a function of shock persistence.

Notes: Each curve plots the welfare losses E[L] implied by a particular policy rule for different
degrees of serial correlation in the shock processes (ρr = ρu = ρ). The Taylor and Wicksellian rules
are optimized assuming the benchmark shock persistence of ρ = 0.35. The quasi optimal rule (p)
is given in (40) while the quasi optimal rule (π) is given in (41).
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Figure 5: Volatility of key variables under alternative rules, as a function of shock persistence.

Notes: Each curve plots the volatility measures V[π], V[x], and V[i] implied by a particular
policy rule for different degrees of serial correlation in the shock processes (ρr = ρu = ρ). The
Taylor and Wicksellian rules are optimized assuming the benchmark shock persistence of ρ = 0.35.
The quasi optimal rule (p) is given in (40) while the quasi optimal rule (π) is given in (41).
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Figure 6: Optimal Wicksellian rules for different degrees of shock persistence (ρr; ρu) .

Notes: Each × denotes an optimal pair of Wicksellian-rule coefficients
¡
ψp, ψx

¢
for degrees of

serial correlation of the exogenous shocks given by (ρr; ρu) and indicated in the figure.
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