NBER WORKING PAPER SERIES

HAS MEDICAL INNOVATION REDUCED CANCER MORTALITY?
Frank R. Lichtenberg

Working Paper 15880
http://www.nber.org/papers/w15880

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue
Cambridge, MA 02138
April 2010

This research was supported by Siemens Medical Solutions USA, Inc. Siemens placed no restrictions
or limitations on data, methods, or conclusions, and had no right of review or control over the outcome
of the research. I am grateful to the National Bureau of Economic Research for making the MEDSTAT
MarketScan Commercial Claims and Encounters Database available to me, and to the editor and an
anonymous referee for helpful comments. The views expressed herein are those of the author and do
not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peer-
reviewed or been subject to the review by the NBER Board of Directors that accompanies official
NBER publications.

© 2010 by Frank R. Lichtenberg. All rights reserved. Short sections of text, not to exceed two paragraphs,
may be quoted without explicit permission provided that full credit, including © notice, is given to
the source.



Has medical innovation reduced cancer mortality?
Frank R. Lichtenberg

NBER Working Paper No. 15880

April 2010, Revised October 2013

JEL No. C23,C33,112,J1,L64,1.65,033

ABSTRACT

I analyze the effects of four types of medical innovation and cancer incidence on U.S. cancer mortality
rates during the period 2000-2009, by estimating difference-in-differences models using longitudinal
(annual) data on about 60 cancer sites (breast, colon, etc.). The outcome measure used is not subject
to lead-time bias. I control for mean age at diagnosis, the stage distribution of patients at time of diagnosis,
and the sex and race of diagnosed patients.

Under the assumption that there were no predated factors that drove both innovation and mortality
and that there would have been parallel trends in mortality in the absence of innovation, the estimates
indicate that there were three major sources of the 13.8% decline of the age-adjusted cancer mortality
rate during 2000-2009. Drug innovation and imaging innovation are estimated to have reduced the
cancer mortality rate by 8.0% and 4.0%, respectively. The decline in incidence is estimated to have
reduced the cancer mortality rate by 1.2%. The social value of the reductions in cancer mortality attributable
to medical innovations has been enormous, and much greater than the cost of these innovations.

Frank R. Lichtenberg
Columbia University
504 Uris Hall

3022 Broadway

New York, NY 10027
and NBER

frl1 @columbia.edu



1. Introduction

The cost of cancer care is substantial, and increasing. In 2010, the direct cost of U.S.
cancer care was $125 billion (almost $9000 per cancer patient). This figure does not include
indirect costs, such as lost productivity, which add to the overall financial burden of cancer.
According to researchers at the National Cancer Institute (Mariotto et al (2011), Yabroff et al
(2008), National Cancer Institute(2013a, 2013b)), in the absence of any change in the cost per
patient of cancer care, changes in the U.S. population alone will result in a real cost increase of
27%, to $155 billion, by 2020. However, if costs in the initial and final phases of care increase
by 2% annually, e.g. due to advances in diagnostic technology and novel targeted treatments, the
total cost of care in 2020 will be $173 billion, an increase of 40% from 2010. If costs increase
by 5% annually, the total cost of care in 2020 will be $207 billion, an increase of 68% from
2010. Thus, medical innovation during the period 2010-2020 may increase the direct cost of
U.S. cancer care by $52 billion in 2020. More generally, the Congressional Budget Office
(2008, Preface) stated that “the largest single factor driving [healthcare] spending growth [is] the
greatly expanded capabilities of medicine brought about by technological advances in medical
science over the past several decades.”

As noted by the Australian Productivity Commission (2005), even if advances in medical
technology drive increased healthcare expenditure, the critical question is whether the benefits
outweigh the costs. In other markets, increased expenditure generally would indicate increased
consumer benefits. But because the direct purchase of healthcare is mostly undertaken by third
parties — governments and private health insurers — normal market tests for ensuring value for
money generally do not apply. Although assessing the benefits of medical innovation—its
impact on health outcomes—is as important as assessing the costs—its impact on health
expenditure—the Commission (2005, p. 99) noted that “most formal studies...have focused on
the expenditure impacts of medical technology, partly because costs are more easily identified
and quantified than are benefits.”

! However, this conclusion was based on studies that may have not fully accounted for spillovers across episodes of
care or medical conditions. Such spillovers may be important: a recent study of a cohort of U.S. Medicare
beneficiaries aged 65 years and older with a diagnosis of cataract found that patients who had cataract surgery had
lower odds of hip fracture within 1 year after surgery compared with patients who had not undergone cataract
surgery (Tseng et al (2012)). Also, Lichtenberg (2011) found that U.S. states that adopted new drugs and diagnostic
imaging procedures more rapidly had larger gains in life expectancy during the period 1991-2004, but that they did
not have larger increases in per capita medical expenditure, controlling for other factors.



In this paper, | will analyze the effects of medical innovation on U.S. cancer mortality
rates. During the period I will study (1996-2009), the age-adjusted cancer mortality rate
declined 19%); the age-adjusted cancer incidence rate declined by only 4%. Lakdawalla et al
(2010) quantified the value of gains in cancer survival, and analyzed the distribution of value
among various stakeholders. They estimated that, between 1988 and 2000, life expectancy for
cancer patients increased by roughly four years, and the average willingness-to-pay for these
survival gains was roughly $322,000. Improvements in cancer survival during this period
created 23 million additional life-years and roughly $1.9 trillion of additional social value.
However, Lakdawalla et al (2010) did not identify the source of these gains, or determine the
extent to which they were due to innovation in cancer treatment.

A randomized clinical trial (RCT) undoubtedly provides the most reliable evidence about
the impact of a specific treatment innovation (e.g. new drug or diagnostic procedure) on
mortality or survival from a specific type of cancer. Therefore, to conduct an overall assessment
of the impact of medical innovation on cancer mortality, one might consider performing a meta-
analysis of data from RCTs. But that approach seems unlikely to be fruitful, for several reasons.
The sheer number of studies that would need to be considered is overwhelming: PubMed
contains over 29,000 articles that address both cancer mortality and just one type of cancer
treatment: drug therapy.? The metrics used in these studies are likely to be quite heterogeneous.
As Thaul (2012, p. 4) observes, a drug’s “effectiveness”—how well it works in a real-world
situation—may differ from its “efficacy”— whether a drug demonstrates a health benefit over a
placebo or other intervention when tested in an ideal situation, such as a tightly controlled
clinical trial. And the overall impact of medical innovation on cancer mortality depends on the
extent to which various treatments are used, as well as on the effectiveness of each treatment.

Rather than performing a meta-analysis of RCTs, | will perform an original analysis of
observational data on cancer treatment, incidence, and mortality. The data I will analyze—
longitudinal (annual) data on about 60 cancer sites (breast, colon, etc.)—are aggregate data,
rather than patient-level data. The patient-level datasets to which | have access do not include

adequate information on both treatment and mortality.® Even if patient-level data on both

% The following PUBMED search yielded 29,699 results (articles): (((neoplasms[MeSH Major Topic])) AND ("drug
therapy"[MeSH Subheading])) AND ("mortality"[MeSH Subheading]).

® The dataset | use to obtain treatment information (the MEDSTAT Marketscan database) includes only inpatient
mortality data. The majority of deaths occur outside the hospital



treatment and mortality were available, Stukel et al (2007) argue that comparisons of outcomes
between patients treated and untreated in observational studies may be biased due to differences
in patient prognosis between groups, often because of unobserved treatment selection biases. |
believe that difference-in-differences estimates based on aggregate panel data are much less
likely to be subject to unobserved treatment selection biases than estimates based on cross-
sectional patient-level data.*

Several previous studies have examined the overall impact of medical innovation on
cancer mortality.® These studies were subject to several limitations. First, the outcome measure
in all of these studies was the cancer survival rate—the proportion of patients alive at some point
subsequent to the diagnosis of their cancer—and this measure may be subject to lead-time bias.
Second, only one kind of medical innovation—chemotherapy innovation—was usually analyzed,
and this was usually measured by the number of drugs potentially available to cancer patients,
rather than by the drugs actually used by them.

This paper builds upon previous research in several ways. First, the outcome measure |
use—the unconditional cancer mortality rate (the number of deaths, with cancer as the
underlying cause of death, occurring during a year per 100,000 population)—is not subject to
lead-time bias. Second, | analyze the effects of four important types of medical innovation—
chemotherapy,® diagnostic imaging, radiotherapy, and surgical innovation —and cancer
incidence rates on cancer mortality rates. Third, my measures of medical innovation are based
on extensive data on treatments given to large numbers of patients with different types of cancer.

In Section 2, I will briefly review the history of several types of medical innovation, and
discuss recent trends in cancer incidence and mortality. In Section 3, | will present the

econometric model I will estimate to assess the impact of medical innovation on cancer

(http://www.cdc.gov/nchs/data/dvs/Mortfinal2005_worktable 309.pdf). Moreover, if a person disenrolls from a
health plan covered by Marketscan after he or she is treated, his or her death would not be observed, either inside or
outside the hospital.

4 Jalan and Ravallion (2001) argued that “’aggregation to village level may well reduce measurement error or
household-specific selection bias” (p. 10).

> Lichtenberg (2008, 2009a, 2009b) examined the effect of pharmaceutical innovation on relative cancer survival
rates, controlling for variables likely to reflect changes in probability of diagnosis (e.g. age at diagnosis, cancer stage
of diagnosis, and number of people diagnosed).

® | will analyze the impact of innovation in drugs administered by providers, not innovation in self-administered
drugs, because provider-administered drug claims contain diagnosis codes, but self-administered drug claims do not.
Data from MEDSTAT Marketscan and IMS Health’s National Sales Perspectives indicate that about 70% of cancer
drug expenditure is on drugs administered by providers. Only 10% of expenditure on other (non-cancer) drugs is on
drugs administered by providers.




mortality. Data sources and descriptive statistics will be discussed in Section 4. Estimates of
cancer mortality models will be presented in Section 5. The implications of the estimates will be

discussed in Section 6.

2. Brief review of history of medical innovation, and recent trends in cancer incidence
and mortality

In this section, I will first briefly review the history of three types of medical innovation:
chemotherapy, diagnostic imaging, and radiation therapy. Then I will discuss recent trends in
cancer incidence and mortality.

Chemotherapy. Chabner and Roberts (2005) and DeVita and Chu (2008) provide useful
accounts of the history of chemotherapy. According to DeVita and Chu (2008), the use of
chemotherapy to treat cancer began at the start of the 20th century with attempts to narrow the
universe of chemicals that might affect the disease by developing methods to screen chemicals
using transplantable tumors in rodents. It was, however, four World War Il-related programs,
and the effects of drugs that evolved from them, that provided the impetus to establish in 1955
the national drug development effort known as the Cancer Chemotherapy National Service
Center. The ability of combination chemotherapy to cure acute childhood leukemia and
advanced Hodgkin’s disease in the 1960s and early 1970s overcame the prevailing pessimism
about the ability of drugs to cure advanced cancers, facilitated the study of adjuvant
chemotherapy, and helped foster the national cancer program. Today, chemotherapy has changed
as important molecular abnormalities are being used to screen for potential new drugs as well as
for targeted treatments.

Chabner and Roberts (2005) say that the beginnings of the modern era of chemotherapy
can be traced directly to the 1942 discovery of nitrogen mustard as an effective treatment for
cancer. Their history of chemotherapy timeline includes the following five milestones during the
period 1975-2004:

e 1975: A combination of cyclophosphamide, methotrexate and fluorouracil (CMF) was
shown to be effective as adjuvant treatment for node-positive breast cancer.

e 1978: The FDA approved cisplatin for the treatment of ovarian cancer, a drug that would
prove to have activity across a broad range of solid tumors.

e 1992: The FDA approved paclitaxel (Taxol), which becomes the first ‘blockbuster’
oncology drug.



e 2001: Studies by Brian Druker led to FDA approval of imatinib mesylate (Glivec) for
chronic myelogenous leukemia, a new paradigm for targeted therapy in oncology.

e 2004: The FDA approved bevacizumab (Avastin), the first clinically proven
antiangiogenic agent, for the treatment of colon cancer.

The pace of chemotherapy innovation has increased sharply during the last two decades.
Data from IMS Health indicate that, by the end of 2009, cancer drugs (EphMRA/PBIRG
Anatomical Classification L: antineoplastic and immunomodulating agents) used in the U.S.
contained 133 distinct molecules. Twenty of these drugs had been launched by the end of 1969,
and 49 had been launched by the end of 1989. Thus, the number of new cancer molecules
launched during 1990-2009 (84 = 133 — 49) was almost three times as large as the number of
new cancer molecules launched during 1970-1989 (29 = 49 - 20).

Pharmaceuticals are more research-intensive than other types of medical care: in 2007,
prescription drugs accounted for 10% of U.S. health expenditure (Center for Medicare and
Medicaid Services, 2013: Table 2), but more than half of U.S. funding for biomedical research
came from pharmaceutical and biotechnology firms (Dorsey et al, 2010). Moreover, new drugs
often build on upstream government research (Sampat and Lichtenberg, 2011).

Diagnostic imaging. Bradley (2008) provides a useful survey of the history of medical imaging.
He argues that computers really entered the world of medical imaging in the early 1970s with the
advent of computed tomography (CT scanning) and then magnetic resonance imaging (MRI). CT
was a major advance that first allowed multiple tomographic images (slices) of the brain to be
acquired. Prior to the advent of CT in 1973, we had only plane films of the head (which basically
just show the bones) or angiography (which only suggests masses when the vessels of the brain
are displaced from their normal position). Basically there was no way to directly image the
brain. Today’s multidetector row CTs acquire multiple submillimeter spatial resolution slices
with processing speeds measured in milliseconds rather than hours. MRI also evolved during the
1970s, initially on resistive magnets with weak magnetic fields, producing images with low
spatial resolution. Even then, however, it was obvious that the soft tissue discrimination of MRI
was superior to that of CT, allowing earlier diagnoses. MR also had the advantage that it did not
require ionizing radiation like X-ray-based CT.

As stated by the National Cancer Institute (2010)

imaging, by itself, is not a treatment, but can help in making better decisions about
treatments. The same imaging technique can help doctors find cancer, tell how far a



cancer has spread, guide delivery of specific treatments, or find out if a treatment is

working... Imaging can be used to make cancer treatments less invasive by narrowly

focusing treatments on the tumors. For instance, ultrasound, MRI, or CT scans may be
used to determine exact tumor locations so that therapy procedures can be focused on the

tumor, minimizing damage to surrounding tissue... Imaging can be used to see if a

previously treated cancer has returned or if the cancer is spreading to other locations.
Radiation therapy. The American Society for Radiation Oncology (2013) provides a brief
survey of the history of radiation therapy. It is clear from this that recent advances in radiation
therapy have been facilitated or enabled by advances in diagnostic imaging. Medicine has used
radiation therapy as a treatment for cancer for more than 100 years, with its earliest roots traced
from the discovery of x-rays in 1895 by Wilhelm Réntgen. Emil Grubbe of Chicago was
possibly the first American physician to use x-rays to treat cancer, beginning in 1896. The field
of radiation therapy began to grow in the early 1900s largely due to the groundbreaking work of
Nobel Prize—winning scientist Marie Curie (1867-1934), who discovered the radioactive
elements polonium and radium in 1898. This began a new era in medical treatment and research.
Radium was used in various forms until the mid-1900s, when cobalt therapy and cesium units
came into use. Medical linear accelerators have been used too as sources of radiation since the
late 1940s.

With Godfrey Hounsfield’s invention of computed tomography (CT) in 1971, three-
dimensional planning became a possibility and created a shift from 2-D to 3-D radiation
delivery. CT-based planning allows physicians to more accurately determine the dose
distribution using axial tomographic images of the patient's anatomy. Orthovoltage and cobalt
units have largely been replaced by megavoltage linear accelerators, useful for their penetrating
energies and lack of physical radiation source.

The advent of new imaging technologies, including MRI in the 1970s and positron
emission tomography (PET) in the 1980s, has moved radiation therapy from 3-D conformal to
intensity-modulated radiation therapy (IMRT) and to image-guided radiation therapy (IGRT)
tomotherapy. These advances allowed radiation oncologists to better see and target tumors,
which have resulted in better treatment outcomes, more organ preservation and fewer side
effects.

Recent trends in cancer incidence and mortality. Data on rates of incidence of and mortality

from all malignant cancers are shown in Figure 1. Cancer incidence and mortality were both



increasing between 1973 and the early 1990s, but have declined since then. The change in
cancer mortality during the period 1996-2009 (the period covered by my econometric analysis)
has varied considerably across cancer sites, whether or not we control for the change in
incidence. Figure 2 presents data on the 1996-2009 log change in the mortality rates of the ten
largest cancer sites (ranked by their average mortality rate during 1985-2009). The red bars
show the simple log change in the mortality rate, i.e. In(mort; 2009/MOrt; 1996), Where mort;; is the
age-adjusted mortality rate from cancer at site i in year t. The change in cancer mortality ranged
between -39% (= exp(-0.49) - 1) for prostate cancer and +3% for pancreatic cancer. The blue
bars show the residual from the simple regression of In(mort; 2009/mMort; 1995) ON
In(inci.2000/inCi 1986), Where inci; is the age-adjusted incidence rate of cancer at site i in year t.’
The change in cancer mortality, adjusted for the decline in incidence, ranged between -25% for
prostate cancer and +16% for pancreatic and urinary bladder cancers. Figure 3 shows annual
data on the age-adjusted mortality rates of six major cancer sites during 1996-2009. In the next
section, | will present an econometric model for testing the hypothesis that cancer sites

experiencing more medical innovation tended to have larger reductions in mortality rates.

3. Econometric model to assess the impact of medical innovation on cancer mortality

To assess the impact of medical innovation on cancer mortality, | will estimate
difference-in-differences models using longitudinal (annual) data on about 60 cancer sites
(breast, colon, etc.). The dependent variable in these models will be In(mort_rates;), where
mort_ratey is the age-adjusted mortality rate from cancer at site s in year t. The explanatory
variables will be current and lagged measures of the vintage® of drug, imaging, radiotherapy, and
surgery treatments for cancer at site s in year t; current and lagged values of In(inc_rates;), where
inc_rateg; is the age-adjusted incidence rate of cancer at site s in year t; and current and lagged
values of several variables that should reflect case mix, illness severity, and cancer stage at time
of diagnosis:

e mean age at diagnosis

" The coefficient on In(inc; 2006/inC; 106) in this regression is 0.385 (t-statistic = 3.50; p-value = 0.0009). R? = 0.1604;
N =66. The equation was estimated by weighted least-squares, weighting by the cancer site’s average mortality rate
during 1985-2009.

According to the Merriam Webster dictionary, one definition of vintage is “a period of origin or manufacture (e.g.
a piano of 1845 vintage)”. http://www.merriam-webster.com/dictionary/vintage
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e stage distribution of patients at time of diagnosis: the fractions of patients with (1) in situ;
(2) localized or regional; and (3) distant cancers. (The omitted category is unstaged
cancers.)
e the fraction of diagnosed patients who were male
e the fraction of diagnosed patients who were white
I assume that there were no pre-dated factors that drove both vintage and mortality, and
that there would have been parallel trends in mortality in the absence of innovation. Direct
testing of this assumption (e.g. by comparing the pre-trends of early and late adopters or of
deep/non-deep new technology implementers) is difficult, because, as shown below, medical
innovation is a continuous process, not a discrete process.” Since I control for the current and
lagged incidence rate and several variables that should reflect case mix, illness severity, and
cancer stage at time of diagnosis, | believe that this assumption is very likely to be satisfied.
Before describing the specific models I will estimate, I will provide justifications for my choices
of dependent and explanatory variables.
Two types of statistics are often used to assess progress in the “war on cancer”: survival
rates and mortality rates. Survival rates are typically expressed as the proportion of patients alive
at some point subsequent to the diagnosis of their cancer. For example, the observed 5-year

survival rate is defined as follows:

5-year Survival Rate = Number of people diagnosed with cancer at time t alive at time
t+5 / Number of people diagnosed with cancer at time t

= 1 — (Number of people diagnosed with cancer at time t dead at time t+5 / Number of
people diagnosed with cancer at time t)

Hence, the survival rate is based on a conditional (upon previous diagnosis) mortality
rate. The second type of statistic is the unconditional cancer mortality rate: the number of
deaths, with cancer as the underlying cause of death, occurring during a year per 100,000
population.

The 5-year relative survival rate from cancer has increased steadily since the mid 1970s,
from 49.1% for people diagnosed during 1975-1977 to 67.6% for people diagnosed during 2001-
2008. Although this increase suggests that there has been significant progress in the war against

° When an intervention (or policy change) being analyzed is discrete, e.g. in Galiani et al’s (2005) study of the
impact of privatization of water services on child mortality in Argentina, analysis of pre-trends is feasible and
appropriate.
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cancer, it might simply be a reflection of (increasing) lead-time bias. Lead time bias is the bias
that occurs when two tests for a disease are compared, and one test (the new, experimental one)
diagnoses the disease earlier, but there is no effect on the outcome of the disease--it may appear
that the test prolonged survival, when in fact it only resulted in earlier diagnosis when compared
to traditional methods. Epidemiologists have argued that while 5-year survival is a perfectly
valid measure to compare cancer therapies in a randomized trial, comparisons of 5-year survival
rates across time (or place) may be extremely misleading. If cancer patients in the past always
had palpable tumors at the time of diagnosis while current cancer patients include those
diagnosed with microscopic abnormalities, then 5-year survival would be expected to increase
over time even if new screening and treatment strategies are ineffective. Therefore, to avoid the
problems introduced by changing patterns of diagnosis, progress against cancer should be
assessed using unconditional mortality rates.*°

The unconditional cancer mortality rate is essentially the unconditional probability of
death from cancer (P(death from cancer)). The law of total probability implies the following:

P(death from cancer) = P(death from cancer | cancer diagnosis) * P(cancer diagnosis)

+ P(death from cancer | no cancer diagnosis) * (1 — P( cancer diagnosis)) 1)
If the probability that a person who has never been diagnosed with cancer dies from cancer is
quite small (P(death from cancer | no cancer diagnosis) ~ 0), which seems plausible,™* this
reduces to
P(death from cancer) ~ P(death from cancer | cancer diagnosis) * P(cancer diagnosis) (2)
Hence

In P(death from cancer) ~ In P(death from cancer | cancer diagnosis)

+ In P(cancer diagnosis) 3)

191 will control for cancer incidence (by including it in the mortality equation), but in a completely unrestrictive
manner. If changes in incidence are merely due to lead-time bias, the coefficient on incidence should be zero.

1 The cancer incidence rate is 2.5 times as high as the cancer mortality rate: 2006 U.S. age-adjusted incidence and
mortality rates were 456.2 and 181.1, respectively. Since the probability of dying from cancer is much lower than
the probability of being diagnosed with cancer, P(death from cancer|no cancer diagnosis) is likely to be small.
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I hypothesize that the conditional mortality rate (P(death from cancer | cancer diagnosis))
is inversely related to the average (current and lagged) quality of medical procedures.*> The
quality of procedures is not directly observable. However, | also hypothesize that, in general, the
average quality of newer (later vintage) procedures is higher than that of older (earlier vintage)
procedures. The hypotheses that vintage has a positive effect on quality, and that quality has a
negative effect on mortality, imply that vintage has a negative effect on mortality, i.e. that § <0

in the following equation:

In P(death from cancer | cancer diagnosis) = 3 treatment_vintage 4)

Robert Solow (1960) introduced the concept of vintage into economic analysis. This was
one of the contributions to the theory of economic growth that the Royal Swedish Academy of
Sciences cited when it awarded Solow the 1987 Alfred Nobel Memorial Prize in Economic
Sciences:

Solow’s basic idea was that technical progress is "built into™ machines and other capital
goods and that this must be taken into account when making empirical measurements of
the role played by capital."® This idea then gave birth to the "vintage
approach”...Solow's empirical results naturally gave the formation of capital a markedly
higher status in explaining the increase in production per employee...the vintage capital
concept ...is no longer solely employed in analyses of the factors underlying economic
growth [and] has proved invaluable, both from the theoretical point of view and in
applications...” (Nobelprize.org (2013)).

Subsequently, Grossman and Helpman (1991) argued that “almost every product exists on a
quality ladder, with variants below that may already have become obsolete and others above that
have yet to be discovered,” and that “each new product enjoys a limited run at the technological
frontier, only to fade when still better products come along.” Harper (2007, p. 103) argued that
“new improved models of high-tech equipment that embody improvements are frequently
introduced and marketed alongside older models.”

Substituting (4) into (3),

In P(death from cancer) ~ 3 treatment_vintage + In P(cancer diagnosis) 5)

12 The average quality of imaging procedures may also affect the probability of diagnosis.

3 Solow assumed that technical progress is embodied in machines because machine manufacturers perform R&D.
Since the medical substances and devices industry is much more research-intensive than the machinery industry
(National Science Foundation, 2013), new medical treatments may embody even more technical progress than new
machines.
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I will estimate difference-in-difference (DD) versions of eq. (5), generalized to include
four different types of treatment, using longitudinal, cancer-site-level data on over 60 cancer

sites.****> The equations will be of the following form:

In(mort_rates) = Sk=o* [Bix drug_vintages .« + Bk imaging_vintages .k + P« radiation_vintages .«
+ Bk surgery_vintagesik + vk In(inc_rates.k) + 81k age_diags -k + d2k %in_Situs -«
+ O3k %loc_regs ik + 04k Yodistants i« + S5k Yomales ik + dgk Yowhites k)] + os + Ot + €t

(6)
where

mort_rate;; = the age-adjusted mortality rate from cancer at site s (s = 1,..., 60) in
year t (t=1991,...,2006)
drug_vintages..k = index of the vintage of drug procedures associated with cancer at site
sinyeart-k (k=0,1,...,4)
imaging_vintages.x = index of the vintage of imaging procedures associated with cancer at
site s in year t-k
radiation_vintagesx = index of the vintage of radiation procedures associated with cancer
at site s in year t-k
surgery_vintages..k = index of the vintage of surgical procedures associated with cancer at
site s in year t-k
inc_ratesr.x = the age-adjusted incidence rate of cancer at site s in year t-k
age_diagsi.kx = mean age of patients diagnosed with cancer at site s in year t-k
%in_situs.x = fraction of patients diagnosed with cancer at site s in year t-k whose
cancer was in situ
%loc_regsx = fraction of patients diagnosed with cancer at site s in year t-k whose
cancer was localized or regional
%distants.x = fraction of patients diagnosed with cancer at site s in year t-k whose
cancer was distant
%malesx = fraction of patients diagnosed with cancer at site s in year t-k who
were male
%whites.k = fraction of patients diagnosed with cancer at site s in year t-k who
were white
os = afixed effect for cancer site s
8. = afixed effect for year t

! The cancer sites are those included in the National Cancer Institute’s SEER Cause of Death Recode.

15 Galiani et al (2005) used a difference-in-differences model to assess the impact of privatization of water services
on child mortality in Argentina. They estimated their model using data classified by region and year, whereas the
data I will use are classified by disease and year. Their “treatment variable” (whether water services were publicly
or privately provided) was discrete, whereas my treatment variables (vintage indexes) are continuous.
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eq = adisturbance

In eq. (6), the cancer mortality rate is postulated to be an unrestricted distributed lag
function of the cancer incidence rate and the vintages of the four types of medical procedures in
the current year and the four previous years. Eq. (6) includes lagged values of the explanatory
variables, since it may take several years for medical innovation to have its peak effect on
mortality rates. In this model, the long-run effect of a variable on In(mort_rate) is the sum of the
coefficients on the current and lagged values of the variable,*® e.g. the long-run effect of drug
vintage is Zx=0” Pik. A finding that Zy=o" 1k < 0 would signify that cancer sites that had above-
average rates of drug innovation (increases in drug vintage) had above-average reductions in the
age-adjusted mortality rate, ceteris paribus. The estimation procedure will account for clustering
of disturbances within cancer sites.

Eq. (6) will be estimated via weighted least-squares, weighting by the mean mortality rate
of cancer site s during the period 1985-2009. Since the dependent variable is the log of the
mortality rate, | am analyzing percentage changes in the mortality rate. As shown in Figure 4,
the data exhibit heteroskedasticity: cancer sites with low average mortality rates exhibit much
larger positive and negative percentage changes in mortality rates than cancer sites with high
average mortality rates. Weighted least squares is appropriate in the presence of
heteroskedasticity.

The four treatment vintage (innovation) measures will all be defined as follows:

treatment_vintagess =X, n pProcys New, (7)
Zp n_prOCpgt

where

n_procyst = the number of times procedure p was performed in connection with
cancer diagnosed at site s in year t

new, =1 ifprocedure pisa “new” procedure

= 0 if procedure p is an “old” procedure

1% Wooldridge (2009), p. 344.
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However, as shown in Table 1, the definition of new, will vary across treatment
categories. Hence, drug_vintages: is defined as the fraction of drug procedures (performed in
connection with cancer diagnosed at site s in year t) that utilized drugs approved by the FDA
after 1995;'" imaging_vintagey is defined as the fraction of imaging procedures that were
advanced procedures; radiation_vintage is defined as the fraction of radiation procedures that
had codes established by the AMA after 1995; and surgical_vintages; is defined as the fraction of
surgical procedures that had codes established by the AMA after 1995.

I believe that drug_vintage and imaging_vintage are good indicators of the diffusion of
drug and imaging innovations, respectively, but | am less confident that radiation_vintage and
surgical_vintage are good indicators of the diffusion of radiation and surgical innovations,
respectively. Although the AMA (2013) says that establishment of a new CPT code requires that
the “procedure or service [be] clearly identified and distinguished from existing procedures and
services already in CPT,” it seems that in some cases procedures that are assigned new codes had
already been performed under different, existing codes. For example, several psychotherapy
procedure codes were retired at the end of 2012, and the procedures were reassigned to new
codes.” In the case of radiation and surgical innovations, there may therefore be substantial
measurement error in the variable new; in eq. (7).

The variable news,, is subject to little or no error in the case of drug and imaging
innovations, but delays in the establishment by CMS or the AMA™ of codes for new procedures
introduce another source of error in eq. (7): n_procys: may be positive but reported as zero during
the first few years of a procedure’s existence. Consequently, drug_vintage is likely to be a
“lagging indicator” of the true diffusion of pharmaceutical innovations. Table 2 shows the FDA
approval dates and HCPCS code establishment dates for five cancer drugs approved by the FDA
in 1996. HCPCS codes for these five drugs were established 19-33 months after FDA approval.

These drugs were administered to patients prior to the establishment of their HCPCS codes.

7| performed analyses using alternative measures of drug vintageg, €.g. the fraction of drug procedures that utilized
drugs approved by the FDA after 1990 (rather than 1995); this had very little effect on the estimates.

18 CPT code 90801 (psychiatric diagnostic interview examination) was replaced by code 90791 (diagnostic
evaluation without medical services), and code 90804 (20-30 minutes psychotherapy) was replaced by code 90832
(30 minutes). Source: http://thriveworks.com/blog/2013-cpt-code-revisions-what-the-changes-mean-for-
counselors/

19 Codes for chemotherapy procedures (and other procedures involving equipment and supplies)—Level Il HCPCS
codes—are established and maintained by CMS. Codes for other medical services and procedures furnished by
physicians and other health care professionals)—CPT codes or Level | HCPCS codes—are established and
maintained by the AMA. (Center for Medicare and Medicaid Services (2013))
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Table 3 shows unpublished IMS Health data for four of these drugs on the number of “standard
units” sold in the U.S. via retail and hospital channels in the years 1996-1998. According to one
Medicare carrier, “J9999 [not otherwise classified, antineoplastic drugs] is the code that should
be used for chemotherapy drugs that do not already have an assigned code.”® 16% of

chemotherapy treatments for patients with colorectal cancer used code J9999 in 2004.

4. Data sources and descriptive statistics

Cancer incidence and mortality rates. Data on age-adjusted cancer incidence and mortality
rates, by cancer site and year, were obtained from the National Cancer Institute’s Cancer Query

Systems (http://seer.cancer.gov/canques/index.html). Mortality data are based on a complete

census of death certificates and are therefore not subject to sampling error, although they are
subject to other errors, i.e. errors in reporting cause of death and age at death.”> Cancer
incidence rates are based on data collected from population-based cancer registries, which
currently cover approximately 26 percent of the US population; incidence rates are therefore
subject to sampling error.

Medical procedure innovation. Data on the number of medical procedures, by CPT or HCPCS
code?, principal diagnosis (ICD9) code, and year (n_proc,) were obtained from MEDSTAT
MarketScan Commercial Claims and Encounters Database produced by Thomson Medstat (Ann
Arbor, M1).2 Each claim in this database includes information about the procedure performed

(CPT code), the patient’s diagnosis (ICD9 code), and the date of service. | extracted data on one

20

http://www.palmettogba.com/palmetto/providers.nsf/44197232fa85168985257196006939dd/85256d580043e 75485
256db3004fe953

2! During the period 1979-1998, cause of death was coded using ICD9 codes. Since 1999, cause of death has been
coded using ICD10 codes. An advantage of the National Cancer Institute’s Cancer Query Systems is that the
mortality data from the two periods have been linked together.

?2 According to the American Medical Association’s CPT Assistant Archives, procedures with CPT codes between
70010 and 75893 are diagnostic imaging procedures.

% The MarketScan Databases capture person-specific clinical utilization, expenditures, and enrollment across
inpatient, outpatient, prescription drug, and carve-out services from a selection of large employers, health plans, and
government and public organizations. The MarketScan Databases link paid claims and encounter data to detailed
patient information across sites and types of providers, and over time. The annual medical databases include private
sector health data from approximately 100 payers. Historically, more than 500 million claim records are available in
the MarketScan Databases. The Commercial Claims and Encounters Database provides data on the medical
experience of active employees, early retirees, COBRA continues, and their dependents insured by employer-
sponsored plans (i.e., non-Medicare eligibles). | am grateful to the National Bureau of Economic Research for
making these data available to me.
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million outpatient procedures and one million inpatient procedures in which the principal
diagnosis was cancer in each year during the period 1996-2009.%

The MEDSTAT Marketscan database is not based on a nationally representative sample
of Americans. Moreover, the database | use contains data on medical care used by active
employees, early retirees, COBRA continues, and their dependents insured by employer-
sponsored plans. Medical care used by people eligible for Medicare is not covered.” The
majority of cancer patients are enrolled in Medicare. Nevertheless, there is likely to be a strong
positive correlation across cancer sites between innovations in treatment of nonelderly and
elderly patients. If there was more treatment innovation for cancer type A than for cancer type B
among nonelderly patients, there was likely to have been more treatment innovation for cancer
type A than for cancer type B among elderly patients.

Measurement of new,, by treatment category. In the case of drugs, new, is a dummy variable
equal to 1 if the active ingredient was approved by the FDA after 1995, and otherwise equal to
zero. To measure new, for each chemotherapy procedure, | used three databases. The first
database, Noridian’s NDC to HCPCS Crosswalk, provides a link between (HCPCS) procedure

codes and drug product codes (NDCs: National Drug Codes). The second database, the FDA’s
National Drug Code Directory, provides a link between NDCs and New Drug Application

(NDA) numbers, which are assigned by FDA staff to each application for approval to market a
new drug in the United States.?® The third database, the Drugs@FDA database, provides a link

between NDA numbers and active ingredients, and allows me to determine the date when each
active ingredient was first approved by the FDA.

In the case of imaging procedures, new, is a dummy variable equal to 1 if the procedure
is designated as an “advanced imaging” procedure by CMS, and otherwise equal to zero. To

* More than half of these procedures were diagnostic lab and physician attendance procedures.

% | do not have access to a separate MEDSTAT database that covers Medicare-eligible retirees with employer-
sponsored Medicare Supplemental plans. The National Cancer Institute publishes data
(http://healthservices.cancer.gov/seermedicare/aboutdata/hcpcs.html) on the number of patients in the Patient
Entitlement and Diagnosis Summary File (PEDSF) receiving each procedure in each year (1991-2009) by cancer
site, but only for four cancer sites (breast, colorectal, lung, and prostate). NCI informed me that, due to budget
constraints, it is not able to support the significant amount of programming that would be required to provide similar
data for other cancer sites.

%6 The National Drug Code Directory also includes Abbreviated New Drug Application (ANDA) numbers, which
are assigned by FDA staff to each application for approval to market a generic drug in the United States, and
Biologic License Application (BLA) numbers, which are assigned by FDA staff to each application for approval to
market biological products under the provisions of the Public Health Service (PHS) Act.
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measure new, for each imaging procedure, | used CMS’ 2013 Berenson-Eggers Type of Service

(BETOS) file.

In the case of radiation and surgical procedures, new, is a dummy variable equal to 1 if

the CPT code for the procedure was established by the AMA after 1995, and otherwise equal to
zero. To measure new, for each of these procedures, | used the AMA’s CPT Assistant Archives
database, which indicates the year in which each CPT code was added, revised, or deleted.

Other explanatory variables. Data on mean age and cancer stage at time of diagnosis, and on the
sex and race of cancer patients were calculated from the National Cancer Institute’s SEER 9

Research Data file (http://seer.cancer.gov/data/). This stage distribution corresponds to “SEER

historic stage A” in the SEER Research Data Record Description: Cases Diagnosed in 1973-
2010, http://seer.cancer.qgov/data/seerstat/nov2012/TextData.FileDescription.pdf. The SEER 9

Research Data file does not include other measures of socioeconomic status, such as income or
educational attainment.

Descriptive statistics. Data on the number of sample procedures, and on new procedures as a
percent of the total number of procedures, by treatment type and year (1996-2009), are shown in
Table 4. My sample includes data on about 1.5 million drug procedures, 1.0 million imaging
procedures, 1.1 million radiation procedures, and 1.6 million surgical procedures. The fraction
of drug procedures that were post-1995 procedures increased from 1% in 1996 to 26% in 2009.
The fraction of radiation and imaging procedures that were post-1995 procedures increased by
similar amounts: 27 and 23 percentage points, respectively. The large jump between 1999 and
2000 in the fraction of radiation procedures that were post-1995 procedures looks suspicious,
however. The fraction of imaging procedures that were advanced procedures increased from
40% in 1996 to 60% in 20009.

Table 5 shows data on mortality, incidence, and treatment in 1996 and 2009, by cancer
site, for the top 16 cancer sites (ranked by average mortality rate during 1985-2009).%" It
illustrates that the rate of diffusion of medical innovations varied across cancer sites and
treatment types. For example, the fraction of drug procedures that were post-1995 procedures
increased by almost twice as much for breast cancer (30%) as it did for stomach cancer (16%).
But the fraction of imaging procedures that were advanced procedures increased much less for

breast cancer (14%) than it did for prostate cancer (37%).

27 Appendix Table 1 shows similar data for the 50 cancer sites not shown in Table 5.
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Figure 5 provides data about the ten drugs with the largest 1996-2009 increase in share of
all cancer drug procedures. These ten drugs accounted for only 2% of drug procedures in 1996,
and 25% of procedures in 2009. Seven of the ten drugs were approved by the FDA after 1995.
Figure 6 shows annual data on the fraction of drug procedures that were post-1995 drug
procedures for 6 major cancer sites during 1996-2009.

Figure 7 provides data about the ten imaging procedures with the largest 1996-2009
increase in share of all cancer imaging procedures. These ten procedures accounted for 19% of
imaging procedures in 1996, and 45% of procedures in 2009. Figure 8 shows annual data on the
fraction of imaging procedures that were advanced imaging procedures for 6 major cancer sites
during 1996-20009.

5. Estimates of cancer mortality models

Weighted least-squares estimates of six versions of the model of the age-adjusted
mortality rate (eq. (6)) are presented in Table 6. All models include cancer-site fixed effects and
year fixed effects, and were estimated using annual data during the period 2000-2009. To
conserve space, estimates of cancer-site fixed effects are not reportedAlso to conserve space,
only estimates of the sums of coefficients of current and lagged values of variables (e.g. Zy=o*
B1x) are reported in Table 6.2 As discussed earlier, sums of coefficients are estimates of long-
run effects.

Models 1-4 each includes one of the four treatment vintage (innovation) measures.

Model 1 includes current and lagged values of drug vintage (post-1995 drug procedures as a
percentage of all drug procedures). The sum of the drug vintage coefficients is negative (-
0.3807) and highly significant (p-value =.0007), indicating that mortality rates declined more for
cancer sites subject to more pharmaceutical innovation, controlling for the change in incidence.
The sum of the cancer incidence coefficients is 0.3923 (p-value < .0001): cancer sites with larger
declines in incidence had larger declines in mortality. However, the coefficient is much smaller
than one. This is consistent with the view that some changes in measured incidence are due to
changes in the probability of diagnosis, as opposed to changes in true incidence. The sum of the
age_diag (mean age at diagnosis) coefficients is positive, as one might expect—earlier diagnosis
(lower mean age at diagnosis) is associated with lower mortality—but not significant (p-value =

%8 Estimates of all of the parameters of one model (model 5) are shown in Appendix Table 2.
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0.0921). The sums of the coefficients on the stage distribution and %white variables are
insignificant.?> The sum of the %male coefficients is positive, as one might expect—men have
higher age-adjusted mortality rates—and marginally significant (p-value = 0.0572).

Model 2 includes current and lagged values of imaging vintage (advanced imaging
procedures as a percentage of all imaging procedures). The sum of the imaging vintage
coefficients is negative (-0.2438) and significant (p-value = .046), indicating that mortality rates
also declined more for cancer sites subject to more imaging innovation, controlling for the
change in incidence and other included variables.

Model 3 includes current and lagged values of radiation vintage (post-1995 radiation
procedures as a percentage of all radiation procedures). The sum of the radiation vintage
coefficients is negative (-0.1565) but not significant (p-value =.1532). Model 4 includes current
and lagged values of surgery vintage (post-1995 surgery procedures as a percentage of all
surgery procedures). The sum of the surgery vintage coefficients is also insignificant (p-value =
.8297). The insignificance of the radiation and surgical innovation measures may be attributable
to substantial errors of measurement of radiation and surgical innovation.

Model 5 includes all four treatment vintage (innovation) measures. The coefficients on
the measures in this model are not very different from the corresponding coefficients in models
1-4, suggesting that the four treatment vintage measures are not highly collinear. Model 6 also
includes all four treatment vintage (innovation) measures, but excludes current and lagged
incidence rates. The sums of the coefficients on the drug and imaging innovation measures are
over 50% larger in model 6 than they are in model 5: controlling for incidence reduces the
estimated effects of drug and imaging innovation. But since eq. (3) indicates that the incidence
rate should be included in the mortality rate equation (and also to obtain conservative estimates
of the effects of drug and imaging innovation), | will use the estimates of model 5 to assess the
contributions of medical innovation and changes in incidence to the recent decline in cancer
mortality.

During the period 2000-2009, the age-adjusted cancer mortality rate declined by 13.8%.

If the distribution of cancer deaths by cancer site had not changed, the mortality rate would have

% The insignificance of the stage distribution variables is consistent with the “stage migration” hypothesis (Feinstein
et al (1985)). Measured changes in the stage distribution may be due to improvements in diagnostic imaging—
metastases that had formerly been silent and unidentified are now identified—rather than a true change in the
disease distribution.
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declined slightly more, by 14.3%. To calculate the contribution of each factor to the decline in
cancer mortality, I multiply the estimated long-run effect of that variable by the long-run change
in the variable: the difference between the average value of the variable during 2005-2009 and its
average value during 1996-2000. These calculations are shown in Table 7. | calculate the
contribution of each factor using the 95% lower and upper bound estimates of long-run effects as
well as the mean estimates shown in Table 6 (for model 5). The mean estimates imply that there
were three major sources of decline in the cancer mortality rate. Drug innovation was the largest
source: it is estimated to have reduced the cancer mortality rate by 8.0%. Imaging innovation is
estimated to have reduced the cancer mortality rate by 4.0%. The 3% decline in the cancer
incidence rate is estimated to have reduced the cancer mortality rate by just 1.2%. Surgical
innovation is estimated to have had almost no effect on cancer mortality. The magnitude of the
sum of the estimated contributions (13.2%) is only slightly smaller than the observed decline in
mortality.. Drug and imaging innovation and (to a much lesser extent) declining incidence

explain almost the entire decline in cancer mortality.

6. Discussion

Although randomized clinical trials (RCTs) undoubtedly provide the most reliable
evidence about the impacts of specific treatment innovations (e.g. new drugs or diagnostic
procedures) on mortality or survival from a specific type of cancer, it would be exceedingly
difficult to assess the overall impact of medical innovation on cancer mortality from a meta-
analysis of RCTs. An alternative approach is to perform well-designed econometric analyses of
observational data on cancer treatment and outcomes. Several previous econometric studies
were subject to several limitations. The outcome measure used in those studies—the cancer
survival rate—was potentially subject to lead-time bias. Only one kind of medical innovation—
chemotherapy innovation—was usually analyzed, and this was usually measured by the number
of drugs potentially available to cancer patients, rather than by the drugs actually used by them.

This paper has built upon previous research in several ways. The outcome measure
used—the unconditional cancer mortality rate—is not subject to lead-time bias. | analyzed the
effects of four important types of medical innovation—chemotherapy, diagnostic imaging,

radiotherapy, and surgical innovation —and cancer incidence rates on cancer mortality rates.



22

My measures of medical innovation were based on extensive data on treatments given to large
numbers of patients with different types of cancer. | allowed there to be a relationship between
incidence and mortality, but did not impose a relationship. 1 also controlled for mean age at
diagnosis, the stage distribution of patients at time of diagnosis; and the sex and race of
diagnosed patients.

During the period 2000-2009, the age-adjusted cancer mortality rate declined by 13.8%.
Under the assumption that there were no pre-dated factors that drove both vintage and mortality,
and that there would have been parallel trends in mortality in the absence of innovation, the
estimates i