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1 Introduction

Many consider randomized experiments to be the gold standard of evaluation research

due mainly to the robustness of estimators to tangential assumptions. By randomly as-

signing individuals to treatment, researchers can conduct an evaluation of the program

that compares counterfactual outcomes without imposing strong auxiliary assumptions.

However in practice, researchers regularly confront violations to the randomization pro-

tocol, complicating traditional theories of inference that require adherence to the random

treatment assignment. Experiments that suffer from noncompliance with treatment as-

signment generate a contaminated sample in the terminology of Horowitz and Manski

(1995) and defining and estimating treatment effects becomes even more challenging if

there is missing outcome and background data.1

Numerous randomized trials in clinical medicine and the social sciences involve multi-

ple stages of treatment receipt, during which implementation problems could proliferate as

subjects may exit at the study at different periods or switch back and forth in between the

treatment and control groups across time.2 Multi-period randomized trials have the po-

1An experimental study with endogenously censored outcomes within a contaminated sample pro-

duces a corrupted sample, in the terminology of Horowitz and Manski (1995). Barnard, Du, Hill and

Rubin (1998) coined the term "broken randomized experiments" to describe such studies that experience

more than one partially uncontrolled factor (i.e. noncompliance and missing data) in implementation.

Frangakis and Rubin (2002) developed a Bayesian approach to estimate alternative causal parameters

from broken randomized experiments. Our approach differs based on statistical assumptions imposed,

causal parameters estimated and has a direct link to the structural parameters from an economic model

of education production.
2The study of causal effects from a sequence of interventions is limited even in the case of perfect

compliance. Only recently in economics, Lechner and Miquel (2005), Lechner (2004) and Miquel (2002,

2003) examine the identification of dynamic treatment effects under alternative econometric approaches

when attrition is ignorable. The original investigation on treatment effects explicitly in a dynamic setting
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tential to address additional policy-relevant questions that extend beyond simply whether

the intervention was successful as a whole. For instance one could determine when the

treatment had the largest impact? How does the estimated impact of the intervention

vary based on the timing of dosage? In how many periods were the treatment(s) effective?

This paper introduces an empirical strategy to estimate treatment effects in random-

ized trials that provide a sequence of interventions and suffer from various forms of non-

compliance including nonignorable attrition and selective switching in between treatment

and control groups at different stages of the trial. In experiments that provide a sin-

gle dose of treatment, when confronted with treatment assignment noncompliance, re-

searchers often report either an estimate of the intent to treat (ITT) parameter that

compares outcomes based on being assigned to, rather than actual receipt of treatment or

undertake an instrumental variables strategy. The IV estimation that uses the random-

ized treatment assignment as an instrumental variable for actual treatment receipt and

the resulting estimate is usually interpreted as a local average treatment effect (LATE).3

However, Frangakis and Rubin (1999) demonstrate that if the randomized intervention

suffers from selective attrition, where subjects leave the study in a non-random manner,

the traditional ITT estimator is biased and the IV estimator is distorted from a causal

interpretation even with the assistance of a randomized instrument.

Our empirical strategy for policy evaluation of contaminated multi-period experiments

permits a direct link between the structural parameters from an underlying economic

model of education production to dynamic treatment effect estimates. We estimate edu-

can be traced to Robins (1986). More recent developments in epidemiology and biostatistics can be

found in Robins et al. (2000) and Yau and Little (2001). In these papers, subjects are required to be

re—randomized each period to identify the counterfactual outcomes.
3It obtains this causal interpretation provided a series of assumptions detailed in Imbens and Angrist

(1994) as well as Angrist, Imbens and Rubin (1996) are satisfied.
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cation production functions using a sequential difference in difference estimator to control

for selective switching and account for non-ignorable attrition using inverse probability

weighting. That is, we map a set of structural parameters obtained from estimating one of

the most commonly used model of human capital accumulation into a statistical estimator

that has a causal interpretation. This empirical strategy could also be readily applied to

estimate the full sequence of dynamic treatment effects from interventions where the out-

come is posited to be generated from a cumulative process such as health human capital

or asset accumulation over the lifecycle.

We use data from Tennessee’s highly influential class size experiment, Project STAR to

illustrate our empirical strategy. This experiment was conducted for a cohort of students

in 79 schools over a four-year period from kindergarten through grade 3. Within each

participating school, incoming kindergarten students were randomly assigned to one of

the three intervention groups: small class (13 to 17 students per teacher), regular class

(22 to 25 students per teacher), and regular-with-aide class (22 to 25 students with a full-

time teacher’s aide). However, violations to the experimental protocol were prevalent.

By grade three over 50% of the subjects who participated in kindergarten left the STAR

sample and approximately 10% of the remaining subjects switch class type annually. To

the best of our knowledge, an examination of the data as the result of a sequence of

contaminated treatment interventions has not been explored.4

This paper is organized as follows. In Section 2, we describe the causal parameters of

interest in multi-period experiments and introduce an empirical framework that builds on

4Most published findings from this study have reported large positive impacts of class size reduction on

student achievement, a subset of which have noted and attempted to address complications due to missing

data and noncompliance with the randomly assigned treatment that occurred during implementation. For

example, Krueger (1999) presents IV estimates to correct for biases related to deviations from treatment

assignment.
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the standard economic model of human capital accumulation. The assumptions under-

lying our identification strategy are discussed and the estimation approached is detailed

in this section. We demonstrate that both our structural parameter and treatment effect

parameters are nonparametrically identified. Section 3 presents a description of the data

used in our analysis. Our results are presented and discussed in Section 4. We find ben-

efits from small class attendance initially in all cognitive subject areas in kindergarten

and grade one. Yet by grade one there does not exist additional statistically significant

benefits from attending small classes in both years versus attendance in one of the years.

There are no statistically significant dynamic benefits from continuous treatment versus

never attending small classes following grade one. A concluding section summarizes our

findings and discusses directions for future research.

2 Causal Parameters of Interest

In the context of the STAR class size experiment, we refer to being in small classes as

receiving treatment, attending either regular or regular with aide classes as being in the

control group.5 We use St = 1 to denote attending a small class in grade t and St = 0

as being in a regular class. At the completion of each grade t, a student takes exams

and scores At (potential outcomes: A1t if attending a small class and A0t if attending a

regular class). An evaluation problem arises since we cannot observe A1t and A0t for the

same individual.
5Following Finn et al. (2001) and Krueger (1999) our control group consists of regular class with

and without teacher aides, as these studies (among others) report that the presence of a teacher aide

did not significantly impact student test scores. However, to date whether teaching aides have impacts

on academic performance in regular classes has not been examined by accounting for multiple stages of

treatment and estimating dynamic treatment effects.

5



Project STAR was conducted to evaluate the effect of class size on student achievement

to determine whether small class size should be extended to the schooling population as

a whole. In a single period experiment, the relevant parameter of policy interest is the

average treatment effect (ATE) 4ATEt = E(A1t− A0t) or in its conditional form E(A1t−

A0t|X) where X are characteristics that affect achievement. However, due to the non-

mandatory compliance nature of the Project STAR experiment, each year the actual

class type a student attends may differ from their initial assignment.6 When individuals

self-select outside of their assigned groups, risks rise that the groups may no longer be

equivalent prior to treatment and the experimental approach is not able to identify the

ATE,7 in which case researchers either report an ITT or conduct an IV analysis.8

Project STAR was carried out on a cohort of students beginning in kindergarten

through the third grade. The standard evaluation problem becomes more challenging with

multiple stages of treatment receipt as the number of potential outcomes increases. For

instance, with two stages of treatment, an individual could complete one of four possible

sequences [(Si2 = 1, Si1 = 1), (Si2 = 1, Si1 = 0), (Si2 = 0, Si1 = 1), (Si2 = 0, Si1 = 0)]. An

6Detailed discussions of the consequences of different forms of non-compliance with treatment assign-

ment in single period experiments can be found in Heckman Smith and Taber (1998), Heckman, Hohmann

Smith and Khoo (2000) and Section 5.2 of Heckman, Lalonde and Smith (2001).
7Researchers (i.e. Manski (1990), Balke and Pearl (1997), among others) have demonstrated that the

ATE is partially identified.
8Balke and Pearl (1997) demonstrate that in studies which experience noncompliance with treatment

assignment, both ITT and IV point estimates are potentially misleading, as they could lie outside the

theoretical bounds constructed for the ATE. Ding and Lehrer (2008) use the same data as in this study

and consider several alternative strategies that place bounds on ATE, comparing them to the ITT and IV

point estimates. The construction of alternative sets of bounds relaxes alternative identifying assumptions

also allows the reader to ascertain the robustness of the conclusions to the maintained assumptions.
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individual’s outcome at the conclusion of the second period can be expressed as

Ai2 = Si1Si2A
11
i + (1− Si1)Si2A

01
i + Si1(1− Si2)A

10
i + (1− Si1)(1− Si2)A

00
i (1)

where A11i indicates participation in small classes in both periods, A
10
i indicates small class

participation only in the first period, etc. It is clear that an individual who participated in

both periods (A11i ) has three potential counterfactual sequences to estimate (A
01
i , A

10
i and

A00i ) if the four paths are all the sequences an individual can take. In our multi-period

intervention framework answers to many hotly debated questions, such as when class size

reductions are most effective or whether small class treatment in early grades provide any

additional benefits in later grades can be obtained.

In a multi-period setting, the relevant causal parameters of policy interest are the full

sequence of dynamic average treatment on the treated parameters. Following Lechner

(2004), we formally define τ (x,y)(v,w)(x, y) the dynamic average treatment effect for the

treated parameter. τ (x,y)(v,w)(x, y) measures the average difference in outcomes between

their actual sequence (x, y) with potential sequence (v, w), for individuals who participated

in program x in period 1 and program y in period 2. For example, τ (1,1)(0,0)(1, 1) is an

estimate of the average cumulative dynamic treatment effect for individuals who received

treatment in both periods. Similarly, τ (1,1)(1,0)(1, 1) is an estimate of the effect of receiving

treatment in the second year for individuals who received treatment in both periods, and

τ (0,1)(0,0)(0, 1) is the effect of receiving treatment in the second period for individuals who

received treatment only in period two.

2.1 Empirical Model

We construct dynamic treatment effect for treated parameters (DTET) from estimates

of the structural parameters of an education production function. Following Ben-Porath
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(1967) and Boardman andMurnane (1979), we view the production of education outcomes

as a cumulative process that depends upon the potential interactions between the full

history of individual, family and school inputs (captured in a vector Xijt in year t), class

size treatments, innate abilities and independent random shocks (�iT ...�i0). Formally, child

i in school j gains knowledge as measured by a test score at period T :

AijT = hT (XiT ...Xi0, SjTT ...SjTo , vi, �iT ...�i0) (2)

where hT is an unknown twice differentiable function. Note vi is included to capture

unobserved time invariant individual attributes.

In our empirical analysis, we first linearize the production function at each time period.

An individual’s achievement outcome in period one is expressed as

Ai1 = vi + β01Xi1 + β0S1Si1 + εi1 (3)

where vi is a individual fixed effect. Similarly in period two achievement is given as

Ai2 = vi + α02Xi2 + α01Xi1 + α0S2Si2 + α0S1Si1 + α0S12Si2Si1 + t2 + εi2 (4)

and t2 reflects period two common shock effects. Since nearly all of the explanatory vari-

ables in equations (3) and (4) are discrete dummy variables the only restrictive assumption

by linearization is the additive separability of the error term.9 This implementation al-

lows the effects of observed inputs and treatment receipt on achievement levels to vary

9To identify the structural parameter we do not need to linearize the education production function.

Assuming that the unobserved factors enter additively, and that i) the unobserved components νi, εi1

are independent of Si1, ii) (εi1, εi2) is independent of (Xi1, Si1,Xi2, Si2) and iii) t2 is a constant; the

structural parameter of class type are nonparametrically identified. Chesher (2003) additionally points

out that a local insensitivity assumption is needed to achieve local identification of the partial derivatives

of structural functions in a triangular system of equations.
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at different grade levels.10 We also allow the effect of being in a small class in the first

year (Si1) on second period achievement (Aij2) to interact in unknown ways with second

year class assignment (Si2). First differencing the achievement equations generates the

following system of equations

Ai2 −Ai1 = α02Xi2+α
0
S2Si2+α

0
S12Si2Si1+t2+(α1−β1)

0Xi1+(αS1−βS1)
0Si1+ε

∗
i2 (5)

Ai1 = β01Xi1 + β0S1Si1 + ε∗i1

where ε∗i2 = εi2 − εi1 and ε∗i1 = υi + εi1. As this is a triangular system of equations,

full information maximum likelihood parameter estimates are equivalent to equation by

equation OLS which does not impose any assumptions on the distribution of the residuals.

Consistent and unbiased structural estimates of βS1 and of the teacher characteristics in

theXi1 matrix can be obtained since subjects and teachers were both randomized between

class types in kindergarten and compliance issues did not arise until the following year.11

To estimate the DTET defined in the preceding subsection, our approach builds on

Miquel (2003), who demonstrates that such a conditional difference-in-differences ap-

proach of the achievement equations can nonparametrically identify the causal effects of

10We place no restrictions such as forcing the depreciation rate to be constant across all inputs in the

production process, which is generally done when estimating education production functions. However,

we assume that the effect of unobserved inputs is constant between successive grades. The validity of

this assumption was tested using a IV procedure developed in Ding and Lehrer (2004) and supported in

both grades 2 and 3.
11The importance of randomization and the fact that compliance was near perfect in kindergarten is

crucial to our identification strategy. While the possibility exists that some students were switched from

their randomly assigned class to another class before kindergarten started, Krueger (1999) examined

actual enrollment sheets that were compiled in the summer prior to the start of kindergarten for 1581

students from 18 participating STAR schools and found that only one single student in this sample who

was assigned a regular or regular/aide class enrolled in a small class.
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sequences of interventions. The structural parameter estimates from equation (5) are used

to calculate the full sequence of dynamic effects as follows:

τ (1,1)(0,0)(1, 1) = αS1 + αS2 + αS12

τ (1,1)(1,0)(1, 1) = αS2 + αS12

τ (0,1)(0,0)(0, 1) = αS2

(6)

Dynamic variants of the straightforward assumptions of common trend, no pretreatment

effects and a common support condition are required to obtain causal parameters.12 It is

straightforward to extend this strategy to T periods.

While concerns regarding non-compliance with treatment assignment are addressed

by controlling for the history of observed inputs and assuming the effects of individual

unobserved heterogeneities which include factors such as parental concern over their child’s

development are fixed over short time periods, attrition remains a concern. Define Lt+1 =

1 to indicate that a subject leaves a STAR school and attends a school elsewhere after

completing grade t, if she remains in the sample next period Lt+1 = 0.13 Attrition may

be due to exogenous and endogenous observables that are observed prior to attrition.

If only selective attrition based on observables is present, the attrition probability is

independent of the dependent variable (and hence unobserved factor), which implies that

Pr(Lt = 0|At, Xt) = Pr(Lt = 0|Xt). As such, estimates can be re-weighted and the

conditional population density f(At|Xt) can be inferred from g(At|Xt, Lt = 0) even though

At is observed only if Lt = 0.
12The common support assumption ensures that there are comparable individuals in each of the coun-

terfactual sequence. The common trend assumption assumes that the sole difference before and after

is due to treatment across groups as in the absence of treatment the comparing groups would have in

expectation similar gains in academic performance. The no pre-treatment assumption requires that there

is no effect of the treatment on outcomes at any point in time prior to actual participation.
13Fitzgerald, Gottschalk and Moffitt (1998) describe specification tests to detect attrition bias and

methods to adjust estimates in its presence.
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Consider the probability of attrition model implies a process of the form

L∗t+1 = 1{α0Zit + wit ≥ 0) (7)

where L∗t+1 is a latent index and Lt+1 = 1 if L∗t+1 ≥ 0, w is a mean zero random variable

whose c.d.f. is Fw, t is the period being studied and Zit is a matrix of predetermined

variables (Ait, Sit,Xit) that are observed conditional on Lt = 0 and also include lagged

dependent variables (At−s) as well as past test scores in all other subject areas.14 The

probability of staying in the sample Pr(Lit+1 = 0|Ait, Sit,Xit) = Fw(−α0Zit), and in

our analysis we begin by assuming that wit follows a symmetric distribution to estimate

the probabilities of remaining in the experiment
f
pit. By reweighting observations using

f
pitwhen estimating equation (5), reexpresses the system of equations as

Ai2−Ai1

f
pi1

=
α02Xi2+α

0
S2Si2+α

0
S12Si2Si1+t2+(α1−β1)

0Xi1+(αS1−βS1)
0Si1+ε

∗
i2

f
pi1

(8)

Ai1 = β01Xi1 + β0S1Si1 + εi1

which generates
√
N consistent estimates that are asymptotically normal.15 Correcting

for selection on observables in the panel by inverse probability weighting reduces the

amount of residual variation in the data due to attrition. Since attrition in the STAR

sample is an absorbing state, the weights used in estimation of equation (8) for grades

two and three (
f
r
2

i =
f
pi2 ∗

f
pi1and

f
r
3

i =
f
pi3 ∗

f
pi2 ∗

f
pi1) are simply the product of all current

and past estimated probabilities, where
f
pis are estimated probabilities for staying in the

sample for period s from a logit regression using all subjects in the sample at s− 1. We
14Identification is obtained from historical test scores.
15However, the asymptotic variance is conservative since it ignores the fact that we are weighting on

the estimated and not the actual
f
pi1 . See Wooldridge (2002) for details and a discussion of alternative

estimation strategies. The full set of results is available by request where the asymptotic covariance

matrix of the second step estimator is computed using the results of Newey (1984) that account the use

of generated regressors.
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can include school effects to the estimating equations, however, identification of school

effects will only come from the limited number of school switchers.

3 Project STAR Data

Project STAR was a large scale experiment that initially randomized over 7,000 students

in 79 schools into one of the three intervention groups: small class (13 to 17 students

per teacher), regular class (22 to 25 students per teacher), and regular-with-aide class

(22 to 25 students with a full-time teacher’s aide) as the students entered kindergarten.16

Teachers were also randomly assigned to the classes they would teach.17 The experiment

continued until the students were in grade three and academic performance measures

were collected at the end of each year. In our analysis, we use scaled scores from the

Reading, Mathematics and Word Recognition sections of the Stanford Achievement Test

since that scoring system allows us to use differences in scaled scores as measures to

track development between grades. We investigate the impact of small classes on each

outcome separately since one may postulate that the treatment could be more effective

16Students were assigned to a class type based on their last name using a centrally prepared algorithm

and school specific starting value.
17A potential concern is whether the teachers in this study altered their behavior in response to treat-

ment assignment. It is reasonable to speculate that teachers may have selected specific instruction

methods that could either reinforce or counteract the impacts of small classes. Unfortunately, data from

Project STAR process evaluations remains publically unavailable to determine whether teachers selec-

tively altered their behavior (e.g. we do not have any evidence related to John Henry or Hawthorne effects

in the study). Throughout this paper, we are implicitly assuming that teachers did not have a behavioral

response to treatment assignment. In Ding and Lehrer (2008), we demonstrate that the bounds for the

ATE do not exhibit major changes in most grades and subject areas when we relax assumptions related

to whether teachers have a behavioral response to the study, suggesting that any bias is fairly small. We

are grateful to an anonymous referee for pointing out this potential limitation.
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in subject areas such as mathematics where classroom instruction is used as opposed to

group instruction for reading.

In our empirical analysis, we include only the sample of students who participated

in the STAR experiment starting in kindergarten. Fewer than half of the kindergarten

students participated in all four years of the experiment (3085 out of 6325 students).18

Each year there were also movements between small and regular classes for this cohort

of students. Figure 1 presents the number of students on each potential treatment path

at each graded level. Excluding attrition there is support for all eight sequences in grade

two and fourteen of the sixteen possible sequences in grade three. The large number

of transitions illustrated in Figure 1 motivate our empirical strategy developed in the

preceding section.

3.1 Sample Construction and Selective Attrition

We did not pool the kindergarten sample with the refreshment samples (students who

joined the experiment after kindergarten) since we find evidence from regressions that

i) students did not leave the Project STAR experiment in a random manner, and ii)

subsequent incoming groups were not conditionally randomly assigned within each school.

Specifically, to examine conditional random assignment of the refreshment sample for

each group of students entering the experiment after kindergarten we conducted straight-

forward regressions of a random treatment assignment indicator (MijT ) on individual

characteristics and school indicators as follows

MijT = γ0XijT + υj + eijT (9)

18For the full kindergarten sample, a linear probability model regression of subsequent attrition on

initial class assignment yields a statistically significant impact of class type. The attrition rate also

varied significantly by class type across schools.
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where MijT = 1 if a student is initially assigned to a small class when she enters a school

in the STAR sample and MijT = 0 otherwise. If students are assigned randomly there

should be no evidence of a systematic differences in baseline characteristics (as well as

unknown confounders) between the treatment and control group.

Estimates of equation (9) using the sample of only incoming students in each grade

are presented in the top panel of Table 1. The results demonstrate that incoming students

to the experiment that were on free lunch status were more likely to be assigned to the

control group in both grades one and three. Coupled with the movements of the existing

students in the sample there were significant different in student characteristics between

small and regular classes. Estimates of equation (9) using the full sample of students

in each grade are presented in the bottom panel of Table 1. Students who are white or

Asian, female and not on free lunch status are statistically more likely to be currently

attending a small class in each year following Kindergarten.

To examine whether the subjects left the experiment in a non-random manner, we first

test for attrition due to observables using the procedure developed in Becketti, Gould,

Lillard and Welch (1988). We estimate the following equation

Aij1 = β0Xij1 + β0LLijXij1 + υj + εij1 (10)

where Aij1 is the level of educational achievement for student i in school j in the first year,

Xij1 is a vector of initial school, individual and family characteristics, Lij is an indicator

for subsequent attrition Lij = 1 if Lijs = 1 for any s = 2...T ), υj is included to cap-

ture unobserved school specific attributes and �ij1 captures unobserved individual factors.

Selection on observables is non-ignorable if βL is statistically significant, indicating that

individuals who subsequently leave the STAR experiment were systematically different

from those who remain in terms of initial behavioral relationships.19

19Fitzgerald et al. (1998) demonstrate that this test is simply the inverse of examining whether past
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Table 2 presents estimates of equation (10) and Wald tests presented in the third

row from the bottom of Table 2 indicate that the βL coefficient vector is significantly

different for attritors from non-attritors in all subject areas. Further, the second row

from the bottom of Table 2 demonstrates that the joint effect of attrition on all student

characteristics and class type is significantly different from zero in all three subject areas.

Examining the individual coefficient estimates in Table 2 notice that the attrition indicator

is significantly negatively related to test scores in all three subject areas indicating that

subsequent attritors scored significantly lower on average in all kindergarten cognitive

examinations. Students on free lunch status that left scored significantly lower than free

lunch students who remained in the sample in mathematics. Interestingly, female attritors

out performed female non-attritors in kindergarten in all subject areas but the magnitude

is small. In both mathematics and word recognition attritors received half of the average

gains of being in a small class. Since non-attritors in small classes, obtained larger gains in

kindergarten, future estimates of the class size effect may be biased upwards if attrition is

not controlled for. As there is no evidence that attrition patterns differed between schools

in Tennessee that participated and did not participate in the STAR experiment, concerns

regarding selection on unobservables are reduced.20

4 Empirical Results

Our structural estimates of the causal effects of reduced class size from estimating equation

system (8) are presented in Table 3. In kindergarten and grade one small class attendance

((SiK) and (Si1)) has positive and significant effects in all three subjects areas. However,

academic performance significantly affects the probability of remaining in the study from estimating

equation (7).
20Information on students from similar non-participating schools has been collected.
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there does not exist additional (nonlinear) benefits from attending small classes in both

years (SiKSi1). After grade one, no significantly positive effects of small class exists

(P (t) ≤ 10%) with the exception of grade two math. The average small class effects in

grade three (Si3) are significantly (≤ 10%) negatively related to achievement in all three

subjects.

Table 4 presents some estimates of the dynamic average treatment effect for the

treated in which we compare the sequences with the largest number of observations.

In grade one, the set of DTETs suggest that the largest gains in performance in all sub-

ject areas accrue for students who attended small classes either in kindergarten or in

grade one (τ (0,1)(0,0)(0, 1) or τ (1,0)(0,0)(1, 0)). Benefits from attending small classes in both

kindergarten and grade one versus attendance in either but not for both of these years

(τ (1,1)(0,1)(1, 1) or τ (1,1)(1,0)(1, 1)) are statistically insignificant. While the economic signif-

icance of attending a small class in grade one alone is slightly greater in all subject areas

than attendance in kindergarten alone (τ (0,1)(0,0)(0, 1) > τ (1,0)(0,0)(1, 0)), there does not

exist a statistically significant difference between either sequence (τ (0,1)(1,0)(0, 1)). From a

policy perspective the results do not lend support for providing small class as continuing

treatments.

The pattern in higher grades presents several additional insights into the effectiveness

of reduced class size. The dynamic benefits from continuous treatment versus never at-

tending small classes (τ (1,1,1)(0,0,0)(1, 1, 1) and τ (1,1,1,1)(0,0,0,0)(1, 1, 1, 1)) become both statis-

tically and economically insignificant in all subject areas. In grade one, approximately 250

students substituted into the treatment and received positive benefits. Continuing along

this path and remaining in small classes in higher grades did not provide any additional

benefits for those students as both τ (0,1,1)(0,0,0)(0, 1, 1) and τ (0,1,1,1)(0,0,0,0)(0, 1, 1, 1) are sta-

tistically insignificant. Further, their economic significance is smaller than τ (0,1)(0,0)(0, 1).

16



Similar to Krueger (1999) we find that students received large benefits the first year they

spent in a small class in all subject areas in grade one and in math in grade two. However,

we find that students who entered small classes for the first time in grade three achieved

significant losses from attending a small class (τ (0,0,0,1)(0,0,0,0)(0, 0, 0, 1)) in all subject ar-

eas. Finally, students who switched into small class for the first time in grade two did not

have statistically significant gains on reading and word recognition (τ (0,0,1)(0,0,0)(0, 0, 1)).

This study differs from past research on Project STAR not solely through the focus

of treating the experiment as a multi-period intervention but also in accounting for both

attrition due to observables and the possibility that other forms of noncompliance are due

to unobservables. Tables 5 and 6 presents results from specification tests to determine if we

should statistically account for non-compliance and attrition. Results from DuMouchel

and Duncan (1983) tests presented in Table 5 support accounting for attrition due to

observables in all subject areas and all grade levels at conventional levels (P (F ) ≤ 5%)

in reading and mathematics and below the 20% level in word recognition. Likelihood

ratio tests presented in Table 6 are conducted to determine whether one should include

vi, which proxies for the possibility that noncompliance may be due to unobservables. In

all subject areas and all grades the Null hypothesis is rejected, supporting the presence

of individual unobserved heterogeneity. Hausman tests between estimates of the simpler

system of equations that did not include vi and equation (8) reject the restriction that

vi = 0, lending further support that noncompliance of treatment assignment is selective.

Finally, tests of the joint significance of the lagged inputs in the education production

function supports their inclusion in the estimating equations for each subject area at all

grade levels.21

21This finding has implications for identification strategies that are used to estimate more restrictive

specifications of the education production function.
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4.1 Discussion

The estimates in Tables 3 and Table 4 provide a richer picture of the impacts from

class size reductions. A significant impact from smaller classes appears in kindergarten.

Following kindergarten, the positive effects of smaller classes in grade one accrue only

for those students who made a transition between class types. Students who substituted

into small classes and dropped out of small classes both scored significantly lower than

their grade one classmates in each kindergarten subject. Additionally these students

received a significantly larger improvement in grade one achievement compared to their

grade one classmates as well as their kindergarten classmates.22 Several of our results

are consistent with Hanushek (1999) in suggesting that there was an erosion of the early

gains from small class attendance in later grades. In this subsection, we investigate several

possible explanations for the diminishing benefits from small classes and present evidence

that the behavior and characteristics of the students who did not comply with treatment

assignment are primarily responsible for the changes in the sign and significance of the

DTET.

We first conduct a closer examination of the students who switched class types at the

time of their initial switch. Using classroom level regressions we compared these students

who either dropped out of, or substituted into, small classes with their new classmates

based on prior exam performance by subject area. In grades one and two, students

who joined small classes scored significantly lower upon entry than their new classmates

with the exception of reading for those who substituted in grade two. In grade three,

students who switched into small classes for the first time scored significantly higher on

past exams than their new classmates. Thus, the academic background of these individuals

22These findings are obtained from within classroom regressions that control for kindergarten and grade

one student, family and teacher characteristics.
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who switched class type changed over time. Interestingly the subsequent achievement of

these switching individuals relative to their new classmates also exhibited a statistically

significant pattern whose direction changed when the relative academic backgrounds of the

switching students improved over time.23 In grades one and two, students who switched

class type achieved significantly greater growth on mathematics.24 However, in grade

three, students who switched into a small class for the first time achieved a significantly

smaller gain in their math score relative to their new classmates. A potential explanation

for this pattern of results is that teachers were targeting the weaker students in the class.

Coleman (1992) suggests that the focus of US education is on the bottom of the

distribution and it is much easier for teachers to identify weaker students in mathematics

than other subject areas. The major challenge in formally investigating this claim is

separating the amount of test score gains from teachers’ characteristics from a statistical

tendency called “regression to the mean”, which is created by non-random error in the test

scores. To address this issue we classified the five students in each grade one classroom

that had the lowest scores on kindergarten tests in each subject as being a “weak” student

in that area. We included an indicator variable for being one of these “weak” students

in the classroom in regression equations to explain growth in performance controlling for

the full history of teacher, family and student characteristics. Using multiple regression

we separately examined whether being a “weak” student in math or reading or word

recognition led to larger gains in test performance in all subject areas. Consistent with

the regression to the mean argument students who were “weak” in mathematics and

word recognition received larger gains in performance relative to their classmates in these

23Since scaled scores are developmental they can be used to measure growth across grades within the

same test subject area allowing us to make these comparisons.
24Further, these growth rates were significantly larger than those achieved by their kindergarten class-

mates who did not switch in grade one.
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subject areas. In contrast, being a “weak” student in reading significantly reduced gains

in reading performance in grade 1. Supporting Coleman’s hypothesis, we found that the

“weak” students in math also achieved larger gains in their classroom in both reading

and word recognition, but the same gains do not exist for “weak” students in reading or

word recognition.25 When we focus our examination on students who switched class type,

we find that they only achieved benefits from switching into small classes if their past

performance in math was significantly lower.

Noncompliance with treatment assignment also resulted in an increased variation of

student background within classrooms in higher grades. Specifically, small classes in

grades two and three have significantly more variation in incoming performance in math

and reading than regular classes as many “weak” students made transitions from regular

to small classes.26 Faced with less variation in the incoming knowledge of their class-

mates, linear regressions demonstrate that students in regular classes were able to achieve

significantly larger gains in math and reading in grade two and in math in grade three.27

This result is not driven by the subset of students who switched class type, as both sim-

25Our results are robust to several alternative definitions of being a "weak" student. We also defined

being a "weak" student as having the lowest or one of the three or four lowest scores in the classroom.

Note, if regression to the mean were the prime explanation we should expect to see this improvement not

only for students with low incoming math scores. However, the improvement in subsequent performance

in all subject areas does not exist for "weak" students in the other subject areas.
26T-tests on the equality of variances in incoming test scores indicate significantly larger variation in

small classes in mathematics in grades two and three and in grade two reading. Variation may influence

student performance through teaching methods as instructors may face additional challenges engaging

students at different levels.
27Regressions including school indicators demonstrate that performance gains in reading between grades

one and two (coeff.=-2.54, s. e.=1.05) and gains in mathematics between grades one and two (coeff. =-

2.22, s. e.=1.11) and between grades two and three (coeff. =-2.21, s. e.=0.88) were significantly lower in

small classes.
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ple t-tests and multiple regression results that compare the experience of the subset of

students who always complied with their assignment, (i.e. always versus never attended

small classes) indicate that those students who never attended small classes experienced

significantly larger growth in mathematics both in grade two and grade three. These

students also had greater gains on the second grade reading exam.28 As the heterogeneity

in academic background became smaller over time in regular classes, the dynamic benefits

of small class attendance vanished and even reversed in some subjects. Consistent with

this explanation, we do not find any evidence for significant differences in performance

on word recognition exams, the only subject in which there is no evidence for significant

differences in the variation of prior performance. Taken together, the patterns reported

in Tables 3 and 4 for grades two and three might suggest a trade-off between variation

in incoming student performance and class size.29 Unfortunately, we cannot formally in-

vestigate this trade-off because the peer compositions are no longer exogenous in higher

grades.30

The benefits occurring to students who did not comply with treatment assignment

following kindergarten seems to run counter to the hypothesis that students benefit from

28The regressions include school indicators as well as student and teacher characteristics. The effect

(and standard error) of always attending a small class (relative to never) is -4.18 (1.46) in grade two

reading gains and -2.75 (1.35), -2.18 (1.28) in grade two and grade three mathematics gains respectively.

Note in grade one, there are positive and significant gains for always attending a small class in reading and

word recognition which explains the dynamic benefits at that time. The full set of results are available

from the authors.
29Our findings are consistent with evidence on elementary school students presented in Hoxby (2000a)

and Hoxby (2000b) who exploited natural variation in age cohorts in the population and found evidence

that class size does not affect student achievement in Connecticut and peer group composition affects

achievement in Texas respectively.
30The dataset in its current form does not allow for control of the endogenous peer formation after

kindergarten.
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environmental stability. We conducted an examination of the effects of environmental

stability on students in small classes in grade one.31 In each grade one small class, we

first identified members of the largest subgroup of students who were taught by the

same kindergarten teacher. From OLS regressions that control for the full history of

teacher, family and student characteristics we found that students who were members

of the largest subgroup had significantly smaller gains relative to their classmates in

mathematics (coeff.=-6.129, s.e. 2.714) and word recognition (coeff.=-4.524, s.e. 3.008)

but no significant differences in reading.32 These results do not support environmental

stability arguments, nor do they directly contradict the stability hypothesis since peer

groups (classmates) were no longer exogenously formed after kindergarten.

To check the robustness of our estimates in Tables 3 and 4, we consider two strategies

that increase the statistical power of the structural parameter and dynamic treatment ef-

fect estimates and a strategy that relaxes implicit parametric assumptions in the attrition

model.33 Specifically we i) ignore potential nonlinear impacts of the small class treatments

in equation (8),34 ii) relax the identification assumptions for the attrition model allowing

31We do not analyze students in regular classes since they were re-randomized within schools between

classes with and without aides following kindergarten.
32Multiple regressions using the number of current classmates who were also taught with the same

kindergarten teacher (instead of a simple indicator variable) also find significantly smaller gains in math-

ematics (coeff.=-1.797, s.e. 0.572) and word recognition (coeff.=-1.179, s.e. 0.572) for each additional

former classmate.
33We also considered estimating the ITT for the subset of subjects who complied with their assignment

throughout the study. This removes all selective switchers from the analysis and focuses attention on the

two main pathways.
34This model is less flexible than that estimated in Table 3 and implicitly places several equality

restrictions on several dynamic treatment effect paths. For example, in grade two τ (0,1,1)(0,0,1)(0, 1, 1) =

τ (0,1,0)(0,0,0)(0, 1, 0). We constructed F tests on the joint significance of the non-linear interactions of

treatment receipt in equation (8) and the results support their inclusion in four of the six specifications
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us to use a larger sample,35 and iii) relax the parametric assumptions used to estimate

equation (7).36

The results of these robustness check (available upon request) suggest that the differ-

ences in our findings from earlier work are unlikely due to statistical power or parametric

assumptions. In higher grades, kindergarten small class attendance (SiK) is positively re-

lated to performance in grade two reading and grade three reading and word recognition

examinations. Whereas, attendance in small classes in grade one (Si1) is either negatively

related or unrelated to performance in both grades two and three. The results suggest

that there could be some small positive effects from attending a small class in kinder-

garten in reading and word recognition in higher grades. For mathematics, the results

appear to suggest that small class attendance in both kindergarten and grade two may

have some lasting impacts. As before, we find that nearly every path of multiple receipts

of treatment in the higher grades is not significantly related to achievement in any sub-

ject area. Overall, these results suggest that the benefits of attending a small class early

on are of small magnitude and a single dose in kindergarten yields most of the benefit.

The substantial heterogeneity in the treatment effects makes it important to understand

the reason why small classes work when they are effective, and similarly understand the

explanations for their failures. For example, more understanding of the nature of class

size and relationship with teaching practices is needed. To summarize the results suggest

that small classes do not work consistently and unconditionally.

in grades two and three.
35We only use one lagged test score to identify the attrition equation. Thus, we do not require indi-

viduals to have completed exams in all three cognitive subject areas.
36We consider the nonparametric series estimator proposed in Hirano et al. (2003). In implementation

we considered using up to a third order and then used the AIC criterion to determine which terms should

remain in the specification.
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5 Conclusion

Randomized trials often suffer from a number of complications, notably noncompliance

with assigned treatment and missing outcomes. These problems could potentially prolif-

erate in longitudinal experiments that expose subjects to treatment at different points in

time. In this paper we introduce an empirical strategy to estimate treatment effects in

randomized trials that provide a sequence of interventions and suffer from various forms of

noncompliance including nonignorable attrition and selective switching in between treat-

ment and control groups at different stages of the trial. Our empirical strategy for policy

evaluation also permits a direct link between the structural parameters from an underlying

economic model of education production to dynamic treatment effect estimates.

To illustrate our empirical strategy we use data from the highly influential randomized

class size study, Project STAR. We find benefits from small class attendance initially in

all cognitive subject areas in kindergarten and the first grade. We do not find any statisti-

cally significant dynamic benefits from continuous treatment versus never attending small

classes in either the second or third grade. Statistical tests support accounting for both

selective attrition and noncompliance with treatment assignment. Finally, we investigate

several potential explanations for the diminishing benefits from small class attendance in

higher grades. The evidence is consistent with a story of teaching towards the bottom, in

which teachers were able to identify students in the bottom of the math scores distribution

and boosted their performance relative to their classmates. The evidence also suggests

a trade-off between variation in academic background and class size. Examining these

explanations in greater detail present an agenda for future research.
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Figure 1: Transitions During Project Star for Kindergarten Cohort 
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Table 1: Testing Randomization of Student Characteristics across Class Types
Kindergarten Grade One Grade Two Grade Three

INCOMING STUDENTS

White or Asian Student
2.35*10E-4
(0.012)

-0.275∗

(0.193)
-0.061∗

(0.041)
7.63*10E-4
(0.063)

Female Student
0.012
(0.019)

0.199∗

(0.126)
-0.020
(0.021)

-0.017
(0.028)

Student on Free lunch
-8.74*10E-3
(0.017)

-0.262∗

(0.167)
0.013
(0.022)

-0.057∗

(0.037)
Joint Test of Student
Characteristics

0.29
[0.831]

1.83∗

[0.150]
1.24
[0.301]

1.01
[0.392]

Number of Observations 6300 2211 1511 1181
R Squared 0.318 0.360 0.248 0.411

FULL SAMPLE

White or Asian Student
2.35*10E-4
(0.012)

-0.003
(0.021)

-0.008
(0.025)

-0.021
(0.027)

Female Student
0.012
(0.019)

0.007
(0.009)

0.004
(0.009)

0.008
(0.009)

Student on Free lunch
-8.74*10E-3
(0.017)

-0.038∗∗∗

(0.016)
-0.030∗∗

(0.016)
-0.044∗∗∗

(0.016)
Joint Test of Student
Characteristics

0.29
[0.831]

2.05∗

[0.114]
1.38
[0.255]

2.98∗∗∗

[0.037]
Number of Observations 6300 6623 6415 6500
R Squared 0.318 0.305 0.328 0.359
Note:Regressions include school indicators. Standard errors corrected at
the school level are in ( ) parentheses. Probability > F are in [ ] parentheses.
***,**,* indicate statistical significance at the 5%, 10% and 20% level respectively.

.
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Table 2: Are Attritors Different from Non-attritors?
Subject Area Mathematics Reading Word Recognition

Kindergarten Class Type
10.434∗∗∗

(2.332)
6.513∗∗∗

(1.440)
7.370∗∗∗

(1.628)

White or Asian Student
20.499∗∗∗

(2.760)
8.608∗∗∗

(2.005)
8.505∗∗∗

(2.524)

Female Student
2.587∗∗

(1.363)
3.349∗∗∗

(1.074)
2.488∗∗

(1.296)

Student on Free lunch
-13.729∗∗∗

(1.679)
-12.239∗∗∗

(1.187)
-13.916∗∗∗

(1.480)

Years of Teaching Experience
0.323∗

(0.220)
0.255∗∗∗

(0.123)
0.329∗∗∗

(0.135)

White Teacher
-0.926
(4.366)

-1.577
(3.068)

-1.578
(3.506)

Teacher has Master Degree
-1.482
(2.396)

-1.211
(1.423)

-0.491
(1.729)

Attrition Indicator
-17.305∗∗∗

(3.838)
-13.674∗∗∗

(2.537)
-13.198∗∗∗

(3.251)
Attrition Indicator Interacted with
Kindergarten Class Type

-5.383∗∗∗

(2.616)
-2.069
(1.686)

-3.004∗

(2.045)
Attrition Indicator Interacted with
White or Asian Student

-3.949∗

(2.732)
-.259
(1.824)

-1.177
(2.368)

Attrition Indicator Interacted with
Female Student

5.597∗∗∗

(2.078)
2.943∗∗∗

(1.454)
3.750∗∗∗

(1.739)
Attrition Indicator Interacted with
Student on Free lunch

-5.186∗∗∗

(2.384)
-0.496
(1.554)

0.549
(1.891)

Attrition Indicator Interacted with
Years of Teaching Experience

0.188
(0.210)

0.075
(0.131)

-0.060
(0.164)

Attrition Indicator Interacted with
White Teacher

1.263
(3.490)

2.269
(2.133)

0.642
(2.678)

Attrition Indicator Interacted with
Teacher has Master Degree

-1.370
(2.490)

0.939
(1.586)

1.552
(1.876)

Number of Observations (R-Squared) 5810 (0.305) 5729 (0.295) 5789 (0.259)
Joint Effect of Attrition on Constant
and Coefficient Estimates

42.39∗∗∗

[0.000]
32.68∗∗∗

[0.000]
25.76∗∗∗

[0.000]
Joint Effect of Attrition on all
Coefficient Estimates but not constant

3.14∗∗∗

[0.003]
1.23
[0.280]

1.45∗

[0.181]
Effect of Attrition
on Constant Alone

20.33∗∗∗

[0.000]
29.06∗∗∗

[0.000]
16.48∗∗∗

[0.000]
Note: Regressions include school indicators. Standard errors corrected at
the classroom level are in ( ) parentheses. Probability > F are in [ ] parentheses.
***,**,* indicate statistical significance at the 5%, 10% and 20% level respectively.
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Table 3: Structural Estimates of the Treatment Parameters in Education Production
Functions

Subject Area Mathematics Reading Word Recognition
Kindergarten
SiK 8.595 (1.120)∗∗∗ 5.950 (0.802)∗∗∗ 6.342 (0.945)∗∗∗

Grade One
SiK 7.909 (4.625)∗∗ 8.785 (5.284)∗∗ 11.868 (6.722)∗∗

Si1 9.512 (3.307)∗∗∗ 9.315 (4.350)∗∗∗ 15.394 (5.730)∗∗∗

SiKSi1 -6.592 (5.648) -2.229 (6.992) -11.060 (8.965)
Grade Two
SiK -2.078 (7.276) 11.320 (7.240)∗ 9.959 (8.438)
Si1 -4.010 (3.855) -20.036 (19.189) 4.298 (7.763)
Si2 15.150 (5.430)∗∗∗ 3.040 (4.428) 0.526 (5.814)
SiKSi1 3.851 (11.678) 1.148 (24.059) -12.074 (17.673)
SiKSi2 -4.049 (13.112) -31.513 (17.366)∗∗ -23.084 (13.237)∗∗

Si1Si2 -4.944 (6.617) 25.122 (19.480)∗ 7.868 (8.537)
SiKSi1Si2 6.653 (16.067) 23.634 (28.632) 30.111 (19.851)∗

Grade Three
SiK -7.298 (10.901) 1.215 (10.372) 13.071 (12.202)
Si1 43.514 (32.898)∗ 22.083 (30.097) -6.920 (37.200)
Si2 25.263 (42.080) -22.085 (26.069) -25.024 (22.031)
Si3 -6.835 (3.932)∗∗ -10.590 (4.179)∗∗∗ -12.738 (5.952)∗∗∗

SiKSi1 -38.612 (30.944) 7.978 (39.071) -18.002 (32.872)
SiKSi2 37.355 (28.625)∗ -42.740 (25.731)∗∗ -2.932 (22.527)
SiKSi3 -39.819 (19.922)∗∗∗ 17.870 (18.147) 7.328 (14.855)
Si1Si2 -61.947 (52.749) 25.388 (35.964) -7.586 (36.814)
Si1Si3 17.163 (43.057) -6.613 (32.183) -7.954 (29.718)
Si2Si3 -14.366 (42.280) 35.547 (22.836)∗ 29.203 (26.267)
SiKSi1Si3 -4.651 (52.881) -41.180 (43.335) -14.706 (35.985)
SiKSi1Si2Si3 48.084 (48.704) 6.834 (30.521) 14.377 (33.920)
Note: Corrected standard errors in parentheses. The sequences
SiKSi1Si2, SiKSi2Si3 and Si1Si2Si3 lack unique support to
permit identification in grade 3. ***,**,* indicate statistical
significance at the 5%, 10% and 20% level respectively.
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Table 4: Dynamic Average Treatment Effect for the Treated Estimates
Subject Area Mathematics Reading Word Recognition
Kindergarten
τ (1)(0)(1) 8.595 (1.120)∗∗∗ 5.950 (0.802)∗∗∗ 6.342 (0.945)∗∗∗

Grade One
τ (0,1)(0,0)(0, 1) 9.512 (3.307)∗∗∗ 9.315 (4.350)∗∗∗ 15.394 (5.730)∗∗∗

τ (1,0)(0,0)(1, 0) 7.909 (4.625)∗∗ 8.785 (5.284)∗∗ 11.868 (6.722)∗∗

τ (1,1)(0,0)(1, 1) 10.829 (8.021)∗ 15.872 (9.787)∗ 16.203 (12.587)∗

τ (1,1)(1,0)(1, 1) 2.920 (6.544) 7.086 (8.235) 4.334 (10.640)
τ (1,1)(0,1)(1, 1) 1.317 (7.300) 6.556 (8.764) 0.808 (11.205)
τ (0,1)(1,0)(0, 1) 1.603 (5.686) 0.530 (6.844) 4.066 (8.833)
Grade Two
τ (0,0,1)(0,0,0)(0, 0, 1) 15.150 (5.430)∗∗∗ 3.040 (4.428) 0.526 (5.814)
τ (1,0,0)(0,0,0)(1, 0, 0) -2.078 (7.276) 11.320 (7.240)∗ 9.959 (8.438)
τ (1,1,1)(0,0,0)(1, 1, 1) 10.574 (26.606) 12.714 (50.199) 17.603 (33.463)
τ (1,1,1)(1,0,0)(1, 1, 1) 12.651 (25.589) 1.394 (49.674) 7.644 (32.381)
τ (1,1,1)(1,1,0)(1, 1, 1) 12.810 (22.436) 20.282 (38.993) 15.421 (25.999)
τ (0,1,1)(0,0,0)(0, 1, 1) 6.196 (9.400) 8.125 (27.700) 12.691 (12.920)
τ (0,0,1)(1,0,0)(0, 0, 1) 17.228 (9.084)∗∗ -8.208 (8.490) -9.433 (10.249)
Grade Three
τ (0,0,0,1)(0,0,0,0)(0, 0, 0, 1) -6.835 (3.932)∗∗ -10.590 (4.179)∗∗∗ -12.738 (5.952)∗∗∗

τ (1,1,1,1)(0,0,0,0)(1, 1, 1, 1) -2.148 (129.436) -17.192 (93.135) -20.985 (102.228)
τ (1,1,1,1)(1,1,0,0)(1, 1, 1, 1) 0.247 (120.810) -22.487 (81.117) -35.114 (85.973)
τ (1,1,1,1)(1,1,1,0)(1, 1, 1, 1) -0.424 (96.033) 10.115 (63.543) 7.262 (70.360)
τ (1,1,1,1)(0,1,1,1)(1, 1, 1, 1) -4.940 (86.378) -20.263 (64.365) -30.626 (75.468)
τ (0,1,1,1)(0,0,0,0)(0, 1, 1, 1) 2.792 (96.397) 3.071 (67.314) 9.641 (68.958)
τ (0,0,1,1)(0,0,0,0)(0, 0, 1, 1) 4.062 (59.781) -3.472 (37.243) -2.215 (32.284)
τ (0,0,1,1)(1,1,0,0)(0, 0, 1, 1) 6.458 (75.714) -8.767 (59.001) -16.344 (64.043)
τ (1,1,0,0)(0,0,0,0)(1, 1, 0, 0) 2.396 (46.461) -7.568 (31.614) 2.396 (46.461)
Note: Standard Errors in parentheses.
***,**,* indicate statistical significance at the 5%, 10% and 20% level respectively.
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Table 5: Tests of Weighted versus Unweighted Estimates
Subject Area Mathematics Reading Word Recognition

Grade One
8.74
[0.000]

3.39
[0.000]

1.35
[0.169]

Grade Two
1.48
[0.071]

3.86
[0.000]

2.08
[0.002]

Grade Three
1.72
[0.008]

1.91
[0.002]

1.03
[0.424]

Note: Probability > F are in [ ] parentheses.

Table 6: Likelihood Ratio Tests for the Presence of Selection on Unobservables
Subject Area Mathematics Reading Word Recognition

Grade One
2661.91
[0.000]

4468.98
[0.000]

3293.98
[0.000]

Grade Two
1648.11
[0.000]

1478.86
[0.000]

5480.28
[0.000]

Grade Three
1606.95
[0.000]

1421.94
[0.000]

839.84
[0.000]

Note: Probability > χ2 are in [ ] parentheses
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