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ABSTRACT

The probability of selection into treatment plays an important role in matching and selection models.
However, this probability can often not be consistently estimated, because of choice-based sampling
designs with unknown sampling weights. This note establishes that the selection and matching procedures
can be implemented using propensity scores fit on choice-based samples with misspecified weights,
because the odds ratio of the propensity score fit on the choice-based sample is monotonically related
to the odds ratio of the true propensity scores.
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1 Introduction

The probability of selection into a treatment, also called the propensity score,

plays a central role in classical selection models and in matching models (see,

e.g., Heckman, 1980; Heckman and Navarro, 2004; Heckman and Vytlacil,

2007; Hirano et al., 2003; Rosenbaum and Rubin, 1983). 1 Heckman and

Robb (1986, reprinted 2000), Heckman and Navarro (2004) and Heckman and

Vytlacil (2007) show how the propensity score is used differently in matching

and selection models. They also show that, given the propensity score, both

matching and selection models are robust to choice-based sampling, which

occurs when treatment group members are over- or under-represented relative

to their frequency in the population. Choice-based sampling designs are

frequently chosen in evaluation studies to reduce the costs of data collection

and to obtain more observations on treated individuals. Given a consistent

estimate of the propensity score, matching and classical selection methods

are robust to choice-based sampling, because both are defined conditional on

treatment and comparison group status.

This note extends the analysis of Heckman and Robb (1985),Heckman and

Robb (1986, reprinted 2000) to consider the case where population weights

are unknown so that the propensity score cannot be consistently estimated.

In evaluation settings, the population weights are often unknown or cannot

1It also plays a key role in instrumental variables models (see Heckman et al., 2006).
Heckman and Vytlacil (2007) discuss the different role played by the propensity score in
matching IV and selection models.
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easily be estimated.2 For example, for the National Supported Work training

program studied in LaLonde (1986), Dehejia and Wahba (1999, 2002) and

in Smith and Todd (2005), the population consists of all persons eligible for

the program, which was targeted at drug addicts, ex-convicts, and welfare

recipients. Few datasets have the information necessary to determine whether

a person is eligible for the program, so it would be difficult to estimate the

population weights needed to consistently estimate propensity scores.

In this note, we establish that matching and selection procedures can

still be applied when the propensity score is estimated on unweighted choice

based samples. The idea is simple. To implement both matching and clas-

sical selection models, only a monotonic transformation of the propensity

score is required. In choice based samples, the odds ratio of the propensity

score estimated using misspecified weights is monotonically related to the

odds ratio of the true propensity scores. Thus, selection and matching pro-

cedures can identify population treatment effects using misspecified estimates

of propensity scores fit on choice-based samples.

2 Discussion of the Proposition

Let D = 1 if a person is a treatment group member; D = 0 if the person

is a member of the comparison group. X = x is a realization of X. In the

2The methods of Manski and Lerman (1977) and Manski (1986) for adjusting for choice-
based sampling in estimating the discrete choice probabilities cannot be applied when the
weights are unknown and cannot be identified from the data.
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population generated from random sampling, the joint density is

g(d, x) = [Pr(D = 1 | x)]d[Pr(D = 0 | x)]1−dg(x)

for D = d, d ∈ {0, 1},

where g is the density of the data. By Bayes’s theorem, we have, letting

Pr(D = 1) = P,

(1a) g(x | D = 1)P = g(x)Pr(D = 1 | x)

and

(1b) g(x | D = 0)(1− P ) = g(x)Pr(D = 0 | x).

Take the ratio of (1a) to (1b)

(2) g(x|D=1)
g(x|D=0)

(
P

1−P

)
= Pr(D=1|x)

Pr(D=0|x)
.

Assume 0 < Pr(D = 1 | x) < 1. From knowledge of the densities of

the data in the two samples, g(x | D = 1) and g(x | D = 0), one can form

a scalar multiple of the ratio of the propensity score without knowing P .

The odds ratio is a monotonic function of the propensity score that does not

require knowledge of the true sample weights. In a choice-based sample, both

the numerator and denominator of the first term in (2) can be consistently

estimated. This monotonic function can replace P (x) in implementing both

matching and nonparametric selection models.

However, estimating g(x | D = d) is demanding of the data when X

is of high dimension. Instead of estimating these densities, we can substi-

tute for the left hand side of (2) the odds ratio of the estimated conditional

probabilities obtained using the choice-based sample with the wrong weights.
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(i.e. for example, ignoring the fact that the data are a choice based sample).

The odds ratio of the estimated probabilities is a scalar multiple of the true

odds ratio. It can therefore be used instead of Pr(D = 1 | X) to match or

construct nonparametric control functions in selection bias models.

In the choice-based sample, let P̃ r(D = 1 | x) be the conditional proba-

bility that D = 1 and P ∗ be the unconditional probability of sampling D = 1,

where P ∗ 6= P , the true population proportion. The joint density of the data

from the sampled population is

[g(x | D = 1)P ∗]d[g(x | D = 0)(1− P ∗)]1−d.

Using (1a) and (1b) to solve for g(x | D = 1) and g(x | D = 0) one may

write the data density as

[
Pr(D=1|x)g(x)

P
P ∗

]d [
Pr(D=0|x)g(x)

(1−P )
(1− P ∗)

]1−d

so

(3a) P̃ r(D = 1 | x) =
Pr(D=1|x)g(x)P∗

P

g(x|D=1)P ∗+g(x|D=0)(1−P ∗)

and

(3b) P̃ r(D = 0 | x) =
Pr(D=0|x)g(x) 1−P∗

1−P

g(x|D=1)P ∗+g(x|D=0)(1−P ∗) .

Under random sampling, the right-hand sides of (3a) and (3b) are the

limits to which the choice-based probabilities converge. Taking the ratio of

(3a) to (3b), assuming the latter is not zero, one obtains

(4) P̃ r(D=1|x)

P̃ r(D=0|x)
= Pr(D=1|x)

Pr(D=0|x)

(
P ∗

1−P ∗
) (

1−P
P

)
.

Thus, one can estimate the ratio of the propensity score up to scale (the

scale is the product of the two terms on the right-hand side of (4)). Instead
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of estimating matching or semiparametric selection models using Pr(D = 1 |
x) (as in, for example, Ahn and Powell (1993); Heckman (1980); Heckman

and Hotz (1989); Heckman et al. (1998); Heckman and Robb (1986); Powell

(2001), one can, instead, use the odds ratio of the estimate P̃ r(D = 1 | x),

which is monotonically related to the true Pr(D = 1 | x). In the case of a

logit P (x), P (x) = exp(xβ)/(1 + exp(xβ)), the log of this ratio becomes

ln P̃ r(D=1|x)

P̃ r(D=0|x)
= xβ̃

where the slope coefficients are the true values and the intercept β̃0 = β0 +

`n(P ∗/(1− P ∗)) + `n((1− P )/P )), where β0 is the true value.3

In implementing nearest-neighbor matching estimators, matching on the

log odds ratio gives identical estimates to matching on the (unknown) Pr(D =

1 | x), because the odds ratio preserves the ranking of the neighbors. In

application of either matching or classical selection bias correction methods,

one must account for the usual problems of using estimated log odds ratios

instead of true values.4

3See Manski and McFadden (1981, p. 26).
4For discussion related to using estimated propensity scores, see Hahn (1998); Heckman

et al. (1998); Heckman et al. (1998); Hirano et al. (2003).
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