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ABSTRACT

This paper begins to study the reward—incentive. structure. in aequentia,l

knock—out or elimination tournaments with matched, pairwi.se. comparisons among

players at each. stage.. The prize structure required to elicit constant

expected quality of play in all matches throughout the. tournament is character-

ized for competition. among equally talented (or perfectly handIcapped), players.

The incentive maintaining prize structure is shown to concentrate' extra weight

on the top ranking prize, aphetiomenon.observed in most tournaments.. More can.

be said. Prizes that maintain performance incentives at all stages award a

constant increment for each match won up to the last stage; and an amount

greater than this for the player who wins the final match. lay'era' incen-

tives to perform in early rounds are propelled by the probability' of achieving

higher ranks and surviving to later stages where. rewards arelarger.. These

continuation options are played out in the final match, so it is only' the

difference between winning and losing prizes in the finals that controls

incentives there.

Many athletic tournaments are structured in the manner analyzed here,

but the general framework ultimately may have application to certain career

games as well. More generally, a tournament structure may he viewed as a

statistical, experimental design problem. The prize structure interacts with.

the design in providing incentives for the best players to survive to the

finals and win the top prizes.

Sherwin Rosen
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A number of recent papers have clarified the problem of incentives

in simple one—shot games when players are paid on the basis of rank or

relative performance [Lazear and Rosen (1981), Green and Stokey (1983),

NalebufT and Stiglitz (1983), O'Keeffe, Viscusi and Zeckhauser (19814),

Holmstrom (1982)]. The chief result available so far is that rank/relative

reward schemes can lead to efficient performance incentives, especially when

precise measurement of individual outcomes is costly and when environmental

factors (the "conditions of play") equally influence the connection between

input and outcomes for all players. These models do not, however, yield

many restrictions on what the resulting prize structure might look like.

Yet prizes are observed to be heavily concentrated on the top ranks in most

professional tournaments. See table 1.

This paper begins to investigate the structure of prizes in

sequential elimination tournaments, where rewards are increasing in

survival. Many athletic tournaments are organized in this way. Tennis

immediately comes to mind (e.g., Wimbledon), but end of season playoffs in

most team sports also follow this design (with entry conditioned on
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standings in the regular season round robin). In what follows, the rank—

reward structure required to maintain constant expected performance

throughout the tournament is characterized for games involving equally

talented players. The incentive maintaining prize schedule is shown to be

convex in rank order. More surprisingly, it is fully described in figure 1.

Let WR be the prize offered for achieving rank R in the tournament. Then

constant incentives requires WR —
WR+l

- Y for R > 2 and W1 -
W2

> 1, where

4 puiL.iV numoer. rtewru increae Linearly in rang urder fruin

(n + 1 )st place through second place, but the first place prize takes a

distinct jump, out of sync with and of a different character from the rest.

"More convexity" than shown in figure 1 leads to increasing intensity or

expected quality of play in the later stages of the tournament; and "less

convexity" leads to declining expected quality of play as the tournament

proceeds through its stages.

The economic interpretation of this result is interesting and

appealing. The prize structure in figure 1 implies a fixed incremental

reward of I for advancing one more round from the beginning of the

tournament up to the finals. However, a player's valuation of continuation

in these stages exceeds the interrank reward difference (I) because there is

a nontrivial probability of surviving longer than one more round and winning

an even larger prize. The value of continuation includes these higher order

terms, and it is this value that sets a player's incentives to perform,' not

the interrarik reward difference itself. But when a player has reached the

finals, there is no possibility of further continuation. The incremental

value of winning the finals is WI —
W2

alone. The difference between first

and second place prize money is the sole instrument available for incentive

maintenance in the finals, because there is no possibility of further
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advancement, as there is at earlier stages of the game. That W1 —
W2

exceeds the other interrank reward differences therefore is fundamentally

due to the no—tomorrow aspect of playing in the finals. Raising W1 —

above y effectively extends the horizon of players reaching the finals,

similar to the role of a pension in finitely repeated principal and agent

problems [Becker and Stigler (197k)].

The next section describes the structure of the game and some

notation. The strategies of players are set forth in section II. Sequen-

tial Nash strategies are adopted as the equilibrium concept, Since there is

a natural end point, the method of solution Is backward recursion, analyzing

the finals and working one step at a time back to earlier stages of the

game. The principal result on incentive maintaining prize structures is

established in section III and is further discussed and qualified in section

Iv.

I. DESIGN OF THE GAME

The tournament begins with identical players in the Initial

round and proceeds sequentially In n distinct stages. Each stage is a set

of paired matches with pairings randomly drawn among players eligible to

enter that stage. Winners of these matches survive to the next round, where

another pairing is drawn randomly, while losers are eliminated from all

subsequent play. Thus half of all eligibles at any stage maintain

eligibility and continue to the next, and the other half are eliminated at

the end of their matches, See figure 2. All who lose eligibility at the

same stage achieve the same rank in the tournament. No branching matches

are offered for breaking ties (however, see section IV for some analysis of

consolation matches). For example, the two losers of the semifinals achieve
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3rd rank, the four losers of the quarter finals achieve 4th rank, etc. More

generally, if s is the number of stages remaining to be played

(equivalently, the maximum possible number of matches a currently eligible

contestant can play in the remainder of the tournament), all losers of the

next matches achieve rank s + 1 and all are awarded prize W51, for

s—i
S 0, 1, ..., n. There are 2 such players, for s >2, sothe amount

paid to all playe's achieving (s+l)st place is 21W51. Of course there is

a single wInner. PrIzes are desIgnated ifl advance of the fIrst round and

are strictly increasing in rank: W5÷1 > W52, for all s. We study how the

sequence (W1} affects the sequence of incentives to win at various stages

of the game.

There are two features of these games that make it meaningless to

specify Input—output technologies and "marginal products" of contestants in

the oPdinary sense. First, competition is naturally relative because It

Involves face—to—face confrontation in most instances. Success depends on

both offensive and defensive skills. Second, these games have an essential

ordinal character because-the calibration of point scores used to determine

winners and losers has many arbitrary elements, much in common with the

scores on a classroom test. For example, the nature of the game of tennis

would be greatly affected by altering the height of the net, changing the

size and composition of the court or adjusting the compression of the ball.

The adopted standards and operating rules of the game have large effects on

the productivity of various personal dimensions of talent, for example those

affecting power, finesse and endurance1. For this reason point scales have

little' sense of cardinality. The best one can do for analysis is specify

how players' actions affect the probability of winning.
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The probability of winning a match is assumed to follow a Poisson

process, a specification which has been used to great advantage in the

recent liteature on patent races, from which It is borrowed [see especially

Loury (1979); also Kamien and Schwartz (1972), Lee and Wilde (1979), and

Reinganum (1982); Telser (1982) considers some sequential elements of these

problems]. Let x index the intensity of effort expended by a player in some

match. If player i is matched against player j the probability that i wins

the match is assumed to follow the law

h(xi)
(1)

P(X.X) h(xi) + h(x)

with h(x) strictly increasing in x and h(O) 0. A player increases the

probability of winning the match by exerting greater effort given the effort

of the opponent.

Two features of (1) are noteworthy. First, that the function h(x)

is the same for all players embodies the assumption that all are equally

talented. When two players exert the same effort (1) implies that the

probability of either one winning is one—half —— entirely random outcomes.

If players are not equally talented h(x) must be indexed by ability and the

stronger player has a winning edge at equal effort levels (see section IV).

Second, (1) neatly accomodates common environmental factors that influence

the quality of play. Let the common factor multiply h(x). Then whether the

commonality is match specific, stage specific or tournament specific, it

factors out of the probability calculation in any match and at any stage of

the game. It therefore has no effect on incentives.
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Specification (1) has a racing game interpretation. Let t be

arrival time from the beginning of the match. Then h1 - h(x1) is the

probability of "crossing the finish line" at r given that player I has been

racing up to t. The unconditional duration density of finishing at t

—hit
exactly is.f1(t) h1e and its CDF is 1 — e . Expected finishing

time for i is 1/h1. The player who arrives first is declared winner of the

match: (1) gives the probability of this event. Expected finishing time in

an (i,j) match Is (h1 + h)1. While this interpretation is a bit strained

in context, its spirit is maintained by identifying "shorter" expected match

completion time with higher quality of play. In any case it is (1) that is

the primative construct for this problem, not the particular route by which

it is generated. Merely think of (1) and its counterpart for player j as

symmetric functions where the values of the arguments (xi, x) determine the

expected quality of the match, and p(x, x) — 1/2 for x > 0.

II. STRATEGIES AND INCENTIVES

A player's decision of how much effort to expend in any match

depends on a cost—benefit calculation, Greater effort at any stage in

creases the probability of achieving a higher rank and larger prize money,

but involves additional cost. There are two complications. First, the

anticipated value of advancing to a subsequent stage depends on future

effort expenditures. In deciding how much to put out in the current match,

a player must anticipate how he will behave should eligibility be maintained

in more advanced stages of the tournament. This. difficulty is common to all

intertemporal decision problems and is solved by backward recursion.

Second, the cost—benefit calculation for any player depends on anticipated
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actions of opponents in all possible future matches as well as in the cur-

rent one. Given the sequential character of the game, this is best analyzed

by adopting Nash noncooperative strategies as the equilibrium concept at

each stage. I ignore time discounting between stages arid, for now, assume

players are risk neutral. It is also assumed that each match is Independ-

ent: costs incurred in previous matches have no carry overs and do not

affect either costs or the probability of success in subsequent matches.

Define V5 as the value of playing a match when s possible stages

remain in the tournament, and define p5 by (1) as the probability of winning

the match and maintaining eligibility into the next stage. Let c(x) be the

cost of effort in any match and assume nondecreasing marginal cost:

c'(x) > 0 and c"(x) > 0, and c(O) — 0. The value V5 consists of two

components. One is the prize awarded to players achieving (5+1 )st

place in the tournament if the match is lost and the player is eliminated,

an event which occurs with probability (1 — p5). The other component is the

value of achieving a rank superior to s+1 lithe match is won. The value of

winning is eligibility in the next stage, V51, an event which occurs with

probability p5. Therefore,

(2) V5 - ma: [p8V51 + (1—p3)W31
—

where x is effort expended in the current match. I shall place sufficient

structure on h(x) and c(x) to guarantee a unique equlibrium at each stage.2

Analysis begins with the Finals. Define V0 — and substitute

(1) into (2) for s 1. The value of achieving the finals for player i in a

match against player j is
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(3) V11 - max ([h1/(h + h))(W1
-

W2)
+ — c(x1)}

I

where h1 is shorthand for h(x1) and similarly for h. To avoid notational

clutter it is understood that the x's in (3) refer to the final round and

are not subscripted by s - 1. The best response of player I to the op-

ponent's effort x3 is found by differentiating the bracketed expression in

(3):

h
(14)

2 (W1
—

W2)
—

c'(x1) - 0

(h1+h)

where h! - h'(x.). The second derivativeis
1 1

(5) — c'(xi)((h/hj) —
2p1(h/h1)

—
c"(x1)/c'(x1)} < 0

where h h"(x,) and p,
h1/(h1+h).

must be negative at the solution

for (14) to describe a local maximum of (3) given x,. It proves convenient

to express (5) slightly differently. Define the elasticities

(x) - xh'(x)/h(x) and c(x) — xc'(x)/c(x). Then (5) becomes

(6) = c'(x1)/x1{x1h/h1
—

2p1n(xi)
— (x1)} < 0.

Comparative statics on (14) yields:

c'(x1)/(W —W2)
(7) ax1/a(w1—W2) — —A

1
> 0
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Second place money is assured if the player has reached the finals and

players are contesting over the difference (W1 —
W2), so an increase in the

differential reward to winning elicits greater intensity of effort by i,

given x.

Differentiating (Il) with respect to x3 yields

ct(x1)(h/h)(h1 — h
(8) dxi/dx — _______________________

which defines the slope of player i's best response function with respect to

Xj. The response function x - X(x) Is increasing in x3 when h1 > h., or

when x1 > x3. It is decreasing when > x1 and has a turning point at

x1 = x3, as shown in figure 3. At smaller values of x, player i chooses x1

to have a winning edge over j. As x. increases x1 responds positively to

maintain a smaller winning edge. However, for x3 sufficiently large, x1

chosen so that j has the winning edge: player j's effort is so great that

it doesn't pay player I to compete on equal or better terms. As x3 in-

creases further, player i puts out less and less effort. If h" < 0 for all

x then < 0 for all x because r and c are both positive. Then X(x3) is

continuous throughout its domain. However, if h" > 0 the elasticity of

h' (x) must be sufficiently small for (6) to hold true at all, and even so it

may fail for some values of Xj. If it does fail then X(x3) exhibits a point

of discontinuity. Examination of (6) shows that failure is more likely when

is small (so
Xj

is large). At some value of x3 and beyond the opponent

is putting forth so much effort that it is best for i to simply give up, to

set x1 — 0 and benignly accept his fate as sure loser. In this paper atten-

tion is confined to pure strategy equilibria. This requires that if (6)



10

fails it must do so beyond the turning point of X(x.). For this we require

a strict upper bound on xh"/h'

The i—player's best reply function is the mirror image of that for

the 1—player. Therefore, if an equilibrium exists it is symmetric:

x — x > 0, and (Z) reduces to

(9) h'(x*)/h(x*)[W1 — W2J/14 c'(x*).

Using the elasticity definitions above, (9) may be written equivalently as

(10) r(x*)/c(x*)[W1 — WJ/L$ c(x*).

In equilibrium p 1/2, both players have an equal chance of winning

and the match is a "close call" in expected value. Therefore V — V1 V1

and

(11)
V1 (W1 + W2)/2

— c(x*).

The prizes are assumed to be sufficiently large that V1 > 0.

One important detail remains. A global condition must be imposed

to rule Out x 0 as a best reply to x3 - x in order to guarantee exist-

ence of equilibrium (9). For this we require that V1 — > 0. Otherwise

the best reply to x is x1 — 0: Taking the sure loss is better than compet-

ing on equal terms. There cannot be a symmetric equilibrium at x - 0

because }i(O) - 0; and one player guarantees a win by exerting vanishing

small effort at vanishing small cost. But if one player can do this so can

the other and the ioint responses are driven back to x > 0 in figure 2.
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Therefore if both players can do better by taking a sure loss to exerting x

in (10) there can be no equilibrium in the game. SubstItuting (10) into

(11) and subtracting W2 yields

(12) V1 —
W2

—
(1/2)(W1

—
W2)[1

—

No player has incentives to default from x defined by (9) or (10) if

V1 — W2 > 0, or

(13) (x)/c(x) < 2

which will be assumed to hold true for all x.

The sense of condition (13) has independent interest and is re-

lated to the problem of' arms races and proposals for limitations on politi-

cal campaign expenditures. If the elasticity of response of effort is large

relative to the elasticity of its cost then both players' efforts to win

results in a negative sum game for which a stable equilibrium is not

defined. It is not Optimal for either player to default if the other one

does, but at the locally stable equilibrium the costs of contesting have

been escalated so far that both want to default. In athletic games this

problem is controlled by a supreme authority which reviews standards of play

from time to time and which limits rules changes and the introduction of new

equipment that would otherwise lead to problems.'

Now that V. has been nailed down we may proceed to analyze the

Semifinals. At s • 2 equation (2) becomes

(1k) V2 - max 2i1 W3) + - c(x21)3.
x21
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Exactly the same line of argument as above establishes a unique nontrivial

symmetric equilibrium for which p21 — P2j
- 1/2, with —

x2
— x

determined by a condition analogous to (9)

(15) h'(x)/h(x)[V1 — W3]/II
— c'(x).

Substituting p2 — 1/2 and (11) into (114) we find

W c(x*)
(16)

I
+ —

2
— c(x)

Notice that x depends on W1 and W2, from (9) and that V1 also depends on

and W2 (see equation (11)). It follows from (15) that x depends on W1, W.,

and W3. It is in this way that the effects of the structure of' prizes on

incentives at each stage of the game may be studied. The fact that the

equilibrium level of effort at any stage has no memory and is only forward

looking simplifies the problem considerably, and is due to the assumption

that effort at each stage has no spillovers to later stages.

Continuing in this manner, the solution at any stage is easily

established. When s stages remain to be played all surviving players in the

next match choose effort x to satisfy

(17) h'(x*)/h(x*)[V1 — W5_1]/1I
— c'(x).

An induction argument shows that condition (13) Is necessary for (17) to

describe a global best response for each player at any stage. In equi-

librium the probability of extinction in the next match is 1/2 at all stages

of the game. The probability that any player is eliminated at the end of
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stage s and receives payoff W841 is (1/2)n5+1• At the start of play all

players have the same chances in equilibrium of each rank because all are

equally talented and the equilibrium is symmetric at any stage5.

Substituting p - 1/2 into (2) and iterating yields

W+w W W W
(18)

1 2 + +
-2

+ •• + c(x*) —
c(x_1)/2

—

.2 2 2

— c(x)/21.

III. PRIZES THAT MAINTAIN INCENTIVES

A complete analysis of the optimal distribution of prizes requires

precise specification of what services these games produce and how produc-

tion affects willingness of consumers to pay to see them. The prize struc-

ture presumably evolves to produce the distribution in quality of play over

stages that maximizes tournament profits, given supplies and talents of the

players. Little can be said on this at present beyond the obvious that fan

interest is stimulated by the closeness of matches and by higher general

quality of play.

A less specific and at the same time less general question is

asked here. How should the purse be divided to elicit the same intensity of

play in every match at all stages of the game? What sequence {W31}

guarantees x - x for all 5? This is a convenient benchmark because it

roughly indicates how an increasing (or decreasing) sequence of effort and

expected quality of play can be generated over the course of the tournament.

I believe the answer, which is depicted in figure 1, is one of the reasons

why prizes in real life tournaments are so heavily skewed toward the top
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ranks. proof that figure 1 provides a complete answer to the question

follows.

It is clear from (17) that the intensity of effort at each stage

is determined by V8_1 — W51, the incremental reward to winning the next

match. Maintenance of incentives at each stage therefore requires that

— have the same value independent of s. An expression for

V5_1 — is obtained by iterating (18) one step and subtracting

After imposing the constraint that x5 • x we obtain

w+w w w
(19) v —w —

1 2 3 +si 5+1 281 282 2 5+1

- c(x*)[1 - 2(51)J/(1/2)

Iterate (19) backward one step to obtain a sImilar expression for V5 — W5.
Equating the two expressions yields

(20) + + +
(3/2)W51

-
W52 c(x*)/22

as the condition that prizes must satisfy in order to guarantee effort x* at

every stage of the game.

To eliminate c(x*) in (20) iterate it one step forward, multiply

by 2 and subtract the result from (20) to obtain a difference equation,

(21) —
2W51

+ — 0
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which holds for all stages other than the finals. The characteristic equa-

tion of (21) has two unit roots, so the solution is linear in s. Since W

must be declining in a in order for players to have incentives to continue

playing, we have, for a > 2

(22) W —W -y
S 5+1

with I > 0. Apart from a lump sum payment (possibly negative) at the begin—

fling of the tournament, incentive maintenance implies that players receive a

fixed reward y for each match won in all stages up to the fina].s.6

However, the situation is slightly different for the finals.

Comparing the finals with the semifinals, x — x — x requires, from (9),

(11), and (15)

(23) Wi —
W2

—
V1

—
W3

—
(W1

+
W2)/2

— c(x*) —
W3

or

(24) W1 —
W2

—
2(W2

—
W3

— c(x*)) — 2(Y — c(x*)).

Substituting (2L1) into (10), x must satisfy

(25) n(x*)/2(x*)[y_c(x*)J — c(x*).

Solving for c(x*) in (25) and using (2I) we have
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(26) W1 — — (W2 —

W3)
— y — 2c(x*)

—

so Wi —
W2 exceeds I whenever n(x*)/c(x*) < 2, precisely condition (13)

guaranteeing existence of a unique symmetric equilbrium at each stage. The

tariff for winning the last match exceeds all the rest if incentives are to

be maintaIned at x4 throughout the tournament,

As noted at the beginning of the paper, the jump In the top prize

fundamentally is due to the fact that the finals is the last match to be

played. Linearity of reward in previous stages appears paradoxical on these

terms. The fact that the horizon draws closer as the game proceeds seems to

require increasing incremental rank—rewards to maintain incentives. How-

ever, offsetting this is the fact that the probability of reaching the top

increases with survival, so the shorter horizon is effectively discounted by

a smaller amount. The two effects exactly cancel each other at every stage

except the last.

The following example is instructive for illustrating the result

and for showing how other prize structures affect incentives. Suppose

h(x) - x and c(x) - x where r and are positive constants. Defining

y5 = x, application of (17) and (18) gives the recursions

(27) y — (.)(v — W )S I s—i s+i

(28) — BV5_1 + (1 —
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where B — (1 — fl/2E)/2. The usual manipulations of (27) and (28) imply a

difference equation for y5:

(29) + (.)(w31 -
W52)

which has solution

(30) y5
x — (.%)[(w—w) + 8(W51W5)

+
B2(W5_jW5..1)

+ ... + 831(W1W2)

It is discounted future interrank rewards that determines effort at each

stage, where the discount rate depends on the probability of winning

(= 1/2) and the cost and arrival time distribution parameters n and c. The

discount rate Is positive so long as n/c < 2. Substituting (30) into (27)

and iterating one step yields the solution for

V8 — (1 —
8)[W51

+ 6W + + 851W2] +

The value of eligibility depends on the level of rewards. For a given

reward structure it is easy to show that V5 is declining in n/c. The reason

is that less effort is expended at any stage as n/c falls, from (30).

The achievement of a target effort level x requires, for each

stage except the last, from (29)

— — (-4--)(i — $)(X)c for s — 1, ..., n.
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The spread between first and second place money must be larger than this:

from (27) it must be

Consequently (W1 — W2)/(W3
—

W5÷1)
. 1/Cl — ), which ranges between 1.0 and

2.0. It can be shown that a relative winning increment in excess of

11(1 — a) results in monotonically increasing effort and quality of play as

the game proceeds through its stages, and that a relative increment of less

than 1/(1 — B) results in monotonically decreasing effort In later stages.

The Incentive consequences of some other reward schemes follow

from (30):

(i) Winner—Take—All

The reward structure specifies W ) 0 and W8 0 for s > 2. Here

(29) implies x — (.)w1a1. The expected quality of play at each stage

is larger than the previous stage. Effort rises more or less than

geometrically across stages as c 1. It rises geometrically if c- 1.

(ii) Win, Place and Show Money Only.

In this case we find

x - ()a2[a(W1 —
w2)

+
(W2

—
W3))

for s > 2

fl/C
— W2)

which yields an interstage quality of play pattern similar to winner—take—

all in stages prior to the semi—finals. It remains true that W1 —
W2

must



19

be larger than (W2 - 3)(1
— 8)1 for final round effort to be larger than

effort in the semifinals.

(iii) Geometric Inverse Rank Rule

Suppose the prize ratio between adjacent ranks maintains a

constant value 1 + , with > 0. For example, if' - 1 then the Rth place

reward Is twice as large as the (R+1)st reward and the purse is split

equally among all ranks. Table 1 is roughly of this form (except for W1.)

4e find, for B(1) < 1

(n/c.1tJ
C $ "1 *3 8
xs 1_B(1+)1 + — B

for B(i+) > 1

C 'w
C _____ 5 —s

B(1)—1
(1 + ) 3,

and for 8(1+) 1

C (fl/E' f S
X5

(1÷)

In all parameter configurations effort is decreasing in s or Increasing with

survival. The intensity of play is largest in the finals and smallest in

the fir8t round.

IV. DISCUSSION AND EXTENSIONS

The result on incentive maintenance survives generalization to a

broader class of preferences and win technologies.
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Risk Aversion. The preference structure implicit in the problem

above is strongly additive; linear in income and convex In effort. Suppose

instead that preferences take the additive form U(W) — c(x8), where c(x)

is as before and 1J(W) is increasing, but not necessarily linear in W. Then

the entire analysis goes through by merely replacing W5 with U.(W3) wherever

it appears. Incentive maintenance requires a constant difference in the

utility of rewards U(W51) — U(W2) in all stages prior to the finals, but

still requires a jump in the interrank difference in utiilty of winning the

finals. Figure 1 applies so long as the ordinate is relabeled, with U(W)

replacing W. If players are risk averse then tJ"(W) < 0 and the incentive

maintenance prize structure requires strictly increasing incremental

monetary rewards between adjacent ranks, with a much larger increment be-

tween first and second place. The prize structure is everywhere strictly

convex in rank order, with greater concentration of the purse on the top

prizes than appears In figure 1.

The result is related to an "income effect." When (.1(W) is non-

linear the relevant marginal cost of effort is roughly the marginal rate of

substitution between W and x, or —c'(x)/U'(W). At the target level of

effort c'(x*) is constant, but as a player continues and is guaranteed a

higher and higher rank iJ'(W) declines. The relevant marginal cost of effort

effectively increases in each successive stage. Convexity of reward is

required to overcome these wealth effects and maintain a player's interest

in advancing to a later stage of the game.

Symmetric Win Technologies. The property P(xx) P(x3x) and

p(x,x) 1/2 is crucial to the symmetric equilibrium resulting from specifi-

cation (1). Notice that the proof of constancy of interrank rewards (or

utility of rewards) for incentive maintenance in stages prior to the finals
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rests only on the fact that equilibrium is symmetric, with a survival prob—

ability of 1/2 at every stage of the game. Further, the jump in differen-

tial prize money between ranks one and two is due to the fact that the

chance of continuing to higher ranks ceases in the finals. Hence the result

applies to any symmetric probability specification resulting in a unique

symmetric equilibrium, in which p8 — 1/2 for all s. It remains to be seen

how much broader this class is compared with specification (1). One

intersting possibility is h(x1x)/[h(x1x3) + h(x.x1)] with h1 > 0,

h2 < 0, and h12 < 0. Perhaps such a specification captures the direct

confrontation nature of competition better than (1).

Tie—Breakers and Consolation Matches. It is basically the sur-

vival aspects of the game that lead to the result in figure 1, so any change

in the game structure that preserves the "option value" of continuation

results in an incentive maintenanoe.prize schedule with similar features.

For example, consider an alteration in the structure of figure 2 in which a

branching consolation match is played among the losers of the semifinals,

but no other tie—breakers are allowed. Let and be the prizes of the

winner and loser in the finals as before; and let Wc and be the prizes of

the winner and loser in the consolation match. Then the remaining notation

in sections II and III remains intact.

Let us investigate the prize structure required to maintain effort

at x* in all matches, including the consolation match. In the finals we

know that incentives are determined by the spread —
W2. Similarly incen-

tives in the consolation match are determined, by Wc —
W3.

Therefore equal

effort requires W1 — - — — k (say). Let Vf be the value of reach-

ing the finals and let V0 be the value of the consolation match. Since

p — 1/2 in equilibrium, we have
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VF (W1 + W2)/2
— c(x*) — k/2 + — c(x*)

V0 ( + — c(x*) — k/2 + — c(x*)

In the semifinals incentives are provided by the difference

VF — V0
-

(W2
—

W3).
Therefore to guarantee effort x when s - 2 requires

-
W3

- k. But — - — implies W - W2.
The winner of the

consolation match gets the same prize as the loser of the finals. This

result Is less surprising once one recognizes that these two players win the

same number of matches in the overall tournament.

Given the constraint x5- x*, we have

V2 (1/2)(VF — Vc)
+ V — c(x*) — k + — 2c(x*)

Incentives in the quarter finals are set by V2 — k + — W14— 2c(xfl.

Therefore — x requires V2 — — k, or — 2c(x*). Using (10) to

evaluate c(x*), we have c(x*) — (/c)k/LI, where n and e are evaluated at x.

Therefore — - (/2c)k < k — — W2 — since /2c is less than

unity. One more step is necessary. For S a 3

V3
— (1/2)(V2

—
W14)

+ — c(x*) — k/2 + — c(x*).

Incentives at s - 14 are set by V3 — so x14 - x requires

V3 — — k — k/2 +
(W14

—
W5)

— c(x*), or

— — k/2 + c(x*) — (k/2)(1 + rj/2c) < k. All lower interrank

differences equal W14 — if x* is maintained for all s.
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We conclude that the differences (W1 —
W2)

-
(W0

—
W3)

are larger

than all the rest. Furthermore,

(W3 — W)
—

(W1
—

W5)
— (k/2)[(/2c) — 1] < 0, which impart a slight con-

cavity to the Incentive maintaining prize structure around rank J4• Other-

wise, its general appearance resembles figure 1 If and W2 are both as-

signed R - 2. The schedule Is a little more complicated if effort in the

consolation match is constrained to be smaller than in the finals (and x5 is

constrained to equal x in all other stages). Nevertheless, it resembles

the previous case except > W and (W1 —
U2) (U0 — U3).

The jump at

the top ranking prizes remains.

Equality between W2 and U0 required for constant x5 in this

example suggests that the incentive maintenence prize schedule in a complete

tie—breaking structure awards a constant prize ror each match won, irrespec-

tive of the stage or branch in which the win occurs. Such linearity arises

because complete tie—breakers at every stage require every person to play

the same number of matches in the overall tournament, and the design starts

to resemble a round robin, Certainly a round robin design awards a constant

prize for each match won In the problem analyzed here. Complete tie—

breakers eliminate the survival—elimination elements which are crucial to

8players' incentives and strategies. Extra concentration of the purse on

the top ranking prize always is required for incentive purposes when tie—

breakers are incomplete and confined to later stages of the game. The

underlying logic also suggests that a qualitatively similar result applies

if the tournament structure involves double (or more) eliminations.

Interstage Dependence. That effort/expenditure In any match is

independent between stages implies a strong Markovian, strictly forward

looking propertyof the solution that greatly simplifies analysis. The
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analytical problem is more complex if the path by which a contestant arrives

at any stage affects either the productivity or cost of subsequent effort.

For example, previous effort may increase subsequent productivity (or reduce

subsequent costs) through a force of momentum or reinforcement, similar to a

learning effect. Or current expenditure may deplete energy reserves and

increase subsequent costs or reduce subsequent productivity through fatigue

and "burnout."

The analytical issues raised by these forms of dependence are

clear enough: The sequence (xkJ+1 conditions the functions c(x) or h(x3).

Define a state variable z5 as a function of the sequence (xk}s+1 of previous

actions. Since z3 is given in round s and Is an argument of c(x) or p5 in

(2), it follows that V5 is also a function of z3. Therefore current x8 not

only affects the probability of continuation. It also has a direct effect

on the value of continuation. In the burnout case we have 3V3/3z5 < 0;

whereas momentum Implies v5/az3 > 0. In contemplating action at s a player

rationally takes account of its incremental direct effects on subsequent

valuations (the derivatives above multiplied by dz3_1/dx3) as well as on the

probability of continuing, with the realization that current and possible

future opponents are doing the same thing.

A complete analysis of between stage spillovers Is enormously

complicated by the fact that a player's optimum strategy depends on the

sequence of opponents' past actions as well as on his own and raises dif-

ficult issues of proving existence of equilibrium that are beyond the scope

of this work. Even if a pure strategy equilibrium exists, it may be

asymmetric. The best response functions may appear as in figure . For

example, if fatigue is a factor and the j—player is working hard enough, the

i—player may find it attractive to slack off In the current match, trading
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off a higher probability of elimination against the gain of starting the

next match "fresh" and maintaining a possible winning edge in that (improba-

ble) match. Nonuniqueness plays havoc with the backward recursion.

It is clear intuitively how these effects alter strategies at the

symmetric equilibrium.9 Let the spillover be confined to one round only.

Then the state variable is z51 x5, so In choosing x8 in (U or (9) an

additional term In p5V5_1/3x5 appears on the left hand side. This term is

positive In the case of momentum, so effort in the earlier stages tends to

be larger than indicated above. It is negative when fatigue Is Important,

so early round effort tends to be smaller than Indicated above: Players

tend to hold back effort and coast in the earliest rounds, saving energy for

later stages, should they reach them, where the stakes are larger. In the

first case the.prizestructure has to be more concentrated on the top to

insure a constant interstage intensity of play. In the case of fatigue it

must be less concentrated on the top to discourage early round coasting and

maintain a constant effort level across stages.°

Another more interesting form of interstage dependence arises when

players differ in talent.11 Then the prize structure affects survival

probabilities and the natural selection of players by talent through various

stages of the game. These selection effects interact in an important way

with incentives.

The Poisson specification offers an attractive parameterization in

terms of proportional hazards. Index talent by I and write h1(x)
a1h(x).

An I—player is stronger than a J—player if > because I has a winning

edge of czi/( + a) over J if both exert equal effort. This problem

actually is technically less demanding than the case discussed above because

the backward recursion methodology applies directly. Here V81 in (2) is
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replaced by its expectation as of stage s, and the expected value of

continuation depends on the distribution of talents of players still alive

at s. In choosing a current strategy each player rationally contemplates

the identities of pr'obable future opponents, which in turn depend on the win

probabilities of players in other matches, the conditional talent distribu-

tion surviving the previous stage and the pairing (or seeding) rules of the

game. These interactions provide an interstage linkage that is absent in

the problem addressed here.

The complexity of this more general problem arises from the fact

that the expected value E5V3_1 for any player in (2) depends on what players

are doing in other matches at the same stage. This intermatch dependence

means that strategies are not determined on a 8trictly pairwise basis, as

they are when players are equally talented. Rather, the effort decision

depends on the decisions of players in all other matches as well as on the

decision of the specific opponent. Therefore, it is necessary to study the

sequence of simultaneous 2 player games through the stages. While the

mechanics of this are conceptually straightforward, analytical solutions are

impossible to obtain. Results must be obtained from computer simulation,

which awaits future work. It remains to be seen how the horizon effect

identified here affects the distribution of play intensity throughout the

tournament and how the prize and seeding structure help assure that the best

player wins.

Perhaps study of these highly structured and simple environments

ultimately will illuminate a much bigger set of problems of incentive and

selection in the labor market more generally. If so, this work may be a

little less frivolous than appears on the surface.
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FOOTNOTES

I am indebted to Barry Nalebuff for discussion and correspondence that

helped generalize the result and clarify its Interpretation; to Gary Becker,

James Friedman, Sandy Grossman and Nancy Stokey for advice at an early stage

of the work; and to Robert Tamura for research assistance. The National

Science Foundation provided financial support.

1An esteemed economist and (less esteemed) golfer is said to have

proposed expandIng the dIameter of the cup by a factor of three. The Royal

and Ancient society has not yet acted on this proposal.

do not mean to deny that nonmonetary considerations such as pride,

self-esteem, and the desire for fame do not influence actions. Winning a

prestigious tournament has great value apart from direct prize money In the

form of endoresements and future appearance money, for reasons discussed in

Rosen (1981). Many prestigious tournaments offer smaller purses, probably

for this reason.

3A related discussion appears in Lazear and Rosen (1981). Nalebuff and

StiglItz (1983) consider equilibria involving mixed strategies.

The precise rules of play and procedures used to determine winners

affect the functional forms of c(x) and h(x). For viable games the rules

and calibration of scores must be set so that (13) holds. An Authority is

needed because equipment manufacturers and individual players have strong

private incentievs to create a winning edge by introducing new styles,

techniques of play and complementary capital, Many of these changes are

beneficial and improve the social value of the game, However, those that

greatly escalate the collective costs of all players relative to value for

the group as a whole are prohibited. O'Keeffe et a].. (198Z) provide a

different and interesting discussion of rules in terms of monitoring.
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5Consider a tour of length T over a season, in which the tournament is

repeated T times among the same players. It is conceptually straigtfor—

ward to work out the season (or partial season) rnultlnomial distribution of

earnings among players.

6The purse must be large enough to support V5> 0 for all s. For a

given purse. it is obvious that feasible x is bounded from above for this

condition to hold. Another bound is implied by contestants' outside

opportunities, but is ignored here.

7However, effort has little effect on outcomes when r)/c is small. Such

games generate little spectator interest and offer small prizes.

8That the structure of the game interacts with the incentive effects of

prizes is further illustrated by the example in the appendix. The

sequencing of that game differs from this one.

9Again, it is conceivable that the rules and standards of play are

devised to eliminate the asymmetric equilibria in figure 4. Notice that the

occurrence of turning points in the response functions of figure 3 at

x1 x3 rules out asymmetric equilibria in the problem above.

10Stage dependence without memory is easily analyzed by allowing s to

shift the cost or hazard functions. The analysis above is only slightly

modified. For example write c(x5)f(s). f'(s) > 0 implies reinforcement

because marginal cost declines in later stages. f'(s) < 0 implies fatigue.

The reader is invited to rework the example in section III with this cost

functionto verify the statements in the text.

11Lazear and Rosen (1981) show that a larger prize spread is required

to self—screen less talented players. However, in most games entry is based

on direct performance indicators, not only on self—selection.
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Appendix

Instead of sequential eliminations with paired comparisons, think

of an outright race. n players start, all racing against each other. The

first player to cross the finish line is declared overall winner and

achieves the highest rank. The remaining n — 1. players continue racing,

resetting their effort to take account of the fact that there is one less

player to compete against. The first among these n — 1 to hit the finish

line achieves the second highest rank. Then the n — 2 remaining players vie

for third place, again resetting their efforts to account for the lesser

number of players and the prize money remaining, etc.

This problem also has a recursive structure. Let V be the value

of' racing when t players remain. Then.

(A.1) Vt = max t'n—t÷1 + (1 Pt)Vt_1 — c(x)}
xt

where Pt is the conditional probability of winning. Assuming Poisson

arrivals and equally talented players

h(X,)
(A.2) t1 Eh(X.)

ii

for player i, where the index of summation for j is over all remaining

players including himself. Pt is independent of past action, by assumption.

The Nash solution at each stage is symmetric and shares many of the features

noted above. The only substantial difference is an adjustment for the

change in the number of opponents at each stage.
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Analyzing this game in the same manner as the example in section

III yields recursions (c — 1 is assumed for simplicity)

(A.3) BtW_t+i + (1 —

(A.Z) (t-1)r
[Wt+i

—

1J4 $i

1 t—1
(A.5)

Bt (1 r

Note that in the text, the equivalent of "t" in (A.3)—(A.5) is 2, since

there is exactly one opponent at each stage. In fact, substituting t 2

into (A.5) yields the expression for used in section III. However, here

the number of opponents is changing as the game proceeds so the equilibrium

conditional probability of winning at each stage is l/t rather than 1/2.

incorporates this effect.

Defining V1 — W, the complete solution for is

(A.6) x .!
n{(w_t+1

— W+2) + (1 — 2)(Wt2 —

+ ... Bt_i 8t—2 ... - 82)n_1 - W)).

The ordering of events is reversed from the text (since survival signals a

smaller reward rather than a larger one), but the solution has similar

features after taking account of the stage—varying discount factor.
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Time varying discounts and the presence of the factor (t—1)/t2 in

A.6 make it more difficult to find the Incentive maintaining prize structure

because the schedule contains no linear segments. Some experimentation

shows that it has both concave and convex portions, and the prize money need

not pile up on the top ranks. This example is designed to show that the

tournament design influences the incentive maintenance schedule, but it

otherwise has very limited interest due to the assumed strong Markovian

property that the probability of winning at any stage is independent of how

far one has traveled in the past. Putting memory into this game leads to

the same problems as were identified in section IV. This process is there-

fore better suited to tournaments with a natural survival—sequential

structure, such as In the text.
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TABLE 1

Men's Tennis: 19814 On—Site prize Money Ditribution Formula,
Volvo Grand Prix Circuit

Rank

Prcen of purseB
Grand Slam Events Other Grand Prix

Singles
(128 Draw)

Doubles
(614 Draw)

Singles
(614 Draw)

Doubles
(32 Draw)

1 19.23 27.27 20.51 27.27

2 9.62 13.614 10.26 11.36

3—14 14.81 6.82 5.614 5.91

5—8 2.1414 2.95 3.08 3.18

9—16 1.141 1.36 1.92 2.10

17—32 .77 .68 1.03 1.25

33—614 .145 .140 .143

65—128 .22

Notes

aCovers 80 international single elimination events. On—site money does not
include contributions 'to end—of—season bonus poois. 62.5 percent of the

$2.14M singles pool goes to the top 14 season ranked players and 614.2 percent

of the $.6M doubles pool goes to the top 14 teams.

bTotal tournament on—site purse split 78 percent for singles, 22 percent for
doubles. Figures refer to shares of singles and doubles components of the
total respectively. Each person in a tied rank receives the share
indicated. Weighted shares may not sum to 100 due to rounding.

CFrench Open, Wimbledon, U.S. Open and Australian Open. Draw refers to
number of players or teams. 96 draw singles events are slightly more
concentrated on top ranks.

d_site total purse of $25,000 or more.

Source: Official 19814 professional Tennis Yearbook of the Men's
International Professional Tennis Council. New York, 19814.
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Figure 2: Tournament Design
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Figure 3: Best Reply Functions

Figure 4: Asyannetric Equilibria
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