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and second stages. This instrumental variables strategy applies equally to multinomial choice models
with endogeneity.
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1 Introduction

Heterogeneity among decision makers, be they firms or consumers, is a critical feature of economic
life that is important for the study of many policy problems. For example, some consumers may
value a product characteristic more than others, so that the consumers with higher values might
have less elastic demands. Likewise, more productive firms may have an incentive to adopt a new
technology sooner, so that the returns of early adopters exceed the returns of late adopters.

Increasingly, researchers in industrial organization have begun to analyze the consumption
choices of individual consumers and the production decisions of individual firms. In so far as the
underlying heterogeneity in tastes across consumers and heterogeneity in technologies across firms
is unobserved to the econometrician, the structural error term in the choice model enters in a
generally non-additive way. Furthermore, the form of heterogeneity among agents is not easily
indexed by a finite vector, but rather indexed more naturally by a function, i.e., a utility function
that characterizes a consumer or a production function that characterizes a firm.

This paper presents a general mathematical approach to establishing the identification of the
distribution of heterogeneity in choice models in which agents are indexed by functions that capture
their tastes, technologies, etc. Our identification results are nonparametric in two respects: we
do not impose parametric assumptions on the functions that characterize individual agents or on
the distribution of heterogeneity. Nonparametric and flexibly parametric estimators have been
proposed for estimating the distribution of heterogeneity in structural models. However, less work
has been done showing the identification of such models. Without showing identification, a full
proof of the consistency of nonparametric estimators cannot exist. Additionally, nonparametric
identification reveals what types of economic model parameters can be learned from a given type
of data, and thus provides a foundation for applied work.

The key strength of our approach is that we develop an identification condition expressed
directly in terms of the choice behavior of agents within the model. We use the term “choice
model” in a broad sense as a term for any model that specifies the response of an agent with
certain characteristics to an economic environment with specified characteristics. If an agent is
characterized by a vector of functions θ ∈ Θ, and the economic environment is summarized by
x ∈ X , then the model is given by the relation y = f(x; θ), where y ∈ Y is the agent θ’s choice
behavior at x ∈ X .1

While the econometrician has data to identify the joint distribution of (y, x) in the underlying
population of agents, the agent’s characteristics θ are unobservable and heterogeneous among
agents. Knowledge of the population distributionG of the unobservable characteristics θ is essential
for answering particular economic questions, and it is this distribution that constitutes the target
of identification.

1Any observable characteristics of an agent are included in the economic environment x.
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Choice models of the above form play a prominent role in the applied literature in labor and
industrial organization. We develop an identification condition for abstract choice models and
show that the condition holds under general conditions in several applied settings. The condition
is relatively easy to verify because it is expressed in terms of the decisions that heterogeneous agents
make at various choice situations. We focus on applications that extend the relevant model-specific
literature in important directions.

We first study the identification of nonadditive random functions (a subject first begun by
Matzkin for the case of scalar heterogeneity), where the economic environment X ⊂ RK is finite
dimensional, a type θ is an unknown function g : X → Rm , and for any x ∈ X , f(x; θ) = g (x).
The function g is random from an econometric perspective as it is heterogeneous in the underlying
population of agents and cannot be conditioned on by the econometrician. We show that with
minimal restrictions on the functional space Θ, we can identify the distribution of marginal effects
Dg (x) at any point x ∈ X . The distribution of marginal effects cannot be observed directly from
the data (because the econometrician cannot condition on an individual’s g and hence cannot
directly observe how any individual responds to changes in x). We also study the full, structural
identification of the distribution of g. That is, we identify a distribution over random functions
themselves. Thus for example, if we are studying productivity, we identify the distribution over a
space of production functions, without limiting attention to a parametric family. For example, we
identify the fraction of firms with Cobb-Douglas production functions, the fraction with translog
production functions, and so on.

The above results are obtained under the assumption of independence between the regressors
x and the structural error term θ. We show that endogeneity can be addressed with instruments
and a triangular structure that significantly extends known results on models with endogenous
regressors. Extensions of 2SLS to handle heterogeneous, including non-monotone, responses to
the instrument are a special case of our results. In a model with a continuous treatment and
a continuous instrument for treatment, those who respond more to the treatment can respond
more to the instrument for treatment, as might be expected if agents choose treatment levels to
maximize their utilities. Further, responses to both the treatment and instrument can be non-
monotone: some may increase the treatment intensity as the instrument increases, and some may
decrease the treatment intensity.

In industrial organization and marketing, the multinomial choice model is a key tool for demand
estimation. In this model, each consumer chooses between J choices. There is a choice specific
“special” regressor wj for each j ∈ J , and a vector v of remaining choice and consumer character-
istics. A consumer type θ corresponds to a vector of utility functions u(v) = (u1 (v) , . . . , uJ (v))
that give the utility values across choices for all possible values of v. As types are heterogeneous,
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the J functions are random across the population. The model is completed by the choice function

f ((v, w) , θ) = arg max
j∈J

uj (v) + wj .

The outcome in this case is y = j, a discrete choice. For full identification of the model, we wish
to identify the joint distribution of the J utility functions. Full identification allows the researcher
to compute any counterfactual or welfare measure. We allow some elements of v to be endogenous
regressors. We discuss extensions to purchases of bundles of items and to the pure characteristics
demand model, which weakens support conditions on the wj ’s.

All of these cases are applications of our general mathematical framework for identifying distri-
butions of unobserved heterogeneity and can be extended to other economic models (that is, other
combinations of what a type θ represents and the form of the choice model f(x; θ)). In a separate
paper, we use the framework to explore the identification of the distribution of heterogeneity in
selection and treatment effect models, where the selection decision is a multinomial choice (Fox and
Gandhi, 2009). In that paper, we present results that extend and generalize those in the literature
on selection and treatment effects.

2 The Identification Problem

We consider a general class of economic models where each modelM can be described by a tuple
M = (Θ,X ,Y, f). The set Θ denotes a functional space representing the feasible set of types of
agents admitted by the model. The set X denotes the set of economic environments in the support
of the data generating process. The set Y is the (measurable) outcome space. The function
f : X × Θ → Y maps an agent’s type θ ∈ Θ and economic environment x ∈ X to an outcome
y = f(x, θ) ∈ Y. The joint distribution of outcomes and environments (y, x) is identified from the
i.i.d. data. What remains to be identified is the distribution of types G ∈ G in the population,
where G is a set of probability measures over Θ.2

Let A ⊆ Y be a measurable subset of the outcome space. Assuming stochastic independence
between the structural error θ and the covariates x, if G0 ∈ G is the true distribution of types in
the population, we have that

PrG0 (A | x) = G0 ({θ ∈ Θ | f(x, θ) ∈ A}) =
∫

1 [f(x, θ) ∈ A] dG0 (θ) . (1)

Thus the distribution G0 is identified up to the measure it assigns to sets of the form IA,x =
{θ ∈ Θ | f(x, θ) ∈ A}, which are indexed by a point x and a set A ⊆ Y. The problem is whether

2In parametric models, the type space Θ is a finite dimensional space. One of the main innovations of the paper
is to treat the type space Θ as an infinite dimensional functional space. For the development of the general theory,
however, we make no explicit use of any structure on Θ and thus treat it as an arbitrary type space.
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the class of such sets IA,x is rich enough to point identify G0 within a class of distributions G.
To state this problem precisely, let Pr (· | x) be a probability measure over Y for a given value

x ∈ X of the environment. Let P = {Pr (· | x) | x ∈ X} denote a collection of such probability
measures over all possible economic environments and let P denote the set of all such collections
P . Then we can view (1) as a mapping L : G → P. We will say the modelM is identified relative
to G if L is one-to-one. That is, M is identified relative to G if and only if for any G,G′ ∈ G
and G 6= G′, there exists an experiment in the data (A, x) where A ⊆ Y and x ∈ X such that
PrG (A | x) 6= PrG′ (A | x), where PrG (· | x) and PrG′ (· | x) are the images ofG andG′ respectively
under L.3

The critical question behind the identification problem is whether the same economic population
G facing exogenously varying economic environments x ∈ X will have revealed preferences, in
the form of the reduced form relationship in the data Pr (A | x), that are informative enough to
identify G. Mathematically, the identification problem can be understood as an existence problem.
Identification requires showing that, for any two potential distribution of types, there always exists
an experiment in the data (A, x) that can empirically distinguish between these distributions. In
the next section, we show that if the economic model M satisfies a separability condition, then
that ensures the existence of such an experiment, and hence identification.

We focus on nonparametric identification, which in our context means that we do not put any
parametric structures on either the type space Θ or the set of distributions G.4 Our main restriction
is that we take G to be the class of all discrete distributions over Θ. Thus the restriction being
placed on the distribution of types G ∈ G is that the set of types having positive support in the
population is at most countable. However the location of the support points and their masses are a
priori unknown and need to be identified from the data. Thus G constitutes an infinite dimensional
space of distributions. The class G can be defined without requiring any a priori structure on Θ,
thus allowing us to be fully nonparametric about the type space Θ.5 As will be demonstrated later,
the ability to be fully nonparametric about Θ allows for the general applicability of our results to
specific economic contexts.6

The focus of this paper is on identification and not estimation. Demonstrating that a model is
3In an appendix, we discuss extending this definition of identification to require that a positive probability of

such distinguishing experiments x exists. Identification with a positive probability is straightforward to verify for
the models we study in this paper once their identification under the definition presented in the main text has been
established.

4A lack of nonparametric identification calls into question any parametric estimator of the model: apparently
the parametric estimator is only consistent because of parametric functional form restrictions either on the types θ
or the distribution G.

5This contrasts with the class of distributions that admit density functions, which is non-nested with the class
of discrete distributions, and would have to be defined contingent on the measurability properties of the underlying
space Θ. This is difficult to do with general infinite-dimensional spaces.

6One defense of the restriction to countable distributions is that the true world is finite. In many of our results, we
need to use only variation in X over the rationals, which is a countable set. In particular, the countable application
in Appendix B requires only variation in X in the rationals. Therefore, we can assume symmetric amounts of
variation in θ and x in the true data generating process.
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identified does not rule out the ill-posed inverse problem: the inverse of the operator L may not
be continuous (in some topology) in the data function P .7 Thus, nonparametric estimators must
adopt some solution to ill-posedness. Bajari, Fox, Kim and Ryan (2009a), or BFKR, present a
nonparametric, computationally simple, sieve, linear least squares mixtures estimator for economic
choice models. They prove that their estimator of the true distribution G is consistent in the
Lévy-Prokhorov metric, if the model is identified. BFKR primarily focus on models where the
heterogeneity arises from a finite vector of random parameters rather than an entire function.
However, a common function known up to a heterogeneous, finite vector of parameters is a special
case of our framework that studies heterogeneous functions. Further, the approach in BFKR could
be extended to estimate distributions over functions, with possible additional complexity.8

Section 3 presents our identification results for generic economic choice models. Section 4 uses
the framework to identify the full distribution of functions in the nonadditve random functions
model. Section 5 applies the framework to identify the distribution of marginal effects at a point in
the nonadditive random functions model. Section 6 considers multinomial choice models, including
those with complementarities across multiple products. Finally, Section 7 investigates nonadditive
random functions and multinomial choice models with endogenous regressors. In each of the model-
specific sections, we discuss how our results extend the literature on identification for that specific
class of model. Appendix A discusses identification with positive probability (in terms of the x’s).

3 The Main Result

Recall the basic question is whether the class of sets of the form IA,x = {θ ∈ Θ | f (x, θ) ∈ A}
generated by the modelM is rich enough to identify G0 within the class of countable distributions
G. We now show that an affirmative answer to this question holds under a condition on M that
we term separability. Separability is a strengthening of what is clearly a necessary condition for
identification: for any two types θ and θ′, there exists an A ⊂ Y and x ∈ X such that f(x, θ) ∈ A
and f(x, θ′) /∈ A, i.e., θ and θ′ can be separated by (A, x). In order to state separability formally,

7The space of countable distributions is dense in the space of all probability measures over Θ so long as Θ is
a metrizable topological space (Aliprantis and Border, 2006, Theorem 15.10). Even if a G with countable support
is a good distribution to some distribution G′ in the space of all distributions, the image of G may be a poor
approximation to G′ if L is not continuous in G.

8Some alternative estimators include the nonparametric maximum likelihood estimator of Laird (1978), intro-
duced to economics in Heckman and Singer (1984). Computational approaches to approximating the NPMLE
include the EM algorithm of Dempster, Laird and Rubin (1977) and the iterative procedure of Li and Barron
(2000). Train (2008) considers a series of estimators that rely on the EM algorithm. A large literature in both
frequentest and Bayesian statistics considers the estimation of finite and continuous mixtures models with and
without covariates (Barbe, 1998; Day, 1969; Roueff and Rydén, 2005). Rossi, Allenby and McCulloch (2005) and
Burda, Harding and Hausman (2008) provide flexible Bayesian mixtures estimators for the distribution of random
coefficients in the logit and logit-probit models. Hoderlein, Klemelä and Mammen (2008) study the linear regression
model with random coefficients. Another use of the term “identification” in this literature is when a particular
mixtures extremum estimator has a unique extremum in a finite sample (Lindsay and Roeder, 1993).
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we first define I-sets, which are objects that play a critical role in the remainder of the paper.

Definition 3.1. For any set of types T ⊂ Θ, and for any A ⊆ Y and x ∈ X , the I-set ITA,x is
defined as

ITA,x ≡ {θ ∈ T | f (x, θ) ∈ A} .

An I-set is the set of types within an arbitrary subset of types T whose response is in the set A
at the covariates x. The key feature of I-sets is that they are strictly a property of the underlying
economic choice modelM (and is independent of the particular distribution of heterogeneity G).
Our main result shows that if I-sets exhibit enough variation, then identification is achieved.

Definition 3.2. The modelM is countably separable if, for any countable set of types T ⊂ Θ,
there exists a singleton I-set ITA,x.

9

We now state and prove our main result.

Theorem 3.3. If the model M is countably separable, then the model is identifiable with respect
to G, the class of countable distributions.

Proof. Recall that identification requires showing that the mapping L : G → P defined by (1) is
one to one. Thus for G0, G1 ∈ G with G0 6= G1, we must have that PrG0 (A | x) 6= PrG1 (A | x) for
some A ⊆ Y, x ∈ X . In particular, for any point P ∈ L(G), we show that L

(
G0
)

= L
(
G1
)

= P

implies G0 = G1.
Observe that we can represent any G ∈ G by a pair (T, p), where T = {θ1, . . .} ⊂ Θ is a

countable set of types and the probability vector p = {pθ}θ∈T puts non-negative masses that sum
to one over T . Given the representation (T, p) for G ∈ G, we can express (1) as

PrG (A | x) =
∑
θ∈IT

A,x

pθ. (2)

If G0 is represented by (T 0, p0) and G1 is represented by (T 1, p1), then we can redefine p0 and
p1 so that G0 and G1 are represented by (T, p0) and (T, p1) respectively, where T = T 0 ∪ T 1 (for
example, if θ ∈ T −T 0, then set p0

θ = 0). T is countable because the union of two countable sets is
countable. Moreover if we define the vector {πθ}θ∈T such that ∀θ ∈ T, πθ = p0

θ−p1
θ, then G

0 = G1

if and only if πθ = 0 for all θ ∈ T .
Our goal is to show that L

(
G0
)

= L
(
G1
)
implies G0 = G1. Observe that L

(
G0
)

= L
(
G1
)

implies that for all A ⊆ Y and x ∈ X , PrG0 (A | x) = PrG1 (A | x) = Pr (A | x), which by (2)
9In the definition, T ⊂ Θ can be any arbitrary countable subset. The full set of feasible types Θ within the

model is typically an uncountably infinite set that is quite distinct from the countable subset T considered in the
definition.
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implies that ∑
θ∈IT

A,x

πθ = 0, (3)

for all I-sets ITA,x. We now show that πθ = 0 for all θ ∈ T . Assume to the contrary that
T2 = {θ ∈ T | πθ 6= 0} is non-empty. By separability, we can produce a singleton IT2

A,x = {θ?}.
Furthermore, we can re-write (3) as∑

θ∈IT
A,x

πθ =
∑
θ∈IT2

A,x

πθ +
∑

θ∈IT−T2
A,x

πθ =
∑
θ∈IT2

A,x

πθ = πθ? 6= 0,

which contradicts (3). Hence it must be that T2 is empty, and thus πθ = 0 for all θ ∈ T .

The above theorem is properly viewed as an existence theorem, and asserts that under separa-
bility of the model, an identifying experiment (A, x) must always exist.10

We discuss the identification of distribution of nonadditive random functions in the space of
countable distributions in Appendix B. For the main body of the text, we restrict attention to
distributions that take on finite, not countable, support (which we refer to as the class of finite
distributions). The proof of Theorem 3.3 can be adapted without change for the case where
separability applies to finite sets.

Definition 3.4. The modelM is finitely separable if, for any finite set of types T ⊂ Θ, there
exists a singleton I-set ITY,x.

Theorem 3.5. If the model M is finitely separable, then the model is identifiable with respect to
G̃, the class of finite distributions.

As the proof is identical, we omit it. We learn the number of support points, the identity of
support points, and the mass of each support point in identification. As the number of support
points of an element of G̃ can be arbitrarily large, it is not possible to reject the finite support
assumption with a finite dataset.11

While we have defended the class of distributions G on the grounds of its sufficient generality,
the ideas behind separability can also be applied if we impose the alternative restriction that every

10The identification is non-constructive in the sense that it does not attempt to recover the underlying distribution
over types (T, p) from the distribution of the data P = {Pr (· | x) | x ∈ X}. That is, we do not consider a structure
(T, p) to be the value of a functional H (P ) of the data P (which is a typical approach used in the nonparametric
identification literature because it ties identification to an analog estimator, see, e.g., Chesher 2003). Rather the
theorem shows the weaker result that the mapping L : G → P is injective. But this is the defining property of
nonparametric identification; different structures have different observable implications.

11The class of finite distributions G̃ over any infinite-dimensional set Θ is an infinite-dimensional space. Assume
to the contrary that the space G̃ was instead k-dimensional for a finite integer k. Then any k+1 elements of G̃ would
be linearly dependent. Let δθ denote the Dirac delta probability measure that assigns mass 1 to θ ∈ Θ. Because Θ
is an infinite set, we can always find k+1 elements of Θ, say {θ1, . . . , θk+1}, and as a result we can always find k+1

elements of G̃, namely {δθ1 , . . . , δθk+1}. However {δθ1 , . . . , δθk+1} can never be a linearly dependent set. Thus G̃
must be infinite dimensional.
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G ∈ G admits a density function. This is discussed in Appendix C. It is important to observe
that the class of distributions that admit a density function is not more general than the classes of
countable or finite distributions. We provide the argument in Appendix C only to show robustness
of the intuition behind separability.

While separability is sufficient for identification, we have not claimed that it is necessary. Te-
icher (1963) and Yakowitz and Sprangins (1968) investigate the identification of finite mixtures in
statistical models without covariates.12 They show that a necessary and sufficient condition for
identification with respect to finite mixtures is that a statistical model satisfies a linear indepen-
dence property.

The key advantage of separability over the linear independence characterization of identifica-
tion is that it is more immediately useful. In the context of an economic choice model, linear
independence is a non-primitive assumption on the model, and showing linear independence ofM
would be equivalent to showing identification itself. The key contribution of separability is that
it is expressed in terms of the primitives of an economic choice model and thus can be verified on
the basis of the underlying behavior of the agents in the modelM and the variation in the data.
We demonstrate the applicability of separability in the remainder of the paper.

3.1 The No Ties Property on Function Spaces

Verifying that a choice modelM satisfies separability is closely related to the underlying functional
space Θ satisfying a “no ties” property that we formalize below. There are two versions of the no
ties property, both a strong and a weak version, and both properties are satisfied by functional
spaces that are quite commonly used in economic models. We use one version or the other of the
assumption in all sections of the paper except the section on identifying marginal effects, which
operates in a more general function space. To establish some notation, for a given non-empty
rectangle X ⊆ Rk, let Ck,mX denote the set of continuous functions from X to Rm.

Definition 3.6. A set of functions Fk,mX ⊆ Ck,mX satisfies the strong no ties property (SNTP) if
for any finite subset of functions {g1, . . . , gn} ⊂ Fk,mX and any open U ⊆ X , there exists a point
x ∈ U such that gi(x) 6= gj(x) for any distinct gi and gj in {g1, . . . , gn}.

The SNTP is in a specific sense a “generic” property of Ck,mX . To see this, let Pk,mX ⊂ Ck,mX
denote the set of vector valued polynomial functions over X , i.e., g = (g1, . . . , gm) ∈ Pk,mX if and
only if gi : X → R is a polynomial function over X for each i = 1, . . . ,m. Notice that Pk,mX is
an infinite dimensional functional space, and it satisfies the SNTP. If X is closed and bounded,
then by the Stone-Weierstrass theorem Pk,mX is dense in Ck,mX in the sup norm. More generally,

12Blum and Susarla (1977) and Bach, Plachky and Thomsen (1986) have extended work on linear independence
and finite mixtures to, respectively, the non-nested class of distributions that admit a density and the class of all
distributions.
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the set Ak,mX of vector valued real analytic functions (which contains Pk,mX ) satisfies the the SNTP.
See Appendix D for a proof.13 Even more generally, we can apply Zorn’s lemma to produce a
maximal set of functions Sk,mX ⊂ Ck,mX that satisfies the SNTP and contains Pk,mX as a subset. In
the applications to follow, we will use this maximal set Sk,mX as the functional space satisfying the
SNTP.

A more general condition than the SNTP is the weak no ties property (WNTP), which relaxes
the need to break ties in any open set U ⊆ X .

Definition 3.7. A subset Fk,mX ⊆ Ck,mX satisfies the weak no ties property (WNTP) if for any
finite subset {g1, . . . , gn} ⊂ Fk,mX there exists x ∈ X such that gi(x) 6= gj(x) for any distinct gi
and gj in {g1, . . . , gn}.

Once again Zorn’s lemma applies and there exists a maximal subsetWk,m
X ⊂ Ck,mX that satisfies

the WNTP and contains the class of polynomials as a subset.14 In the applications to follow, we will
use the maximal set Wk,m

X as the function space satisfying WNTP. Observe that by construction
Sk,mX ⊆ Wk,m

X .
In the remainder of the paper, we show finite separability and hence identification of choice

models M with respect to the finite distributions G̃ by exploiting the SNTP or the WNTP on
the underlying functional space of types Θ. Showing identification with respect to countable
distributions would analogously proceed by establishing countable versions of the WNTP and
SNTP. We show an example of just such a result for the case of identifying countable distributions
over the space of non-additive random function in Appendix B.

13Real analytic functions are defined formally in the appendix, but roughly speaking, they are functions that can
be parameterized by a countable parameter vector. The previous literature studies identification of the distribution
of random coefficients in the linear regression model. The linear regression model nests polynomials of an a priori
fixed order. The space of real analytic functions nests all polynomials of any finite order as well as polynomials of
countable order. Examples of real analytic functions include the simple functions such as exp, sin, and log, as well
as algebraic combinations and compositions of these functions. Commonly used production and demand functions,
such as the translog, are real analytic.

14Zorn’s lemma states that for any partially ordered set, if every chain has an upper bound, then the set has at
least one maximal element. To see the applicability of Zorn’s to existence of a maximal set of functions satisfying
the SNTP or the WNTP, let us consider the WNTP (the SNTP argument follows similarly). Let P

“
Ck,mX

”
denote

the power set (the set of all subsets) of continuous functions from the non-empty rectangle X ⊆ Rk to Rm, and
consider the set of sets W =

n
A ∈ P

“
Ck,mX

”
| A satisfies the WNTP

o
. W is partially ordered under the subset

relation ⊆, and consider any chain D ⊂ W (a totally ordered subset). The set ∪A∈DA is an upper bound for D
under the order ⊆, and hence we need only show that ∪A∈DA ∈W , i.e., that it satisfies the WNTP. Consider any
finite set of functions {g1, . . . , gn} ∈ ∪A∈DA. By the fact that a chain is totally ordered, there exists a A∗ ∈ D such
that {g1, . . . , gn} ⊂ A∗. Because A∗ satisfies the WNTP, we can find x ∈ X such that gi 6= gj implies gi(x) 6= gj(x).
Hence ∪A∈DA ∈W .
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4 Identifying Distributions over Nonadditive Random Func-

tions

The most basic choice model we consider, which generalizes the nonparametric regression model,
is identification over nonadditive random functions. In this model, the economic environment is
summarized by x ∈ X ⊂ Rm. A type θ is a function g : X → Rm, and the choice model is such
that g’s choice behavior at x ∈ X is f(x, g) = g(x). The technical assumptions on the model are
as follows.

Assumption 4.1. X is a non-empty rectangle.

In this paper, we allow only continuous covariates in X . If discrete characteristics d exist, we
can condition on them. In other words, we can identify a distribution G (g | d) over functions
g (x | d) for each observable value of d.

Assumption 4.2. Economic environments x ∈ X are distributed independently of types g ∈ Θ.

Assumption 4.3. The type space Θ is equal to the Wk,m
X .15

In the standard nonparametric regression model that is typically taken to economic data, if an
agent’s choice variable is a multivariate outcome y ∈ Rm, then heterogeneity among agents can
be summarized by a finite dimensional vector ε ∈ Rm, and furthermore it is often assumed that
the choice model is y = f(x, ε) = f(x) + ε. The structural error term ε in the nonparametric
regression model is thus both finite dimensional and enters the choice model in an additively
separable fashion. In the present model, the structural error term g is neither finite dimensional
(indeed it has support in an infinite dimensional functional spaceWk.m

X ) nor does it enter the choice
model f in an additive way. A key example is identifying the distribution of production functions
among firms in an industry. Abstracting for the moment from the problem of endogeneity in a firm’s
choice of inputs (an issue we address later in the paper), if we observe variation in the input choices
across firms, the present section shows that we can nonparametrically identify a distribution over
an infinite-dimensional space of production functions. For example, we can recover the fraction
of firms with Cobb-Douglas production functions, translog production functions, and so forth. In
order to identify production functions through the lens of the traditional nonparametric regression
model, it must be assumed that all firms have the same underlying technology (as captured through

15We explore identification using a local space X . The ability to identify a distribution of functions using local
support arises from the WNTP. In principal, we could split the master space Rk into many disjoint subsets X . One
could apply the identification arguments in this paper for each subset X separately. The maximal set Wk,m

X will
vary with X .
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f(x)), and all heterogeneity amongst firms must occur along a Hicks neutral productivity dimension
(as captured through the scalar total factor productivity ε).

Using our main result Theorem 3.5, the proof of identification in the present case is straight-
forward. For notational ease, we introduce the following shorthand notation that will be used
in the remainder of the paper to define a particular form of an I-set. For any z ∈ Rm, let
Az = {y ∈ Rm | y ≤ z}. We will use the simpler I-set notation ITz,x to denote the I-set ITAz,x

.
Thus for any subset of types T ⊂ Θ, ITz,x = {g ∈ T | g(x) ≤ z}.

Theorem 4.4. Under Assumptions 4.1, 4.2, and 4.3, the distribution of nonadditive random
functions G (g) is identified with respect to G̃, the class of finite distributions.

Proof. We show that the model satisfies finite separability. Thus take any finite subset of types
T = {g1, . . . , gn} ⊂ Θ. We now show how to produce a singleton I-set of the form ITz,x. As Θ =
Wk,m
X is assumed to satisfy the WNTP, then there exists an x ∈ X for which all functions in T take

distinct values. For this x ∈ X , let z denote a minimal element from the set {gi(x) | i = 1, . . . . , n},
where the order is the standard partial order on Rm given by ≤. A minimal element always exists
by the finiteness of the set. By the choice of x, there is a unique j ∈ {1, . . . , n} for which gj(x) = z,
and because z is minimal, ITz,x = {gj}, and thus we have a singleton.

4.1 Literature Review for Nonadditive Random Functions

A literature focuses on the nonparametric identification of the distribution of random coefficients in
the linear regression model (Beran and Millar, 1994; Hoderlein, Klemelä and Mammen, 2008). To
our knowledge, there is no general treatment of the identification of heterogeneous coefficients in
parametric, nonlinear models. We go beyond even this and show identification where a particular
type lies in an infinite dimensional space that includes the space of polynomials and real analytic
functions. We know of no other work that attempts to identify a nonparametric distribution over an
infinite dimensional, nonparametric class of functions in the context of nonparametric regression.
We discuss the extension of Theorem 4.4 to endogenous regressors in a later section.

Matzkin (2003) studies the identification of models of the form y = f (x, θ) where f is an
unknown function that is common across agents and θ is an unobservable scalar that varies across
agents. Matzkin considers three identification conditions, including when f (x, θ) is restricted to
be monotone in θ. We study models of the form y = f (x, θ) = g (x) where θ = g is an unknown
function that varies across agents. Our notation drops the distinction between the homogeneous
function f and the scalar heterogeneous disturbance θ in Matzkin’s notation. In our notation, each
agent has its own function. We identify a distribution over an infinite-dimensional space rather
than one infinite-dimensional function and a distribution over a scalar.
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5 Identifying Distributions of Marginal Effects

In the previous section, we nonparametrically identified a distribution over random functions g(x)
from data F (y | x) on the conditional distributions of choices y given environments x. Having
identified the distribution G over random functions g ∈ Wk,m

X , any counterfactual of interest can
be computed. For example, the distribution of the treatment effect g(x1) − g(x0) can be derived
from knowledge of G. Knowledge of F (y | x) by itself without identification of G is only sufficient
to identify the average treatment effect (ATE) E[y | x1]−E[y | x0] = Eg [g (x1)− g (x0)], because
of the linearity of expectations. Unless the treatment effect is homogeneous for all members of
the population, which is implied by the standard additive representation of heterogeneity in the
nonparametric regression model y = f(x)+ε, then more policy information is learned by identifying
G from F (y | x).

In some cases, the policy counterfactual of interest is the treatment effect associated with a
marginal change in x, namely the distribution of marginal effects Dg (x∗) for some specified x?,
where Dg (x) is the derivative of the function g : X → Rm at an interior point x ∈ X . Recall that
the derivative of a multivariate function from Rk to Rm at a point x is a linear transformation
from Rk to Rm that can be represented by the Jacobian matrix

Dg (x) = Jg,x =


∂g1(x)
∂x1

· · · ∂gm(x)
∂x1

...
. . .

...
∂g1(x)
∂xk

· · · ∂gm(x)
∂xk

 ,
where ∂gm(x)

∂xk
is the derivative of the mth outcome with respect to the kth input. As each type

g ∈ Θ (assuming it is differentiable) gives rise to such a k×m Jacobian matrix Jg,x for any interior
x ∈ X , there exists a distribution of the Jacobian Jg,x∗ at x∗ induced by the distribution G over
random functions g. Recall that the distribution of marginal effects cannot be directly observed
in the data, as we observe only cross-sectional data and so cannot link the same individuals across
different x environments (as can be done with panel data).

If the distribution of the marginal treatment effect is the policy counterfactual of interest, then
rather than seek identification over random functions g, which is sufficient for identifying the policy
counterfactual, we can seek identification of the distribution of marginal effects directly. This more
limited identification question allows us to relax altogether the assumption made in the previous
section that the type space Θ satisfies the WNTP. Thus suppose that the counterfactual of interest
is the distribution over the marginal treatment effect Jg,x∗ at an interior point x∗ ∈ X . Let the
underlying type space Θ denote all functions from X to Rm that are differentiable at x∗. Observe
that within Θ, there exist types g 6= g′ that differ from each other globally (there exist a z ∈ X such
that g(z) 6= g′(z)) but have the same local behavior at x∗ (g(x∗) = g′(x∗) and Dg(x∗) = Dg′(x∗)).
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From a policy perspective that is concerned with the distribution of marginal effects at x∗, the
distinction between g and g′ is not policy relevant.

Thus we group all policy equivalent types in Θ as members of the same equivalence class. Let ∼
denote the equivalence relation among elements of Θ defined as g ∼ g′ if and only if g(x∗) = g′(x∗)
and Jg,x∗ = Jg′,x∗ . The relation ∼ forms equivalence classes and we let the set of equivalence
classes form a new type space that we denote as Θx∗ . For any equivalence class [θ] ∈ Θx∗ (which
consists of all policy identical functions from Θ), we choose any representative member function
g ∈ [θ] to represent the choice behavior of the class. We let this representative member function g
stand for the class [θ] as a whole.

The policy problem is to identify the distribution H over the policy relevant type space Θx∗ .
Given any rectangle X ⊂ Rk containing x∗, we can show finite separability of the model and
hence identification. This is a natural conclusion: given arbitrarily local variation in economic
environments about x∗ we can identify the distribution of marginal effects at x∗.

This is the main lemma that produces the key tie breaking result that we need to generate a
singleton.

Lemma 5.1. For any finite set of functions gi : X → Rm for i = 1, . . . , n that are differentiable
at x∗ ∈ X , if gi(x?) = gj(x?) and Dgi (x?) 6= Dgj (x?) for all i 6= j, then for any ball Bε (x?) with
ε > 0, there exists a xε ∈ Bε (x?) such that gi (xε) 6= gj (xε) for all i 6= j.

The proof is Appendix E. The lemma does not require the WNTP or the SNTP, which is why
the following theorem uses assumptions weaker than Theorem 4.4.

Theorem 5.2. Under Assumptions 4.1 and 4.2, the distribution H over the type space Θx? is
identified in the class of finite distributions H̃. That is, the distribution of marginal effects at x?

is identified.

Proof. The proof verifies verifies finite separability of the model. Consider a finite subset of types
T = {g1, . . . , gN} ⊂ Θx∗ . There are two cases to consider.

The first case is that there is a unique type in T who has a minimal response at x?. Let
{g1(x?), . . . , gN (x?)} be the set of responses of the types in the I-set at x?. Let y? be a minimal
vector from this set. If there a unique type gi in T such that y? = gi (x?), then we have that ITy∗,x?

is a singleton, namely a set consisting of only the single type gi.
The second case is when multiple types take on the minimal value y? at x?, and thus ITy∗,x∗ is

not a singleton set. Observe that since T is finite and since each g ∈ T is continuous, there exists
an ε > 0, say ε̄, such that x ∈ Bε̄(x∗) implies that for g ∈ ITy∗,x and g′ ∈ T − ITy∗,x∗ , g′(x) � g(x)
(since by construction g′(x∗) � g(x∗)). In addition, observe that for any pair of functions gi and
gj in ITy∗,x∗ , gi (x?) = gj (x?) but Dgi (x?) 6= Dgj (x?). Thus by Lemma 5.1, for any ε > 0, there
exists a xε ∈ Bε (x?) such that gi (xε) 6= gj (xε) for all pairs of functions gi and gj in ITy∗,x∗

. Choose

14



ε > 0 small enough so that for any x ∈ Bε(x?), x ∈ X and ε < ε̄. Then for any x ∈ Bε(x?),
there exists a minimal element y∗ of the set {g1(x), . . . , gN (x)} that is attained by a unique type,
y∗ = gi(x) for a unique type gi ∈ T .16 Thus ITy∗,x is a singleton consisting of only gi.

5.1 Literature Review for Marginal Effects

Hoderlein and Mammen (2007) and Hoderlein and Mammen (2009) (and the references in those
papers) study the identification of the average (mean) marginal effect, E [Dg (x)], at x?. Our
framework allows us to identify the distribution H of marginal effects Dg(x), not only the mean.
Further, they study only the case of m = 1, or a scalar outcome. We allow for a vector valued
outcome variable.

6 Multinomial Choice

Multinomial choice is a key model used in empirical industrial organization to model consumer
demand. Demand functions are useful for measuring market power and predicting the welfare gain
from new goods. This section shows how discrete choice models of demand are nonparametrically
identified within our framework. Furthermore, we differentiate our framework from the existing
literature on identification in multinomial choice by showing that we are able to relax the large
support assumptions on the “special regressor” that has now become standard in the literature.

6.1 Base Case for Multinomial Choice

Consider an agent θ making a discrete choice from among J products and one outside good. Let
Y = {0, 1, . . . , J}, where 0 is the outside good. Each product j ∈ Y − {0} is characterized by a
scalar characteristics wj ∈ R. We let v ∈ RK denote the observed characteristics of the consumer
and the menu of product characteristics (the J products) excluding the scalar characteristics,
w = (w1, . . . , wJ). We let x = (v, w) ∈ RK+J denote the entire menu of consumer and product
characteristics including the scalar characteristics. We will follow the usual convention that the
permissible range of variation in each wj for j ∈ J is independent of the product characteristics v.

Assumption 6.1. Let V ⊂ RK , the support of v, be a non-empty rectangle. Let x = (v, w) ∈ X =
V ×W1 × · · · ×WJ where Wj = R for each j ∈ J .

16To see this point more precisely, observe that a minimal element of the set {g(x) | g ∈ ITy∗,x∗} is attained by a
unique type in ITy∗,x∗ . This follows from the construction that at x, all types in ITy∗,x∗ make distinct choices. Let
this unique type be denoted as gi. Then by construction of ε < ε̄, y∗ = gi(x) continues to be a minimal element of
the set {g(x) | g ∈ T}, and gi ∈ T is the unique type at which y∗ is attained.

15



A type u =
(
u1, . . . , uJ

)
is a vector of functions of the product characteristics v ∈ V .. That is, a

type is a function u : V → RJ . Utility functions are heterogeneous across the units of observation.
The goal is to identify their distribution.

Assumption 6.2. The function u is statistically independent of the observable choice set x =
(v, w).

Furthermore, to show separability, we will need a monotonicity assumption for the special
regressor wj .

Assumption 6.3. The utility of a type u purchasing product j is uj (v) + wj.

The additive separability of wj ensures that at any v there will be a set of wj ’s where a given
type u will switch to a different choice. We also introduce an outside good that we label good
j = 0 whose utility is normalized to 0 for each agent. An agent’s response at x = (v, w) is given by

f (x, θ) = arg max
j∈Y

{
uj(v) + wj

}
,

where u0(v)+w0 ≡ 0. Further, we enforce the partial tie-breaking rule that if arg maxj∈Y
{
uj(v) + wj

}
=

0, then the outside good is chosen.17 We restrict attention to utility functions that satisfy the weak
no-ties property.

Assumption 6.4. The type space Θ of feasible utility functions is equal to the weak no tie breaking
set WK,J

V .

A few comments on the model are in order. A special case of this framework is when only the
components of v corresponding to product j enter uj (v): uj(v) = uj (vj).18 Letting the utility
to product j also depend on the characteristics of products k 6= j can capture the idea of context
or “menu” effects in consumer choice. Even if such effects are not economically desirable, there is
no cost to us in mathematical generality and thus we let the whole menu enter as an argument
to each uj . The choice-specific scalar wj , however, enters preferences in an additively separable
way (and hence preferences are quasilinear in this scalar characteristic). One example is that wj
could be the price of good j, in which case uj (v) is type u’s reservation price for product j, and
preferences are better expressed as uj (v) − wj . However, wj could be some non-price product
characteristic or, with individual data, an interaction of a consumer and product characteristic,
like the geographic distance between a consumer and a store.

17The tie breaking rule is not essential to the overall identification argument. Once an identifying experiment has
been found using this tie breaking rule, we can find another identifying experiment that does not depend upon any
particular form of the tie breaking rule.

18An even more typical empirical specification is when an agent u’s sub-utility functions uj are the same across
j = 1, . . . J , and each agent also receives a product-specific “idiosyncratic” error term εj . This is a special case of
the framework we consider.
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Implicit in the quasilinear representation of preferences uj (v) + wj is the scale normalization
that each type’s coefficient on wj is constrained to be 1. The normalization of the coefficient on
wj to be ±1 is innocuous; choice rankings are preserved by dividing any type’s utilities uj (v) +wj

by a positive constant. Thus if w admitted a type-specific coefficient α > 0, then the type (u, α)
would have the exact same preferences as the type

(
u(v)
α , 1

)
. The assumption that wj has a sign

that is the same for each type u is restrictive. Such a monotonicity restriction on one covariate
will be generally needed to show reducibility in the variety of discrete choice models we present.
The sign of wj could be taken to be negative instead (as in the case where wj is price), and it is
trivial to extend the results to the case where wj ’s sign is unknown a priori.

We will later discuss the “large support” assumption on the support of each wj and how the as-
sumption’s role contrasts with the role it plays in other approaches to identification in multinomial
choice. For now we have the main result.

Theorem 6.5. Under assumptions 6.1, 6.2, 6.3, and 6.4, the distribution of utility functions in
the multinomial choice model is identified with respect to G̃, the class of finite distributions.

Proof. We verify finite separability. Let a finite T ⊂ Θ be given, where T = {u1, . . . , uN} and each
ui is a vector of utility functions. An I-set is

IT0,v,w = {u ∈ T | f ((v, w) , u) = 0} ,

or just those types u ∈ T that pick the outside good 0 at x = (v, w). To show separability, we will
find a x = (v, w) such that IT0,v,w is a singleton.

According to Definition 3.7, there exists a v ∈ V such that ui (v) 6= uj (v) for all ui 6= uj ,
ui, uj ∈ T . Because the vector of u (v)’s at v ∈ V for u ∈ T is finite, there exists a minimal vector
ui (v). By minimal vector, we mean ujk (v) > uji (v) for some j ∈ Y − {0}, ∀uk 6= ui, at v. There
could be multiple minimal vectors; we focus on one. Then set the vector −w = ui (v). This means
that the vector of product specific utilities ui (v) + w = 0 for type ui. By the tie breaking rule,
type ui (x) purchases the outside good. All other types uj ∈ T − {ui} purchase an inside good at
x = (v, w), as ujk (v) > uji (v) for some j ∈ Y − {0}, ∀uk 6= ui, at v. Thus, IT0,v,w = {ui}.

A major difference relative to the simultaneously-developed literature is that we identify the full
joint distribution of J utility functions

{
uj (·)

}J
j=1

. For example, Berry and Haile (2008) identify
a distribution Ft (· | v) of utility values t = (t1, . . . , tJ) conditional on v, where tj = uj (v) for a
particular v. Identifying an unconditional distribution of utility functions rather than a conditional
distribution of utility values has several uses in structural empirical work. For example, utility
functions can be used to compute the utility differences of particular structural types u at old
and new choice sets. For example, our theorem allows us to compute the joint distribution of{
uj (v′) + w′j − uj (v)− wj

}J
j=1

, the utility improvement for each of the J products if choice sets
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or observable consumer characteristics in x = (v, w) change. We can also calculate the distribution
of {

arg max
j∈Y

{
uj (v′) + w′j

}
− arg max

j∈Y

{
uj (v) + wj

}}
, (4)

the differences in maximized utility values, one version of a “treatment effect” for changing (v, w)
to (v′, w′). By contrast, the distribution Ft (t1, . . . , tJ | v) does not assign utility to particular
structural types, and so a researcher cannot calculate (4). The lack of utility functions prevents
the researcher from computing a distribution of welfare changes, a major use of structural demand
models.19

6.2 Support Conditions on the Special Regressors w

An alternative identification strategy in multinomial choice is to vary the vector of special regres-
sors (w1, . . . , wJ) so as to “trace” the CDF of the underlying distribution of latent utility values
(t1, . . . , tJ) =

(
u1(v), . . . , uJ(v)

)
conditional on v (Matzkin, 1993; Lewbel, 2000; Berry and Haile,

2008). More precisely, fixing the product characteristics v ∈ V , this literature considers identifi-
cation of the joint distribution of the latent utilities (t1, . . . , tJ) by tracing the CDF through the
relationship

Pr (j = 0 | w1, . . . , wJ , v) = Ft (−w1, . . . ,−wJ | v) ,

where the random vector t = (t1, . . . , tJ) has a joint distribution characterized by the conditional
CDF Ft(· | v). Thus using variation of the special regressors w = (w1, . . . , wJ) over all of RJ

while holding fixed the value of v ∈ V enables identification of the conditional CDF Ft (· | v) for
all v ∈ V .

A problem with the tracing-the-CDF approach is the requirement that the scalar characteristics
(w1, . . . , wJ) have full support over RJ , and hence these characteristic have acquired the title of
“special regressors” in the literature. Of course, if the researcher restricts utilities uj (v) so that
they are bounded a priori for any v, say between [−m,m], then wj would only require variation
between [−m,m]. Thus “large support” more specifically refers to the requirement that the support
of (w1, . . . , wJ) covers the support of the latent utilities (t1, . . . , tJ) for any value of the product
characteristics v ∈ V . Unfortunately, there does not exist any natural way to bound the support
of (t1, . . . , tJ) for even a fixed v ∈ V . Hence the support requirement on (w1, . . . , wJ) cannot be
shrunk beyond RJ if the CDF is to be traced using (w1, . . . , wJ) for each v ∈ V .

We now show (for the first time to our knowledge) that a nonparametric random utility model
can be identified with an arbitrarily small support on the special regressors by exploiting restrictions
from economic theory (that is, adding a restriction on preferences to the above general model of
demand). We achieve this result using separability and, as we show, the same result could not be

19Using the Berry and Haile Ft (t1, . . . , tJ | v), the researcher can calculate E
ˆ
t′1 + w′1 | x′

˜
− E [t1 + w1 | x], as

this requires only distributions of utility values at each choice set, not the distribution of utility functions.
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attained by an approach to identification that tries to trace the CDF, thus distinguishing the role
that the special regressor plays in the two contexts. The application also highlights an important
advantage of identification via separability: as separability is a primitive of the economic model
itself, it can more easily incorporate theoretical restrictions on the model to aid with identification.

The particular economic restriction that we draw upon is a variant of the “pure characteristics”
demand model (Bajari and Benkard, 2005; Berry and Pakes, 2007), which assumes that all types
u ∈ Θ value products for their characteristics v and not because of an idiosyncratic taste shock εj .

Assumption 6.6. Let V ⊂ RK , the support of v, be a non-empty rectangle. Let x = (v, w) ∈
V ×W1 × · · · ×WJ for Wj = [−δj , δj ] for some scalar δj > 0 for each j ∈ J .

Thus the special regressors have arbitrarily small support. We now strengthen the structure
on the space of utility functions.

Assumption 6.7. The type space Θ of utility functions is a subset of of the no tie breaking set
SK,JV that satisfies the following: there exists an interior point v0 ∈ V ⊆ RK such that for all
u ∈ Θ, uj

(
v0
)

= 0 for all j ∈ J .

The product characteristics v0 correspond to a menu of characteristics in which all of the inside
goods are identical to the outside good (and hence all agents value them identically). Thus for
any menu of characteristics v inside a small ball Bε

(
v0
)
around v0, all inside goods are “similar”

to both each other and the outside good. If the modelM admits such an v0 ∈ V , then we refer to
it as a pure characteristics demand model.

Importantly, identification will not require large support on either v or w.

Theorem 6.8. Under assumptions 6.2, 6.3, 6.7, and 6.6, the joint distribution of utility functions
in the pure characteristics multinomial choice model is identified with respect to G̃, the class of
finite distributions.

Proof. We verify finite separability. Let a finite T ⊆ Θ be given. For each u ∈ T , by continuity
there exists εu such that v ∈ Bεu

(
v0
)
implies

∣∣uj(v)
∣∣ < δ for all j ∈ Y. Take ε = minu∈T εu.

Also, by the definition of the SNTP, there exists v ∈ Bε(v0) such that ui (v) 6= uj (v) for all
ui 6= uj , ui, uj ∈ T . Then the remainder of the proof of Theorem 6.5 can be used to complete the
argument.

Thus under the pure characteristics assumption, so long as there exists product characteristics
in the support of the data generating process that are arbitrarily close to the point at which
all goods are identical (in characteristics) to the outside good, we can achieve identification via
separability. The main purpose of this demonstration is to distinguish the role of the special
regressor in the proof of separability form the role of the special regressor in tracing the CDF.
The underlying population of latent utilities

(
u1(v), . . . , uJ(v)

)
cannot be bounded for all u ∈ Θ
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when v 6= v0, and hence the support requirement needed to trace the CDF cannot be shrunk from
Wj = R for any such v. Using separability, however, the economic restrictions implicit in the pure
characteristics model can be used as information that allows us to substantially relax the support
requirement on the special regressor.

6.3 Purchasing Multiple Products with Complementarities or Substi-
tutes in Preferences

Gentzkow (2007) and Liu, Chintagunta and Zhu (2008) study choice situations where each discrete
choice j = 0, . . . , J indexes a bundle of composite choices. For example, a consumer can purchase
cable television separately (j = 1), purchase an internet connection separately (j = 2), purchase
both cable television and an internet connection together as a bundle (j = 3), or purchase nothing,
the outside good (j = 0). The goal in this situation is to distinguish between explanations for
observed joint purchase: are consumers observed to buy cable television and an internet connection
at the same time because those who watch lots of television also have a high preference for television,
or is there some causal utility increase from consuming both television and internet together? The
goal is to distinguish unobserved heterogeneity in preferences for products, which may be correlated
across products, from true complementarities.

In our notation, unobserved heterogeneity is just captured by a distribution G (u) that gives
positive correlation between the utility functions u1 (v), u2 (v), and u3 (v). True complementarities
are measured by

∆ (v) ≡ u3 (v)−
(
u1 (v) + u2 (v)

)
.

If utility is uj (v)−wj and wj is the price of j, then ∆ (v) is the monetary value of complementarities
to the consumer. ∆ (v) > 0 represents a positive benefit from joint consumption. As utility
functions are random functions across the population, there is a distribution of complementarity
functions ∆ (v) implied by G (u).

As we have already explored in Theorems 6.5 and 6.8, we can identify the joint distribution
of heterogeneity, which means we can identify the distribution of complementarities as a function
of the joint distribution G (u), if prices wj are bundle-specific. Thus, we need to observe different
choice situations where the bundle is or is not aggressively priced relative to the singleton packages.
This is the data scheme for Liu et al.: they observe different bundles of telecommunications services
at different prices, across geographic markets.

6.4 Literature Review for Multinomial Choice

Matzkin (2007) surveys the literature on heterogeneous choice, emphasizing the scarcity of results
on discrete choice models about the nonparametric identification of the distribution of heterogene-
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ity, the distribution G of u, even though random coefficients are a critical tool in the empirical
literature. Even papers that emphasizes the flexibility of a particular specification for heterogeneity
do not formally prove identification (McFadden and Train, 2000; Rossi and Allenby, 2003; Burda
et al., 2008).20

Briesch, Chintagunta and Matzkin (2009) study the identification of a discrete choice model
where the payoff to choice j is V (j, s, vj , ω) + εj , where V is a nonparametric function and ω is a
scalar unobservable that enters the utility functions for all J choices. For multinomial choice, the
most commonly used empirical model with unobserved heterogeneity is the random coefficients
logit model. Bajari, Fox, Kim and Ryan (2009b) were the first to prove the identification of the
random coefficients logit model with continuous characteristics. They use calculus to show that all
of the moments of the random coefficients are identified. The proof relies on linearity, uj = x′jβ,
but, unlike other work, only variation in x′jβ around the value xj = 0 is needed. Neither of the
papers above deal with endogenous regressors.

Some differences with the paper by Berry and Haile (2008) are mentioned above. We discuss
this paper below in the section on endogenous regressors, as well. Chiappori and Komunjer (2009)
discuss some assumptions under which they can show the identification of a multinomial choice
model without additive regressors. Manski (2007) considers the identification of a counterfactual
choice function when there is a fixed number of decision problems x and hence a fixed number
of types with different responses at those x’s. He also imposes independence between choice sets
x and preferences and focuses on set identification. We point identify a distribution of utility
functions on the space of all functions satisfying the WNTP, Definition 3.7.

Studying the special case of J = 1, one inside good and one outside good, Ichimura and
Thompson (1998) use the Cramér and Wold (1936) theorem for identification, which relies critically
on a linear index functional form: uj (v, w) = v′jβ+wj . We use only the quasilinearity of uj (v)+wj
in wj and the WNTP. A space of linear functions distinguished by the parameter β trivially satisfies
the WNTP. A key assumption in both papers is monotonicity in at least one regressor wj . Ichimura
and Thompson also need full support on all covariates (both v and w) to apply the Cramér-Wold
theorem. Further, Ichimura and Thompson need an identification condition that reduces to our
monotonicity condition that the sign of wj in uj (v) +wj is known. We need large support on only
w in Theorem 6.5. Gautier and Kitamura (2007) provide some alternative identification arguments
(the results are the same) and a computationally-simpler estimator for the model of Ichimura and
Thompson.

20There is a some work on multinomial discrete choice models examining the nonparametric identification of the
distribution of a choice-specific error εj and related parameters in models without random coefficients or random
functions (Manski, 1975; Thompson, 1989; Matzkin, 1993; Lee, 1995). There is a larger literature on binary choice
and ordered choice , such as Manski (1975), Cosslett (1983) and many others.
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7 Endogenous Regressors

7.1 Endogenous Regressors and Nonadditive Random Functions

Endogenous regressors are often encountered in social-science applications. Thus in the context of
nonadditive random functions, where a type is a mapping g : RK → RM , it is possible that some
subset of the regressors, say the first J < K regressors are not stochastically independent of an
agent’s type g ∈ Θ (due perhaps to endogenous sorting into x’s). Denote the first J regressors
(the endogenous regressors) as x̃ = (x̃1, . . . x̃J) and the last N = K − J regressors (the exogenous
regressors) as x = (x1, . . . xN ).

Endogenous regressors show up in a variety of applications where modeling heterogeneity is
critical. For example, if a type g corresponds to a demand function that is heterogeneous across
markets, then characteristics such as price are often dependent with g itself (markets with less
elastic demand will face a higher price). Likewise, if a type g corresponds to a production function,
which is heterogeneous across firms, the firm’s choice of inputs x will typically depend on the firm’s
technology g whenever firms choose inputs to maximize profits.

To handle the endogeneity problem, we extend the use of instrumental variables to allow for
both heterogeneity in the primary economic equation (that is heterogeneity in random functions
g), along with heterogeneity in how a type responds to the instrument. That is, we treat the IV
equation as a non-additive random function as well. In particular, we assume that there exists a
vector of instruments z = (z1, . . . , zJ) ∈ Z ⊂ RJ that are independent of the type g and that along
with the exogenous regressors x ∈ X determine the endogenous regressors through an auxiliary
equation x̃ = h (x, z).21 A type consists of a pair of functions (g, h) , and the choice model in turn
can be expressed as a recursive system of equations. For an economic environment (x, z) ∈ X ×Z
and type (g, h), the choice model f ((x, z) , (g, h)) predicts two outcomes, namely x̃ ∈ RJ and
y ∈ RM , where

y = g (x̃, x)

x̃ = h (x, z) .

While the choice model can be solved to yield a reduced-form relationship y = r (x, z) = g (h (x, z) , x),
the structural object of interest for policy analysis is the distribution of the causal relationship
g (x̃, x). In particular, if the distribution G of types (g, h) can be recovered, then we can recover the
distribution of the causal or marginal effect ∂

∂x̃g (x̃, x), which in many cases is the main structural
feature of interest.

21We work with the just-identified case where there are as many instruments as there are endogenous regressors.
Our result extends in a straightforward fashion to the overidentified case where there are more instruments than
endogenous regressors.
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The essential feature of the model is that the exogenous variables (x, z) are stochastically
independent of the type (g, h), although the distribution of g can depend on x̃ conditional on the
exogenous regressors (x, z), which is the source of the endogeneity problem. A special case of this
model is linear 2SLS where all of the coefficients in both the outcome and IV equations are random
with potential joint dependency in the coefficients across equations. That is, the random coefficients
in the primary equation have an unrestricted joint distribution with the random coefficients in the
IV equation.

We will show nonparametric identification of heterogeneity so long as the instruments satisfy a
local full rank condition, which amounts to the instruments being capable of varying the endogenous
regressors locally in an open set for any type. We formalize the conditions on the model below.

Assumption 7.1. Let the support of the exogenous variables (x, z) be the Cartesian product X×Z,
where X ⊆ RN and Z ⊆ RJ are both non-empty rectangles.

We impose the following restriction on the functional space of types, which requires that a type
(g, h)’s outcome equation g lie in a functional space satisfying the SNTP and that the IV equation
h lie in a functional space satisfying the WNTP, and further that the IV equation is capable of
“moving around” the endogenous variables in a sense we make formal below.

Assumption 7.2. The type space Θ is a subset of SK,MRK ×WK,J
X×Z such that the following conditions

hold: (i) For any type (g, h) ∈ Θ, the derivative Dzh(x, z) of a type’s IV equation with respect to
the instruments everywhere exists in the interior of X × Z, and is continuous in (x, z) ∈ X × Z;
and (ii) For any type (g, h) ∈ Θ, and for any interior x ∈ X, the derivative Dzh(z, x) with respect
to z has full rank J for almost all (in the sense of Lebesgue measure) z ∈ Z.

Such a full rank restriction is a formal way of saying that the instrument z is a locally powerful
instrument almost everywhere. For any type (g, h) ∈ Θ, almost everywhere local variation in z

can induce the endogenous regressors (x̃1, . . . , x̃J) to vary locally in a full rank way, holding the
exogenous regressors x fixed. Thus fixing x ∈ X and for almost all z ∈ Z, the local variation in x̃
induced by the local variation in z is not restricted to a lower dimensional subspace.

Finally, to be valid instruments, the instruments must be independent of the agent’s type.

Assumption 7.3. The type (g, h) is stochastically independent of the instruments and exogenous
regressors (x, z).

We now show that we can use the variation in the exogenous variables to identify the distribution
G over the space of types Θ.

Theorem 7.4. Under assumptions 7.1, 7.2, and 7.3 the distribution of nonadditive random func-
tions (g, h) with endogenous regressors is identified with respect to G̃, the class of finite distributions.
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Proof. We proceed by showing finite separability of the model. Thus we take an arbitrary finite
set of types T ⊂ Θ and seek to construct a singleton I-set. To fix I-set notation, observe that the
choice variables of the model are (y, x̃) ∈ RM+J and the exogenous variables are (x, z) ∈ X × Z.
Hence for any finite set of types T ⊂ Θ, we consider I-sets that take the form22

IT(y,x̃),(x,z) = {(g, h) ∈ Θ | h(x, z) = x̃ and g (h(x, z), x) = y} .

Let T1 =
{
h ∈ WK,J

X×Z | ∃ g ∈ S
K,M
RK such that (g, h) ∈ T

}
. That is, T1 is the set of distinct

IV equations that arise within the set of types T . By definition of the WNTP, there exists a tie
breaking point (x, z) ∈ X × Z (which without loss can be assumed to be an interior point) such
that for any distinct functions hi and hj in T1, hi(x, z) 6= hj(x, z). Consider a point x̃∗ from the
set of values {h(x, z) | h ∈ T1}. By construction, x̃∗ is attained at a unique h ∈ T1; a unique
h ∈ T1 satisfies x̃∗ = h(x, z). Let us denote this unique h ∈ T1 as h1. By finiteness of the number
of types in T1 and the fact that each h ∈ T1 is continuous, h1(t1, t2) 6= h(t1, t2) for all h ∈ T1 with
h 6= h1 and all (t1, t2) ∈ U ⊆ X ×Z, where U is a sufficiently small open neighborhood containing
(x, z). There are now two cases to consider.

In case 1, the set T2 = {(g, h) ∈ T | h = h1} is a singleton, which contains the single type
that we denote as (g1, h1). If we let y∗ = g1(x̃∗, x), then IT(y∗,x̃∗),(x,z) is a singleton, namely a set
consisting of only (g1, h1) ∈ T .

In case 2, we have that the set T3 =
{
g ∈ SK,MRK | (g, h1) ∈ T2

}
is not a singleton. Observe that

by Assumption 7.2, , we can find a z∗ ∈ Z such that (x, z∗) ∈ U and the Jacobian Dzh1(x, z∗) has
full rank J . Furthermore, by continuous differentiability of h1, the Jacobian Dzh1(t1, t2) has full
rank J for all (t1, t2) in a sufficiently small ball V ⊆ U containing (x, z∗).

As a consequence of the Jacobian having full rank everywhere in V , the change of variable
mapping (x, z) 7→ (h(x, z), x) defined over V , which we denote by R, is an open mapping by
consequence of the open mapping theorem,23 and thus the image R(V ) is an open set in RK .
Now using the SNTP, there exists (x′, z′) ∈ V ⊆ X × Z such that for all distinct functions
gi and gj in T3, gi (h1 (x′, z′) , x′) 6= gj (h1 (x′, z′) , x′). We can now repeat the argument from
case 1 to generate a singleton I-set. That is, we can pick any point y∗ from the set of values
{g(h1(x′, z′), x′) | g ∈ T3} ⊂ RM , and observe that by construction y∗ is attained at a unique
g ∈ T3, which we can denote as g1. Then observe the I-set IT(y∗,h1(x′,z′)),(x′,z′) is a singleton
consisting of only the type (g1, h1).

22In terms of the main Theorem 3.5, we are considering measurable subsets in the choice outcome space of the
form Ay,x̃ ⊂ RM+J , where Ay,x̃ is a singleton set {(y, x̃)}. We are thus using the notation IT

(y,x̃),(x,z)
as shorthand

for what is more formally expressed as IT
Ay,x̃,(x,z)

.

23The matrix of partial derivatives of R is of the form A =

»
Dxh(z, x) IN
Dzh(z, x) 0J,N

–
, where IN is an identity matrix

with N rows and 0J,N is a matrix of all 0’s with J rows and N columns. The matrix A is invertible because
Dzh(z, x) is invertible. Therefore, by the open-mapping theorem, (x, z) 7→ (h(x, z), x) is an open mapping.
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7.2 The Generality of the Identification Result for Endogenous Regres-
sors

The generality of the identification argument we have just proved should not be lost in the notation.
A very special case of Theorem 7.4 is showing identification for a linear IV model, 2SLS, with
random coefficients in both the first stage and the outcome equation. Let y, x̃, x and z all be
scalars for exposition. The a type (h, g) is a system of equations

x̃ = a0 + axx+ azz

y = b0 + bxx+ bx̃x̃, (5)

where a type θ can be represented as the unknown, random parameters θ = (a0, ax, az, b0, bx, bx̃).
Theorem 7.4 shows that the joint distribution of θ, G (θ), is identified using local variation in y, x̃,
x and z. Of course the linearity in (5) is just an example; Theorem 7.4 identifies a joint distribution
over functions in a nonparametric function space.

The system (5) allows more general economic behavior than has previously been shown to
be identified in the literature. In common with much of the literature, the response to x̃ is
heterogeneous, as bx̃ is a random coefficient. However, here the response to the instrument, az,
is also a random coefficient. In contrast with the assumptions made in the literature on the
local average treatment effect (LATE, see Imbens and Angrist (1994)) and some selection models
(Vytlacil, 2002), some agents may have az > 0 and respond positively to the instrument, and other
agents may have az < 0 and respond negatively to the instrument.24 Further, the response to the
instrument may be correlated with the response to the treatment. The joint distribution G (θ)
may be such that those agents with the most to the gain from the treatment (a high marginal
effect bx̃) tend to have a high az. For a given z, this model allows agents to sort into an intensity
of treatment x̃ based on the expected gains from treatment, bx̃.

Consider an example. Firms differ in both their input demand functions (the first stage) and
their production functions. Let y be the log output of a firm, x the age of the firm (which is
independent of θ), x̃ the log number of workers hired by the firm (an endogenous choice variable),
and z the price of labor. In this example, variation in input costs allow identification of the
distribution of production functions in some industry. This framework is general. First, firms
vary in how labor inputs affect outputs: the labor input elasticity bx̃ is heterogeneous. Second,
firms with higher labor elasticities may have higher input demand elasticities: Corr (az, bz) > 0.
Third, there is no monotonicity in az, some firms may have az < 0. Say the price of labor goes up
everywhere and workers are laid off at some firms. Then, due to a general equilibrium effect, some
firms might actually increase their labor inputs. Identification of G (θ) allows the identification of

24The treatment effect literature tends to focus on discrete endogenous regressors; we focus on endogenous re-
gressors with continuous support. We show identification of the full selection model in Fox and Gandhi (2009).
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the joint distribution of az and bz as well as of the other coefficients.

7.3 Endogenous Regressors in Multinomial Choice

We now consider the endogeneity problem that arises in multinomial choice. Recalling the dis-
cussion of the multinomial choice model in Section 6.1, an endogeneity problem arises when an
agent’s preferences as captured by the utility function u are not independent of some elements of
the agent’s choice set (v, w). Such endogeneity could arise if, for example, the choice set x = (v, w)
that an agent faces is partly “designed” on the basis of information related to its type or prefer-
ences u. A classic example of this source of endogeneity arises in a principal-agent relationship, in
which the principal designs the menu of contracts (v, w) facing the agent using information that is
correlated with the agent’s type u but that is not observable by the econometrician. The principal
has incentives (i.e., screening) to use all information in contract design. Therefore, the endogenous
choice of a menu of choices will induce a statistical endogeneity problem.25

In this section, we show how to solve the endogeneity problem posed by endogenous product
characteristics in multinomial choice by way of a triangular system of equations that follows much
the same logic as endogenous regressors in nonadditive random functions. Essentially, the trian-
gular system jointly models the decisions of both the principal and the agent, and uses exogenous
variation in the characteristics of the principal-agent relationships to achieve identification. Recall
the notation from Section 6.1 in which an agent is described by a utility function u : RK → RJ ,
and given v ∈ RK and w ∈ RJ , the agent has utility for choice j given by uj(v) + wj . Following
the notation of Section 7.1, we let the first M elements of the vector of choice characteristics v
be potentially endogenous, and denote these elements by ṽ ∈ RM and the remaining exogenous
elements by v ∈ RN where N = K−M . We refer to these endogenous elements ṽ as the principal’s
“prices” as they are strategically set by the principal.

To handle the problem, we introduce a vector of instruments z = (z1, . . . , zM ) ∈ Z ⊆ RM that
are stochastically independent of preferences u. In addition, the instruments are capable of shifting
the endogenous choice characteristics through the principal’s “pricing;; or IV equation ṽ = h(v, z)
for z ∈ Z, v ∈ V , and h : X × V → RM .26 Thus a type corresponds to a pair of functions (u, h)
consisting of a vector valued utility function and an IV equation. The model is such that for
any economic environment x = (v, w, z), the response f ((v, w, z), (u, h)) consists of the principal’s

25Pioner (2008) presents an alternative approach to identification based on a particular model of screening by a
monopolist.

26We do not allow the w’s to be endogenous or enter the pricing equation. For example, the w’s could reflect
variation or information that is unobserved and exogenous to seller behavior. Or the w’s can capture an observable
consumer attribute, such as location, but one that the seller cannot use as a basis for price discrimination does not
conveys information on a consumer’s preferences u.
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choice of prices ṽ and the agent’s choice of product j that are linked through the recursive system

j = arg max
j∈Y

{
uj(ṽ, v) + wj

}
ṽ = h(v, z).

Thus a type (u, h) indexes a principal agent relationship, where the pricing equation h is potentially
heterogeneous due to differing information sets or preferences among principals. Of course the
joint distribution G((u, h)) over types allow the principal’s pricing function h to be stochastically
dependent with the agent’s preferences u, reflecting the fact that the principal can condition
its pricing policy h on information related to the agent’s preferences u that is unobserved to
the econometrician. The instruments z are most naturally interpreted as the marginal costs of
providing each good, although they could represent any observed characteristics of the principal,
including observed dimensions of its information set or any other demographic taste shifters.

By assuming exogeneity of (v, w, z) however, we are assuming that the process that matches
principals to agents is exogenous and only pricing is endogenous (otherwise agents with certain
unobservable preferences may be more likely to match with principals with certain observables,
thus making z an invalid instrument). Extending our framework to deal with endogenous matching
is a current subject of research. Nevertheless there are numerous applied settings that fit our
current version of the model. Consider Einav, Jenkins and Levin (2009), where the principal is
a subprime auto dealer and the agents are the customers who exogenously arrive and desire cars
with certain characteristics (x,w). The principal can design contract terms such as the minimum
down payment and the interest rate. Consumers will have heterogeneous preferences over minimum
down payments and interest rates, perhaps reflecting varying liquidity constraints.

Assumption 7.5. Assume that (v, w, z) has support equal to the product set X = V × RJ × Z,
where V ⊆ RN and Z ⊆ RM are non-empty rectangles.27

We assume that utility functions lie in a set satisfying the SNTP and the pricing/IV equations
lie in a set satisfying the WNTP and satisfy a similar instrumental variable assumption as used in
the previous section.

Assumption 7.6. The type space Θ is a subset of SK,JRK ×WK,M
V×Z such that the following conditions

hold: (i) For any type (u, h) ∈ Θ, the derivative Dzh(v, z) of a type’s IV equation with respect to
the instruments everywhere exists in the interior of V × Z, and is continuous in (v, z) ∈ X × Z ;
and (ii) For any type (u, h) ∈ Θ, and for any interior v ∈ V , the derivative Dzh(v, z) with respect
to z has full rank J for almost all (in the sense of Lebesgue measure) z ∈ Z.

27Thus we let the special regressor have full support and no longer require the pure characteristics assumption. We
could alternatively impose the pure characteristics assumptions and instead let the special regressor have arbitrarily
small support.
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Finally the stochastic independence between the exogenous regressors and the type

Assumption 7.7. The instruments and exogenous regressors (v, w, z) ∈ X are statistically inde-
pendent of the type (u, h) ∈ Θ.

Our main result is that the endogenous multinomial choice model is reducible and hence iden-
tifiable.

Theorem 7.8. Under assumptions 6.3, 7.5, 7.6, and 7.7, the distribution of (u, h) ∈ Θ in the
multinomial choice model with endogenous regressors is identified with respect to G̃, the class of
finite distributions.

Proof. We provide only a sketch of the details of the proof as it is largely a repetition of techniques
for showing finite separability that have already been illustrated in the previous theorems. For any
finite set of types T ⊂ Θ, we form a singleton I-set of the form

IT(0,ṽ),(v,w,z) =
{

(u, h) ∈ T | h(v, z) = ṽ and uj (h (v, z) , v) + wj ≤ 0 ∀j ∈ {1, . . . J}
}
,

where recall good 0 is the outside option that has a normalized utility of 0. The I-set corresponds
to the set of types whose IV equation yields p at (v, w, z) and choose the outside good.

The proof for showing the existence of such a singleton I-set exactly follows the proof of
Theorem 7.4, except with a relabelling of the relevant terms. In particular, u, v, ṽ play the role of
g, x, x̃, respectively, from this previous proof, while h and z play the same role in both contexts.
Replacing these terms (and adjusting the relevant dimensions of the model), the proof can be
followed exactly until the end of case 2. Instead of picking an arbitrary point u∗ ∈ RJ from the
set of values {u(h1(v′, z′), v′) | u ∈ T3}, we instead pick a minimal element, which by construction
is attained at a unique u ∈ T3, which we denote u1. Then setting the special regressors w to w∗ =
−u1, we have that IT(0,h1(v′,z′)),(v′,w∗,z′) is a singleton, consisting of only the type (u1, h1) ∈ T .

7.4 Literature review on endogenous regressors

Our results on endogenous regressors are particularly notable. For example, Chesher (2003) stud-
ies the nonparametric identification of a triangular system of equations where the functions in the
system are non-random: the same for all types. Heterogeneity enters only through scalar error
terms in each equation, and those error terms are assumed to enter the non-random functions
monotonically. We allow each type to have its own function and we impose no monotonicity as-
sumptions about how unobservables relate to outcome variables and endogenous regressors. We
also do not impose monotonicity assumptions on how the instruments affect endogenous regressors,
which are common in the literature on treatment effects (Imbens and Angrist, 1994; Vytlacil, 2002).
Newey and Powell (2003) use a mean independence assumption in a model where heterogeneity
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enters the outcome equation as only an additive error, instead of a random function. Imbens and
Newey (2008) study a system (g, h) like ours, except that the heterogeneity in the IV equation h
is restricted to be a scalar. We allow h to be a random, nonadditive function. Further, Imbens
and Newey require the scalar disturbance to enter h strictly monotonically. Imbens and Newey
also define to the object of interest to be what they describe as a quantile structural function. We
show the full identification of all aspects of our model, namely the joint distribution of the het-
erogeneous functions (g, h). There are many other approaches in the nonparametric instrumental
variables literature (see the above papers for more references); we know of no others that identify
a distribution over systems of functions.

Hoderlein, Klemelä and Mammen (2008) examine a linear triangular system such as (5), except
that the coefficients a0, ax, az from the first stage are homogeneous. Only the parameters in the
outcome equation are heterogeneous. Their approach relies critically on linearity, while we identify
a nonparametric distribution on a nonparametric class of functions.

As discussed above, Berry and Haile (2008) and our paper simultaneously developed approaches
to identifying the distribution of heterogeneity in multinomial choice models. An additional dis-
tinction is that Berry and Haile adopt a different approach to endogeneity. They require both
individual and aggregate or market-level data and assume that the endogeneity occurs only in
variables (like price) that vary at the market but not individual levels. They use individual data to
trace out utility realizations within a market and variation across markets to address an endogene-
ity problem. One could replace their step where they trace out utility values with our Theorem
6.5.

8 Conclusions

There exist few nonparametric identification theorems for the distribution of heterogeneity in
many economic models estimated every day in applied microeconomics. We introduce a property
of economic models, known as separability, that is a sufficient condition for identification of the
distribution of heterogeneity.

Our first application of separability is to identifying a distribution of nonadditive random
functions. While others have explored distribution of random coefficients in the linear regression
model or allowed for other aspects of unobserved heterogeneity, we are the first to work in the
generality of identifying a distribution over a space of heterogeneous functions. We also explore
identification of the distribution of marginal effects. The latter result does not rely on either the
strong or weak no-ties properties.

In terms of multinomial choice, relative to the literature we have a least seven contributions:
1) we study multinomial choice and not just binary choice, 2) we do not rely on the assumptions
of linearity and large support in all characteristics needed to apply the Cramér and Wold theorem,
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3) we identify the joint distribution of product-specific utility functions for all choices rather than
just utility values conditional on v, 4) we are nonparametric on the subutility function uj (v)
for choice j, 5) we allow for endogenous characteristics such as prices, 6) we show how to analyze
multiple purchases when some goods can be complements and preferences may be correlated across
multiple products, and 7) we show that we do not need large support if demand is given by the
pure characteristics model.

Endogenous regressors are important in empirical work using observational data. We allow
endogenous regressors that are determined by an auxiliary equation, as part of a triangular system.
We identify the full joint distribution of the nonparametric functions in the equations in the
triangular system. We generalize 2SLS in important ways. First, all parameters can be random,
with an unrestricted joint distribution. Thus, some agents may respond positively to the instrument
and others may respond negatively. Further, the response to the instrument may be correlated
with the response to the endogenous regressors: those with more to gain from treatment may
adopt more intense treatments. Of course, we identify the first and second-stages of the triangular
system nonparametrically: each agent is characterized by a pair of heterogeneous functions.

Our identification strategy, while not constructive, is compatible with the linear regression
estimator of Bajari, Fox, Kim and Ryan (2009a) for the distribution of unobserved heterogeneity.
The estimator has been proved to be a consistent estimator in the space of distribution functions
for the unknown distribution G under a potential ill-posed inverse problem. Our discussion of
identification complements the discussion of consistency (assuming identification) in Bajari et al.

A Identification With Positive Probability

Consider the model (1). To show the consistency of a nonparametric estimator for the distribution
of heterogeneity, one typically needs a stronger definition of identification than is used in the
statistics literature following Teicher (1963). For two distributions G0 and G1, one needs that there
exists a set X? ⊆ X with positive probability such that for all x ∈ X?, PrG0 (A | x) 6= PrG1 (A | x)
for some fixed A ⊆ Y. We can this strong definition of identification “identification with positive
probability.”

As we now show, the existence of such a set positive measure X? follows can follow easily from
the existence of a pair A ⊆ Y and x ∈ X for which PrG0 (A | x) 6= PrG1 (A | x), as ensured by
separability. In particular, we show that from the existence of such an experiment (y, x), we can
find a small open ball X? about x.

Lemma A.1. Identification implies identification with positive probability if for any finite set of
types T ⊂ Θ, and for any ITA,x, there exists some small neighborhood X? ⊂ X containing x, where
z ∈ X? implies ∃Az such that ITAz,z

= ITA,x.
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Proof. We can always define G0 and G1 to assign probabilities to the same set of finite types
T = {θ1, . . . , θn} ⊂ Θ by simply taking the union of their supports, T = T 0 ∪ T 1, and adding zero
probability masses where necessary. Thus G0 and G1 can each be represented by, respectively,
points of the form p0

θ and p1
θ. Let A ⊆ Y and x ∈ X be the experiment that distinguishes G0 and

G1. Then we have ∑
θ∈IT

A,x

p0
θ 6=

∑
θ∈IT

A,x

p1
θ.

Also, for each z ∈ X? we have

∑
θ∈IT

Az,z

p0
θ 6=

∑
θ∈IT

Az,z

p1
θ,

as ITAz,z
= ITA,x.

We next consider two examples of applying this lemma.

Theorem A.2. Under Assumptions 4.1, 4.2, and 4.3, the distribution of nonadditive random
functions is identified with positive probability in the class G̃ of finite distributions.

Proof. Consider ITy,x = {g ∈ T | g (x) = y}. Let there be a singleton I-set. By continuity, changes
in x in a small open set will not change the I-set ITg̃(x),x indexed by a particular g̃ ∈ T . Apply
Lemma A.1.

Theorem A.3. Under assumptions 6.1, 6.2, 6.3, and 6.4, the distribution of utility functions in
the multinomial choice model is identified with positive probability (in x = (v, w)) in the class G̃
of finite mixtures.

Proof. Consider the I-set with respect to the outside good

IT0,v,w = {u ∈ T | f ((v, w) , u) = 0} .

There exists a singleton I-set {ui} by the argument in the proof of Theorem 6.5. Next, varying
w to be smaller (more negative) in some small open set will cause type ui to continue to pick the
outside good. As w is varied, by a continuity argument v can be varied to preserve IT0,v,w = {ui}.
Exploiting the product support V ×W × . . .×W , we can apply Lemma A.1.
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B Identification of Countable Distributions of Nonadditive

Random Functions

In the main body of the paper, we alluded to the fact that identification with respect to countable
rather than finite distributions (and hence showing countable separability rather than finite sepa-
rability of the model) would rely on strengthening the no ties properties to extend to a countable
subset of functions rather than a finite subset. We state the appropriate generalization here and
show that the property immediately translates into a theorem that the set of nonadditive random
functions satisfies countable separability. Recalling the functional space notation from Section 3.1,
we can state the following definition.

Definition B.1. A subset Fk,m ⊆ Ck,m satisfies the countable weak no ties property (countable
WNTP) if for any countable subset {g1, . . . } ⊂ Fk,m there exists x ∈ X such that gi(x) 6= gj(x)
for any distinct gi and gj in {g1, . . . }.

Theorem B.2. If the type space Θ satisfies the countable WNTP, then the non-additive random
functions model (see Section 4) is identified with respect to G, the set of countable distributions.

Proof. We show countable separability of the model. Let T = {g1, . . . } ⊂ Θ denote a countable
set of types. As Θ satisfies the countable WNTP, then there exists x ∈ X such that gi(x) 6= gj(x)
for any distinct gi and gj in {g1, . . . }, which we denote as x∗. Let y∗ be any element from the set
of values {g(x∗) | g ∈ T}, which is attained at say g1, i.e., g1(x∗) = y∗. Then by construction the
I-set I{y∗},x∗ consists of a single element, namely g1.

It is a natural question to ask whether any relevant function spaces Fk,m ⊂ Ck,m satisfy the
countable WNTP. A result by Reny (2008), in a followup to this paper, shows that the space
Ak,m of vector valued real analytic functions (which recall contains the space of vector valued
polynomials) satisfies the countable WNTP. We leave further demonstrations of the applicability
of the countable WNTP to future work. By the continuity of the g functions, the countable WNTP
can be restricted to apply when the space of covariates X is equal to the appropriate dimensional
rational space. Thus, we can gain identification of a countable distribution of nonadditive functions
g by using a countable (the rationals are countable) data generating process for the observables x.
Observables and unobservables are treated symmetrically.

C Separability When Distributions Admit a Density Func-

tion

We wish to show that an analog to the concept of separability can be extended to models where the
distribution G (θ) is required to admit a continuous density µ (θ) over Θ. This is a non-nested class

32



to the class of countable (or finite) mixtures that we study. While we do not believe the extension
is essential for practical applications in economics, it is of some theoretical interest because it shows
that the ideas behind separability can be extended to other types of distributions. As before, let
the economic model beM. For any T ⊂ Θ, the I-set ITy,x = {θ ∈ T | f (x, θ) ≤ y} may no longer
be a finite or a countable set of points. In certain well-behaved models, we may imagine ITy,x to
be a subset of T with a non-empty interior. It is this non-empty interior that will make verifying
the property that there exists a singleton I-set ITy,x difficult. Instead, we propose another notion
of separability that may be satisfied in some simple models.

Let A = {Ak | k ∈ K} be the class of all sets such that for each k ∈ K, Ak ⊆ Θ is the union
of disjoint, connected, open sets: Ak =

⋃
i∈CAk

Ui, where CAk
is the index set for the disjoint sets

in Ak. All partitions of Θ are included in A. An economic modelM is continuously separable
if, for every T ∈ A (T = Ak for some k ∈ K) and T ⊆ Θ, where T =

⋃
i∈CT

Ui, there exists
(y, x) ∈ Y ×X and i ∈ CT for which ITy,x ⊆ Ui for some open, connected Ui ⊂ T . This property
must hold for every T ∈ A.

Theorem C.1. If the model M is continuously separable, then it is identified within the class of
distributions with continuous densities over Θ.

Proof. Suppose that continuous separability holds but that the model is not identified. Then, there
exist two continuous densities µ0 (θ), the truth, and µ1 (θ) that both give the same distribution
F (y | x) = F0 (y | x) = F1 (y | x) for the data. Let π (θ) = µ0 (θ) − µ1 (θ). The function π (θ) is
continuous because µ0 (θ) and µ1 (θ) are. Then

F0 (y | x)− F1 (y | x) =
∫

Θ

π (θ) 1 [f (x, θ) ≤ y] dθ = 0.

Define π+ (θ) = π (θ) 1 [π (θ) ≥ 0] and π− (θ) = −π (θ) 1 [π (θ) < 0], so that π (θ) = π+ (θ)−π− (θ).
Therefore, ∫

Θ

π+ (θ) 1 [f (x, θ) ≤ y] dθ =
∫

Θ

π− (θ) 1 [f (x, θ) ≤ y] dθ. (6)

By the continuity of π (θ), π+ (θ) and π− (θ) have disjoint and open supports. Let T be the
union of these supports: a union of disjoint, connected, open sets in which either π+ (θ) > 0 or
π− (θ) > 0 on any one of these open sets. Therefore, T is in A. By continuous separability, there
exists (y, x) ∈ Y ×X and i ∈ CT for which ITy,x ⊆ Ui for some open, connected Ui ⊂ T . By the
disjoint supports, either∫

Θ

π+ (θ) 1 [f (x, θ) ≤ y] dθ =
∫
IT

y,x

π+ (θ) 1 [f (x, θ) ≤ y] dθ 6= 0

and the equivalent expression for π− (θ) equals 0, or vice versa. This is a contradiction to (6), and
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so we have identification.

D The Space of Real Analytic Functions Satisfies the WNTP

and the SNTP

Recall that we can use Zorn’s lemma to show that there are maximal sets that satisfy the WNTP
and the SNTP, respectively. However, we cannot otherwise describe those sets. One subset of
the maximal sets for both the WNTP and the SNTP is the space of all real analytic functions.
This appendix shows that the space of all real analytic functions satisfies both the WNTP and the
SNTP.

Definition D.1. Let X be a non-empty rectangle in Rk. A function g : X → R is real analytic
if, given any interior point ξ ∈ X , there is a power series in x− ξ that converges to g (x) for all x
in some neighborhood U ⊂ X of ξ.

Real analytic functions must be infinitely differentiable.

Definition D.2. If a function g = (g1, . . . , gm) : X → Rm is such that each of its m component
functions gi is real analytic, then g is a vector valued real analytic function.

A property of the space of real analytic functions is that for any two distinct real analytic
functions g, g′ : X → R, and for any open, connected set U ⊆ X , g and g′ cannot agree on the
whole of U : there must exist x ∈ U for which g(x) 6= g′(x) (Krantz and Parks, 2002, Corollary
1.2.6). This property can easily be seen to extend to the space of vector valued real analytic
functions Ak,mX . Let us call this property the pairwise tie breaking property. The following is now
a straightforward result.

Proposition D.3. The set of vector valued real analytic functions satisfies the strong no ties
property.

Proof. Consider any finite set of vector valued real analytic functions {g1, . . . , gn} ⊂ Ak,m. We
show by induction on n that the property holds for any finite number of elements n. The base
case n = 2 holds by the above property of vector valued real analytic functions (for any open set
U ⊆ X , take any non-empty ball within U , which is connected, and apply the pairwise tie breaking
property to this ball). Assume that the proposition holds for n − 1, and consider {g1, . . . , gn}
and an open set U ⊆ X , which without loss we can take to be an open ball (U contains such a
ball, and balls are connected). By the induction hypothesis, there exists a point x ∈ U such that
gi(x) 6= gj(x) for any gi 6= gj and i, j ∈ {1, . . . , (n− 1)}. By the fact each gi is continuous and the
set of functions is finite, these inequalities are preserved in a small open ball B1 ⊆ U around x.
Now consider the function gn, and observe that by the pairwise tie breaking property, there exists
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an x1 ∈ B1 such that gn(x1) 6= g1(x1). Furthermore, by continuity, this inequality is preserved
in a small ball B2 ⊆ B1 containing x1. Now repeat the argument, except comparing gn with g2,
producing the a ball B3 ⊆ B2, etc. At the end of the process, a non-empty ball Bn ⊆ B is produced
for which any x ∈ Bn satisfies the definition of the SNTP, i.e., x ∈ Bn implies gi(x) 6= gj(x) for
any distinct gi and gj in {g1, . . . , gn}.

E Proof of Lemma 5.1

Proof. To establish some notation, recall the derivative of g : X → Rm at x ∈ X ⊂ Rk is a linear
function that we denote Dg[x] : Rk → Rm, and recall the value of this function at any v ∈ Rk is
Dg[x](v). By assumption, Dgi[x?] − Dgj [x?] 6= 0, where 0 refers to the 0 map from Rk to Rm.
Then the kernel of the linear map Dgi[x?] − Dgj [x?], which we denote by Si,j , has dimension
strictly less than k, because there exists v ∈ Rk such that Dgi[x?]−Dgj [x?])(v) 6= 0. As the finite
union of subspaces S = ∪i,jSi,j cannot equal the k-dimensional space Rk, we can find an element
v ∈ Rk−S. By the construction of v, Dgi[x?](v) 6= Dgj [x?](v) for all i 6= j. Hence for any positive
λ ∈ R++, we have by the linearity of a derivative,

Dgi[x?](λv)−Dgj [x?](λv)
||λv||

= c 6= 0. (7)

Observe that by the definition of differentiability (Carter, 2001),

gi (x? + λv)− gj (x? + λv) = (Dgi[x?](λv)−Dgj [x?]) (λv) + η(λv) ‖λv‖

where η(h)→ 0 as h→ 0. Hence by (7),

lim
λ→0

gi (x? + λv)− gj (x? + λv)
||λv||

6= 0.

Thus there exists λi,j such that for all 0 < λ < λi,j , gi (x? + λv) gj (x? + λv). Let λ̄ = mini,j λi,j .
Then for any Bε(x?), finding λ such that x? + λv ∈ Bε(x?) and 0 < λ < λ̄ completes the proof.
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