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1 Introduction

This paper introduces and studies a class of decision problems which we call
investment tournaments. In an investment tournament, the decision-maker
and nature choose actions across a number of periods. Every period the
decision-maker selects the level of value-enhancing investment in each of the
several alternatives available to her. The values of alternatives also change
due to random shocks (actions of nature). The payoff to the decision-maker
is determined by the final values of the alternatives.

Although investment tournaments have received little attention in the
literature, they are ubiquitous. An important motivating example of an in-
vestment tournament providing the central motivation for this paper is the
career choice problem. Indeed, consider a student deliberating whether to
major in accounting or engineering. The student will, at first, take some
courses in each field as an investment into both careers. From an ex-post
perspective, courses in accounting may not be useful for someone who even-
tually chooses engineering, but the student would only select a major after
trying several fields. As times goes by, new information and labor market
shocks can change the career prospects across fields. In this context, the
main question for a student choosing a career is how many courses to take
in each discipline before making the final choice of a major.1

Similarly, the contests for promotion between the employees of a firm
or an organization can also be regarded as investment tournaments. In the
latter context, the firms and organizations make substantial investments in
the human capital of their employees, in particular, by providing training,
coaching and mentoring.

Another example of an investment tournament is the process of new prod-
uct development. A firm or a government organization often develop several
prototypes of a new product at the same time. Hence, investment dollars
have to be allocated across alternative prototypes before their performance

1Our basic investment tournament model highlights the aspects of career choice stem-
ming from the choice of investments into learning alternative professions, before the infor-
mation regarding which one of them fits a person best, or has the highest value, is revealed.
Obviously, the complexity of educational choices can not be fully captured by a simple
investment tournament model. A person may take courses in various fields for reasons
outside of our model, e.g. in order to satisfy intellectual curiosity or expand her/his social
network. Yet, we believe that our model captures important aspects of students’ career
choices.
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(i.e. the value) becomes known. The expected performance of a prototype
is increasing in the amount of resources committed to it. If the final prod-
uct combines the features of several prototypes, then the profits of the firm
would depend on the realization of several alternatives. On the other hand,
if the new product is based exclusively on the best prototype, then the firm’s
profits would depend only on the realization of the highest value alternative.2

In this paper, we develop a model of investment tournaments encom-
passing these and similar examples, and characterize the optimal investment
strategy. Throughout, the career choice problem remains our main moti-
vating example, and therefore we will couch the discussion in terms of this
problem.

The simplest model of an investment tournament has three periods. In
the first and third periods the values of all alternatives increase as a result
of random shocks, while in the second period the decision-maker chooses the
level of investment into each alternative by allocating a fixed budget across
them. The final value of each alternative is realized in the third period and is
equal to the sum of the first and the third period shocks plus the investment
received by this alternative in the second period. The payoff to the decision-
maker is determined by the final values of the alternatives.

The class of investment tournaments analyzed below is more general than
this simple three period model. In Section 2 we consider investment tourna-
ments with an arbitrary finite number of periods in which the decision-maker
and the nature either alternate in taking actions or act simultaneously. The
value function is given by the weighted sum of the final values of the alterna-
tives. This multi-period model allows to demonstrate how the decision-maker
adjusts the allocation of investment between the alternatives in response to
exogenous changes in their values. For example, a student would modify the

2Various aspects of R&D investment decisions that involve developing several proto-
types of a new product are best studied by applying a combination of investment tourna-
ments and optimal search methodology. In the context of optimal search literature, the
amount of resources invested in each prototype is assumed to be exogenously fixed and all
prototypes are assumed equally promising. As an example of the optimal search approach,
Dahan and Mendelson (2001) study optimal prototyping strategy and R&D experimen-
tation. They investigate the optimal number of prototypes and the optimal combination
between parallel and sequential prototyping.

In contrast, in our investment tournament model a firm can adjust its investment level
into each prototype depending on the preliminary (noisy) evaluations of the potential of
each prototype. Thus, investment tournament model isolates an aspect of the optimal
prototyping problem that has not been previously investigated.
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mix of courses that she takes in different fields, as one major becomes more
promising than another due to a demand shift in the labor market.

Proposition 1 characterizes the optimal investment strategy in such multi-
period setting. At every decision node, it calls for investing all resources into
the leading alternative with the highest current value. Thus, the optimal
strategy magnifies the advantage of the leading alternative. However, due to
random shocks, the leading alternative at one decision node need not remain
in the lead at the next decision node. We can interpret Proposition 1 as
saying that the optimal strategy is invariably to put all eggs in the “favorite
basket,” although the “favorite basket” may change over time.

Proposition 1 has a simple corollary showing that the strategy of invest-
ing only in one favorite alternative in each period remains optimal when the
decision-maker’s payoff depends only on the final value of the largest alter-
native. Proposition 2 establishes that our main result continues to hold if
the payoff to the decision-maker is a sum of convex transforms of the final
values of all the alternatives.

Section 2.1 generalizes the benchmark model of investment tournaments
by allowing the returns to investment to be decreasing. We provide two types
of results. First, if the aggregate investment cost function is decreasing in the
total cost of investment, it remains optimal to invest only in one alternative.

However, if the benefit function is concave in the values of alternatives,
then several alternatives may receive positive investment at some decision
nodes. Even though the optimal strategy in this case is less extreme than
“putting all eggs in one basket,” it is still optimal to significantly favor the
leading alternative, even if its lead is very small.

These results provide insights regarding the optimal strategy for career
choice. In particular, they explain why a student choosing between two ma-
jors may rationally devote substantially more effort to a field that seems
slightly more promising. At the same time, the student should not com-
pletely disregard somewhat less promising fields. New information regarding
career prospects in different fields or shocks in the labor market can reverse
the ranking of the fields and cause a student to dramatically change the
amount of time (s)he invests in each field. Thus, seemingly irrational jump-
ing back and forth between majors may be consistent with expected utility
maximization. Similarly, a firm developing several prototypes of a new prod-
uct should always invest substantially more in the prototype which, at the
current moment, is more promising than the other prototypes, even if the
margin is tiny.
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Section 3 considers another application of investment tournaments to la-
bor economics. It builds upon the literature on incentive aspects of tour-
naments which was pioneered by Lazear and Rosen (1981) and was further
developed by Bhattacharya and Guasch (1988), Bull et al. (1987), Ehrenberg
and Bognannon(1990), Eriksson (1999), Ferrall (1996), Green and Stokey
(1983), Nalebuff and Stiglitz (1983), Taylor (1995), Barut and Kovenock
(1998), Krishna and Morgan (1998), Moldovanu and Sela (2001), and others.

In a standard investment tournament, the workers (who play the role of
alternatives in our terminology) are competing for a prize, usually a promo-
tion. This motivates them to exert costly effort because performance, and
hence the probability of winning the tournament, (stochastically) increases
with effort.

In our hybrid incentive/investment tournament framework of Section 3
we consider bilateral investment in the workers’ human capital: both the
firm and the worker invest in it over the course of a promotion contest. For
example, in law firms the investment into young workers’ human capital takes
the form of mentoring by senior partners. Mentoring is a scarce resource
that can take the form of providing guidance and advice, being included
in meetings with important clients or being assigned to more creative and
complex projects.

A firm’s profits at any given time depend primarily on the average perfor-
mance of its workers. At the same time, in many contexts the firm-specific
capital of a worker who wins the tournament has special significance. For
instance, in an up or out tournament where the winners are promoted and
the losers are laid off, the investments into firm-specific human capital of the
losing contenders are wasted from ex-post perspective.3 Therefore, the firm
will be primarily interested in maximizing the human capital of the winner
in the tournament.

Proposition 5 shows that, other things being equal, a worker would exert
more effort in the early stages of an incentive tournament. By working hard
early in her career, the worker tries to get ahead of her/his competitors at the
beginning of the tournament. If she succeeds in this, she would obtain a larger
share of the firm’s investment in its employees’ human capital. This improves
the worker’s chances of winning the tournament and getting a promotion.

3Galanter and Palay (1991) and Rebitzer and Taylor (2007) provide an analysis of the
organizational structure of law firms highlighting the role of up-or-out promotion contests,
or tournaments.
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Thus, the competition between the workers for their employer’s investment in
our model explains the phenomenon of a ‘rat race’ among young professionals.

Our explanation of a rat race is different from those that one can find
in the existing literature. Indeed, the literature (cf. Akerlof (1976), Landers
et al. (1996), Andersson (2002)), has typically relied on adverse selection
and worker screening arguments to explain the rat race. ‘Adverse selection’
theory of a rat race implies that a typical worker will work more than an
efficient number of hours. Since the efficient number of hours depends on an
unobservable worker type, it is hard to test this prediction empirically. In
contrast, our theory of a rat race does not involve unobservables, and hence
it is easier to empirically test its prediction that the workers in the early
stages of their career will put in more effort than in the later stages.

Several contributions in the literature on promotion tournaments, in par-
ticular (Barut and Kovenock (1998), Krishna and Morgan (1998), Moldovanu
and Sela (2001)), examine the effect of the design of tournament prizes on
the efforts of the contestants and provide recipes for the optimal design of
such prizes. The focus of this paper is different. We concentrate on under-
standing the investment behavior by the other party in these contests- the
decision-maker, who organizers the tournaments and benefits from the value
generated by the contestants. Hence, this paper puts an emphasis not on the
structure of prizes for the contestants, but on the value, or output, generated
by the contestants for the firm. Another important feature, distinguishing
our approach from most contributions in the literature on tournaments, is
its dynamic nature, as we consider investment decisions made dynamically
throughout multiple periods.

The rest of the paper is organized as follows. Section 2 introduces and
solves the model of investment tournaments under different specifications of
the decision-maker’s value and cost functions. Section 3 combines investment
tournament model with the model of incentive tournaments and applies the
results to personnel economics. Section 4 concludes. The proofs are relegated
to an Appendix.

2 Model and Main Results

In this section, we formulate and solve a model of career choice as an invest-
ment tournament. To start, suppose that there are T periods over which an
individual decision-maker has to complete her or his career choice and invest-
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ments in different professions. Specifically, in each period this individual has
to choose how to allocate an amount B of resources (time, effort and money
invested into career choice in each period) among N alternative professions.
We will use the terms “profession” and “alternative” interchangeably in what
follows.4 Let bti denote the nonnegative amount of resources invested into
profession/alternative i at period t. Then the individual’s investment action
in period t can be represented by a vector bt = (bt1, bt2, ...btN) lying in the
feasible action space A = {b ∈ RN : bi ≥ 0,

∑N
i=1 bi = B}.

In each period the nature draws a random shock to the value of each
alternative/profession. The shocks are independent of the decision-maker’s
actions. In the career choice framework, the shocks could represent changes
in expected labor market prospects or earnings in a given career. These
shocks are a crucial factor inducing the decision-maker to adjust her course
of actions because, as will be shown below, the decision-maker’s optimal
strategy in every period depends on the current values of the alternatives,

The shock to the value of alternative i in period t is denoted by sti. It
is drawn from an atomless distribution F (·) with support [0, s̄). Thus, the
action of nature at time t is denoted by vector st = (st1, st2, ...stN).

The shocks are independent across alternatives and across time. The in-
dependence across alternatives is justified by the fact that the alternatives
represent employment and market opportunities in different sectors of the
economy. The assumptions of independence across time is made for techni-
cal convenience. Under the decision-maker’s risk-neutrality, the framework
could easily be generalized to allow for any autocorrelated process by adding
the (non-zero) expected value of the future shocks to the current values of
alternative. The lowest value of a shock is normalized to 0, which is without
loss of generality as long as the lowest threshold is finite and the same across
all alternatives.

Here we assume that the decision-maker and nature act simultaneously,
although the situation would be identical if they took alternating turns, with
the decision-maker being the first to move in each period. The final value of
alternative/profession i at the terminal node is the sum of all shocks and all
investments into it and is given by Vi =

∑T
t=1 sti +

∑T
t=1 bti.

Let the history at time t be denoted by ht = (s1,b1, s2,b2, ..., st−1,bt−1).

4For simplicity of exposition, we assume that the amount of resources available for
investment is the same in each period. The results and proofs do not change qualitatively
if the investment budget was changing across periods deterministically or randomly.
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The payoff-relevant information contained in history ht can be summarized
by a vector of the current values of alternatives/professions Vt = Vt(ht) =
(Vt1, Vt2..., VtN), where Vti =

∑t−1
τ=1 sτ,i +

∑t−1
τ=1 bτ,i.

5 We will say that alterna-
tive i is a favorite in period t if Vti ≥ Vtj for all j ∈ {1, ..., n}. The values of
the alternatives in period t contain all relevant information about the history
prior to t. The winner in this problem is the alternative/profession with the
highest value at the end of period T , i.e. a favorite at the terminal node. 6

The decision-maker’s payoff is determined by the values of the alternatives
at the terminal stage T and is denoted by Π(VT1, ..., VTN). If the decision-
maker follows some strategy σ, her expected payoff at time t can be expressed
as a function of σ and the current values of alternatives, Π(Vt1, ..., VtN , σ).
We will typically assume that the decision-maker’s payoff is separable in the
values of the alternatives, i.e. Π(VT1, ..., VTN) =

∑N
i=k µk(VTr(k)), where r(k)

stands for the alternative with the k-th highest final value. An important
special case studied below is linear value function i.e., µk(VTr(k)) = λkVTr(k)

where λk is a nonnegative constant with λk ≥ λk−1 for all k = 2, ..., N .
One of the central results of this paper shows that, under a broad range

of conditions, it is optimal for an individual making her career choice (or
involved in some other investment tournament) to invest all her resources in
each period into one favorite alternative. Let us illustrate this result with a
simple example.7 Suppose that there are only two alternatives/professions.
The decision-maker’s objective is max{V f

1 , V f
2 }, where V f

i is the final value
of alternative i ∈ {1, 2}.

Consider that there is only one period left to make investments. The
current values of alternatives 1 and 2 are V1 and V2, respectively, with V1 >
V2. The investment budget is B. If in the last period the individual makes an
investment x in the first alternative and an investment B − x in the second
alternative, then her expected payoff equals

Es1,s2 max{V1 + x + s1, V2 + B − x + s2},

where s1 and s2 are the expected values of the shocks to alternatives 1 and
2 in the last period. Let us show that it is optimal to invest the whole
budget B into alternative 1, the favorite. If the individual reallocates her

5The value at the terminal node is Vi ≡ V(T+1)i.
6If there is more than one favorite alternative at the terminal node, then an arbitrary

tie-breaking rule can be used to determine the winner.
7We thank the anonymous referee for suggesting this example.
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budget increasing the investment into alternative 1 by 1 cent, then her payoff
increases by 1 cent if V1 +x+ s1 > V2 +B−x+ s2 and decreases by 1 cent if
V1+x+s1 > V2+B−x+s2. Hence, after this reallocation the decision-maker’s
expected payoff changes by

2Es1,s2Prob.[V1 + x + s1 > V2 + B − x + s2]− 1. (1)

Because s1 and s2 are identically distributed, the expression in (1) is positive
if x > V2−V1+B

2
and is negative if x < V2−V1+B

2
. So, starting from x s.t.

x > V2−V1+B
2

, the decision-maker can increase her expected payoff by raising
her investment into alternative 1 all the way up to B. On the other hand,
starting from x < V2−V1+B

2
, the decision-maker can increase her expected

payoff by raising her investment into alternative 2 all the way up to B.
This implies that all budget must be invested in a single alternative. The
symmetry of the shocks and the fact that V1 > V2 then imply that the
expected payoff from investing all budget into alternative 1, the favorite, is
greater than the expected payoff from investing all budget into alternative 2.

Generalizing this simple example, we first study a T -period career choice
problem in which the decision-maker’s payoff is equal to a weighted sum
of the terminal values of all alternatives/professions i.e. Π(VT1, ..., VTN) =∑

i=k λkVr(k), with higher-ranked alternatives assigned higher weights, that
is λk ≥ λk−1 for all k = 2, ..., N . In this case the decision-maker’s optimal
strategy is to invest all resources into a favorite alternative/profession in
every period. Indeed, we have:

Proposition 1 Suppose that the decision-maker’s payoff is given by
∑N

k=1 λkVr(k)

where λ1 ≥ λ2 ≥ λ3... ≥ λN ≥ 0, and r(k) denotes the alternative with the
k-th highest final value, while Vr(k) denotes the final value of the alternative
ranked k-th at the end of the tournament.

The following strategy is optimal in the investment tournament: in period
t ∈ {1, ..., T} the decision-maker allocates all investment resources to an
alternative that is a favorite in this period. If there is more than one favorite
alternative in period t, then all resources in period t are allocated to one
of the favorites. The remaining N − 1 alternatives receive zero amount of
investment in period t.

Note that any investment strategy is optimal if λ1 = λ2 = λ3... = λN .
However, if at least one inequality is strict, then the optimal strategy calls
for investing all resources into a favorite alternative.
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This formulation of the decision-maker’s value function with λ1 ≥ λ2 ≥
... ≥ λN is appropriate in a promotion tournament of a firm which invests
in the human capital of its employees, when the promotion is based on the
employees’ past performance, and the employees are given increased respon-
sibilities depending on their performance in the tournament.

An important special case of this set-up is where λ1 = 1, λ2 = ... = λN =
0. The following corollary of Proposition 1 applies in this case.

Corollary 1 Suppose that the decision-maker’s payoff is equal to the value of
the winning alternative max{V1, ..., VN}. Then the decision-maker’s optimal
strategy in period t ∈ {1, ..., T} is to invest all resources into one favorite
alternative.

The Corollary is important since there is a number of environments in which
the decision-maker cares only about the realization of the highest value alter-
native. For example, this is so in the promotion tournament with up-or-out
rule, under which only the winner gets promoted and stays with the firm.
Similarly, this case applies when a student is choosing a major, or a firm is
selecting a new product among several prototypes, or a person is choosing a
business or life partner among several candidates. Also, this generalizes the
auction environment introduced in Schwarz and Sonin (2001).

The case considered in Corollary 1 is related to the optimal search prob-
lem, as both are maximal problems. However, neither problem is a special
case of the other. Optimal search literature studies the optimal strategy for
investment in information acquisition, when there is a cost of obtaining infor-
mation about a particular alternative. In contrast, in investment tournament
problem the information about the value of each alternative is available at
no cost to the decision-maker, but the issue is how to allocate the investment
between alternatives.

On the other hand, when the promotion is merely a prize and does not
entail increased responsibility, all workers stay with the firm whether pro-
moted or not (as in medical doctors’ practices), and a worker’s value reflects
how well she has learned her trade or profession, then each worker’s human
capital contributes to the firm’s profits in the same way. So, it is more appro-
priate to model the firm’s final payoff as

∑N
k=1 µ(Vk) where µ(·) is increasing

and convex. The latter assumptions on µ(·) reflect the accelerating nature
of learning one’s profession.

Surprisingly, even in this case it is optimal for the firm, as the decision-
maker, to invest all resources in any period in the favorite alternative (a
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worker with the highest human capital) in that period. Indeed, we have:

Proposition 2 Suppose that the decision-maker’s payoff is equal to
∑N

k=1 µ(Vk)
where µ′(·) > 0 and µ′′(·) > 0. Then the decision-maker’s optimal strategy is
to invest all resources in period t ∈ {1, ..., T} into one favorite alternative at
period t.

Note that Proposition 2 is not a special case of Proposition 1, because here
the value of an alternative does not depend on its rank.

These results can be applied in a variety of contexts, besides the ca-
reer choice problem. For example, consider a venture capitalist who handles
several investment projects concurrently. She faces the issue of optimal al-
location of her time and effort across these projects. Out results imply the
following. If the final payoff to the venture capitalist is weakly convex in the
value of each project, then in each time period she should allocate most of
her scarce time to the project that looks more promising at that moment.
Similarly, an inventor working on several potential discoveries and innova-
tions should allocate most of her time to the line of research that has the
highest chance of succeeding.

The results of Propositions 1 and 2 hold if the decision-maker and nature
take turns making their moves. The proofs remains virtually unchanged.

2.1 Extensions: Decreasing Returns and Risk-Aversion.

So far, we have assumed that the decision-maker has a fixed investment
budget B in each period. In this section, we consider two different settings.
At first, we will consider the situation in which the decision-maker can choose
to invest any amount in every period, but the returns to investment decrease
in the total amount of investment into all alternatives. Specifically, suppose
that the decision-maker’s action space in period t is given by

At = {bt : bti ≥ 0 for all i = 1...N}.

The cost of investment in period t is measured by an increasing and
convex function

∑T
t=1 C(

∑N
i=1 bti), reflecting that the returns to investment

are decreasing in the total amount of investment in a given period. The
decision-maker’s payoff is equal to the final value of the winning alternative.

This model is natural when the investment involves the decision-maker’s
time or effort, since the returns to time, or effort, are typically decreasing
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in the total amount of it. For example, consider a student deliberating the
choice between accounting and engineering majors. One extra course in
accounting brings a student one course closer to completing the accounting
major, regardless of whether it is a second or fifth course in accounting.
That is, an increase in the value of the accounting alternative from taking
one course in accounting is the same, regardless of the number of accounting
courses that a student takes in a given semester. At the same time, the
student’s aggregate effort cost of attaining a certain performance level in a
given semester typically depends on the total number of courses that the
student takes in this semester, rather than on the distribution of courses by
field.

Generalizing the proof of Proposition 1, we can show that in this case
there exists an optimal strategy bti(Vt1...VtN) that depends only on the cur-
rent values of the alternatives. The following Proposition shows that it re-
mains optimal in any time period to allocate all resources, or effort, to the
favorite alternative.

Proposition 3 Suppose that the action space at each decision node is

A = {b ∈ RN : bti ≥ 0}

and the decision-maker’s payoff is given by

max{V1, V2...VN} −
T∑

t=1

C(Bt),

where C ′(·) > 0 and C ′′(·) > 0 and Bt =
∑N

i=1 bti. Then,
(i) an optimal strategy requires that at each decision node only one favorite
alternative receives positive investment;
(ii) the amount of optimal investment in period t is increasing in the value
of the favorite alternative at t.

This proposition confirms the robustness of our main result establishing
the optimality of investing only in one favorite alternative in every time
period. However, it does not imply, for example, that an individual would
not switch from one field to another in her career choice, or a student will
never switch between majors. We could observe complete switching between
fields or professions if the job-market situation changes and some professions
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becomes more attractive than others. The latter change would constitute an
act of nature in our model.

It is also interesting to explore to what extent our results survive under
different specification of the decision-maker’s value function. To explore this
case, suppose that the decision-maker’s payoff is given by

∑n
i=1 λkµ(Vr(k)),

where µ(.) is a concave function satisfying µ′(.) > 0 and µ′′(.) < 0. (Recall
that r(k) is the index of the alternative with the k-th highest rank among
the terminal alternative values, and λi > λi+1 for all i ∈ {1, ..., N − 1}).

In this case, the decision-maker is risk-averse. It is intuitive that a risk-
averse decision-maker would make positive investments in more than one
alternative in order to mitigate the risk and smooth her payoff. However,
she would still prefer to invest a larger share of her investment budget in the
favorite alternative(s) since it (they) are more likely to have higher value at
the end of the tournament. Furthermore, the intuition suggests that when
risk-aversion is weak, the strategy of investing all resources into one alter-
native should still remain optimal. For a more precise understanding of the
optimal investment strategy, let us suppose that µ(.) is a quadratic function.
Then we have:

Proposition 4 Suppose that the decision-maker’s value function at the ter-
minal node is given by

∑n
i=1 λkµ(Vr(k)) where µ(V ) = aV − cV 2

2
for some

a > 0, c > 0, and r(k) is the index of the alternative which is ranked k-th.
Then the decision-maker’s optimal strategy has the following properties:
(i) If λ1 = ... = λn, then the unique optimal strategy is to invest equal
amounts in all alternatives in period 1. The optimal strategy in period t is to
invest in such a way that maximizes the current value of the lowest-ranked
alternative.
(ii) If a

c
is sufficiently large, and per-period budget B and the upper bound

on the support of the distribution of shocks s̄ are sufficiently small so that
a
c

> n((B + s̄)T + 1), then the optimal strategy of the decision-maker is to
invest all budget in a favorite alternative.

The Proposition illustrates the effect of the decision-maker’s risk-aversion.
In particular, it indicates that the effect of risk-aversion is weaker when the
decision-maker cares much more about the value of the winning alternative
than the other alternatives. In contrast, the strategy of maximizing the
current value of the lowest-rank alternative allows to minimize the differences
between the values of alternatives. This strategy is optimal for a risk-averse
decision-maker when all alternatives have equal weight at the end of the
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tournament. Due to technical complexity, we have limited our analysis to
the quadratic case. However, we believe that these results generalize to other
payoff functions.

3 Bilateral Investment in Promotion Tourna-

ments

In this section we consider tournaments in which competing alternatives are
themselves players in the tournament and can take actions affecting their
values. To emphasize the active role played by the alternatives, we will from
now on refer to them as “contenders.” In contrast to the previous sections,
the motivation for studying such tournaments comes not from the career
choice problem, but from competition for a promotion within an organization.

As an example, consider competition for a promotion among associates
in a law partnership or a consulting firm. The decision-maker is a senior
partner or a management committee of the firm. She selects the levels of
investment into contenders’ firm-specific human capital. This may involve
dividing scarce mentoring resources among contenders, assigning them to
more or less high-profile projects, etc. At the same time, the contenders
also choose the amount of effort or investment in their own human capital
to increase their own value. For simplicity, we assume that the tournament
is up-or-out, and so the investments into firm-specific human capital of as-
sociates who are not promoted are wasted from the ex-post perspective.8

However, as we have shown, the results of the previous sections hold under
a range of specifications and value functions, as long as the investment in
the winning alternative is at least as useful as the investment into a losing
alternative. The results that we present below extend in a similar way.

The goal of this section is to characterize the outcome of a tournament
where the investment incentives of the decision-maker and the contenders
interact. We model this situation as follows. In every period starting from
t = 1 the contenders select nonnegative efforts which they invest in acquiring
firm-specific human capital. Contender i’s effort in period t is denoted by
eti. Her cost of effort eti in period t is given by g(eti) > 0, where g′(eti) >
0, g′′(eti) > 0 for all eti > 0. Also, in every period starting from t = 1

8Galanter and Palay (1991) provide a detailed account of the role of tournaments in
large law firms in the U.S. On this topic, see also Rebitzer and Taylor (2007).

14



the decision-maker selects the levels of investment into each contender. Her
action space is Ad = {bt ∈ RN : bti ≥ 0

∑N
i=1 bti = B}, where bti denotes

the decision-maker’s investment in contender i in period t.
We maintain the assumption that in each period the nature independently

draws a random shock to the value of each contender from an atomless dis-
tribution F (·) over nonnegative support. A random shock to the value of
contender i in period t is denoted by sti.

Nature takes an action in period zero. In subsequent periods the na-
ture, the decision-maker and the contenders move simultaneously. Thus, the
value of contender i in period t ∈ {1, ..., T}, V t

i , is a sum of her/his own
investments, the investments by the decision-maker and random shocks up
to period t. That is, V t

i =
∑t

t′=0 st′i +
∑t

t′=1 bt′i +
∑t

t′=1 et′i. The terminal
value of contender i in the last period T is equal to Vi = V T

i . The history
of the game after period t ∈ {1, ..., T} is summarized by the vector of the
contenders’ values (V t

1 , ..., V t
N).

The contender with the highest final value wins the tournament. The
decision-maker’s payoff is equal to max{V1, ...VN} - the value of the tourna-
ment winner. The payoff of contender i, who loses the tournament, is equal to
the negative of the sum of the costs of effort that (s)he has invested across all
time periods, i.e. −∑T

t=1 g(eti). If contender i wins the tournament her/his

payoff is R−∑T
t=1 g(eti), where R can be interpreted as the rent associated

with winning a promotion.
Thus, a promotion tournament of this section combines an investment

tournament introduced in the previous section, where the only players are the
decision-maker and the nature, with the elements of an incentive tournament
where the players are the contenders and the nature (see Lazear and Rosen
(1981)).

The information structure of this tournament is as follows. In any period
the decision-maker observes the value of each contender in the previous pe-
riod. The contenders do not observe random shocks or the decision-maker’s
investment allocation. So, in every period each contender’s information set
contains only her efforts in the previous periods. Technically, our observ-
ability assumption allows us to avoid dealing with complex dynamic game
effects that would arise if a contender could condition her strategy on the
full history of events.

The assumption that the agents cannot observe the value of the firm-
specific capital invested in them by the employer is plausible when the em-
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ployer’s investment takes the form of task allocation, and the employees do
not know which tasks allow them to develop firm specific human capital and
hence constitute an investment by the employer, and which tasks do not
enrich their firm-specific human capital.

Further, the key aspect of our observability structure is that a contender
cannot observe her relative ranking among her peers. This is consistent with
reality in a number of situations. In such environments, even if the contenders
do observe investments in their own firm specific human capital, they may
learn very little about their position in the tournament. For example, in
professional services firms junior associates may not be aware of the details
of the mentoring programs provided to other associates. An academic de-
partment may keep confidential the details of the research support provided
to different junior members. If a contender has a diffuse prior regarding the
distribution from which mentoring resources are drawn, the investments into
individual contenders become entirely uninformative.

Under the diffuse prior assumption, it is possible to relax the restriction
on observability by assuming that a contender can observe the investment
that she receives from the decision-maker, but observes neither the decision-
maker’s budget, nor the investments received by the other contenders. At
the same time, allowing for strategies contingent on the full history would
significantly complicate the analysis and most likely generate a multiplicity
of equilibria.

The following result characterizes symmetric Nash equilibria in this pro-
motion tournament game. The symmetry restriction only requires that all
alternatives are treated symmetrically by the decision-maker.

Proposition 5 Every symmetric pure strategy Nash equilibrium of a promo-
tion tournament has the following properties:
(i) in every period, the decision-maker chooses to invest all resources into
one of the favorite contenders;
(ii) the effort of each contender is decreasing over time.

Note that the investment strategy of the decision-maker is qualitatively
similar to her strategy in the tournament without contenders’ investment.
This is so because the contenders cannot condition their behavior on the
decision-maker’s actions.

On the other hand, the contenders do have an incentive to influence
the actions of the decision-maker. So, the contenders invest more effort
into improving their position at the early stages of the tournament, because
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early effort can attract investments from the decision-maker who would put
a promising employee on a “fast track” for a promotion. Consequently, all
contenders will put forth more effort at the early stages of the tournament
in order to become a leader.

Note that we have assumed that contender i’s effort cost is separable
across periods. If her cost of effort was equal to Q(

∑T
t=1 eti), where Q′(·) > 0,

Q′′(·) > 0, then the decision-maker would also invest all resources into the
favorite contender in every period, and each contender would invest all effort
in the first period. This is so because the contenders receive no additional in-
formation after the first period. Consequently, each contender would shift all
her effort to the first period in a bid to receive more mentoring (investment)
from the decision-maker.

The results of this section explain the phenomenon of a “rat race” which
young professionals often have to endure and “fast track” promotion schemes
frequently used by the employers. In our model, a rat race emerges as an
outcome of a competition between the employees for the employer’s invest-
ment and mentoring. This competition motivates the employees to overwork
in the initial stages of their careers. More specifically, an employer’s optimal
strategy of investing all resources in one favorite employee in every period
effectively puts this employee on a fast track for a promotion. So, a higher
effort by an employee early in her career increases her chances of becoming an
early favorite and thereby obtaining the benefit of the employer’s investment
in her human capital. Plainly, our results suggest that first-year graduate
students would work harder than second-year students, and first-year asso-
ciates in a law firm would put in longer hours than later-year associates.
Anecdotal evidence regarding career development appears to confirm that.

It is worth noting that our explanation of a rat race differs from those
in the existing literature. Most existing contributions explain a rat race via
adverse selection motives. This explanation was first suggested by Akerlof
(1976). Developing this approach, Landers et. al (1996) provide a model of
a ‘rat race’ in law and other professional services firms. In their model, the
employees differ in their willingness to work, and the firm wants to retain
as partners only those types who are more willing to work long hours. In
equilibrium, the hours of work serve as a screening device. The employees
who are willing to worker longer hours have to overwork substantially to
prevent imitation by the types with lower willingness to work. Landers et.
al (1996) also provide supporting evidence that the associates in law firms
log in an inefficiently high number of hours.
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These models are different from the one explored in our paper. Notably,
our explanation of a rat race does not rely on asymmetric information about
the employees’ productivity or willingness to work. A rat race arises in our
model as a consequence of complementarity between the employees’ and the
managers’ investments in the employees’ human capital.

It is important to note the differences between the conclusions of our
theory of a rate race, on the one hand, and the adverse selection theory of it,
on the other hand. Indeed, our theory generates a testable prediction that
the workers will put in longer hours in the initial stages of their careers. In
contrast, the adverse selection theory of a rat race predicts that the young
workers will put an inefficiently long number of hours. However, efficiency is
hard to estimate and measure since it is determined by unobservable workers’
productivity types.

4 Conclusions

In this paper we have analyzed investment tournaments that arise naturally
in career choice promotion and other contexts, such as product design. We
have shown that in every period the decision-maker will optimally allocate all
her investment resources to a single alternative, or a contender. This result
holds robustly under a variety of specifications and assumptions.

In many tournaments, a contender with a small lead tends to enjoy sub-
stantially better chances of winning the tournament than other contenders.
This paper provides an explanation for why an early leader may be favored
by a fully rational decision-maker.

Applications of investment tournaments are not limited to career choice,
promotion and product design contexts, and extend beyond purely economic
domain. Indeed, our investment tournament model is appropriate for model-
ing various decisions that involve a choice between several alternatives. For
instance, investment tournaments may help to explain why people tend to
date one person at a time. Dating amounts to spending time with a potential
partner. This can be viewed as an investment into the relationship-specific
value of a particular match. By Proposition 5, even if it is highly uncertain
which partner will be ultimately preferred, it is still optimal to invest dis-
proportionately into the most promising alternative. Proposition 5 predicts
that the effort invested into a relationship by competing contenders is largest
at the early stages of the relationship.
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Of course, the investment tournament model does not reflect the full
complexity of career choice or the dating problem. In fact, the limitations
of the investment tournament model suggest several directions for future
research. In particular, we would like to extend the investment tournament
model to two-sided matching in which a participant on one side of the market
can make investments into individual contenders on the other side of the
market, in particular, in dating and marriage.

Also, the investment tournament model does not address search aspects
arising in career choice, dating, etc. In these and in a number of other
contexts optimal search and investment tournament approaches are comple-
mentary, as each approach highlights certain important aspects of choice. In
particular, the optimal search approach focuses on information acquisition
assuming away the possibility of investment into improving the quality of
a match. In contrast, the investment tournament model focuses on the in-
vestments into relationships. Combining search and matching models with
investment tournament models would open interesting directions in research.
We intend to pursue these directions in future work.
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A Appendix

A.1 Notation and Definitions.

We start with a list of notation and definitions used in the proofs below.

Markov strategy : a strategy is Markov if the action in any period t depends
only on the vector of current values of alternatives Vt. For a Markov strategy
we can write σ(Vt) instead of σ(ht). So, when considering a Markov strategy
we will, with a slight abuse of notation, refer to the vector of the values of
alternatives Vt as history.
Extended history : h̃t = (ht,bt) = (s1,b1, s2,b2, ...st−1,bt−1,bt)

Extended value: Ṽti = Vti + bti; Ṽt = Ṽt(h̃t) = (Ṽt1, Ṽt2...ṼtN). Thus, the

extended value of an alternative/profession i at time t, Ṽti, as its value at the
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end of period t after the decision-maker has allocated period-t budget but
not including period-t shock.
Extended favorite: we will say that an alternative i is an extended favorite
at time t if Ṽti ≥ Ṽtj for any j ∈ {1, ..., N}.
Allocated investment: bti(ht, σ) (or bti(Vt, σ)) is the investment allocated to
alternative i by a pure strategy σ, conditional on history ht (or Vt).
Expected payoff: Π(ht, σ) (or Π(Vt, σ)) is the expected payoff from strategy

σ conditional on ht, (or Vt). Π̃(h̃t, σ) (or Π̃(Ṽt, σ)) is the expected payoff

from strategy σ conditional on h̃t (or Ṽt).
Hybrid history: f(ht,h

′
τ ) ≡ (s1,b1, ...st−1,bt−1, s

′
t,b

′
t, ...s

′
τ−1,b

′
τ−1) where

ht = (s1,b1, ...st−1,bt−1) and h′τ = (s′1,b
′
1, ...s

′
τ−1,b

′
τ−1) and τ ≥ t.

Continuation strategy: For a Markov strategy σ(.), continuation strategy in
period τ satisfies σ(h′τ ) = σ(f(ht,h

′
τ )).

Equivalence: ht is equivalent to h′t if and only if Vt(ht) = Vt(h
′
t)

Probability of winning: Pti(Vt, σ) represents the probability that alterna-
tive i wins the tournament conditional on Vt and Markov strategy σ; Pt =
(Pt1...PtN).

P̃ti(Ṽt, σ) represents the probability that alternative i wins the tournament

conditional on Ṽt and Markov strategy σ;
P̃t = (P̃t1...P̃tN).

Modified value: Vt|i(δ) = (Vt1, ..., V
′
ti = Vti+δ, ...VtN) and Ṽt|i(δ) = (Ṽt1, ..., Ṽ

′
ti =

Ṽti + δ, ...ṼtN).

Proof of Proposition 1.
First, we prove the following Lemma which allows us to focus on Markov

strategies.

Lemma 1 There exists a Markov optimal strategy σ.

Proof. The proof is by backwards induction. Consider the last period T . An
optimal strategy in this period, σ∗T , prescribes such allocation of budget B
between N alternatives that maximizes the expected value of the objective.
That is, σ∗T is a solution to the following problem:

max
(bT1≥0,...,bTN≥0:

∑
i=1,...,n bTi=B)

EF×...×F max{VT1 + bT1 + sT1, ..., VTN + bTN + sTN}.
(2)

Note that the expectation is taken with respect to the vector (sT1, ..., sTN).
Since the objective is continuous in (bT1, ..., bTN) and the feasible domain
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of (bT1, ..., bTN) is compact, this maximization problem has a solution - an
optimal strategy σ∗T . Clearly, this solution depends only on (VT1, ..., VTN),
i.e. σ∗T is Markov.

By Berge’s maximum Theorem, the value of (2) is a continuous function
of (VT1, ..., VTN) which we denote by W T (VT1, ..., VTN).

Proceeding to period T −1, we can use a similar method to show that the
optimal strategy for this period, σ∗T−1, is Markov. Indeed, σ∗T−1 prescribes
an allocation of budget B between N alternatives, (b(T−1)1,...,b(T−1)N), to
maximize the expected value of the following objective:

EF×...×F W T (V(T−1)1 + b(T−1)1 + s(T−1)1, ..., V(T−1)N + b(T−1)N + s(T−1)N)

This objective is continuous in (b(T−1)1, ..., b(T−1)N) and the feasible domain
of (b(T−1)1, ..., b(T−1)N) is compact, so the maximization problem has a solu-
tion - an optimal strategy σ∗T−1 which depends only on (V(T−1)1, ..., V(T−1)N).
Thus, σ∗T−1 is Markov. Proceeding backwards through all periods to the start
of the game, we establish that the optimal strategy (σ∗1, ..., σ

∗
T ) is Markov.

With Lemma 1 in hand, we proceed to prove the Proposition in two steps.
Step 1 shows that in every period, an optimal strategy requires all investment
to be allocated to one alternative. Step 2 shows that the alternative that
receives all investment in some period t is a favorite in that period.

Step 1. Let σ∗ be an optimal Markov strategy. Recall that Vt=
(Vt1, ..., VtN) (Ṽt= (Ṽt1, ..., ṼtN)) stands for the vector of values of alter-
natives (extended alternatives) at period t, and Vi stands for the termi-
nal value of alternative i at the end of the tournament. Note that Vi =

Ṽit + sit +
∑T

τ=t+1(biτ + siτ ).
Given the information available at period t and given the decision-maker’s

Markov strategy σ∗, let ηti(Ṽt, σ
∗, st, ..., sT) ≡ sit +

∑T
τ=t+1(biτ + siτ ). That

is, ηti(Ṽt, σ
∗, st, ..., sT) is the change in the value of alternative i between

period t after investment bti has been made and its terminal value, given that
the decision-maker uses the strategy σ∗ and the profile of random shocks in
periods t,...,T is given by (st, ..., sT). As a Markov strategy, σ∗ depends on Ṽτ

for all τ ∈ {t, ..., T} or, equivalently, on the vector Ṽt of extended alternatives
in period t and the profile of random shocks (st, ..., sT). For brevity, we will

sometimes write ηti(Ṽt, σ
∗) omitting the dependence on (st, ..., sT), but this

dependence is implicitly understood. So, the terminal value of alternative i
can be written as Vi(Ṽt, σ

∗, st, ..., sT)= Ṽti + ηti(Ṽt, σ
∗, st, ..., sT).
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Further, let Ri,r(Ṽt, σ
∗, st, ..., sT) denote the rank function which is equal

to 1 if the terminal value of alternative i, Vi, is r-th highest among the ter-
minal values of all N alternatives (V1, ..., VN), and is equal to zero otherwise.
Given σ∗, Ri,r(.) depends only on the vector of values of extended alternatives

Ṽt at time t and the profile of random shocks in periods t,..., T .
Suppose that at period t, σ∗ prescribes positive investments btj and btk

into alternatives j and k. Let δ ∈ (−min{btk, btj}, min{btk, btj}) be a small
reallocation of investment between alternatives j and k on top of what is
prescribed by strategy σ∗. We will make this reallocation without changing
the future allocation rule, so we still use Ṽt as an argument of ηti(.) and Ri,r(.)
for all i and r ∈ {1, ..., N}. That is, after this modification the strategy σ∗

prescribes the same actions in periods t+1,...,T as without this modification.

Define the vector of perturbed terminal values Vf(j(δ),k(−δ))(Ṽt, σ
∗, st, ..., sT )

as follows:

Vf(j(δ),k(−δ))(Ṽt, σ
∗, st, ..., sT ) ≡

(V1(Ṽt, σ
∗, st, ..., sT ), ..., Vj(Ṽt, σ

∗, st, ..., sT ) + δ, ..., Vk(Ṽt, σ
∗, st, ..., sT )− δ, ..., VN (Ṽt, σ

∗, st, ..., sT )).
(3)

That is, all entries of the vector Vf(j(δ),k(−δ))(Ṽt, σ
∗, st, ..., sT ), except the

j-th and k-th, are the same as in the vector V(Ṽt, σ
∗, st, ..., sT ), while the

j-th (k-th) entry of Vf(j(δ),k(−δ))(Ṽt, σ
∗, st, ..., sT ) is equal to the j-th (k-th)

entry of V(Ṽt, σ
∗, st, ..., sT ) plus (minus) δ.

Then for any δ ∈ (−min{btk, btj}, min{btk, btj}), the decision-maker’s ex-
pected value function in period t is equal to

E(st,...,sT )

∑

i=1,...,N,i/∈{j,k}

∑

r=1,...,N

λrRi,r(Vf(j(δ),k(−δ))(Ṽt, σ
∗, st, ..., sT ))Vi(Ṽt, σ

∗, st, ..., sT )

+E(st,...,sT )

∑

r=1,...,N

λrRj,r(Vf(j(δ),k(−δ))(Ṽt, σ
∗, st, ..., sT ))(Vj(Ṽt, σ

∗, st, ..., sT ) + δ)

+E(st,...,sT )

∑

r=1,...,N

λrRk,r(Vf(j(δ),k(−δ))(Ṽt, σ
∗, st, ..., sT ))(Vk(Ṽt, σ

∗, st, ..., sT )− δ)

(4)

Consider (4) as a function of δ. Since btj > 0 and btk > 0 are optimal
investments, δ = 0 is an interior optimum of (4). Therefore, the first deriva-
tive of (4) with respect to δ must be equal to zero at δ = 0 while its second
derivative must be nonnegative. In the rest of the proof, we show that this is
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not the case, thereby establishing a contradiction with our original hypoth-
esis that btj > 0 and btk > 0. Indeed, the first derivative of (4) with respect
to δ is equal to:

E(st,...,sT )

∑

r=1,...,N

λrRj,r(Vf(j(δ),k(−δ))(Ṽt, σ
∗, st, ..., sT ))

−E(st,...,sT )

∑

r=1,...,N

λrRk,r(Vf(j(δ),k(−δ))(Ṽt, σ
∗, st, ..., sT ))

+E(st,...,sT )




N∑

i=1

∑

r=1,...,N

λr
∂Ri,r(Vf(j(δ),k(−δ))(Ṽt, σ

∗, st, ..., sT ))
∂Vj

Vf(j(δ),k(−δ))
i




− E(st,...,sT )




N∑

i=1

∑

r=1,...,N

λr
∂Ri,r(Vf(j(δ),k(−δ))(Ṽt, σ

∗, st, ..., sT ))
∂Vk

Vf(j(δ),k(−δ))
i




(5)

Observe that the third and fourth terms in (5) are equal to zero. Indeed, for all
r ∈ {1, ..., N}, we have:

E(st,...,sT )

(
N∑

i=1

∂Ri,r(Vf(j(δ),k(−δ))(Ṽt, σ
∗, st, ..., sT ))

∂Vj

Vf(j(δ),k(−δ))
i

)
= 0 (6)

To see why (6) holds, note that
∑N

i=1 Ri,r(V) ≡ 1 for all r and all V, be-

cause some alternative is always ranked r-th. So, ∂Rj,r(Vf(j(δ),k(−δ))(Ṽt,σ∗,st,...,sT ))
∂Vj

+
∑

i′∈{1,...,N}, i′ 6=j

∂Ri′,r(Vf(j(δ),k(−δ))(Ṽt,σ∗,st,...,sT ))

∂Vj
= 0. Furthermore, if

∂Ri′,r(Vf(j(δ),k(−δ))(Ṽt,σ∗,st,...,sT ))

∂Vj
6= 0 for some i′ ∈ {1, ..., N}, i′ 6= j and some

(Ṽt, σ
∗, st, ..., sT ), then i′ and j must be the favorite (highest value) alternatives at

the terminal period T , and so Vi′(Ṽt, σ
∗, st, ..., sT )) = Vj(Ṽt, σ

∗, st, ..., sT )) + δ.
This establishes that the third term in (5) is equal to zero. An identical argument
establishes that the fourth term in (5) is also equal to zero.

Thus, we conclude that the derivative of (4) with respect to δ is equal to the
first two terms of (5) which can be rearranged as follows:

E(st,...,sT )


 ∑

r=1,...,N

(λr − λr+1)
r∑

m=1

Rj,m(Vf(j(δ),k(−δ))(Ṽt, σ
∗, st, ..., sT ))


−

E(st,...,sT )


 ∑

r=1,...,N

(λr − λr+1)
r∑

m=1

Rk,m(Vf(j(δ),k(−δ))(Ṽt, σ
∗, st, ..., sT ))


 (7)
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where by convention we set λN+1 = 0.
Since λr − λr+1 ≥ 0 for all r ∈ {1, ..., N}, in order to establish that the second

derivative of (4) is increasing in δ and hence to complete the proof, it suffices to
show that for all r ∈ {1, ..., N},
E(st,...,sT )

∑r
m=1 Rj,m(Vf(j(δ),k(−δ))(Ṽt, σ

∗, st, ..., sT )) is increasing in δ and
E(st,...,sT )

∑r
m=1 Rk,m(Vf(j(δ),k(−δ))(Ṽt, σ

∗, st, ..., sT )) is decreasing in δ.

To see the former, let Vf(j(δ),k(−δ))
(r) denote the r-th highest entry in the vector

of alternatives Vf(j(δ),k(−δ)). Then,

E(st,...,sT )

r∑

m=1

Rj,m(Vf(j(δ),k(−δ))(Ṽt, σ
∗, st, ..., sT ))

= Prob(st,...,sT )(V
f(j(δ),k(−δ))
j ≥ Vf(j(δ),k(−δ))

(r) |Ṽt, σ
∗, δ) (8)

where Prob(st,...,sT )(V
f(j(δ),k(−δ))
j ≥ Vf(j(δ),k(−δ))

(r) |Ṽt, σ
∗, δ) is the probability that

alternative j is at least the r-th highest in the vector Vf(j(δ),k(−δ)). This probability
is non-decreasing in δ because an increase in δ raises Vf(j(δ),k(−δ))

j , the value of

alternative j, lowers Vf(j(δ),k(−δ))
k , the value of alternative k, and leaves the values

of all other alternatives unchanged. By a similar argument,
E(st,...,sT )

∑r
m=1 Rk,m(Vf(j(δ),k(−δ))(Ṽt, σ

∗, st, ..., sT )) is decreasing in δ. So, the
value of (7) is increasing in δ.

Next, we will show that the alternative that receives all investment in any pe-
riod t must be a favorite. That is, if alternative i′ receives all investment in period
t, then it must be that i′ ∈ arg maxi∈{1,...,N} Vti. The proof is by contradiction. So
suppose not, i.e. the vector of optimal investments in period t, b∗t = (b∗t1, ..., b

∗
tN ),

is such that b∗ti′ = B, b∗ti = 0 for i 6= i′ and i′ /∈ arg maxi∈{1,...,N} Vti.
There are two cases to consider.
Case 1. Vtj′ − Vti′ < B for some j′ ∈ arg maxi∈{1,...,N} Vti.
In this case, we have B > Ṽti′ − Ṽtj′ = (Vti′ + b∗ti′)− (Vtj′ + b∗tj′) > 0. Since the

optimal strategy σ∗ is Markov and the shocks are identically distributed, the same
expected payoff can be attained by making the following alternative investment
decisions b̂t in period t: b̂ti′ = Vtj′−Vti′ and b̂tj′ = B−b̂ti′ , b̂ti = 0 for all i 6∈ {i′, j′}.
That is, we have Π̃(Vt+b∗t , σ∗) = Π̃(Vt+b̂t, σ

∗). But the argument in the first part
of the proof establishes that investment b̂t is strictly suboptimal, so b∗t cannot be
an optimal investment allocation either.

Case 2. Vtj′ − Vti′ ≥ B for some j′ ∈ arg maxi∈{1,...,N} Vti. In this case,
Ṽti′ − Ṽtj′ = (Vti′ + b∗ti′)− (Vtj′ + b∗tj′) ≤ 0.

Then, pick some δ ∈ (0, B) and consider the following feasible allocation of
investments in period t: in period t alternative j′ receives an investment δ, and
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alternative i′ receives investment B − δ. Further, suppose that in all subsequent
periods the decision-maker continues to use the same optimal strategy σ∗ ignoring
this reallocation of investment i.e. acting as if investments b∗t have been made in
period t.

Then, using the same computation as in Part 1 of the proof and differenti-
ating with respect to δ, we conclude that the derivative of the expected payoff
with respect to δ, at δ = 0, is equal to (7) with j = j′ and k = i′. The result
of Step 1 implies that the probability distribution of Vj′ first-order stochastically
dominates the probability distribution of Vi′ . So (7) has a strictly positive value
for j = j′ and k = i′. That is, this reallocation of investment from i′ to j′ strictly
increases the expected payoff to the decision-maker. Hence, b∗t is suboptimal. We
conclude that the optimal strategy requires allocating all investment to a favorite
alternative in every period.

Proof of Proposition 2.
First, the same proof as in Lemma 1 can be used to show that there exists

a Markov optimal strategy. So, let us focus on such strategies.
We proceed further arguing by contradiction as in the proof of Proposi-

tion 1. Let us use the same notation and the same sequence of steps as in
Proposition 1 and only explain the steps that require a modification.

Specifically, suppose that an optimal strategy in period t prescribes pos-
itive investments btj and btk into alternatives j and k, and consider a small
perturbation δ ∈ (−min{btk, btj}, min{btk, btj}) reallocating investments be-
tween alternatives j and k on top of what is prescribed by the optimal strat-
egy. This reallocation is made without changing the future allocation rule.
Then the decision-maker’s objective is given by the following counterpart of
expression (4):

E(st,...,sT )

∑

i=1,...,N,i/∈{j,k}
µ(Vi(Ṽt, σ

∗, st, ..., sT ))

+E(st,...,sT )

(
µ(Vj(Ṽt, σ

∗, st, ..., sT ) + δ) + µ(Vk(Ṽt, σ
∗, st, ..., sT )− δ)

)
(9)

The first-order derivative of (9) with respect to δ is equal to:

E(st,...,sT )

(
µ′(Vj(Ṽt, σ

∗, st, ..., sT ) + δ)− µ′(Vk(Ṽt, σ
∗, st, ..., sT )− δ)

)
(10)
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while the second-order derivative of (9) is given by:

E(st,...,sT )

(
µ′′(Vj(Ṽt, σ

∗, st, ..., sT ) + δ) + µ′′(Vk(Ṽt, σ
∗, st, ..., sT )− δ)

)
> 0

(11)

Since (11) is positive, δ = 0 cannot be an optimal choice. So, the decision-
maker will never make positive investments in two different alternatives in
any period t.

To show that an optimal strategy requires allocating all investment to
a favorite alternative in every period, apply the same argument that estab-
lishes a similar assertion in Proposition 1, with the only difference that in
the current case the proof has to refer to (10), instead of (7). Q.E.D.

Proof of Proposition 3
The proof of part (i) of the Proposition follows the same lines as its

counterpart in Proposition 1. That it, suppose that in period t the optimal
strategy prescribes positive investments btj and btk into alternatives j and k.
On top of these investments, consider a small reallocation of investment δ ∈
(−min{btk, btj}, min{btk, btj}) from alternative k to alternative j in period t,
without changing either the total amount of investment in period t or the
future allocation. That is, after this reallocation our strategy prescribes the
same actions in periods t + 1,...,T , as without this reallocation. Since δ = 0
is optimal by assumption, the first-order condition (5) must still hold, and
the second-order derivative of the objective, i.e. the derivative of (5) with
respect to δ, must be nonpositive. Repeating the same steps as in the proof of
Proposition 1, we establish a contradiction by showing that this second-order
derivative is, in fact, strictly positive.

Let us now prove part (ii) of the Proposition. Suppose that i is the
favorite alternative that receives all investment under the optimal strategy
in period t. Then, we have:

∂Π̃(Ṽt1...ṼtN , σ)

∂Ṽti

=
dC(Bt)

dBt

(12)

Differentiating the decision-maker’s value function, we obtain:

∂Π̃(Ṽt1...ṼtN , σ)

∂Ṽti

= P̃ti(Ṽt, σ) (13)
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where, as defined above, P̃ti(Ṽt, σ) stands for the probability that alternative

i wins the tournament conditional on period t information that includes Ṽt

and strategy σ. Combining equations (12) and (13) yields:

P̃ti(Ṽt, σ) =
dC(Bt)

dBt

(14)

Further, since in each period the decision-maker invests all resources into
a favorite alternative, the probability that the favorite alternative i wins
increases in its value, i.e.

dP̃ti(Ṽt, σ)

dṼti

> 0 (15)

Note that C ′′(·) > 0. So, as the value of the favorite alternative Ṽit increases,

equation (14) will continue to hold only if Bt also increases in Ṽit. Q.E.D.

Proof of Proposition 4.
Applying the method used in the proof of Proposition 1, let σ̂ be an equi-

librium strategy. Recall that Ṽt stands for the vector of values of extended
alternatives at time period t, and btj stands for an equilibrium investment

into alternative j at time period t. Further, Ri,r(Ṽt, σ̂, st, ..., sT) is the proba-
bility that alternative i has rank r (i.e. that the terminal value of alternative
i, Vi, is the r-th highest among the terminal values of all N alternatives
(V1, ..., VN)). The expected value of alternative j, given the information at
time t, is equal to:

E(σ̂,st,...,sT )µ(Vj) = aE(σ̂,st,...,sT )Vj − c

2
E(σ̂,st,...,sT )

(
V 2

j

)
(16)

When λ1 = ... = λn = λ̄, the decision-maker’s objective is to maximize:

∑
j=1,...,N

(
aλ̄E(σ̂,st,...,sT )Vj − c

2

(
E(σ̂,st,...,sT )V

2
j

))
=

aλ̄

( ∑
j=1,...,N

Vtj + (T − t)×B

)
− λ̄

c

2

(
E(σ̂,st,...,sT )

∑
j=1,...,N

V 2
j

)

Since the first term on the second line of the previous expression does not
depend on the strategy σ̂ from period t+1 on, consider only the second term.
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Recalling that sit are i.i.d. across alternatives and periods, let V ar(s) stand
for the variance of sit for any i and t. Then we have:

− E(σ̂,st,...,sT )

∑
j=1,...,N

V 2
j = −E(σ̂,st,...,sT )

( ∑
j=1,...,N

Vj

)2

+ 2
∑

i,j∈{1,...,N} i 6=j

E(σ̂,st,...,sT )VjVi =

− (T − t)×N × V ar.(s) +

( ∑
j=1,...,N

Vtj + (T − t)×B

)2

+ 2
∑

i,j∈{1,...,N} i6=j

E(σ̂,st,...,sT )VjVi

(17)

The only term in (17) that depends on the decision-maker’s strategy from
t + 1 onwards is

∑

i,j∈{1,...,N}, i 6=j

E(σ̂,st,...,sT )VjVi. (18)

Thus, the optimal strategy σ̂ should maximize (18).
Let us start from the last period T . The derivative of (18) with respect to

bTi is equal to: E(σ̂,sT )

∑
j∈{1,...,N}, i 6=j Vj =

∑
j∈{1,...,N} i 6=j VTj +bTj. Using this

derivative, we conclude that bTi > 0 and bTj > 0 if and only if the following
first-order condition holds:

VTj + bTj = VTi + bTi (19)

However, if (19) cannot hold for all pairs of alternatives (i, j) i.e. if VTj >∑
i′:i′ 6=j, VTi′<VTj

VTi′+B

#{i′:i′ 6=j, VTi′<VTj} , then it is optimal to set bTj = 0.

This implies that the optimal strategy in period T it to allocate the budget
B to attain the following objective:

max min
i′∈{1,...,N}

VTi′ + bTi′ .

To show that the same strategy is optimal in any period t ∈ {1, ..., T−1},
proceed by induction and suppose that such strategy is optimal in all periods
starting from some t + 1. Then, E(σ̂,st+1,...,sT )V(t+1)i > (=)E(σ̂,st+1,...,sT )V(t+1)j,
implies that

E(σ̂,st+1,...,sT )Vi > (=)E(σ̂,st+1,...,sT )Vj.

Therefore, given the strategy σ̂ and the fact that sti an stj are distributed
identically and independently, Vti+bti > (=)Vtj+btj implies that E(σ̂,st+1,...,sT )V(t+1)i >
(=)E(σ̂,st+1,...,sT )V(t+1)j.
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We will use this property to establish the optimality of allocating invest-
ments in period t to maximize

min
i′∈{1,...,N}

Vti′ + bti′ . (20)

To show this, suppose that it is optimal to make strictly positive investments
into alternatives i and j in period t. As in the proof of Proposition 1 consider
a small reallocation of investment δ ≥ 0 from j to i in period t. Recall
that this reallocation is done in such a way that the investment strategy
in the subsequent periods remains unchanged. Then, we have ∂Vi

∂δ
= 1 =

−∂Vj

∂δ
. Since bti and btj are strictly positive, the following first-order condition

(obtained by differentiating (18)) has to hold.

∑

i′,j′∈{1,...,N}, i′ 6=j′

∂E(σ̂,st,...,sT )Vj′Vi′

∂δ |δ=0
= E(σ̂,st,...,sT )Vj − E(σ̂,st,...,sT )Vi = 0

(21)

But as we have shown before, the last equality in (21)) holds only if Vti+bti =
Vtj + btj.

On the other hand, if the value of (21) is positive, i.e. if Vti + bti <
Vtj + btj, then it is optimal to set δ > 0, and hence btj must be equal to zero.
Alternatively, if the value of (21) is negative, i.e. if Vti + bti > Vtj + btj, it
is optimal to set δ < 0, and hence bti must be equal to zero. So, a positive
investment is always made into the lowest value alternative at t and, when
two alternatives i and j receive positive investments, then Vti +bti = Vtj +btj.
Consequently, the unique optimal strategy is to maximize (20).

Part (ii). Now suppose that λ1 > 0 and λ2 = ... = λn = 0. The proof of
this part follows the proof of Proposition 1. So suppose that the equilibrium
strategy σ̂ prescribes positive investments btj and btk into alternatives j and k
in period t. Let δ ∈ (−min{btk, btj}, min{btk, btj}) be a small reallocation of
investment from alternative j into alternative k on top of what is prescribed
by σ̂. This reallocation is done without changing the future allocation rule.
That is, after this reallocation the strategy σ̂ prescribes the same actions in
periods t + 1,...,T as without it.

Recall that Rj,1(.) is the rank function equal to 1 if alternative j is the
winner at the terminal node, and equal to zero otherwise. The vector of

perturbed terminal values Vf(j(δ),k(−δ))(Ṽt, σ
∗, st, ..., sT ) is defined in (3). All

entries of the vector Vf(j(δ),k(−δ))(Ṽt, σ
∗, st, ..., sT ), except the j-th and k-

th, are the same as in the vector V(Ṽt, σ
∗, st, ..., sT ), while the j-th (k-th)
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entry of Vf(j(δ),k(−δ))(Ṽt, σ
∗, st, ..., sT ) is equal to the j-th (k-th) entry of

V(Ṽt, σ
∗, st, ..., sT ) plus (minus) δ. Dropping the argument (Ṽt, σ̂, st, ..., sT ))

of Vf(j(δ),k(−δ)) and Vi(.), for any δ ∈ (−min{btk, btj}, min{btk, btj}), the
decision-maker’s expected value function in period t is equal to:

E(st,...,sT )

∑

i=1,...,N,i/∈{j,k}
λ1Ri,1(Vf(j(δ),k(−δ))

(
aVi − c

2
V 2

i

)

+E(st,...,sT )λ1Rj,1(Vf(j(δ),k(−δ)))(a(Vj + δ)− c

2
(Vj + δ)2)

+E(st,...,sT )λ1Rk,r(Vf(j(δ),k(−δ)))(a(Vk − δ)− c

2
(Vk − δ)2) (22)

Consider (22) as a function of δ. Since btj > 0 and btk > 0 are optimal invest-
ments, δ = 0 is an interior optimum of (22). Therefore, the first derivative
of (22) with respect to δ must be equal to zero at δ = 0 while its second
derivative must be nonnegative. In the rest of the proof, we show that this is
not the case, thereby establishing a contradiction with our original hypoth-
esis that btj > 0 and btk > 0. The first derivative of (22) with respect to δ
can be written as:

E(st,...,sT )λ1

(
Rj,1(Vf(j(δ),k(−δ))) (a− c(Vj + δ))−Rk,1(Vf(j(δ),k(−δ))) (a− c(Vk − δ))

)

+E(st,...,sT )

(
N∑

i=1

λ1
∂Ri,1(Vf(j(δ),k(−δ)))

∂Vj

(
aVi − c

2
V 2

i

))

− E(st,...,sT )

(
N∑

i=1

λ1
∂Ri,1(Vf(j(δ),k(−δ)))

∂Vk

(
aVi − c

2
V 2

i

))
(23)

The second and the third lines in (23) are equal to zero. To see this note that∑N
i=1 Ri,1(V) ≡ 1 for all V, because some alternative is always ranked 1-st. So,∑
i∈{1,...,N}

∂Ri,1(Vf(j(δ),k(−δ)))
∂Vj

= 0. Furthermore, if ∂Ri,1(Vf(j(δ),k(−δ))
∂Vj

6= 0 for some

i ∈ {1, ..., N}, i 6= j, then i and j must be the favorite (highest value) alternatives
at the terminal period T and so Vi = Vj + δ. This establishes that the third term
in (23) is equal to zero. An identical argument establishes that the fourth term in
(23) is also equal to zero.

Thus, we conclude that the derivative of (22) with respect to δ is equal to:

E(st,...,sT )λ1

(
Rj,1(Vf(j(δ),k(−δ))) (a− c(Vj + δ))−Rk,1(Vf(j(δ),k(−δ))) (a− c(Vk − δ))

)

(24)

The second derivative of (24) is obtained by differentiating (24) with respect to δ.
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It is equal to:

E(st,...,sT ) − λ1c
(
Rj,1(Vf(j(δ),k(−δ))) + Rk,1(Vf(j(δ),k(−δ)))

)

+ λ1

(
∂Rj,1(Vf(j(δ),k(−δ)))

∂δ
(a− c(Vj + δ))

)
−

(
∂Rk,1(Vf(j(δ),k(−δ)))

∂δ
(a− c(Vk − δ))

)

(25)

Note that ERj,1(Vf(j(δ),k(−δ))) ≤ 1 and ERk,1(Vf(j(δ),k(−δ))) ≤ 1 by defini-
tion. Also, ERj,1(Vf(j(δ),k(−δ))) > 0 and ERk,1(Vf(j(δ),k(−δ))) > 0, for otherwise
it cannot be optimal to set bjt > 0 and bjk > 0. Note that ∂Rj,1(Vf(j(δ),k(−δ)))
and ∂Rk,1(Vf(j(δ),k(−δ))) are concave since the probability distribution of shocks
s are bounded. Concavity and boundedness from above and below imply that
∂Rj,1(Vf(j(δ),k(−δ)))

∂δ − ∂Rk,1(Vf(j(δ),k(−δ)))
∂δ ≥ 1

n . So, when a
c > n((B + s̄)T + 1), the

value of (25) is positive. Hence it is not optimal to invest positive amounts in
two alternatives. An argument similar to the one in Proposition 1 then establishes
that in every period all budget should be invested into a favorite alternative.

Proof of Proposition 5.
First, note that a symmetric Nash equilibrium exists. Indeed, if the decision-

maker’s strategy is symmetric across the contenders, then all contenders have the
same beliefs regarding the decision-maker’s investments and random shocks at
every period. Therefore, every contender has the same best-response investment
function. Further, given that each contender uses the same investment function,
it is indeed optimal for the decision-maker to use a strategy which is symmetric
across the contenders. The fixed point of these best response functions exists by
standard argument and constitutes a symmetric Nash equilibrium.

Next, let (e∗1, ..., e
∗
T ) be the equilibrium effort investment profile for each of the

contenders. Given this profile and given the distribution of shocks, the decision-
maker’s problem is exactly the same as in the benchmark model studied in Section
2. The only modification here is that, independently of the decision-maker’s in-
vestment, the value of contender i now changes by the amount e∗t + sti in each
period rather than by sti. So part (i) - the optimality of investing all resources in
one contender in each period- follows directly from Proposition 1.

To establish part (ii), again consider the optimal effort profile (e∗1, ..., e
∗
T ) of a

contender. Suppose that e∗t ≥ e∗t′ for some time-periods t and t′ s.t. t > t′. Then,
consider some contender i. Recall that the decision-maker puts all the resources
into a favorite alternative in each period. Therefore, by switching effort levels in
periods t and t′, contender i will keep her overall costs constant. At the same
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time, this modification raises the probability that i receives the decision-maker’s
investment in period t′ and hence in all later periods. So, this deviation is strictly
profitable for contender i. Q.E.D.
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