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ABSTRACT

In this paper I analyze a simple "representative agent" exchange
model of general equilibrium, and derive closed form solutions for re-
turns on stocks and real and nominal bonds.

The model restricts the representative agent's utility function
to be time-separable with isoelastic period utility, and the endowment
to be conditionally lognormal. These assumptions allow me to examine
a general stationary stochastic process for the log of the endowment.
?Ioney and nominal prices are modelled by means of a Clower constraint.

Risk premia on stocks and real and nominal discount bonds are
simple functions of the coefficient of relative risk aversion, the
variance of the innovation to the log endowment, and the weights in
the moving average representation of the log endowment. One-period
holding premia on real bonds may be positive or negative, but the lim-
it as maturity increases is positive. When the money supply is deter-
ministic, stocks and nominal bonds are perfect substitutes. Their ex-
pected returns to maturity are higher than those on real bonds of
equal maturity, but need not be higher over other holding periods.
Nominal interest rates vary positively with prices (the "Gibson para-
dox") if the coefficient of relative risk aversion is greater than
one.

In the last section of the paper I consider random shocks to the
agent's utility function. These shocks may generate risk premia even
when the agent is risk-neutral.

John Y. Campbell

Dept. of Economics
Dickinson Hall
Princeton University
Princeton, NJ 08544
(609)-452-4011



In this paper I analyze a simple "representative agent" exchange

model of general equilibrium, and derive some new propositions about

the determination of returns and risk premia in the term structure and

the stock market.

The model presented here derives closed form solutions for asset

prices from first-order conditions of the representative agent's in-

tertemporal optimization problem. Net supplies of all assets are

zero; therefore there are no income effects of changes in asset pric-

es, and the results of the model arise from substitution effects

alone.1 The driving variable in the model is the representative

agent's nonstorable endowment.

In these respects the model is similar to those of Lucas [19781

and LeRoy [1982]. However Lucas does not derive closed forms. LeRoy

obtains closed form solutions for a world in which the representative

agent's endowment follows a 2-state Markov process, whereas I allow

the log of the endowment to follow any stationary stochastic process

about a trend. In LeRoy's model, if the state is currently bad it

cannot get worse; this is a crucial restriction which I relax by con-

sidering general stationary processes. I also consider the effect of

"taste shocks" in the utility function.

The cost of greater generality in the stochastic process for the

endowment is that I must impose restrictions on the form of the repre-

sentative agent's utility function and the distribution of endowment

and taste shocks. I assume that the log of the endowment, log

1 Stiglitz [1970] studied an equilibrium model of asset pricing allow-
ing for both income and substitution effects. In general he was un-
able to sign the combined result of these two effects.
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follows a stationary stochastic process about a trend which for

simplicity I assume to be linear. By Woldts Decomposition Theorem, we

can write

00

(1) log w gt + E

k=O

2
where E k < oo for stationarity, and =

k=O

The trend growth rate of the endowment is g. The innovation in the

log endowment, e, is i.i.d. normal with mean zero and standard devia-

tion s; thus is lognormal. I assume that at time t the represen-

tative agent possesses no information about I > 0, superior to

that contained in equation (1). That Is, the unlvariate innovation e

is the true innovation in the agent's best forecasting equation for

wt.

I assume that the representative agent's utility function is

time-separable with Isoelastic period utility discounted by a factor

. The coefficient of relative risk aversion Is a. Ignoring taste

shocks for the moment, the representative agent solves the problem

cc k co kl-a
(2) Max Et X u(c +k E c +kRl

k=0 k=0

where in equilibrium Ct+k = Wt+k all k, because there is no produc-

tion or storage in the model.
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Of course, this is a trivial maximization problem since the agent

has no production or even exchange opportunities and simply consumes

his endowment. Nevertheless, it can be used to price various assets,

since we can ask "at what interest rates is the price-taking agent

content to consume his endowment?"

I begin by discussing the determination of real prices of real

bonds, then the determination of stock prices. I introduce money, and

therefore nominal prices, using a Clower constraint of the type dis-

cussed by Lucas [1982], which generates a unit velocity of money. if

the money supply is deterministic, I show that stocks and nominal

bonds are perfect substitutes. I discuss the relationship between the

nominal price level and nominal interest rates. Finally, I modify the

basic model by introducing taste shocks into the agent's utility func-

tion.

Cox, Ingersoll and Ross [1981] have stressed that conclusions

about asset returns in theoretical models are sensitive to the exact

definition and holding period considered. Accordingly they argue for

continuous time modelling of instantaneous returns. The present paper

offers an alternative modelling strategy, in which closed form solu-

tions for discrete time returns may be obtained and compared for any

holding period.
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1. A Term Structure of Real Bonds

The first-order condition for an i-period real discount bond,

which costs P units of the consumption good today and returns 1 unit

of the good in period t+i, is simply

(3) Et[c÷.J =

I -a -i
L' 1 I',-. /-. \ 1 — D — (1.LD \t+it-' - — 1i-t —

where R.t Is the net return per period (or yield) on the i-period

bond. The term in square brackets Is conditionally lognormal, and

thus one can apply the formula for the expected value of a lognormal

random variable to obtain

(4) i.log(l+R.) = I.log(l/) + aE[log c1 - log ct]

2
- (a /2)Var[log c÷. - log c]

= i.log(l/) + lag + a[X k+ik ekI

2 i-l 2 2
- (a /2)[ Z k S

k=o e

The first part of this equation is equivalent to expressions In Mankiw

[1981] and Hansen and Singleton [1983]; the second part follows from

the representation of consumption in equation (1).
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For given i, the real interest rate on a real bond is inversely

related to the discount factor and therefore positively related to

the rate of time preference. The interest rate rises with the expect-

ed increase in log consumption from time t to time t+i; this expected

increase has trend and stochastic components.

The real interest rate on a real bond falls as the variance of

the endowment shock increases.2 This can be explained as follows:

Miller [1976] has shown that a sufficient condition for saving to in-

crease with labor income uncertainty, in a multi-period model with a

known return to saving, is that u'(c) is positive and convex. The

isoelastic utility function satisfies this condition. But the equi-

librium interest rate is just that rate at which the agent is content

to save exactly zero; therefore it falls with endowment uncertainty.

Equivalently, note that the expected value of a convex function

of a random argument increases with the variance of the argument:

therefore the left hand side of equation (3) increases with the vari-

ance of consumption, driving asset prices up and interest rates down.

Risk premia are most conveniently defined in this lognormal model

to be the log of the ratio of expected gross returns on alternative

investment strategies. These "log ratio" risk premia are constant

through time.

Defined this way, Campbell and Shiller's [1984] holding period

premium on an i-period bond held for j periods, over a j-period bond,

is

2 This is a comparative static statement. The variance of the endow-
ment was assumed to be constant through time in the derivation of
(4).
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- (i-i)
= i.log(l+R.) + log Et[(l+R±_,+)

I -

log(l+R )
= i.log(l+R ) - - -it

+ (l/2)Var[log(l+R..÷.)J

Once we know 44 1 -- I uiiieL--V U.IIL )LLV eu L iU1IV j 1 I U.S LJ

encet' risk premium as

j

(l+R.) (exp{.]_l)

The difference risk premium varies in proportion with the shorter j-

period rate, and has the same sign as when the j-period rate is
ii t

positive.

Now the conditional variance of the (i-j)-period rate, j periods

ahead, is just

Var [E log c lo- g

Co

= Var[ E e÷.kIk=O

j-l 2 2
= [ z (. +kk

k=O :i-j e

Then straightforward but tedious calculation shows that
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2 j-l 2

(5) ijt = a kO kki-j+k1 Se

We are particularly interested in the special case of a unit

holding period. (5) implies that

2 2

(6) ilt = a [lil] 5e

The 1-period holding premium for an i-period bond is positive

whenever The intuition behind this result is simple. When

a positive endowment shock between t and t+1 raises the t+l

endowment more than it raises the expected endowment at t+i when the

bond matures. Thus a positive endowment shock lowers the yield on the

bond and gives a capital gain to bondholders. Capital gains on such

bonds are positively correlated with the ratio of consumption tomorrow

to consumption today, and negatively correlated with the corresponding

ratio of marginal utilities. These bonds must therefore have a higher

expected yield.

In general there will be some i for which .>l, and thus some

negative term premia.3 But the assumption that the endowment is sta-

tionary restricts the proportion of negative 1-period holding premia.

Since

2 n 2

Z < o, we must have lim Z ./n = 0 and lim . = 0.
i=0 n-*oo i0 1 1

These cases were ruled out by LeRoy's 2-state model.
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The first limit implies that the proportion of maturities i for which

the square of . exceeds unity, in a sample of the first n maturities,

must go to zero as n-*. A fortiori the proportion of negative

1-period holding premia must go to zero. The second limit implies

that 1-period holding premia approach

22
s as i-°°.
e

Two simple examples of stochastic processes for the log endowment

may help to clarify the implications of the model. When the log en-

dowment follows an AR(l) with parameter a such that -l<a<l, then

= a

and 1-period holding premia are always positive. They increase mono-

tonically with maturity when O<a<l. When the log endowment follows an

AR(2) with parameters a1 and a2 and roots K1 and
K2,

then

I k i-k
= E K K

1
k=O

If the roots are both real and positive, . may have a "hump shape"

(Blanchard [1981]), and there will be some negative 1-period holding

premia at the short end of the term structure.

Figure 1 Is a graphical illustration of the determination of

one-period holding premia. It displays a typical impulse response

function, . as a function of i, and the regions of negative and posi-

tive holding premia. The slope of a line between the points

and (i-l,.1) determines the response of the yield on an i-period
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bond to a unit positive innovation in the endowment. When this slope

is positive, the holding premium is negative, and vice versa.

The expected excess return on an i-period bond held to maturity,

over a sequence of one-period bonds, is what Campbell and Shiller

[1984] call the rolling premium. For the purposes of this model, it

is written as

ilt i.log(l+R.) - log Et[(l+R1t).

i-i
= i.log(l+R.) -

Et [ X
log(l+R.÷)]

i-l
- (l/2)Var[ Z log(l+R. t+k1

k=O

As in the case of the holding premium, it is trivial to obtain the

conventional ttdifferencet rolling premium as

Et[(1+R1t)...(l+R1t÷11)](exp{'±1t]l)

which has the same sign as so long as the expected return on the

rollover strategy is positive.

It turns out that

2 i-i 2

(7) ilt = Z

k=O
e

To understand the intuition of this result, consider the case

where i=2. Then
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2 2

(8) '2lt = ii)1Se

2lt can be negative if (l-i) is negative, a case we have already

discussed, or if is negative. To understand the latter condition,

note that the return on a 2-period rollover strategy is particularly

high when short rates are higher than expected in period t+l. With

this occurs when there is a negative endowment shock in period

t+l. If is negative, the endowment will on average rebound to a

higher level in period t+2 than the level that was expected in period

t; thus returns on the rollover strategy are positively correlated

with the ratio of period t+2 consumption to period t consumption, and

must be higher on average than the returns on a "safe" strategy of

holding a 2-period bond for 2 periods. In other words, when is

negative the 2-period bond has a negative risk premium. If is po-

sitive, however, a negative endowment shock at t+l will tend to be

followed by a lower endowment at t+2 than was originally expected, and

the above conclusions are reversed.

Stationarity alone does not generate a presumption that rolling

premia are positive. Under the strong condition that 0 � . � 1, all

I, rolling premia are positive for all (as are all holding prem±a).

Finally I consider whether in this model the spread between the

i-period rate and the j-period rate, j<±, is positively related to the

level of risk premia. Campbell and Shiller [1984] argue that this

should be true in general. From equation (4),
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(9) log(l+R.) - log(l+R.)

k=O
i+kk ek}

-

k=O j+kk ekl

2 j-l 2 2 i-i 2
+ {(a /j)[ Z k - /i)[ k

k=O k=O

The first two terms relate the spread to expected future interest

rates. The last term relates the spread to the variance of the endow-

ment. This variance is multiplied by the difference between the aver-

age of the first j terms in the series of squared s, and the average

of the first i terms. This difference can in general be positive or

negative, but once again stationarity imposes the restriction that as

i approaches oo with fixed j, the difference becomes positive. Thus in

the limit the spread is positively related to the variance of the en-

dowment and thus the level of risk premia.
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2. Stocks and Nominal Bonds

It is simple to price stock in this model. A "stock't is simply a

claim to a share of the random endowment at some period in the fu-

ture.' Define as the real time t price of a claim to the whole

endowment at time t+i, . = c .. Then
t+i t+i

il-a -a

(10) Et[ c÷.] =

and we can use this first order condition to solve for P*. . The real
it

log return on the stock over j periods, j<i, is log - log

*, and the real log return over i periods is log c. - log P* =

i.log(l+R*.). By contrast with real bonds, the i-period real return

on an i-period stock is random, since the final payoff is random.

Solving for the real price and i-period log expected return of an

i-period stock, we find

(11) log P*.. = i.log() + Elog c+. - a[Elog c÷. - log ct]

2

+ (a /2) Varlog c+.

i i-i 2 2

(12) log Et{(1+R*.t) ] = i.log(l+R) + a[ E k ]s
k=0

e

k
do not explicitly consider a more realistic "consol-like" stock, a

claim to the whole stream of future endowments. The price of such a
stock is the sum over i of the prices P in equation (10). Unfortu-
nately, the formula for this price is messy, since the model gener-
ates simple solutions for log rather than natural prices.
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Over i periods, the real return on an i-period stock is always expect-

ed to be higher than the real return on an i-period real bond. This

result is unsurprising since the payoff and therefore the return on

the stock are perfectly correlated with consumption at time t+i.

In equation (4), we saw that an increase in the variance of the

endowment innovation lowered expected real bond returns. It follows

from equation (12) that it lowers expected real stock returns only if

a < a2/2, that is if a > 2. For these high values of , the fall in

the real bond return outweighs the increase in the stock risk premium.

Although an i-period stock is always expected to yield more than

an i-period real bond over i periods, this result does not carry over

to other holding periods or real bonds of other maturities. The ex-

pression for the j-period holding premium on an i-period stock, over a

j-period real bond, is

(13) ijt = log EtP*..t+. - log P*1 - i.(l+R)

2 j-1 2 j-l
= a k + a(l-a) Z

k=O k=O

j-i 2
= ijt + a[E ki-j+k1 Se

The j-period holding premium on an i-period stock is the sum of

the j-period holding premium on an i-period bond, and a term resulting
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from the dividend uncertainty on stock. Neither term is unambiguously

positive or negative in general. This illustrates the basic point

that, for assets with a single payoff, payoff uncertainty translates

directly into uncertainty about returns only when the holding period

equals the maturity of an asset. Over other holding periods, an asset

whose payoff is positively correlated with consumption may have a re-

turn which is negatively correlated with consumption and thus a neg-

ative holding premium.

I now discuss the introduction of money and nominal prices into

the model. There is one major problem with this extension. The pos-

sibility of transferring resources from one period to another by means

of money, at a zero nominal interest rate, constrains the nominal in-

terest rate to be non-negative. In some models it is possible to as-

sume that this constraint is never binding (Lucas [1982]); unfortu-

nately the lognormal distributions of the present model are

inconsistent with this assumption.

If the constraint binds periodically, the solution for prices and

nominal interest rates becomes intractable. Accordingly I introduce

?tmoneytt but ignore its role as a store of value. This could be justi-

fied either by postulating some confiscatory tax on end-of-period mon-

ey balances, or as an approximation to the exact solution of the model

when the parameters are such that the constraint binds only very rare-

ly.

Following Lucas [1982], I assume that the representative agent

faces a Clower constraint of the form Ptct � Mt. and that this always

holds with equality. In order to focus on the nominal effects of en-
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dowment shocks, I further assume that the supply of money follows a

deterministic trend: log Mt = gut. Then

(14) log Pt = gt - log c

so the log price level moves inversely with the log endowment.

Now consider the pricing of nominal bonds. The log real payoff

on an i-period nominal bond is log = log cr4. - g(t+i). But

fh-icz r,rriFf 4 rrfcct1u r'rrvp1,tr1 r,y4f-h ii,mrtrvn i- t--m t+4

with a deterministic money supply an i-period nominal bond is equiva-

lent to an i-period stock.5 The propositions stated above for expected

real returns on stocks carry over directly to nominal bonds.

However once we have a nominal price of goods, we may be inter-

ested in nominal prices and expected returns of nominal bonds. The

log nominal price of an i-period nominal bond is just log P*..t + log

and the known log nominal return is the negative of this. But

(15) - log P*t - log P = iog (l/) +

- (l-a)[E1og c÷. - log c]

2

-( /2)Var1og c+.

Lucas [1982] also notes this (p.348).
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There are two important features of this equation. First, for any pa-

rameter values there is a finite probability that the right hand side

of (15) is negative: this is the problem with the monetary extension

of the model mentioned above. However, the probability may be very

small with a high rate of time preference, a high rate of trend infla-

tion, and a low variance of the endowment.

Secondly, the equation characterizes the covariance of detrended

nominal interest rates and the price level. We find

(16) Cov[-log P*_log P1' log '1

cc 2
= (l-a)[ X

k=O
1 e

The term in square brackets is the difference between the i'th autoco-

variance and the variance of the detrended endowment. By the Cauchy-

Schwartz inequality, this must be negative, so the covariance of pric-

es and nominal interest rates is positive when a > 1 and negative when

a < 1. This result is independent of i.

A positive covariance seems counter-intuitive at first: when

prices are unusually high, on average they are expected to fall so one

might expect nominal interest rates to be unusually low. However a

positive covariance has been found in much historical data, and is of-

ten referred to as the "Gibson paradox" (Sargent [1973], Shiller and

Siegel [1977]).

The reason why this model may generate a "Gibson paradox" is as

follows. When the endowment is unusually low, the price level is un-
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usually high and is expected to fall. This expected deflation lowers

the log nominal interest rate one for one. However, the log real in-

terest rate is also unusually high when the endowment is low: it is

increased by a factor of a. The real interest rate effect outweighs

the inflation effect when a > 1.
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3. Taste Shocks

In the traditional literature on the term structure, it was often

asserted that investor preferences for consumption at a particular

date would lower yields on bonds due to mature at that date, and fur-

thermore would cause such bonds to have negative risk premia.6

The model of the previous sections can be adapted to study this

question by adding multiplicative shocks to the utility function.

Then (2) becomes

00 00 1-a
(17) Max Z u(c+.) = .i0 1=0

The first-order condition (3) becomes

(18) Et[ (Xt./Xt)(ct+./c) 1
= = (l+R.t)

Note that when a = 1, that is when the agent has a log utility func-

tion, taste shocks enter the first order condition (18) in exactly the

same way as endowment shocks. The effect of taste shocks should not

be confused with the effect of a non-geometric discount function. The

latter would cause expected changes through time in the relative valu-

ation of consumption at two dates, and thus would generate a time in-

consistency problem. Taste shocks, however, are indexed by time t+i

rather than by distance from the present time 1, and so do not lead to

time inconsistency.

6 See for example Modigliani and Sutch [1966].
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When the taste shocks are deterministic, that is when is

known at time t, for all i, then we find

(19) i.log(l+R.) i.1og(l/) + E[log c+. - log c.]

- [log A. - log

2
- ( /2)Var[log c+. - log c]

Clearly it is true that a positive shock to the marginal utility

of consumption at time t+j, >+' lowers the yield on an i-period

bond. However since the s1iock is deterministic it also lowers the ex-

pected return on all other investment strategies maturing at t+j, and

therefore does not generate negative risk premia.7

If taste shocks are to generate risk premia in this model, they

must be random and therefore contribute a conditional variance term to

the formula for the interest rate. Suppose that the log of the taste

parameter X follows a stationary stochastic process, in a manner

analogous to the process for the endowment. We write

00

(20) log > = Z

k=O

Since difference premia vary with expected returns, they will be af-
fected by deterministic taste shocks. The rolling difference premi-
urn on a j-period bond will fall with a positive taste shock j peri-
ods ahead. However the holding difference premium on a longer
i-period bond over a j-period bond will also fall, so this pattern
of premia is not the one predicted by the traditional literature.
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As before, we assume that u iS i.i.d. normal with mean zero and stan-

dard deviation s. For simplicity, assume that u and e are indepen-

dent. Then

(21) i.log(l+R.) = i.1og(l/) + aE[log cr4. - log c]

- E[lo X4 - log 1
2

- (a /2)Var[log c+. - log c}

- (1/2) Var[log X. - log X]

where Var[log X.-log X] =

Note that with taste shocks, interest rates may vary randomly through

time even when the representative agent is risk-neutral (a0).

The random taste shocks add new terms to the formulae for risk

premia developed in the first section. We find

2 j-l 2

(22) ijt =
k=O kki_j+kSe

i-I 2

+
k=O kkij+k)}su

2 2

(23) i1t = a [l_ilJSe

2
+
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2 1-1 2

(24) '. = a
[

Z k'k1 S
k=O

e

i-i 2

+ [ s
k=O

U

However the risk premia on stocks and nominal bonds over real bonds

are not increased by taste shocks, because stock and nominal bond pay-

offs are unaffected by these shocks.

As before, it is most instructive to focus the discussion on the

1-period holding premia. Consider the taste-shock components of these

premia. By contrast with the endowment-shock components, they do not

vanish as the coefficient of relative risk-aversion a goes to zero.

Random preferences may generate risk premia even when agents are

risk-neutral, which provides a counter-example Lo the traditional view

that risk premia are zero under risk-neutrality.8

The taste shock components of 1-period holding premia may in gen-

eral be positive or negative, but stationarity of taste shocks gener-

ates a presumption that they are positive. Thus the analysis of both

endowment shocks and taste shocks lends some support to Hicks' [1939]

proposition that risk premia on long bonds are positive.

Cox, Ingersoll and Ross [1981] provide an alternative counter-exam-
ple in which interest rates are random because of shocks to the mar-

ginal productivity of capital. They also discuss deterministic
preferences for consumption at one particular date, but do not con-
sider random taste shocks.
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4. Conclusion

In this paper I have presented a simple exchange model and dis-

cussed its implications for asset pricing. The model restricts the

form of the representative agent's utility function and the distribu-

tion of shocks in a way which enables the derivation of closed-form

solutions for asset prices and returns. In a significant generaliza-

tion of previous work, the representative agent's endowment is mod-

elled as a general stationary stochastic process rather than as a uni-

variate Markov process.

The model sheds light on four major issues:

1) It supports the view of Hicks [1939] that risk premia on long

bonds should generally be positive. The risk premium on a bond of any

particular maturity i may be negative, but the limit as i approaches

must be positive if the agent has positive relative risk aversion and

interest rates are random.

2) The model does not support the contention of Nodigliani and

Sutch [1966] that investor preferences for consumption at a particular

date lower risk premia on bonds maturing at that date. Random taste

shocks do generate risk premia, however, and as above there is a pre-

sumption that these premia are positive for long bonds. This effect

is independent of the agent's degree of relative risk aversion.

3) The model shows that stocks are not necessarily expected to

yield more than real bonds except when both assets have the same ma-

turity date and are held to maturity. In general, an asset with

greater payoff uncertainty need not have greater uncertainty of return

over some short holding period.
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4) The model suggests a possible explanation for the "Gibson par-

adox", the positive correlation of prices and nominal interest rates

noted in much historical data. If the supply of money is determinis-

tic, prices move inversely with the endowment and expected inflation

moves inversely with the real interest rate. If the coefficient of

relative risk aversion is greater than one, high real interest rates

raise nominal interest rates when the price level is high.
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