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ABSTRACT

The 2008 financial crisis is reminiscent of a bank run, but not quite.  In particular,  it is financial institutions
withdrawing deposits from some core financial institutions, rather than depositors running on their
local bank.  These core financial institutions have invested the funds in asset-backed securities rather
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investors is more consistent with the stylized facts than the adverse selection perspective: in the former,
the crisis deepens, the larger the market share of distressed core banks, while a run becomes less likely
instead as a result in the adverse selection version.

I conclude from that that the variant with uncertainty averse investors   is more suitable to analyze
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as well as provide tax payers with returns above those for safe securities.
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1 Introduction

Bryant (1980) and Diamond and Dybvig (1983) have provided us with the

classic benchmark model for a bank run. There, an individual bank en-

gages in maturity transformation, using demand deposits to finance long-

term loans, which can be liquidated in the short term only at a cost. If too

many agents claim short-term liquidity needs and withdraw their demand

deposits, the value of the bank assets are thus not sufficient to meet these

liquidity demands, in turn justifying even patient depositors to get their

money while they can: a bank run ensues. One policy conclusion then is for

a central bank to follow the classic Bagehot principle of committing to inject

liquidity to illiquid but otherwise solvent bank, in order to stop bank runs.

The financial crisis of 2007 and 2008 is reminiscent of a bank run, but

not quite, see Brunnermeier (2008) and Gorton (2009). First, this was (with

few exceptions) not a run of depositors on their local house bank, but a

run of banks and money funds on some core financial institutions. Sec-

ond, the health of some core financial institutions (I shall call them “core

banks” for the purpose of this paper) was called into question not because

of their commitment to costly-to-call long-term loans, but rather because of

the questionable value of a variety of “exotic” securities, most notably their

guarantees for particular tranches of mortgage-backed security derivatives

and credit default swaps. These are assets which could be marked to market

at least in principle. So, when a bank cannot repay its depositors because the

market value of their assets is below the value of its liabilities, the traditional

prescription is to declare the bank to be bankrupt and not to provide it with

additional liquidity.

In the current situation, this would mean for the affected banks to sell

their questionable assets at market prices to meet withdrawals. There is a

widespread perception, however, that current market prices are below fun-

damental values, and that further sales of these assets are akin to fire sales,

leading to further depression of the price of these assets, triggering additional

bankruptcies. This conclusion appears unpalatable to many and therefore,



the Federal Reserve Bank and the Treasury have instead expanded interven-

tions where these assets will be bought at above-laissez-faire prices. There

is the perception that current events should be understood as some version

of a systemic bank run, despite the inapplicability of the original Diamond-

Dybvig framework. This creates a gap in our understanding. A new or at

least a modified theory is needed.

This paper seeks to contribute to filling that gap, and provide a model

(in two variants) of a systemic bank run. A systemic bank run is a situation,

in which early liquidity withdrawals by long-term depositors at some bank

are larger and a bank run more likely, if other banks are affected by liquidity

withdrawals too, i.e. the market interaction of the distressed banks is crucial.

This is different from a system-wide run, which may occur if all depositors

view their banks as not viable, regardless of whether the depositors at other

banks do to. The paper thereby seeks to provide a framework for analyzing

or evaluating policy options in a financial crisis similar to the one experienced

in 2007 and 2008 through the perspective of a bank run model, which allows

for this market interaction.

It seeks to capture the following stylized view of the 2008 crisis.

1. The withdrawal of funds was done by financial institutions (in par-

ticular, money market funds and other banks) at some core financial

institutions, rather than depositors at their local bank.

2. The troubled financial institutions held their portfolio in asset-backed

securities rather than being invested directly in long-term projects.

3. These securities are traded on markets. In the crisis, the prices for these

securities appears low compared to some benchmark fundamental value

benchmark (“underpricing”).

4. There is a large pool of investors willing to purchase securities, as evi-

denced e.g. by market purchases of newly issued US government bonds

or the volume on stock markets.
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5. Nonetheless, these investors are only willing to buy these asset-backed

securities at prices that are low compared to standard discounting of

the entire pool of these securities.

6. The larger the market share of troubled financial institutions, the steeper

the required discounts.

This view may be entirely incorrect: it is possible that the appropriate per-

spective is one of insolvency rather than illiquidity, and future research will

hopefully eventually sort out which view is most appropriate. Absent that

clarification, it is worthwhile to analyze the situation from a variety of per-

spectives: therefore, I shall proceed with the view as stated above.

It will turn out, that from this list, items 1 to 3 are straightforward to

incorporate, merely requiring some additional notation. Item 4 is easy to

incorporate in principle, but hard once one demands item 5 and 6 as well.

In particular item 6 will turn out to be particulary thorny to achieve, and

decisive in selecting one of two views of outside investors.

The key argument can be summarized as follows. Suppose that there

are some unforeseen early withdrawals, e.g. due to a shaken confidence by,

say, some local banks or money market funds with respect to the viability of

their core bank. In order to provide resources to unforeseen withdrawals, the

core financial institutions then need to sell part of their portfolio, thereby

incurring opportunity costs in terms of giving up returns at some later date.

Suppose that the remaining depositors (or depositing institutions) are the

more inclined to withdraw early as well, the larger these opportunity costs

are. If a larger market share of distressed banks and therefore larger addi-

tional liquidity needs drive these opportunity costs up, then a wide spread

run on the core banks is more likely: this creates a systemic bank run. I

therefore investigate, whether this increase in opportunity costs will happen.

After a literature review, I describe the model in section 3. I start from

an environment inspired by Smith (1991), in which depositors interact with

a local bank, which in turn refinances itself via an (uncontingent) deposit
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account with one of a few core banks, who in turn invest in long-term se-

curities backed by locally run projects (think: mortgage-backed securities).

Clearly, the observable world of securities is considerably richer (and harder

to describe), but this framework may capture the essence of the interactions.

I assume that there are two aggregate states, a “boom” state and a (rare)

“bust” state. In the “boom” state, everything follows from the well-known

analysis in the benchmark bank run literature, see section 4: essentially,

things are fine. More serious problems arise in the bust state. I assume that

the long-term securities become heterogeneous in terms of their long-term

returns, and that local banks (together with their local depositors) hold het-

erogeneous beliefs regarding the portfolio of their core bank. Therefore, some

local banks may withdraw early, even in the local consumption demands are

“late”.

I allow for outside investors, who in total have unbounded liquidity, to

become active in the market for the long-term securities which the core banks

seek to unload. I seek to understand why these investors demand steeper

discounts for the long-term securities than one would expect to see under

“normal” conditions, described in section 5.3. I investigate two variants in

particular.

The first hypothesizes that a subset of outside investors with finite re-

sources has the expertise to evaluate the asset which the core banks wish

to sell, and that the remaining vast majority of investors is highly uncer-

tainty averse: they fear getting “stuck” with the worst asset among a diverse

portfolio, and are therefore not willing to bid more than the lowest price, see

section 5. The second reason is assuming risk-neutral investors together with

adverse selection, i.e. an Akerlof-style lemons problem: whatever the market

price, liquid core banks have an incentive to sell assets that will be a good

deal for them and a bad deal to the buyers, leading to a low market price,

see section 6. Both models generate a downward sloping demand curve or,

more accurately, an upward sloping period-2 opportunity cost for providing

period-1 resources per selling long-term securities from the perspective of the
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individual core bank, holding aggregate liquidity demands unchanged.

However, the two variants have sharply different implications regarding

the last of the stylized features listed above. More precisely, with uncer-

tainty averse investors beyond a small and fixed pool of expert investors, a

larger market share of troubled institutions dilutes the set of expert investors

faster, leading more quickly to steep period-2 opportunity costs for providing

period-1 liquidity. As more local banks seek to withdraw early and steeper

discounting sets in earlier, further local banks are encouraged to withdraw

from this as well as other core banks. This creates a systemic bank run.

By contrast and with adverse selection, a larger pool of troubled institutions

forced into liquidating their long-term securities leads to less free-riding of

unaffected core banks, thereby lowering the opportunity costs for providing

liquidity, see section 7. Since the models also have sharply different policy

conclusions, I shall therefore argue to rather trust the policy conclusions from

the uncertainty averse model and to discard the policy conclusions emerging

from the adverse selection framework. In extension, one may therefore seek

a deeper analysis of the 2008 financial crisis, using the tools of uncertainty

aversion.

2 Relation to the literature

There obviously is a large literature expanding the Diamond-Dybvig bank

run paradigm, and it includes investigations into systemic risk and the oc-

currence of fire sales. Additionally and due to recent events, a plethora of

papers have appeared, seeking to provide explanations and coherent frame-

works. A number of these papers share questions and insights with the paper

at hand, but differences remain. A complete discussion is beyond the scope

of this paper and excellent surveys are available elsewhere. Allen and Gale

(2007), for example, have succinctly summarized much of the bank run liter-

ature, including in particular their own contributions, in the their Clarendon

lectures. Rochet (2008) has collected a number of his contributions with
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his co-authors which help to understand banking crises and the politics and

policy of bank regulation. A number of papers regarding the recent financial

crises and avenues towards a solution have been collected in Acharya and

Richardson (2009), and that literature keeps evolving quickly. Nonetheless,

it may be good to provide at least a sketch on some related ideas and to

describe how this paper relates to them.

While the Diamond-Dybvig model is originally about multiple equilibria

(“bank run” vs “no bank run”), Allen and Gale put considerable emphasis

instead on fundamental equilibria, in which it is individually rational for a

depositor to “run”, even if nobody else does. In this paper I lean towards

this fundamental view, but take somewhat of a middle ground. For the

“bust” state, I shall argue, that some investors may believe the situation to

be sufficiently bad that they withdraw, even if few others or nobody else does,

while others are more optimistic. This can generate a partial fundamental

run (based on the underlying beliefs), which may tip into a full-fledged bank

run, see section 5.3.

Allen and Gale (1994, 2004b) have investigated the scope and conse-

quences of cash-in-the-market pricing to generate fire sale pricing and bank

runs. In the context here, the idea is that the additional investors need to

bring cash to period 1, in case the core banks need to sell securities in period

1 in the bust state. If the bust state is sufficiently unlikely, the incentives to

do so and therefore the additional liquidity is small: asset prices in the bust

state are then not determined by the usual asset pricing equations, but rather

by the amount of liquidity available. This may suffice as an explanation for

current events. However, there clearly are plenty of investors out there who

have liquidity available, when, say, the US government seeks to sell addi-

tional Treasury bonds. Why, then, should one assume the same investors to

forget to bring their wallet, when other securities are auctioned off at firesale

prices? While technical and legal details and institutional frictions and barri-

ers surely play a key role in preventing outside investors to enter this market

quickly, see Duffie (2009), it still remains surprising that they have not done
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so eventually. The cash-in-the-market pricing may be viewed as a stand-in

assumption for an endogenous reluctance of an otherwise deep market to buy

the securities which the core banks are desperate to sell. Thinking about this

reluctance and its implications is one of the key goals of this paper.

Diamond and Rajan (2009) have argued that banks have become reluctant

to sell their securities at present, if they foresee the possibility of insolvency

due to firesale prices in the future: the option of waiting allows banks to

redistribute losses of depositors from the insolvency state in the future into

private gains in the case of continued solvency. Their paper helps to explain

the reluctance of banks to resolve their predicament by trading, but addi-

tional reasons are needed to generate the firesale price in the first place: the

latter is the focus of this paper.

While the popular press views financial crises and bank runs as unde-

sirable desasters, e.g. Allen and Gale (1998, 2004a) have shown that they

instead may be an integral part of business cycles and can serve a socially

useful rule by partially substituting for a missing market due to the uncon-

tingent nature of deposit contracts. A number of regulatory and policy issues

arise as a result. It follows directly, that a policy avoiding bank runs or fi-

nancial crises under all circumstances may be welfare decreasing. On a more

subtle level, Ennis and Keister (2008) have shown that ex-post efficient policy

responses to a bank run of allowing urgent depositors to withdraw may ac-

tually increase the incentives to participate in a bank run and the conditions

for a self-fulfilling bank run in the first place. Given these and a number

of related results, the focus of this paper is on the positive analysis rather

than a normative “second-best” analysis, though this would be a desirable

part of further research (or a future draft of this paper). Likewise (and re-

garding potentially welfare-improving private sector solutions), we assume a

particular structure of the contracts, markets and asymmetries of beliefs and

information, rather than requiring contracts to be optimal, as in Green and

Lin (2003) or Ennis and Keister (2008).

There is a large literature on systemic risk and contagion, both for inter-
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national financial crises (which I shall not even attempt to review here) as

well as for banking crises. For example, Cifuentes et al (2005) have studied

the interplay between uncontingent capital adequacy requirements and the

endogenous collapse of prices and balance sheets, as banks need to unload

assets in order to meet these requirements. They assume that demand for

these assets is downward sloping: this paper seeks to investigate why. Allen

and Gale (2000) have studied the possibility for contagion in a sparse net-

work of banks interlinked by mutual demand deposits, where a collapse of

one bank can lead to a domino effect per their large withdrawals on their

direct neighbor. Here, a hierarchy is instead assumed, where local banks

hold deposit contracts on core banks, who in turn use the market to obtain

liquidity, rather than other core banks. Diamond and Rajan (2005) have in-

vestigated the contagious nature of bank failures, arguing that bank failures

can shrink the common pool of liquidity, thereby possibly leading a meltdown

of the entire system. They assume that the returns on long-term projects can

only be obtained by banks, and that any securities written on these returns

can only be traded by banks. While this paper shares the central idea of a

shortage of a common pool of liquidity and the feature, that projects are run

by “managing” (local) banks, I allow outside investors to buy the securities

written on these projects and collect their returns. In essence, I assume that

a mortgage-backed security will pay its return, irrespective of who actually

holds that security. If that perspective is appropriate, then one needs to

understand why outside deep-pocket investors do not buy these securities, if

they are indeed severely undervalued.

Uncertainty aversion - or Knightian uncertainty - is a crucial ingredient in

this paper. There obviously is a large literature investigating its implications

for asset markets and equilibria. For some recent examples, one may want to

consult Hansen and Sargent (2008) and Backus-Routledge-Zin (2009), and

the references therein.
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3 The model

There are three periods, t = 0, 1, 2. There are two fundamental aggregate

states: “boom” and “bust”. The aggregate state will be learned by all par-

ticipants in period 1. There are four types of agents or agencies:

1. Depositors in locations s ∈ [0, 1].

2. Local banks in locations s ∈ [0, 1].

3. Core banks, n = 1, . . . , N .

4. Outside investors i ∈ [0,∞).

There are two types of assets

1. A heterogeneous pool of long-term securities (“mortgage backed secu-

rities”), backed by long-term projects in locations s ∈ [0, 1].

2. A short term security, providing a safe return of 1.

Figure 1 provides a graphical representation of the model: there, I have

drawn the unit interval as a unit circle.

Let me describe each in turn. As in Allen and Gale (2007), I assume

that depositors have one unit of resources in period 0, but that they care

about consumption either in period 1 (“early consumer”) or in period 2

(“late consumer”). As in Smith (1983), I assume that all depositors at one

location are of the same type. They learn their type in period 1. I assume

that a fraction 0 < ϕ < 1 of locations has early consumers and a fraction

1 − ϕ has late consumers. I assume that the realization of the early/late

resolution is iid across locations and that depositors are evenly distributed

across locations. I assume that depositors learn of their type in period 1.

Ex-ante utility is therefore given by

U = ϕE[u(c1)] + (1 − ϕ)E[u(c2)] (1)
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Figure 1: A graphical representation of the model.

where c1 and c2 denotes consumption at date 1, if the consumer is of the

early type and c2 denotes consumption at date 2, if the consumer is of the

late type and where u(·) satisfies standard properties. This heterogeneity in

consumption preference induces a role for liquidity provision and maturity

transformation, as in Diamond and Dybvig (1983) and the related literature.

I assume that depositors only bank with the local bank in the same location.

This lack of diversification can be thought of as arising from some unspecified

cost to diversification, e.g. the impossibility for banks or depositors to travel

to other locations. An alternative way to think about this is that s actu-
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ally enumerates the deposit banks in existence and each location denotes its

customer base, noting that depositors are observed to typically spread their

bank accounts across very few banks only.

At date zero, local banks can invest in long-term projects (“mortgages”)

of location s or short-term securities, and they can invest in short-term secu-

rities in period 1, but they cannot invest in long-term securities. Long-term

projects pay off only in period 2. I assume that long-term projects cannot

be terminated (“liquidated”) prematurely and that they require nonnegative

investments in period 0. I assume that local banks administer the local long-

term projects, delivering their payment streams to whoever finances them

originally.

I allow local banks to open accounts with the core banks, depositing

resources in period 0 and taking withdrawals in period 1 and/or period 2.

Again, for some unspecified cost reasons, we assume that local banks operate

a deposit account only with one of the core banks.

Core banks invest the period-0 deposits received from local banks in local

long-term projects, and turn their period-2 payments into long-term securi-

ties. In all periods, core banks can trade in short-term as well as long-term

securities.

In the aggregate “boom” state, local long-term projects return Rboom +

ǫs, where ǫs is a random variable with mean zero, distributed independently

and identically across locations s ∈ [0, 1]. Long-term securities pool these

risks1. Thus, in the aggregate “boom” state, the long-term securities all

1To provide this with a bit of formal structure, suppose there are m = 1, . . . , M long-

term securities, suppose that (Am)M

m=1 is a partition of [0, 1] with each Am having equal

Lebesque measure, and suppose that the payoff for the long term security with index

m is the integral of all long-term projects s ∈ Am. The law of large numbers in Uhlig

(1996) then implies the safe return here. Conversely, knowning the return of the long-term

securities, one might directly assume that the long-term projects return this amount plus

the idiosynchratic noise ǫs. This structure can also be used for the “bust” episode. I will

not make further use of this formal structure, though.
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return Rboom . I assume that

ϕu(0) + (1 − ϕ)u(Rboom) < u(1) (2)

1 < Rboom <
u′(1)

u′(Rboom)
(3)

If u(c) is CRRA with an intertemporal elasticity of substitution below unity

and if Rboom > 1, both equations are satisfied. Further, (2) is generally

satisfied, if (1 − ϕ)Rboom < 1.

In the “bust” state, each long term securities offers a safe2 return R, but

these returns are heterogeneous and distributed according to R ∼ F , drawn

from some distribution F on some interval [R, R̄], where 0 < R ≤ R̄ < ∞,

with unconditional expectation Rbust, satisfying

Rbust ≤ Rboom (4)

Once the aggregate state is revealed to be a “bust” in period 1, I assume

that core banks all know the type of long-term securities in their portfolio,

i.e. know the period-2 return of the securities in their portfolio, and by

implication the return distribution of their securities. The entire portfolio

of the long-term securities has the safe return Rbust, and I will assume the

same for the portfolio for any core bank. Particular long-term securities

within that portfolio have different returns, however. An outside investor

who buys one particular security, and e.g. draws a random security from the

entire pool therefore exposes himself to that return risk.

But even for the entire portfolio, the composition and its average (or

total safe) return is assumed to be unknown to depositors and local banks.

Insteady, they form heterogeneous beliefs about that. I assume that local

banks at location s and its depositors believe their core bank to hold a

portfolio with return distribution F (·; s), where F (·; ·) is measurable and

2It is not hard to generalize this to risky returns, but the additional insights may be

small. From the perspective of outside investors, who do not know the specific R, the

returns will be uncertain, and this is what matters.
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F (·; s) is a distribution function. One may wish to impose that

F (R) =
∫

F (R; s)ds (5)

so that aggregate beliefs accurately reflect the aggregate distribution, but

there is a potential disagreement at the local level. None of the results

appear to depend on (5), however.

For simplicity, I shall assume that core banks actually all hold exactly

the same portfolio, i.e. there is a mismatch between the beliefs of the local

banks and the portfolio of their core bank. I assume that core banks do

not know the belief F (·; s) of their local banks at date 0 and contracting

time3 and cannot condition permitted withdrawals on these beliefs at time

1 or time 2. One possible interpretation of the heterogeneity in beliefs is

that it arises from heterogeneous signals arriving at each location, otherwise

starting from a common prior. With that interpretation, one needs to insist

on local banks not updating their beliefs in light of the actions of other local

banks in the analysis below, however. There may be a version of the model,

where the local signal is sufficiently strong so as to overwhelm the market

information contained in the withdrawal decisions of all other local banks:

further research may be able to tell.

Finally, there is a large pool of outside investors i ∈ [0,∞). These in-

vestors can invest in the long-term securities or the short-term securities in

period 1, though not in period 0. Each investor is endowed with one unit of

resources. I do not allow them to engage in short-selling. They are assumed

to be risk neutral, discounting the future at some rate β, with

βRboom < 1 (6)

It remains to specify the information and beliefs of these investors. I shall

investigate three variants.

3E.g., suppose that the believes are F (R; s) = F ∗(R; s+Xmod1), where X is a random

variable uniformly distributed on [0, 1] and drawn at date 1 and F ∗(·; ·) is a commonly

known function.
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1. [Benchmark:] As a benchmark, I assume that outside investors are

risk-neutral, discounting resources between period 1 and period 2 at

rate β. Furthermore, I assume that core banks sell bundles of their long-

term securities, which have the same return distribution as their total

portfolio (or, equivalently, sell randomly selected long-term securities,

but cannot “adversely select” the long-term security they wish to sell).

2. [Uncertainty Aversion:] I assume the investors to be uncertainty

averse, following Schmeidler (1989) or Epstein (1999). Alternatively,

one may interpret these investors as following robust control rules

against downside risks, following Hansen and Sargent (2008). There

may also be an interpretation as extreme loss aversion, following Tver-

sky and Kahnemann (1991) and Barberis, Huang and Santos (2001).

In either case, I presume the following starkly simplified structure: at

the cost of more complexitiy, this is not hard to generalize. Given a

security drawn from a pool of securities with some interval as the sup-

port of its returns, these investors are willing to pay β times the lower

bound of this interval as the price per unit invested, i.e. the investor

is risk neutral, but minimizes over all probability distributions with

support on that interval.

Let ω ≥ 0. The group i ∈ [0, ω] of these investors is assumed to have

the expertise of discerning the quality of the long-term securities, i.e.

they know the return of a given long-term security, the support interval

is a single number, and they are therefore willing to buy them when

the return exceeds 1/β. I call them the expert investors. All other

investors i > ω only know the distribution F and the equilibrium, but

not the specific return of some offered long-term security. They use the

support interval [R, R̄] and are therefore willing to pay

βR

per unit invested.
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Another way of reading these preferences is that investors are suspi-

cious or perhaps even paranoid. If offered to trade a security from the

described set, they will fear that they will always be offered the secu-

rity with the lowest of these returns, even though this cannot happen

to all investors in equilibrium. A third interpretation is that these are

traders working on behalf of institutional investors drawn to the profit

opportunities in the market, who face lopsided incentives for investing

in a bust market: due to the complexity of these securities, they cannot

afford to risk loosing money ex post, as their managers may not be able

to tell whether this was indeed just a case of bad luck or a case of poor

research.

3. [Adverse Selection:] I assume that outside investors are risk-neutral,

discounting period-2 payoffs at rate β, but cannot distinguish between

the qualities of the long-term securities sold to them. I assume that

core banks can “adversely select” the long-term security they wish to

sell. I assume in this scenario, that all investors know that all core

banks hold a portfolio of long-term securities with return distribution

R ∼ F (R).

The timing of the events is now as follows. In period 0, core banks offer

deposit contracts to local banks, offering state-uncontingent withdrawals of

r in period 1 per unit deposited. Local banks offer state-uncontingent with-

drawals of r̃ in period 1 per unit deposited. In period 1 and depending on

the aggregate state, local banks may withdraw r from their core bank. The

core banks match these withdrawal demands from payoffs of their portfolio

of short-term securities as well as sales of long-term securities. If they can-

not meet all withdrawal demands, they declare bankruptcy. In that case, I

assume that all local banks, who have decided to withdraw, obtain an equal

pro-rata payment, splitting the entire resources of the bankrupt core bank

across local banks in proportion to their withdrawal demands.
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I assume that Bertrand competition in these contracts makes local banks

pay out everything to their depositors4 and likewise makes core banks pay

out everything to local banks. Therefore, any resources left in period 2 will

be paid in proportion to the remaining deposits. Furthermore, local banks

will be indifferent which particular core bank to choose. Let

ν : [0, 1] → {1, . . . , N}

be the core bank selection function, i.e. let ν(s) be the core bank selected by

the local bank s. I assume ν(·) to be measurable5 In the numerical examples,

I will let ν(s) = max{n | n < Ns + 1}, i.e. assume that the local banks

distribute themselves uniformly across core banks. To analyze what happens

when the number of distressed banks increases, I consider in particular the

case, where a fraction µ of the core banks (in terms of their market share)

face the same heterogeneous beliefs of their local banks, whereas a fractio

1−µ of core banks has local banks, who all (accurately) believe the portfolio

of their core bank to be given by securities with R ∼ F (R). It turn to

the specifics for that assumption in the numerical example in subsection 5.4

for the uncertainty-aversion case and provide results as part of the general

analysis in section 6 for the adverse selection case.

Finally and for simplicity, I assume that the “bust” state is sufficiently

unlikely a priori, so that r and r̃ are determined entirely from the “boom”

state calculus6.

4For that, one may want to assume that there are at least two local banks in each

location, though that assumption is immaterial for the rest of the analysis
5An alternative is to assume ν(·) to be random and use Pettis integration, see Uhlig

(1996).
6It would not make much difference for the analysis, if instead one were to calculate r

and r̃ from a full probabilistic analysis.
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4 Analysis: Preliminaries

It is useful to first analyze some special cases in order to set the stage of

the analysis of the bust state. The analysis of these special cases are the

same, no matter which assumption has been made about the type of outside

investors.

4.1 No core banks

Consider first the environment above without core banks. The investors then

do not matter: they would love to short-sell the short-term securities, but

they cannot do so (and that certainly seems reasonable, if one imagines the

short-term securities to be Treasury bills). In that case, local banks offer

contracts to their local depositors. Note that all their depositors wish to

either only consume at date 1 or at date 2. Due to local Bertrand competition,

the local banks will choose the deposit contract that maximizes expected

utility (1).

Consider first the choice between investing everything in the long term

project versus investing everything in short-term securities. In the first case,

depositors only get to consume in case they turn out to be late consumers,

and their ex ante utility is

U = ϕu(0) + (1 − ϕ)E[u(R)] ≤ ϕu(0) + (1 − ϕ)u(Rboom)

due to concavity of u(·) as well as (4). In the second case, depositors can

consume in both periods, at ex ante utility equal to u(1). If the choice

is “either-or” and since the latter is larger than the former due to (2), local

banks will only invest in short-term securities. One can view this as a version

of 100% reserve banking. Note that there cannot be a bank run or financial

crisis in this situation, but, as is well known and as we shall see, this solution

is inefficient.

Generally,

U(y) = ϕu(y) + (1 − ϕ)u((1 − y)Rboom + y)
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is a concave function of the fraction y invested in the short-term security:

the corner solution y = 1 obtains, if

(1 − ϕ)Rboom < 1 (7)

and otherwise one obtains an interior solution. The inefficiency still remains,

see the discussion in Allen and Gale (2007), chapter 3.

4.2 Only “boom” state

To set the stage of the “bust” state analysis as well as an important bench-

mark, consider the situation with only a boom state. Competition drives

banks to maximize the ex-ante welfare of depositors. This amounts to choos-

ing the amount x to be invested in the long-term securities, y to be invested in

the short-term security and the amount z of the investment in the long-term

security to be sold to outside investors at date 1 in order to solve

max
x,y,z

ϕu(c1) + (1 − ϕ)u(c2)

s.t. ϕc1 = y + βRboomz

(1 − ϕ)c2 = Rboom(x− z)

0 ≤ x, 0 ≤ y, x+ y = 1, 0 ≤ z ≤ x

c2 ≥ c1 ≥ 0

where the last constraint prevents local banks in locations with late con-

sumers to withdraw their funds in period 1 and investing in the short security.

Note that the optimal solution will have z = 0 due to (6): it is cheaper to

deliver resources for period 1 per investing in the short-term security rather

than investing it in the long-term security and selling it at a steep discount to

the outside investors. With the interpretation of the sale to outside investors

as the liquidation value of long-term projects, this problem is a baseline prob-

lem in the literature on banking and has been thoroughly analyzed in the

literature, see e.g. Allen and Gale (2007), in particular chapter 3. A brief

description of the solution is useful for the analysis below, however.
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Due to (3) there will be an interior solution with Rboom > c2 > c1 > 1

with
u′(c1)

u′(c2)
= Rboom (8)

As a consequence of this as well as (6),

c2 <
r

β
(9)

holds: generally, this is rather far from being a sharp bound.

The period-1 withdrawals offered by the deposit contracts are

r = r̃ = c1 =
y

ϕ

and the bank invests

x = 1 − ϕr (10)

in long term securities. As is well-understood, the solution is more efficient

than the solution with 100% reserve banking of subsection 4.2, but poten-

tially subject to bank runs. For example, if preferences are CRRA with an

intertemporal elasticity of substitution below unity,

u(c) =
c1−1/σ − 1

1 − 1/σ
, where 0 < σ < 1 (11)

and if Rboom > 1, then (3) is satisfied and

r =
(

ϕ+ (1 − ϕ)Rσ−1

boom

)−1
, c1 = r, c2 = Rσ

boomr = Rboom
1 − ϕr

1 − ϕ
(12)

There are perhaps two twists compared to the standard solution. First,

core bank runs (i.e. local banks running on the core banks) can occur but

they invoke the resale of long-term securities to outside investors at the mar-

ket discount rate rather than the early termination of projects. This already

could be viewed as a solution to the task set forth in the introduction of cre-

ating a bank-on-bank run in terms of marketable securities. It is obviously

a rather trivial solution, as it simply amounts to one of many possible inter-

pretations of the standard bank run model. That literature is typically silent
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on what it means to “liquidate” the long-term projects, and selling them at

a steep discount certainly is consistent with these models.

Second, aside from liquidity provision, the core banks also offer insurance

against the idiosynchratic fluctuations in the returns of long-term projects.

Consider a slightly different environment, in which local depositors split into

fractions ϕ of early consumers and (1 − ϕ) of late consumers at each lo-

cation. The local bank may still solve a problem as above, but with the

random return Rboom + ǫs in place of the safe return Rboom. It is obvious,

that the solution involving securitization is welfare improving compared to

this “local-only” solution, which exposes local depositors to additional lo-

cal risks. Moreover, it is more likely to trigger “fundamental” bank runs,

where long-term depositors run on the local bank, if Rboom + ǫs < c1. In-

deed, absent intermediation by core banks, these fundamental bank runs

are welfare-improving compared to regulating that deposit contracts need

to avoid fundamental bank runs at the local level: these bank runs provide

a partial substitute to the missing insurance market, see Allen and Gale

(2007). Put differently, securitization improves welfare and makes the sys-

tem less prone to local bank runs, but exposes it instead to the possibility

of “systemic” runs on core banks and thereby to “contagion” across different

locations. This interdependence has been analyzed in the literature previ-

ously, see e.g. the exposition in chapters 5 and 10 of Allen and Gale (2007),

and the literature discussion there.

4.3 The “bust” state and the classic bank run case

To analyze the full model, we assume that the probability of the “bust”

state is vanishingly small7. It therefore remains to analyze the “bust” state,

fixing the first-period withdrawal r of the deposit contracts and the total

investments r in the short-term securities and the long-term securities 1 − r

as provided by the solution to the “boom”-only situation above.

7Alternatively, assume that the “bust” state was “irrationally” ignored at the time the

deposit contracts were signed.
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Note first, that in the absence of a run,

c
2,bust(0) = Rbust

(1 − ϕr)

1 − ϕ

where I use the argument “(0)” to denote that the fraction zero of local banks

in locations with late consumers run. Therefore, if c
2,bust(0) < r, there will

be a fundamental bank run, even if core banks hold the same “market”

portfolio of long-term securities and local banks believe them to do so, as

insurance against the “boom-bust” aggregate uncertainty is not available.

For CRRA preferences (11) and therefore (12), this will be the case if

Rbust < R1−σ

boom (13)

Suppose even further, that all long-term securities offer the return Rbust
and that a fraction θ of all local banks serving late consumers opt for early

withdrawal. The following algebra is well understood, but will be useful for

comparison to the more general case. The core banks meet the additional

liquidity demands by selling a fraction ζ of its long-term portfolio or z = xζ

units of its long-term securities to obtain additional liquidity ℓ, where

rθ(1 − ϕ) = ℓ = βRbust(1 − ϕ)ζ (14)

The securities are discounted by outside investors at q = β and 1/β is the

opportunity cost in terms of period-2 resources for providing one unit of

resources of period-1 withdrawals. This leaves the remaining late-consumer

local banks with

c2(θ) =
c
2,bust(0) − rθ/β

1 − θ
(15)

=
1

1 − θ

(

1 − ϕr

1 − ϕ
Rbust −

r

β
θ

)

in period 2. Let θ∗ solve c2(θ) = r,

θ∗ =
β

1 − β

(

1

r

1 − ϕr

1 − ϕ
Rbust − 1

)

(16)
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If θ∗ < 0, there is a fundamental bank run: all local banks will try to

withdraw early, because even if no one else did, second-period consumption

would be below the promised withdrawal at date 1, c2(0) < r. Fundamental

bank runs may actually be welfare-improving, as they partially complete

missing, markets, see Allen and Gale (2007). If 0 < θ∗ < 1, there is scope

for a Diamond-Dybvig “sunspot” bank run. If late-consumer local banks

believe that the fraction of early withdrawals by late-consumer local banks

exceeds θ∗, they will withdraw early too, so that θ = 1 in equilibrium. If

late-consumer local banks believe that the fraction of early withdrawals by

late-consumer local banks is below θ∗, they will choose to wait until period

2, and θ = 0 in equilibrium.

There are therefore three scenarios, namely a fundamental bank run, a

a Diamond-Dybvig “sunspot” bank run and no bank run. I call these the

“classic bank run” scenarios, for comparison with the more general case to

be analyzed below.

5 The “bust” state with uncertainty averse

investors.

Before proceeding to analyze the problem of a single core bank, consider

the dependence of the market price for any security, in dependence of the

aggregate liquidation L of long-term securities. If L < ω , there is an “excess

supply” of expert investors. They will bid more than non-expert uncertainty-

averse investors for the securities sold: therefore, the market price will be

the final payoff, discounted at β. If L > ω (and, by assumption, if L = ω),

however, the “marginal” investor is an uncertainty-averse investor, willing

only to pay βR, regardless of the asset. This then must be the market price.

Thus, given some specific security, its market price is a decreasing function of

the aggregate liquidity needs L. This is the key feature needed in this section.

The market price also happens to fall discontinuously, as L crosses ω: this is

due to our particularly stark assumption regarding the uncertainty aversion of
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the outside investors and assuming a discontinuity at ω. This is not essential

to the results, and can be relaxed, at the price of higher complexity of the

analysis. The required general construction of an equilibrium has therefore

been postponed to appendix A, whereas the construction in subsection 5.2

relies on the two-step form of the demand function described above.

One way to read this section that it provides an alternative reason or

interpretation for the cash-in-market pricing as in Allen and Gale (1994) or

Allen and Gale (2007), chapter 4: there is unlimited amount of cash here, but

the “expert cash” is limited indeed. The cash-in-the-market pricing scenario

corresponds to an extreme version of the uncertainy averse investors, where

the non-expert investors are bidding zero for all assets. In Allen and Gale

(2007) therefore, the core banks cannot raise more liquidity than ω: should

they reach that point, the sales price for their assets will be determined by the

cash-in-the-market pricing, thereby determining the payoff for all depositors

in period 1 by a now bankrupt system. In contrast, the analysis below allows

for partial bankruns: as core banks need to provide more liquidity than is in

the hands of the expert investors, they will suffer steep opportunity costs in

terms of period 2 resources. Nonetheless, sufficient funds may be left over in

period 2 to pay of the remaining late-withdrawing local banks.

5.1 The problem of a single core bank and its local

banks.

Consider a core bank and suppose that a fraction θ of its local banks at late-

consuming locations withdraw early. If L < ω, so that only expert investors

are present, the opportunity costs in terms of period-2 resources for providing

one unit of resources for period-1 withdrawals is 1β. If L ≥ ω, however, the

core bank obtains the market price βR, regardless of the security sold. It will

therefore sell its securities with the lowest period-2 payoff first. Suppose the

core bank started initially with µ resources. It therefore purchased (1−ϕr)µ
units of long-term securities. Given the early withdrawals, the core bank
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needs to raise period-1 liquidity ℓ = rθ(1− ϕ)µ, and hence sell ℓ/(βR) units

of its long-term securities, i.e. the fraction

ζ(θ) =
1 − ϕ

1 − ϕr

rθ

βR

similar to equation (14).

Consider now one of its local banks and its beliefs F (· · · ; s) about the

return distributions of the securities in the portfolio of its core bank (before

selling any of its securities). For ease of notation, I shall write G in place of

F (·; s). Let

G−1(τ) = sup{R | G(R) < τ}, τ ∈ [0, 1] (17)

be the inverse function of G, see figure 2. Note that

EG[R | R ≤ G−1(ζ)] =

∫ ζ
0 G

−1(τ)dτ

ζ
(18)

is the expected return of all returns below the level given by G−1(ζ), under

the distribution G. Also note that G−1(τ) is a continuous function of τ and

EG[R | R ≤ G−1(ζ)] is a continuous function of ζ .

From the perspective of this local bank, the period-2 opportunity costs

for period-1 withdrawals are

Γ(θ, L;G) =
1

β

(

1L<ω +
EG[R | R ≤ G−1(ζ(θ, L))]

R
1L≥ω

)

(19)

Likewise,

q(θ, L;G) =
1

Γ(θ, L;G)

is the effective liquidation discount rate of period-2 resources.

Proposition 1 1. Γ(θ, L;G) is increasing and continuous in θ.

2. Γ(θ, L;G) is increasing in L and satisfies βΓ(θ, L;G) ≥ 1. There is no

dependence on L, if ω = 0 or if ω = ∞, i.e. in the absence of expert

investors, or if all investors are experts.
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Figure 2: The function G−1 and expected returns.

3. Suppose that H first-order stochastically dominates G. Then

Γ(θ, L;G) ≤ Γ(θ, L;H)

i.e. Γ(θ, L;G) is increasing in G, when ordering distributions by first-

order stochastic dominance.

Proof:

1. Note that ζ(θ) and therefore EG[R | R ≤ G−1(ζ(θ))] is increasing in θ.

Continuity is a consequence of the continuity of ζ(θ, L) in θ.
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2. Note that R−1EG[R | R ≤ G−1(ζ(θ))] ≥ 1.

3. Define H−1 as the inverse of H as in 17. Since H(R) ≤ G(R) for

all R, H−1(τ) ≥ G−1(τ) for all τ ∈ [0, 1]. Equation (18) shows that

EG[R | R ≤ G−1(ζ)] ≤ EH [R | R ≤ G−1(ζ)] and the claim follows.

•

As a result, a local bank with beliefs G = F (·; s) perceives the second-

period payoff to be

c2(0;G) = EG[R]
1 − ϕr

1 − ϕ
(20)

if there are no withdrawals of late-consumer local banks in period 1, i.e. if

θ = 0. With withdrawals of a fraction θ of late-consumer local banks, the

(perceived) remaining resources at period 2 per late consumer for this core

bank is therefore

c2(θ, L;G) =
c2(0;G) − rθΓ(θ, L;G)

1 − θ
(21)

which generalizes (15). The local bank will therefore surely opt for period-1

withdrawal, if c2(θ, L;G) < r.

It may be useful to note that c2(θ, L;G) is not monotone in G, when

ordering G according to first-order stochastic dominance: while the first term

is increasing in G, the second term is now decreasing, due to the negative

sign. Indeed, it is easy to construct examples for both a decreasing or an

increasing behaviour, by keeping one of the terms nearly unchanged while

the other moves significantly.

However, c2(θ, L;G) is monotonously decreasing in L and furthermore, it

is decreasing in θ under the mild condition (22), which generalizes (9) and

which essentially assures, that no late-withdrawal local bank will be happy

about other late consumer local banks withdrawing early. For the following

proposition, the properties of Γ in proposition (1) suffice: this is useful, if
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generalizing the results in this paper to a smooth transition between expert

investors and non-expert investors.

Proposition 2 Assume that Γ(·, ·; ·) satisfies the properties listed in propo-

sition (1). Then,

1. c2(θ, L;G) is monotonously decreasing in L.

2. c2(θ, L;G) is continuous in θ.

3. Assume that

c2(0;G) <
r

β
(22)

Then c2(θ, L;G) is strictly decreasing in θ.

Proof:

1. This follows directly from proposition 1.

2. Continuity follows from the continuity of Γ(θ, L;G) in θ.

3. Write c2(θ, L;G) as

c2(θ, L;G) = c2(0;G) − θ

1 − θ
χ(θ, L;G) (23)

where

χ(θ, L;G) = rΓ(θ, L;G) − c2(0;G) (24)

is strictly positive and increasing in θ per (22) and proposition 1. Let

θa < θb. Then

c2(θa, L;G) = c2(0;G) − θa

1 − θa
χ(θa, L;G)

> c2(0;G) − θb

1 − θb
χ(θa, L;G)

≥ c2(0;G) − θb

1 − θb
χ(θb, L;G)

= c2(θb, L;G)
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•

5.2 Equilibrium

To analyze the equilibrium, I shall now exploit that the dependence of Γ on

L is the two-step threshold function given by (19). This particular form is

rather special, however, and arises from the rather stark assumption regard-

ing the difference between expert investors and other investors. Appendix A

provides an analysis of the equilibrium also just under the assumption, that Γ

satisfies the properties listed in proposition 1. It also contains a more formal

definition of equilibrium.

With the two-step threshold function given by (19), each local bank needs

to consider aggregate liquidity L only through the event that L < ω or that

L ≥ ω.

Assume that (22) is true for all conjectured distributions G = F (·, s).
Therefore, if local banks opt for early withdrawals at some level of market

liquidity or some fraction of other early withdrawals, they will do also for

higher levels of L and θ. As in appendix A, let

Sn(θ, L) = {s | ν(s) = n, c2(θ, L;F (·, s)) < r} (25)

be the set of local banks with deposits at core banks n, which will surely

withdraw early, if a fraction θ of depositors at core bank n do, and if there

is total liquidity demand L.

Given L and a core bank n, define the mappings

ηn,L : [0, 1] → [0, 1]

per

ηn,L(θ) = λ(Sn(θ, L))
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where λ(·) denotes the Lebesgue measure. Intuitively, if aggregate liquidity

needs are given by L and if all local banks at core bank n conjecture the

fractions θ of late consumer local banks to withdraw early at that core bank,

then the fractions ηn,L(θ) surely will. Fixed points of η are bank runs, where

withdrawers strictly prefer to do so.

Proposition 3 Assume that (22) is true for all conjectured distributions

G = F (·, s).

1. ηn,L : [0, 1] → [0, 1] is increasing and continuous from the left, i.e. for

θj → θ∞, θj < θ∞, we have ηn,L(θj) → ηn,L(θ∞).

2. Given n, L, let θ0 = 0 and construct the sequence

θj;n,L = ηn,L(θj−1;n,L)

Then θj;n,L → θ∞;n,L, which satisfies θ∞;n,L = ηn,L(θ∞;n,L). Further-

more,

θ∞;n,L = min{θ | θ ≥ ηn,L(θ)} (26)

Proof:

1. This follows from proposition 2.

2. The first part follows from the first part. For (26), consider any θ <

θ∞;n,L. Therefore, for some j,

θj−1;n,L ≤ θ < θj;n,L = ηn,L(θj−1;n,L) ≤ ηn,L(θ)

or θ < ηn,L(θ).

•

Given L, define
−→
θ ∞;L = (θ∞;1,L, . . . , θ∞;N,L)
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If L(
−→
θ ∞;0) < ω, then this is a partial fundamental bank run, but it does

not have any systemic feature. If L(
−→
θ ∞;0) > ω, however, then pick any8

ω̃ > ω. The partial fundamental bank run is now given by
−→
θ ∞;ω̃, and it

involves a systemic spillover. Intuitively (and along the sequence constructed

above), as more local banks become skeptical about the remaining resources

at their core banks, more core banks need to obtain liquidity in period 1,

eventually exceeding the resources supplied by expert investors. This leads

to a decline (here, a collapse) in period 1 prices, exacerbating the problem.

Note that at L(
−→
θ ∞;ω̃) > ω and therefore, c2(θ, L;F (·, s)) is continuous in

L around L = L(
−→
θ ∞;ω̃), thereby satisfying the assumption in the last part

of proposition (6).

5.3 The “bust” state with risk-neutral investors and

no adverse selection.

Suppose instead (and as a benchmark for comparison), that investors are

risk-neutral and that there is no adverse selection in selling the long-term

securities. This may be a sensible assumption if all long-term securities

return the same amount Rbust, despite the heterogenous beliefs of the local

banks to the contrary. Or this may be sensible, if one were to assume that

core banks can only sell well-defined (or well-audited) portfolios of long-term

securities, whose risk-characteristics are known to the market. Finally, this

may be sensible if one is to assume that ω = ∞ in the analysis above. In all

these cases, the outside investors discount future payments at rate β.

The analysis of the “bust” state is now a corollary to the analysis above

by setting ω = ∞ and using Γ(θ, L;G) = 1/β throughout. The details can be

skipped, except perhaps for some useful formulas. With (21), second-period

8Technically, given my assumptions, it suffices to check L(
−→
θ ∞;0) = ω and to pick

ω̃ = ω. But this is a knife edge case, which I have resolved somewhat arbitrarily per

assumption.
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consumption will assumed to be

c̃2(θ, L;G) =
c2(0;G) − rθ/β

1 − θ
(27)

which is monotone in G, when ordering distributions according to first-order

stochastic dominance, and which does not depend on L (and where I use the

·̃ to distinguish it from the scenario above). As in (16) , a late consumer local

bank will withdraw early, if θ ≥ θ̃∗(G), where

θ̃∗(G) =
β

1 − β

(

1

r

1 − ϕr

1 − ϕ
EG[R] − 1

)

(28)

This scenario will serve as a benchmark. While there can also be a fun-

damental bank run in this case, there is no spillover to other core banks.

A fundamental bank run in this scenario and the scenario with uncertainty

averse investors start the same and affect the same core banks. However, a

fundamental bank run with uncertainty averse investors can run considerably

deeper.

5.4 A numerical example

To provide a specific, illustrative example, suppose that σ = 1/2, Rboom =

1.44 and ϕ = 1/7. Equation (12) then implies

c1 = r =
7

6
= 1.1666, x =

5

6
, c2 =

7

5
= 1.44

35

36

Assume that β = 2/3, therefore satisfying (6). Assume that 10% of the

returns are uniformly distributed on [0.6, 1.4], whereas 90% are equal to 1.4

in the bust state: this is the aggregate distribution F , see figure 3. Therefore,

Rbust = 1.36. Note that (13) is violated, and that therefore there is no

fundamental bank run with complete information in the bust state or if the

beliefs F (·, s) of all local banks coincide with the asset distribution.

Assume that for a fraction (1− µ) of core banks, local banks assume the

correct aggregate distribution, and will therefore not run in a fundamental
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Figure 3: Return distribution in the bust state.

bank run equilibrium. However, for the remaining fraction µ of the core

banks, the local banks believe with certainty that the return is some return

R, where R is randomly drawn from F . I.e., if the local banks of these core

banks are enumerated τ ∈ [0; 1], then Γ(τ) = 0.6 + 8τ for 0 ≤ τ ≤ 0.1 and

Γ(τ) = 1.4 for τ ≥ 0.1. As a result, the local banks are correct in aggregate,

but wrong individually, see figure 4

Absent a bank run, each late consumer local bank expects a pay out of

c2(0;F (·; τ)) = Γ(τ)
35

36

Even for the most optimistic bank, I have

c2(0;F (·; 1)) = 1.4
35

36
<
r

β
=

7

4
= 1.75

Therefore, the condition (22) is satisfied for all G = F (·; s).
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Figure 4: Beliefs.

Suppose first, that there are only risk neutral investors (or only expert

investors), as in subsection 5.3. In that case, (28) can be used to calculate

the fundamental bank run, if it exists, by calculating the smallest τ so that

θ∞;n,0 = θ̃∗(F (·; τ)) = τ

where I have also used the notation θ∞;n,0 to denote the fraction of local banks

at one of the affected core banks, say with index n, if aggregate liquidity

demands L are believed to be below ω (or L = 0, for simplicity). The

solution is approximately θ∞;n,0 = 0.0811, i.e. 8 percent of late consumer

local banks will decide to run, see figure 5.

In the scenario with uncertainty averse investors, note that

L = L(θ) = rθ(1 − ϕ)µ (29)
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Figure 5: Bankrun calculus when only expert investors are present.

so that the market price drops to the uncertainty-averse investor price βR

as a function of θ, when θ exceeds the threshold value θcrit given by

θcrit =
ω

µr(1 − ϕ)
=
ω

µ

since my numerical values happen to imply r(1 − ϕ) = 1. Put differently,

the given expertise of outside investors will be diluted, the more core banks

are affected by withdrawals, “accelerating” the bank run compared to the

experts-only scenario. It is in this sense, that the bank run is systemic.

Conversely, the experts-only partial bank run described above is not an

equilibrium, if θ∞;n,0 > θcrit or

ω

µ
< θ∞;n,0r(1 − ϕ) ≈ 0.0811, (30)
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i.e. if the fraction of affected core banks is somewhat above 12 times the re-

sources of the expert investors relative to the entire amount initially invested

in all securities.

To calculate the equilibrium in that case, consider a value L < ω and a

value L > ω. For each value, calculate c2(θ, L;F (·, θ)). Calculate the lowest

θ = τ so that

c2(θ, L;F (·, θ)) = r (31)

or, absent that and depending on the boundary conditions, either θ = τ = 0,

if c2 > r always, or θ = τ = 1, if c2 < r always.

The resulting second-period consumption is shown in figure 6. If L > ω,

the graph shows that θ = 1, i.e. a run on all core banks affected by doubtful

local banks, as the only solution. By contrast, there are multiple solutions

to (31), if L < ω. Therefore, if (30) holds, a system-wide bank run on the

fraction µ of the core banks, which are subject to heterogeneous beliefs by

their local banks, results, while the other 1−µ core banks remain unaffected

(unless there is a Diamond-Dybvig sunspot-type bank run). Variations of this

example can produce partial fundamental bank runs as well. Furthermore

and in a generalized version of this model, if Γ varies smoothly with L,

figure 6 suggests a critical value as the c2-curve is shifted downwards with

increasing L, when the equilibrium close to the small expert-only partial

bank run disappears and only the system-wide bank run on the affected core

banks remains.

6 The “bust” state with adverse selection.

Consider now the variation of the model with adverse selection. More pre-

cisely, assume the outside investors to be risk-neutral, discounting the future

at rate β. I assume that all outside investors are non-experts9, and can

therefore not distinguish between long-term securities offered to them, while

9It would not be hard but a bit tedious, to generalize this and to include expert investors

as well.
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Figure 6: Consumption of local banks that wait until the second period, assum-

ing that all banks with τ < θ run, and banks with τ > θ do not. Comparison

to c1 = r.

core banks selling them know the returns exactly, and can choose which se-

curity to sell. I assume that outside investors know the return distribution

F . All the long-term securities are therefore sold at the same market price p.

This creates adverse selection: not only will core banks sell the securities with

their worst quality first (and this happens in the analysis above as well, when

selling to non-expert investors), but furthermore, some core banks without

liquidity needs due to withdrawals may sell long-term securities of low qual-

ity, if the price is right. The latter is a key difference between the adverse

selection variant and the uncertainty aversion variant presented here: with

uncertainty averse investors and sufficiently high discounting, there never is
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a reason for “opportunistic” selling by liquid core banks10

To keep the analysis a bit more tractable, assume that the true portfolio

F is atomless. Suppose that core banks with a market share µ face early

withdrawals of the same11 fraction θ of their late-consumer serving local

banks, due to heterogeneous beliefs of their local banks. They need to sell a

share ζ of their portfolio or z = µxζ of their long-term securities, where

rθ(1 − ϕ)µ = pµxζ (32)

On average, these securities pay EG[R | R ≤ G−1(ζ)] per unit, see equation

(18).

Assume that the other core banks have local banks who all correctly

believe the core-bank portfolio to have securities with returns distributed

according to R ∼ F (R). These core banks will sell long-term securities for

purely opportunistic reasons, in case their price exceeds the expected return.

Given a market price p for long-term securities, core banks without early

withdrawals will sell all12 securities with R ≤ p, i.e. sell the fraction F (p).

The outside investors are risk neutral, discounting the future at β, but

understand this adverse selection problem. By assumption, they correctly

assume the securities in the portfolios of the core banks to have the return

distributions R ∼ F (R).. Therefore, the market clearing price13 p = p(θ, µ)

10Clearly, the distinction here has been sharply drawn, for analytic purposes. It may

well be that some mixture of the two variants is a better description than one of these two

extreme variants.
11It is straightforward, but tedious to extend this to the case, where θ differs from core

bank to core bank.
12For equality, there is indifference, and therefore core banks may only sell a fraction of

the securities for which there is a equality. The issue does not arise, if F (·) is atomless, as

I have assumed in this section. In the more general case, it will be easy to patch that up

at the final step, when calculating market clearing. For reasons of tractability, I shall not

pursue this issue further.
13Note that the local banks considering withdrawals should be able to learn from the

market price, that their beliefs G for their core bank and the market price together are

inconsistent with the aggregate return distribution F , and should therefore somehow up-
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and the fraction of the portfolio ζ = ζ(θ, µ) sold by the distressed core banks

solve the two equations

p = β
µ
∫ F−1(ζ)
R RdF + (1 − µ)

∫ p
RRdF

µζ + (1 − µ)F (p)
(33)

ζ =
rθ

p

(

1 − ϕ

1 − rϕ

)

(34)

where (per notational convention or per calculation of the integral)

0 =
∫ p(θ,µ)

R
RdF, if p(θ, µ) < R

and where F−1(·) is defined as in (17). Note that the right hand side of (33)

is simply the average return of the securities sold, discounted at β. Define

θ̄ =

(

1 − rϕ

1 − ϕ

)

βR

r
(35)

as the maximal θ compatible with ζ ≤ 1, if p = βR. Note that θ̄ < 1.

Proposition 4 1. For every θ ∈ [0, θ̄] and µ ∈ (0, 1], there is a unique

solution (p, ζ) to (33,34) with βR ≤ p ≤ βRbust and 0 ≤ ζ ≤ 1, so

that p < F−1(ζ).

2. Given θ, p(θ, µ) is a strictly increasing function in µ ∈ (0, 1].

Proof:

1. Recall that the support of F is [R, R̄]. Define the function ρ(p) per the

right hand side of (33), with ζ replaced with (34). Note that ρ(p) is

continuous on p ∈ [βR, R̄] with

ρ(βR) ≥ βR, ρ(R̄) ≤ βEF [R] = βRbust < R̄

date their belief, learning from the information revealed in market prices. This may be a

tough thing to do in practice, and I shall ignore this issue for the purpose of the analysis

here.
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By the mean value theorem, there is therefore a value p with p = ρ(p).

Suppose that F−1(ζ) ≤ p at this value. Then the right hand side of (33)

is not larger than βp, a contradiction. To show uniqueness, suppose to

the contrary that there are two solutions, say pa < pb, together with

1 ≥ ζa > ζb. Note generally that
∫ pb

R
RdF −

∫ pa

R
RdF ≤ (F (pb) − F (pa))pb

≤ F (pb)pb − F (pa)pa

Define the function

ψ(p, ζ ; θ, µ) =
βµ

∫ F−1(ζ)
R RdF + β(1 − µ)

∫ p
RRdF

µrθ
(

1−ϕ
1−rϕ

)

+ (1 − µ)F (p)p
(36)

Note that pj = ρ(pj) can be rewritten as

1 = ψ(pj, ζj; θ, µ) (37)

for j = a, b. Therefore,

1 = ψ(pa, ζa; θ, µ) =
βµ

∫ F−1(ζa)
R RdF + β(1 − µ)

∫ pa

R RdF

µrθ
(

1−ϕ
1−rϕ

)

+ (1 − µ)F (pa)pa

>
βµ

∫ F−1(ζa)
R RdF + β(1 − µ)

∫ pa

R RdF + (1 − µ)(F (pb)pb − F (pa)pa)

µrθ
(

1−ϕ
1−rϕ

)

+ (1 − µ)F (pa)pa + (1 − µ)(F (pb)pb − F (pa)pa)

≥ βµ
∫ F−1(ζa)
R RdF + β(1 − µ)

∫ pb

R RdF

µrθ
(

1−ϕ
1−rϕ

)

+ (1 − µ)F (pb)pb

≥ βµ
∫ F−1(ζb)
R RdF + β(1 − µ)

∫ pb

R RdF

µrθ
(

1−ϕ
1−rϕ

)

+ (1 − µ)F (pb)pb

= ψ(pb, ζb; θ, µ)

and therefore, (37) cannot hold for pb, a contradiction.

2. Given θ, µ, denote the unique equilibrium with p(θ, µ) and ζ(θ, µ). Let

ζ(p) denote the expression on the right hand side of (34). The previous

39



calculation shows more generally that

ψ(p, ζ(p); θ, µ) > 1 for p < p(θ, µ) (38)

ψ(p, ζ(p); θ, µ) < 1 for p > p(θ, µ)

(39)

Consider some µ̄ and write p̄ = p(θ, µ̄) and ζ̄ = ζ(θ, µ̄). Since ψ(p̄, ζ̄; θ, µ̄) =

1 and since

β
∫ p̄

R
RdF < F (p̄)p̄

it follows that

β
∫ F−1(ζ̄)

R
RdF > rθ

1 − ϕ

1 − rϕ

Therefore, ψ(p̄, ζ̄; θ, µ) is increasing in µ. For µ′ > µ̄, one therefore

has ψ(p̄, ζ̄; θ, µ′) > 1. It follows from (38) that p(θ, µb) > p(θ, µa), as

claimed.

•

At the distressed core banks, local banks with beliefs G regarding their

portfolio will therefore belief the opportunity costs for providing period-1

resources in terms of period-2 resources to be

Γ(θ, µ;G) =
EG[R | R ≤ G−1(ζ(θ, µ))]

p(θ, µ)
(40)

It is instructive to compare this to (19) for the case ω = 0: the two expressions

coincide iff p(θ, µ) = βR. Generally, the returns are quite different. In fact,

Γ(θ, 1;G) =
EG[R | R ≤ G−1(ζ(θ, µ))]

βEF [R | R ≤ G−1(ζ)]
(41)

as can be seen by direct calculation. In particular, for G = F , I obtain

Γ(θ, 1;F ) =
1

β
(42)

More generally,
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Proposition 5 Γ(θ, µ;G) is decreasing in µ.

Proof: This is a direct consequence of (40) together with the fact that

p(θ, µ) is increasing in µ, implying that ζ(θ, µ) and thus EG[R | R ≤ G−1(ζ)]

are decreasing in µ. •

I obtain the key insight that an increasing market share of distressed banks

lessens rather than deepens the crisis. Furthermore, with homogeneous be-

liefs, F (·, s) ≡ F , and with the market share of distressed banks approaching

unity, the moral-hazard scenario turns into the standard bank run scenario

considered in section 4.3.

The remaining late-consumer local banks will obtain

c2(θ, µ;G) =
1

1 − θ

(

x

1 − ϕ
EG[R] − rθ

EG[R | R ≤ G−1(ζ(θ, µ))]

p(θ, µ)

)

(43)

Therefore, a late-consumer-serving local bank in location s, banking with a

distressed core bank and believing that a fraction θ of local late-consumer

banks will withdraw in period 1 will choose to do so itself, if

c2(θ, µ;G) ≤ r (44)

The analysis of the resulting equilibrium appears to be similar to the analysis

in section 5 and shall be omitted in the interest of space.

6.1 A numerical example

I use the same parameterization as in subsection 5.4. For low values of θ ≤ θ,

the market price will be below R = 0.6 and the required market discount

Γ(θ, µ;F ) at the true distribution will equal 1/β. For these low values of θ

and due to the uniform distribution, the market price equals

p(θ;µ) = β
F−1(ζ) + 0.6

2
(45)
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Therefore, θ is low enough, iff p(θ;µ) ≤ 0.6 or, equivalently, F−1(ζ) ≤ 1.2.

By the parameterization in (5.4),

F−1(ζ) = min{0.6 + 8ζ, 1.4}

Therefore, F−1(ζ) ≤ 1.2 corresponds to ζ ≤ 0.075. To find p and ζ when

F−1(ζ) ≤ 1.2, I therefore need to solve

ζ =
rθ

β(0.6 + 4ζ)

(

1 − ϕ

1 − rϕ

)

(46)

Let

κ =
r

4β

(

1 − ϕ

1 − rϕ

)

=
9

20

The solutions to (46) are therefore given by

ζ = −0.075 +
√

0.0752 + κθ

(where the negative root has been excluded as not sensible). Therefore,

ζ ≤ 0.075, if

θ ≤ θ = 3 ∗ 0.0752/κ = 0.0375.

For θ > θ, the behavior of the price depends on market share of the dis-

tressed core banks. Two extreme scenarios can provide some general insights.

If µ → 0, then the price will remain “stuck” at p = R = 0.6, as all remain-

ing banks would sell arbitrarily large chunks of their worst assets otherwise.

If µ = 1, then discounting of future returns will remain to be done at the

discount rate β.

For these as well as the in-between range of values of µ, equation (44) can

then be used to determine the treshold value for τ , up to which local banks

will decide to withdraw. Proposition (5) generally shows, that a bank run is

the less likely, the larger the market share of distressed core banks.

7 Some policy implications

Given the length of this paper, a full discussion of the policy implications is

beyond its scope. I shall also shy away from a welfare analysis. Instead, I
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investigate the more modest question of the impact of certain policies for a

policy maker who may be interested in learning the consequences for avoiding

(or stopping) a crisis and for the government budget. This section is written

under the assumption of the view described in the six-point list in the intro-

duction: obviously, if that view is incorrect, then the following conclusions

may no longer be applicable.

A key difference between the model with uncertainty averse investors and

the adverse selection are the implications, as the “suspicion” of bad portfolios

affect not only a fraction of the core bank but all banks. In the case of

uncertainty averse investors, a given core bank now has even less access to

expert investors, worsening the situation. In the case of adverse selection,

and since all core banks need to obtain equal amounts of liquidity, they will

all receive “fair value” for their assets, i.e., the situation essentially turns

into a classic bank run. Therefore, the adverse selection scenario violates

item six of the stylized description list in the introduction, while the scenario

with uncertainty averse investors does not. For these reasons, I argue that

it is more plausible to look at the 2008 financial crisis through the lense

of the uncertainty averse investor scenario rather than the adverse selection

scenario.

Consider, for example, a government guarantee of payoffs of the securi-

ties sold by the core banks, e.g. guaranteeing a return of at least Rgov. In

that case, the uncertainty averse investors will pay βRgov instead of βR. In

particular, if Rgov = 1, i.e. if the government guarantees that investments

will not make losses, the “deep” bank run results in discounting with β

throughout and turns the scenario with uncertainty averse investors into the

“classic” bankrun situation of subsection 5.3 for the distressed core banks.

The government will loose money on all securities with returns R < Rgov.

Additionally, if βRgov > R, the government now creates an additional ad-

verse selection problem at the core banks which are not distressed, and which

now find it at their advantage to sell all assets with R ≤ R ≤ βRgov.

From the tax payers perspective, a more advantageous procedure in the
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case of uncertainty averse investors seems to be the purchase of the troubled

assets outright: if large parts of the portfolios of banks are bought, the tax

payer will receive the average payoff and not the bottom payoff as feared

by the outside investors. Consider a fixed government purchase price p at

which the government stands ready to purchase assets from the core banks.

The incentives of the participating core banks then become similar to the

analysis in the adverse selection framework: while the distressed core banks

will sell for sure, the core banks without distress will only do so if it is in

their interest to sell the worst assets. Rather than imposing the equilibrium

condition (33), one can then calculate the losses or gains to the tax payers at

the mandated government purchase price. If that price is below the adverse

selection scenario equilibrium price, the government will earn a return above

1/β, and this scenario is possible and plausible, if investors are uncertainty

averse. If the situation is as described in the adverse selection scenario, then

the government would only find takers for its offers, if the government price

is above the current market clearing price, in which case the government will

make losses compared to the benchmark return of 1/β.

Since I have argued that the uncertainty averse scenario is more plau-

sible than the adverse selection scenario, the analysis here provides some

support for the argument that an outright purchase of troubled assets by

the government at prices above current market prices can both alleviate the

financial crises as well as provide tax payers with returns above those for safe

securities.

A number of private sector solutions may likewise provide reasonable

avenues for resolving the crisis situation, e.g. the complete purchase of port-

folios of a distressed core bank or the sale of a distressed core bank and a

guarantee of its deposits through the buyer. It may be, however, that the

same caution that drives uncertainty averse investors to demand steep dis-

counts on asset backed securities might also prevent the sale of distressed

financial institutions to the same investors at a price that can resolve the sit-

uation sufficiently well. Solutions that mix private sector involvement with
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government intervention - an idea at the core of the Geithner plan - may

likewise offer specific advantages or fallacies, that can be analyzed in this

context.

Follow-up work, providing a deeper analysis of the various options and

policy scenarios, is surely called for.

8 Conclusions

I have set out to provide a model of a systemic bank run delivering the

following features

1. The withdrawal of funds was done by financial institutions at other

financial institutions, rather than depositors at their bank.

2. The troubled financial institutions held their portfolio in asset-backed

securities rather than being invested directly in long-term projects.

3. These securities are traded on markets. In the crisis, the prices for these

securities appears low compared to some benchmark fundamental value

benchmark (“underpricing”).

4. There is a large pool of investors willing to purchase securities, as evi-

denced e.g. by market purchases of newly issued US government bonds

or the volume on stock markets.

5. Nonetheless, these investors are only willing to buy these asset-backed

securities at prices that are low compared to standard discounting of

the entire pool of these securities.

6. The larger the market share of troubled financial institutions, the steeper

the required discounts.

To that end, I have hypothesized two different motives for outside investors

and their interaction with banks trading asset-backed securities: uncertainty
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aversion versus adverse selection. Both variants of the model are capable of

delivering on the first five points of the list above. While the variant with

uncertainty averse investors also delivers on the sixth point, this is not the

case for the adverse selection scenario. Indeed there, as a larger share of

financial institutions are distressed, the discounts lessen rather than rise.

I conclude from that that the variant with uncertainty averse investors

rather than the adverse selection scenario is more suitable to analyze policy

implications. This paper therefore provides a model, in which the outright

purchase of troubled assets by the government at prices above current market

prices may both alleviate the financial crises as well as provide tax payers

with returns above those for safe securities.

A number of private sector solutions may likewise provide reasonable av-

enues for resolving the crisis situation. Solutions that mix private sector

involvement with government intervention - an idea at the core of the Gei-

thner plan - may likewise offer specific advantages or fallacies, that can be

analyzed in this context. Follow-up work, providing a deeper analysis of the

various options and policy scenarios, is surely called for.
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Appendix

A Equilibrium with uncertainty aversion: a

general case

I now seek to analyze the interplay between all n = 1, . . . , N core banks, some

of which may be subject to early withdrawals by their local banks. In terms

of the period-2 opportunity costs Γ(θ, L;G) for providing period-1 liquidity, I

shall only use the properties stated in proposition 1. Therefore, the analysis

here generalizes to a situation, where the dependence on L is smooth, as e.g.

in Allen and Gale (2007), chapter 4, rather than a step function as implied

by our stark assumptions about uncertainty aversion. While this is more

generality than is strictly needed for completing the analysis here, it is useful

for applying the analysis in this paper more generally. I return to the special

case of a liquidity threshold in subsection 5.2.

Let me start per defining the equilibrium.

Definition 1 An equilibrium is collections (Sn)N
n=1 of subsets of [0, 1], with-

drawal fractions (θn)N
n=1 and total additional liquidity L, so that

1. ν(s) = n for all s ∈ Sn, i.e. Sn are locations of banks banking with core

bank n.

2. θn = λ(Sn) is the Lebesgue measure of Sn.

3. For all s ∈ Sn: c2(θn, L;F (·, s)) ≤ r. For all s /∈ Sn, ν(s) = n:

c2(θn, L;F (·, s)) ≥ r.

4. L = L (θ1, . . . , θn) where

L (θ1, . . . , θn) = r(1 − ϕ)
∑

n

θnλ(ν−1(n)) (47)

where λ(ν−1(n)) is the Lebesgue measure of ν−1(n).
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Note that the actual portfolio of the core banks does not matter for calculat-

ing the withdrawal fractions: only the perception of their portfolio matters.

Obviously, the actual portfolio does matter for the realized date-2 payoff of

the remaining late consumers.

Assume that (22) is true for all conjectured distributions G = F (·, s).
Therefore, if local banks opt for early withdrawals at some level of market

liquidity or some fraction of other early withdrawals, they will do also for

higher levels of L and θ. Let

Sn(θ, L) = {s | ν(s) = n, c2(θ, L;F (·, s)) < r} (48)

be the set of local banks with deposits at core banks n, which will surely

withdraw early, if a fraction θ of depositors at core bank n do, and if there

is total liquidity demand L.

Define the mapping

h : [0, 1]N → [0, 1]N

per

(θ′1, . . . , θ
′
N) = h(θ1, . . . , θN)

where

θ′n = λ (Sn (θn, L (θ1, . . . , θN ))) (49)

and where λ(·) denotes the Lebesgue measure. Intuitively, if everyone con-

jectures the fractions (θ1, . . . , θN ) of late consumer local banks to withdraw

early, then the fractions θ̃j surely will. Obviously h is an increasing function.

Let

Θ = {−→θ = (θ1, . . . , θN) | −→θ ≤ h(
−→
θ )} (50)

be the set of of conservative withdrawal conjecture vectors, i.e. actual with-

drawals will at least be as high, as the conjecture at each core bank, see

figure 7.

Let

Θlim = {−→θ ∈ [0, 1]N | There is a sequence
−→
θ j ∈ Θ with

−→
θ j ≤ −→

θ and
−→
θ j → −→

θ }
(51)
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Figure 7: The set Θ.

be a set of upper bounds for Θ and let

Θmax = {−→θ | There is ǫ ∈ IRN
++ so that [

−→
θ ,

−→
θ + ǫ] ∩ Θlim = {−→θ }} (52)

be the set of all local maxima in Θlim. For notation, recall that [
−→
θ ,

−→
θ + ǫ] is

the set of all θ̃ with
−→
θ ≤ θ̃ ≤ −→

θ + ǫ.

Proposition 6 Assume that (22) is true for all conjectured distributions

G = F (·, s).
1. If

−→
θ = h(

−→
θ ) (53)

49



then
−→
θ together with L = L(

−→
θ ) and Sn = Sn(θn, L), n = 1, . . . , N is

an equilibrium14.

2. If
−→
θ ∈ Θ, then

[
−→
θ , h(

−→
θ )] ⊂ Θ (54)

3. ∅ 6= Θmax ⊂ Θlim ⊂ Θ.

4. Any
−→
θ ∈ Θmax satisfies (53) and therefore has an equilibrium associ-

ated with it.

5. Let
−→
θ 0 = (0, 0, . . . , 0). Consider the sequence

−→
θ j = h(

−→
θ j−1) (55)

This sequence converges to some
−→
θ ∞ ∈ [0, 1]N . Any

−→
θ ∈ Θmax satisfies

−→
θ ≥ −→

θ ∞. Suppose that all cs(θ, L;F (·, s)) are continuous in L at

L = L(
−→
θ ∞). Then h(

−→
θ ∞) =

−→
θ ∞ and therefore has an equilibrium

associated with it.

Proof:

1. Check the equilibrium definition.

2. Let θ̃ ∈ [
−→
θ , h(

−→
θ )]. Then

h(θ̃) ≥ h(
−→
θ ) ≥ −→

θ

3. Per (22) or better (23),

h(1, 1, . . . , 1) = (1, 1, . . . , 1) (56)

for if everyone else withdraws early, so should you. Thus (1, 1, . . . , 1) ∈
Θmax, which is therefore not empty. The first inclusion is trivial. For

14Since I have focussed here on finding equilibria per strict preference for withdrawal in

period 1, the converse may generally not be true.
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the second inclusion, let
−→
θ j → −→

θ with
−→
θ j ∈ Θ and

−→
θ j ≤ −→

θ . Note

that

h(
−→
θ ) ≥ h(

−→
θ j) ≥ −→

θ j

for all j. Therefore,

h(
−→
θ ) ≥ −→

θ

and hence
−→
θ ∈ Θ.

4. Assume additionally that
−→
θ ∈ Θmax. I need to show that

h(
−→
θ ) =

−→
θ

But if instead (h(
−→
θ ))n > (

−→
θ )n for some entry n, say, then this together

with [
−→
θ , h(

−→
θ )] ⊂ Θ would be a contradiction to local maximality.

5. Note that
−→
θ j is an increasing sequence in [0, 1]N : it therefore must

converge. Let s ∈ Sn(
−→
θ ∞, L). Therefore, cs(

−→
θ ∞, L;F (·, s)) < r. By

continuity in θ, cs(
−→
θ j , L;F (·, s)) < r for all j sufficiently large. Con-

versely, if cs(
−→
θ j, L;F (·, s)) < r, then cs(

−→
θ ∞, L;F (·, s)) < r, due to

proposition 2. Therefore,

Sn(
−→
θ ∞, L) =

∞
⋃

j=1

Sn(
−→
θ j , L)

and hence

h(
−→
θ ∞) = lim

j
h(
−→
θ j) = lim

j

−→
θ j+1 =

−→
θ ∞

Let
−→
θ ∈ Θmax. Since trivially

−→
θ ≥ (0, 0, . . . , 0), the conclusion follows

per repeated application of h(·).

•

If indeed h(
−→
θ ∞) =

−→
θ ∞, I call

−→
θ ∞ the partial fundamental bank

run. If (h(0, . . . , 0)n = 0 for n ∈ N ⊂ {1, . . . , N}, then the same is true for
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−→
θ ∞. The fundamental bank run therefore only affects the core banks, which

experience withdrawals “at the start” of the run, i.e. experience withdrawals

of late consumer local banks, even if all local banks assume that nobody

else withdraws. Nonetheless, withdrawals at one core bank can spill over to

withdrawals at other core banks within this set, due to the dependence of

Γ(θ, L;G) on aggregate liquidity, provided that ω is nonzero and sufficiently

small.
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