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DEBT, DEFICITS AND FINITE HORIZONS:
THE STOCHASTIC CASE

ROGER E.A. FARMER, CARINE NOURRY, AND ALAIN VENDITTI

ABSTRACT. We introduce a solution technique for the study of discrete time sto-
chastic models populated by long-lived agents. We introduce aggregate uncertainty
and complete markets into a ‘perpetual-youth’ model of a kind first studied by
Olivier Blanchard (1985) and we show that the pure-trade version of the model
behaves much like the two-period overlapping generations model. Our methods are
easily generalized to economies with production and they should prove useful to
researchers who seek a tractable stochastic model in which fiscal policy has real

effects on aggregate allocations.

I. INTRODUCTION

For the past twenty years macroeconomists have used the Real Business Cycle
model (RBC) to study stochastic fluctuations in aggregate economic activity. In
that model, an infinitely lived family makes decisions for all subsequent generations.
The model is elegant and simple and captures many of the features of real world
business cycles but it has strong properties that follow from the representative agent
assumption. Among them: 1) the real interest rate in the long run is pinned down
by the representative agent’s rate of time preference, 2) an expansionary fiscal policy
in the form of a tax financed transfer has no first order effects on aggregate economic
activity and 3) in a model of multiple infinitely lived agents with time separable
preferences the income distribution is degenerate.

Paul Samuelson (1958) proposed an alternative ‘overlapping generations’ model
(OG) in which a sequence of overlapping finitely lived agents trade with each other.
In Samuelson’s original paper there were three generations of agents. It has since been
extended to multiple generations and has been used to study optimal fiscal policy
(Diamond 1965), intergenerational transfers (Kotlikoff and Summers 1981) and social
security policy (Imrohoroglu, Imrohoroglu and Joines 1999). Long lived versions of
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the model have been analyzed computationally by (Rios-Rull 1996) and the dynamics
of the two-period version have been analyzed by David Gale (1973).

Olivier Blanchard (1985) and Philippe Weil (1989) have studied a model populated
by a measure of long-lived agents that die, and are replaced, with a fixed probability
that is independent of age. This perpetual youth model combines features of the
representative agent model with the OG framework. It is a particularly simple model
to study since its equilibria are described by a tractable set of differential equations.

The purpose of this paper is to extend Blanchard’s analysis to the stochastic dis-
crete time case by studying a pure trade version of the perpetual youth model with
aggregate endowment shocks. We introduce a technique for solving the model in
the presence of a complete set of securities and we show that it behaves much like
the two-period model studied by David Gale (1973). Although our focus is on solu-
tion methods, our results should be of interest to researchers interested in analytic
methods for studying the impact of fiscal policy in stochastic overlapping generations

models both with and without production.

II. THE MODEL

We assume that a new cohort of individuals is born each period. Agents die with
fixed probability which is independent of age. This important assumption implies
that all agents discount the future in the same way and it leads to a single concept of
aggregate human wealth that greatly simplifies the structure of the set of competitive
equilibria.

Each household survives into the subsequent period with a fixed probability = and
every period a proportion (1 —m) of households dies. At the beginning of each period,
households have n children. It follows that if V; is the number of agents alive at date
t then

Nip1 = (7 +n)Ny (1)

is the number of agents alive at date ¢t + 1. Depending on whether 7+ n is greater or
smaller than one, the total population will increase or decrease over time. We assume
that 7 +n > 1 and we normalize the initial population to one, Ny = 1.

The combination of birth and death processes implies that at any point in time
there are (7 +n)' agents alive of whom m(7 + n)=! are “old", i.e. survivors from the

previous period ¢ — 1, and n(m +n)~! are “young”, i.e. newly born in period t.
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The per-period utility function of the agents is logarithmic. For a typical agent i,

utility at date ¢ is given by the expression
U; = log(c}). (2)

We consider an exchange economy with a single consumption commodity and sto-
chastic endowments in which uncertainty unfolds in a sequence of periods. Uncer-
tainty each period is indexed by a finite set of states S = {S7,...,5,}. Define the set

of t-period histories S’ recursively as follows:

St=§

3
St =8"1x8S, t=2,... 3)

The households in this economy trade a complete set of Arrow securities. Let
Q7(S7) represent the price of the security that pays one unit of the consumption
commodity if and only if history S™ € S” occurs at date 7. Using this notation

+1(S") is the price of an Arrow security. This is a claim, sold at date ¢, to one unit
of the consumption good for delivery at date ¢ + 1 if and only if state S’ occurs. Let
the probability that S’ occurs at date ¢ 4+ 1 be given by p(S’) and assume that this
probability is independent of time.

Each period ¢, the agents of household 7 receive an endowment w!(S) if state S € S
is realized. They purchase consumption commodities ¢/(S) and they accumulate a
portfolio of the n securities a;_,(S’), where there is one security for each of the values
of S’

Since the household may not survive into period t + 1, we assume, as in Blanchard
(1985), that there exists an actuarially fair annuities market. The existence of this
market implies that the household pays price 7QL™(S’) for a claim to one unit of
consumption in period ¢ + 1 if and only if state S” occurs and the household is alive.
We assume that this security is issued by a competitive annuity sector that earns
zero profit in equilibrium. If the household dies, its claim reverts to the company
that issued the annuity. We will describe the balance sheet of this sector in Section
IV.

Given our assumptions, the representative family born in period h faces the follow-
ing sequence of budget constraints,

D QI ()4 (8') = ay(S) + wi(S) — ¢(S), t=nh... oo, (4)
S’es
together with the set of no-Ponzi scheme conditions,

lim 77 ~"QT(S")ai (ST) > 0, for all ST € ST, (5)

T—o0
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one for every possible history that might occur. These constraints imply that the
household must plan to remain solvent in every possible history. The term aj,,(S5’) is
the quantity of security S’ purchased for price 7QL™(S") at date ¢t. The terms a(S)
and w!(S) on the right side of (9) are respectively the sole security that has positive
value at date ¢ and the endowment received at date t if state S is realized. ci(9) is
the household’s purchase of consumption commodities.

The human wealth of household i is defined recursively by the equation,
hi(S) = w;(S) + Z Qi (S t+1(S/) (6)
5'es

By iterating this expression it follows that, as long as human wealth is finite,

RS) =17 ) QI(Swi(ST)| . (7)
=t STeST

The assumption that human wealth is finite requires that

lim 77 "QT (ST wi (ST) < oo, for all ST € S”. (8)

T—o0

In a representative agent model with no uncertainty and a constant growth rate
of endowments, a condition like this implies that the interest rate must exceed the
growth rate. This condition is weaker. In the perpetual youth model the household
values future assets using the factor 7Q!™ instead of Q'™ reflecting the fact that it
may not survive into the subsequent period.!

Equations (4) — (8) can be combined to write a single budget constraint for the
household,
o0
Z[ Y QI(S)e ST)] < hy(S) + a,(S). (9)

T=t 57TesT
A representative family maximizes the following intertemporal stream of discounted

utilities

T=t

E, {Zwm”z()g(ci(sv)} (10)

subject to the budget constraint (9), where 3 € (0, 1) is the discount factor. The first
order condition for this maximization program is given by the following set of first

order conditions, one for each of the n states S’ € S,

t+1(sl) t+1(S/) ﬁcﬁ(S)p(S’). (11)

IThis fact implies that the perpetual youth model may display inefficient equilibria in which the

interest rate is less than the growth rate.
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Recall that p(S’) is the probability that state S” occurs. As is well-known, with a
logarithmic utility function, the solution to the household’s problem is given by the

following policy function
ci(8) = (1 = Br) (ai(S) + hy(S)) - (12)

This equation instructs the household, in the optimal plan, to consume a fixed fraction

of wealth each period.

III. DEFINING AGGREGATE VARIABLES

The equilibrium of the perpetual youth model is a complicated object. The econ-
omy contains an infinite number of agents indexed by date of birth. Each of these
agents takes decisions based on the realization of uncertainty at the date he was born.
As with all long-lived generations models, a complete description of the equilibrium
requires that one keep track of the wealth distribution across agents. This is an
infinite dimensional object.

Blanchard made two assumptions that simplify the description of equilibrium.
First, preferences are logarithmic.? Second, all agents die with the same probabil-
ity that is independent of age. These assumptions imply that consumption is linear
in wealth and they allow one to derive a simple set of equations in the aggregate state
variables that completely characterizes their behavior. Our contribution in this paper
is to extend this idea to the case of aggregate uncertainty by assuming the existence
of a complete set of Arrow securities.

To describe an equilibrium, our first task is to define a set of aggregate state vari-
ables. For this purpose we will divide the population into two groups that correspond
roughly to the young and the old in a standard two-period overlapping generations
model.

Let A; be the index set of all agents that are alive at date t. Notice that a proportion
7 of these agents will survive into period ¢ + 1. Similarly, let N,y ; denote the set of
newborns at period ¢+ 1. For any date ¢+ 1 and any variable x let 2% be the quantity
of that variable held by household 7 and let x; be the aggregate quantity. Then,

Z xiﬂ + Z xiﬂ = Z xiﬂ = Tig1- (13)

i€AL 1€EN+1 1€A1

2This assumption can be extended to homothetic preferences with some additional algebra. We
have not pursued that complication here since it considerably increases the complexity of the math-

ematics needed to characterize an equilibrium.
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Equation (13) says that any aggregate variable z can be defined as the sum over
groups of people in two different ways. We can add up z’ over everyone who was alive
yesterday and add it to the sum over everyone who is born today. Or we can add up
2! over everyone who is alive today. Using this notation, define A,, W;, C; and H, as

follows,

Ay = ZiEAt @i’ Wy = Zz’eAt wi’ Cy = ZieAt Cia Hy = ZiEAt hi' (14)
We also define each of these variables in per capita terms,

_ A _ W _c _H
wm=% w=3, a=5, h=7%, (15)

where N, evolves according to Equation (1).

IV. GOVERNMENT, LIFE INSURANCE AND ANNUITIES

We assume the existence of a competitive annuities sector that issues Arrow se-
curities as liabilities. Here, we describe how this sector operates. Each period, the
annuities sector issues a set of n securities. Security S’ is sold to the household sector
for price 7Q!™(S’). In addition to these assets, we assume the existence of a gov-
ernment that issues debt B,y in the form of pure discount bonds. B;,; is a claim
to By11 units of the consumption good at date ¢t + 1 in every state of nature. The
assumption of no riskless arbitrage implies that a claim of this kind will sell for price

1 in period ¢ where,

b1 _ 10t
SZES QIH(S). (16)

We will study the case where B;,; may be positive (the government is in debt) or
negative (the government owns claims on the private sector. Note that debt of this
kind is conceptually distinct from the ‘money’ of Samuelson’s (1958) paper since it is
denominated in units of consumption. It represents an indexed bond.

We will take the initial value of debt as given: It may be positive or negative. We
will study policies in which the debt is rolled over from one period to the next with
neither taxation nor government purchases of commodities. We leave these additional
features for future work.

In period ¢, the annuities sector has assets equal to B; and liabilities of ai(S).
It issues a set of m Arrow securities. Security S’ is sold to a household for price
7@ (S"). The budget constraint of the sector implies that,

Z tH (S Z at+1 = Biy1. (17)

S’'eS 1€A:
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In period t + 1 the company will not make a payment to the fraction 1 — 7 of
households that die. It follows from the assumption of free entry in the annuities
sector that profits will be competed away by selling an Arrow security at date ¢ for

price Q5™ (S’) to the household. This is our assumption of actuarially fair insurance.

V. EQUILIBRIUM RELATIONSHIPS BETWEEN AGGREGATE VARIABLES

In this section we put together the behavioral relationships and our definitions to
derive a set of equations that will hold, in equilibrium, between b, Q™ (S"), w.(S),
ay(S) and h(S). We begin with government policy.

The assumption that government rolls over its debt in each period implies that

debt each period is described by the following difference equation,
Bt QS (18)
Defining per capita debt b; as B;/N, it follows from Equations (1) and (18) that

(7 4+ n)bya Z QL(S") = by. (19)

Next we turn to human wealth. We will derive a recursive expression for aggregate
human wealth that is similar to Equation (6), the expression for individual human
wealth. We arrive at this expression by summing Equation (6) over the set A; of

agents alive at date ¢. The derivation is in Appendix A.
hi(S) = wy(S) + 7 Z Qr1(S8 Vi1 (S). (20)

Now consider the relationship between per capita consumption and wealth. It

follows from summing Equation (12) over all agents alive at date ¢ that

() = (1= Bm) (b + he(5)) - (21)
Using the market clearing condition, this expression implies,
wi(S) = (1= Bm) (be + he(S)) - (22)

Finally, we seek an equation that describes the price of an Arrow security as a
function of w; and h;. In a representative agent model we could find an expression
for this price by taking the ratio of aggregate consumption at two different dates.
Something similar will work here, but we need to account for changes in the set

of agents over time. Appendix A shows how to derive the following expression for
t+1(S/)
t . ,
Bw(S)p(S")

t+1 N
)= (7 + n)wes1(8') = (1 = Br)nhea (5)

(23)
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VI. SOLVING THE MODEL

In this section we write down equations in two different state variables. Either of
these representations can be used to characterize the properties of equilibria. Our
first variable is the ratio of human wealth to the endowment. We call this z;(.S) and

we define it as,

hq()
S) = . 24
Zt( ) wt(S) ( )
To derive a dynamic expression in z;(.S), we first combine Equations (20) and (23),
to give,
i1 (S")p(S")
hy(S) = wy(S) + Brwy(S . 25
(8) = wlS) + TS ) () — (- @)
Dividing this expression through by w;(S) gives the expression we seek,
Sp(S)
g) — 9 ZtJrl( ' 26
%(S) = +pm g Tt n— (1= a9 (26)
We can also write the right hand side as an expectation,
S
S) =1+ Br’E sl 27
#(S) =14 fr t{ﬂ—i-n—(l—ﬁﬂ)nth(S’) (27)

Next, we turn to an equivalent expression to characterize equilibria using govern-
ment debt as a state variable. Substituting equation (23) into equation (19), we

obtain the following expression,

p(S’)

D T B o et ) o
Now use Equation (22) to write human wealth as a function of debt,
(8 = 220 (29
and substitute this into (28) to give the equation we seek,
by = (7 + 1) Brwy(S)brs1 B ! (30)

7th+1(S’) + (1 — ﬂﬂ)nbtﬂ '

VII. DETERMINISTIC DYNAMICS

Although we are ultimately interested in the stochastic properties of the model, we

turn first to the special case when there is no aggregate uncertainty by setting w;(S) =
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w for any date ¢t and any state S. This special assumption leads to the following non-
stochastic difference equation in z; which characterizes feasible sequences of human

wealth in a competitive equilibrium.

21 BT §
=1+ , 31
! T+n—(1—pm)nz (31)
1 b
= - — 32
1T pr wy’ (32)
where b is initial government debt.
We can also state this as an equation that uses debt as the state variable,
b
. (7 + n)Brwbi ’ (33)
mw + (1 — Br)nbiy
by =b. (34)
Solving (31) at the steady state z, = z yields the following second degree polynomial
9 T+n 1 T+n
_ =0 35
: Z[ n +1—ﬁ7r}+n(1—ﬁ7r) ’ (35)
which has two distinct steady states
T+ N 1
2 —and zp = — B (36)

Solving Equation (33) at the steady state b, = b yields also two distinct values which

are associated with the steady state values of z; and zs:

mw[f(m+n) — 1]
n(l — pr)

Finally, we derive from equation (23) evaluated along a deterministic path two

b1 = and bg = 0. (37)

associated values for the price of the Arrow securities at the steady state, namely:

1 g

Ql = m and QQ = ; (38)

We state these results as a proposition,

Proposition 1. In the deterministic version of this economy with w;(S) = w for any

date t and any state S, there exist two distinct steady states for (z,b, Q) such that
T+n mw[f(T+n)—1] 1 )

(Zlablan): ( )

n n(l—pr) ' 7w(r+n)
(227b27Q2) = (ﬁvovg) . (40)

(39)

and
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Recall that the household can borrow or lend at the gross rate of interest é
It follows that the interest factors faced by households in these two steady state
equilibria are given by,

%leﬂ—i-n and %Q?:% (41)
Since n + m > 1, by assumption, the gross interest rate faced by households in both
steady state equilibria is positive and the wealth of each household is well defined.
Notice however, that if 7 < [, the second of these steady state equilibria may be
dynamically inefficient with Q)9 > 1.

David Gale (1973) studied dynamics of a two period model with a government
liability that he called money. His model led to a difference equation that is very
similar to the one that we have derived for the perpetual youth model. Following Gale
we refer to steady state 1 as the golden rule steady state since it has the property
that the interest rate paid by households is equal to the population growth rate. We
refer to steady state 2 as the autarkic steady state since it has the property that
each household will choose to consume its endowment in equilibrium and there is no
inter-generational borrowing or lending.

The steady state value for government debt at the golden rule, b;, can be positive or

negative depending on whether % is larger or lower than 7w+ n. David Gale suggested

the following classification. An economy where % > 7 + n is called classical. An
economy for which % < mw-+n is called Samuelson. In a classical economy the autarkic
steady state is dynamically efficient with an interest rate that exceeds the growth
rate. In a Samuelson economy the autarkic steady state is dynamically inefficient
with an interest rate that is less than the growth rate.® In a classical economy, steady
state debt is negative at the golden rule. In a Samuelson economy it is positive.

The sign of government debt at the golden rule has implications for the local sta-
bility properties of the respective steady states. Consider the difference equation (33)
which can be restated as a backward-looking difference equation as follows:

I Twb,
U7 (7 4 n)Brw — (1 — Br)nb,

= g(by). (42)

Differentiating with respect to b, it follows that ¢'(by) = B(m + n) and ¢'(by) =
1/[B(m 4+ n)]. We state this result as Proposition 2:

3Gale chose this terminology because dynamic inefficiency is a novel feature that arises in Samuel-
son’s overlapping generations model but is absent from classical infinite horizon models with a rep-

resentative agent.
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Proposition 2. In the deterministic version of our model, with w(S) = w for any date
t and any state .S, the following results hold:

i) When the autarkic interest rate is less than the population growth rate, (% <
m+n), the golden rate steady state, b; > 0, is locally unstable and the autarkic steady
state, by = 0, is locally stable. In this case autarky is both stable and dynamically
inefficient.

ii) When the autarkic interest rate is greater than the population growth rate,
(% > 7 4+ n), the golden rule steady state, b; < 0, is locally stable and the autarkic
steady state, by = 0 is locally unstable. In this case autarky is both dynamically

efficient and unstable.

What does it mean for a steady state equilibrium to be stable? Recall that we
have interpreted debt as an indexed bond. It follows that stability of a steady state
equilibrium implies that, locally, there will exist initial values for government debt
for which a policy of rolling over the debt is feasible and leads to a sequence for
government debt that converges to the steady state.

If the world is Samuelson — there is a feasible policy that rolls over the debt each
period. Government debt as a fraction of gdp will shrink over time as the economy
grows faster than the interest rate. This policy will have bad outcomes since it causes
the economy to converge to a dynamically inefficient steady state. In this world, there
is a Pareto improving policy; it is a once off transfer to existing agents, financed by
debt, that takes the economy to the golden rule steady state and leaves it there.

If the world is classical, a policy in which the debt is rolled over every period is
infeasible. It leads to an explosive sequence of debt and, eventually, taxes will need
to be raised to restore stability. In this world, there is no Pareto improving policy
since equilibria are efficient. There is however, a policy that raises the welfare of
all future generations at a small cost to the current generation. By taxing a small
amount from existing households and lending the money back to households, the
government can select an equilibrium with b < 0 that converges to a golden rule
steady state. In that steady state the government holds claims of by, a negative
number, and every household receives a lump sum transfer each period, paid for by
the interest on government assets.

In David Gales’s (1973) analysis of a two-period model similar to ours, he interprets
debt as a nominal variable. Under that interpretation of our model, the initial value,
b is not pinned down since the initial price level is free. In that case, there is a
connection between stability of the steady state and determinacy of equilibrium. If

an equilibrium is unstable, it is locally determinate since there is a unique initial
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condition associated with a path for the state variable that converges to the steady
state. If the steady state is stable, it is locally indeterminate.

Local indeterminacy implies that there exists a continuum of equilibrium paths
converging toward the same steady state. Since the price level is free, the initial value
of debt is not given and Proposition 2 implies that there exists an equilibrium path
from each admissible value for the initial debt converging either to by = 0 or to b; < 0

depending on whether 3(m + n) is larger or lower than 1.

b‘[-l-l !

1 ﬂi\ g
7Zero Debt i 1 Positive Debt
Steady State ! Steady State
(Autarky) / ; (the Golden

i Rule)

1 : -

b bt ib
!

FIGURE 1. Equilibrium in the Samuelson Case

Zero Debt
Steady State 1+1 i
(Autarky) \ :
b, , i
! b’ b
Negative Debt
Steady State
(The Golden :
Rule) \

FIGURE 2. Equilibrium in the Classical Case

In a Samuelson economy in which b, is interpreted as a nominal variable, there is a

one parameter family of perfect-foresight equilibria converging asymptotically to the
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zero debt steady state. At this steady state households can borrow and lend at an
interest rate of 1/ (see Figure 1). The only perfect foresight equilibrium converging
to the positive debt golden rule steady state, is the one that begins with a price level
that exactly supports that steady state as an equilibrium.

In a classical economy in which b, is interpreted as a nominal variable, there exists
an unstable (determinate) no-debt steady state, and a stable (indeterminate) negative
debt steady state. Any initial interest rate, different from 1/, generates a perfect
foresight equilibrium converging to the negative-debt steady state equilibrium (see

Figure 2).
VIII. STOCHASTIC DYNAMICS: THE CASE OF INDEXED DEBT

Equation (30) must hold each period in any rational-expectation equilibrium. To
parameterize uncertainty we assume that w; is 7.i.d., and drawn each period from
a distribution F'(w) with bounded support [1, A]. We assume further that F'(w) is
common knowledge. We normalize the lower bound of the support to unity since it
simplifies some algebra in the proofs.

To analyze equilibria of the stochastic model, we will consider two cases. Suppose
first that debt is denominated in units of the consumption commodity and that the
economy begins with per-capita debt of b which may be positive or negative. In
this case, since debt is chosen at date ¢, b,y is in the date ¢ information set. An

equilibrium sequence of values of per-capita debt must satisfy the equation,
by = (7 + n)Brwy(S)V(be1), (43)
by = b, (44)

where the function W(b;,1) is defined by integrating the right hand side of Equation

(45) over future uncertainty.

U(bitr) = / lﬁw’-i- (1bt_+lﬁ7r)nbt+1 dF(w'). (45)

By a straightforward application of the inverse function theorem we obtain the

following lemma which allows us to invert Equation (43) and to write b.1; as a function

of the endowment w; and the current level of debt b;.

Lemma 1. There exists an increasing function f(x) : [—o0,b*] — [—00, +00] with
b* = (m 4+ n)pBwr/(1 — fm)n and the following properties

(i) f(0) =0,

(i1) lim, . f(2) = +00,

(iii) lim, ., f(z) = —o0.
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Any bounded sequence of debt that satisfies the equation

bros = (Z—) | (46)

t

for b; = b is an equilibrium.

bis

Probability
Mass Moves ™

in This
Direction ‘/

FIGURE 3. Stochastic Equilibrium in the Samuelson Case
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b, \

piU

b2 b*

Invariant /'/7
probability
measure

fb)

FIGURE 4. Stochastic Equilibrium in the Classical Case

Using this lemma we state the characteristics of an equilibrium for this economy
in the following proposition.*

4We use the same type of argument as in Farmer and Woodford (1997). This proposition is
derived from Theorem 4.6, Definition 2.1, Theorem 3.3 and Theorem 2.9 in Futia (1982).
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Proposition 3. (i) If the economy is Samuelson and the initial debt level satisfies the
restriction 0 < b < b*, the policy of rolling over the debt can be supported as an
equilibrium in which debt follows Equation (46) and

lim Prob(b, > 0) — 0. (47)

t—o0

If b € [~o0,0] U [b*, +0oc], the policy of rolling over debt cannot be supported as an
equilibrium.

bl bV where —oo < bV <

(i) If the economy is Classical, there exist numbers b'* and
0, and an initial debt b such that if b'~ < b < 0 the policy of rolling over the debt can
be supported as an equilibrium in which debt follows Equation (46). Further, there

exists an invariant measure ¢(x) such that

t—o00

b
lim Prob(a < by <b) — / o(z)dz. (48)
If b > 0, the policy of rolling over debt cannot be supported as an equilibrium.

Proposition 3 is illustrated in Figures 3 and 4. The proofs are standard and are

omitted.

IX. SToCcHASTIC DYNAMICS: THE CASE OF MONEY

There is a second case of interest in which b; is denominated in units of account.
This is what Samuelson (1958) called money. David Gale has analyzed the dynamics
of the non-stochastic two-period model and Farmer and Woodford (1997) have studied
a stochastic version of it. Our perpetual youth model behaves very much like the
stochastic two-period case studied by Farmer and Woodford .

When b; is denominated in nominal units, Equation (30) must still hold each period
in a rational-expectation equilibrium. But now there is no initial condition and b,
is no longer in the date ¢ information set. It is a random variable that depends on the

realization of the period ¢ 4 1 price level. Consider the following change of variables

Wy

Using this new variable we can write Equation(30) as follows,
T = ME; {&] ) (50)

where Ay = (7 + n)fm and Ay = (1 — f7)n. The fact that b, is not in the date ¢

information set means that we can treat x;.; as a random variable, determined at
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date ¢t + 1. As in Proposition 3, we derive the characteristics of an equilibrium in

terms of debt to endowment ratio.’

Proposition 4. (i) If the economy is Samuelson then the number [* = 2=T is positive.
2

In this case, if the initial debt to endowment ratio satisfies the restriction 0 < = < [*,
the policy of rolling over the debt can be supported as an equilibrium in which debt

follows Equation (50) and

tli{& x; = 0. (51)

If T € [—00,0] U [I*, +00], the policy of rolling over debt cannot be supported as an
equilibrium.

(11) If the economy is Classical, then the number I* = ’\1/\—5” is negative. In this

case, if the initial debt to endowment ratio satisfies the restriction —oco < 7 < 0,
the policy of rolling over the debt can be supported as an equilibrium in which debt

follows Equation (50) and
/\1 — T

(52)

lim z; =
t—o0 t /\2

If T > 0, the policy of rolling over debt cannot be supported as an equilibrium.

Although z; is non-stochastic in the equilibria described in this proposition, debt
itself is a random variable that fluctuates in proportion to the endowment. Since
the convergent steady states are indeterminate in this proposition, the techniques
discussed in Farmer and Woodford (1997) allow the construction of sunspot equilibria
in the neighborhood of the steady state. For the monetary economy, we can also

support equilibria at the determinate steady states.

Proposition 5. (i) If the economy is Samuelson, and if the initial value of debt is
non-negative, there exists a stochastic golden rule equilibrium in which
Al — T
Ty = ™
(11) If the economy is Classical, there exists a stochastic autarkic equilibrium in
which

(53)

xy = 0. (54)

In the Samuelson case, the price level adjusts each period to keep the ratio of debt
to the endowment constant. In the classical case, existing debt is repudiated by an
instantaneous hyperinflation that wipes it out. In this equilibrium money has no
value.

®Define the function G(z) = mz/(A\ — Xaz). We easily get G'(0) = 7/\; and G'((A\ — 71)/Xa) =
)\1/7‘(’.
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X. CONCLUSION

Our main contribution in this paper was to introduce a technique for solving a
discrete time version of the perpetual youth model by assuming the existence of
complete financial markets. We believe that our model is an excellent vehicle for
studying the effects of fiscal policy. We showed that, when preferences are logarith-
mic, the model behaves a lot like a pure-trade version of the two-period overlapping
generations model and, like that model, government debt has important effects on the
real interest rate and on intertemporal allocations. The solution technique introduced
here should prove useful in empirical analysis of macroeconomic models that drop the
representative agents assumption, a step that is critical to an assessment of debt and
deficits.

APPENDIX A

Deriving the Human Wealth Equation. Using Equation (1) and Definitions (14)
and (15),

DURS) = Y wi(S)+ 3 QTSI Y ki (S
1€EA; i€ AL S'eS i€ AL

& Nh(S) = ) + ZQt“ (ST [Nys1 — N hyr (S7)
~ Ntht(S) = Ntwt + ™ ZQtJrl NthtJrl(S)

& hi(S) = )+ ZQM Vi1 (S").

Line 2 follows from line 1 using the definitions of aggregate wealth and aggregate
human wealth and by recognizing that the human wealth of the old at date t + 1 is
equal to total human wealth N;,1h;,; minus the human wealth of the new generation
which has nN; members. Line 3 uses equation (1) to replace (N;y1 — nNy) by 7Ny

and the final line follows from canceling N;.

Deriving the Pricing Kernel. We begin with Equation (11), the agent’s Euler
equation. Aggregating this equation over the set A; of agents that are alive at date

t, we obtain the expression

:(S) Z ¢i41(S") = Bp(S") Z - (56)

€A 1€A:



DEBT, DEFICITS AND FINITE HORIZONS: THE STOCHASTIC CASE 18

We can obtain an expression for the right hand side of this equation in terms of the
aggregate endowment since from market clearing we know that
ZcﬁszizVVt. (57)
€A 1€AL
To find a simple equation that describes equilibrium, we need an expression for
> ica, Cio1(S') in terms of the aggregate variables H;, W, and B,. We will use two
facts. First, the consumption of all agents is the same linear function of their wealth.
Second, every aggregate variable can be split into a sum over new born agents and
existing ones.
Using the aggregation definition, Equation (13), and market clearing, it follows
that
Wi (8) = Z cﬁH(S’) = Z cﬁH(S’) + Z CiH(S/)- (58)
€A 41 1E€EA; 1EN 11
Recall that newborns do not own Arrow securities. Their wealth is in the form of

human wealth. Using the policy function (12) evaluated at date ¢t + 1 we can find an
expression for newborn consumption in terms of human wealth. Since the number of

newborns at date t 4+ 1 is nN;, we can write this expression as follows,

Z i1 (8") = (1 = Br)nN; g (S7). (59)
1EN 1
Combining Equations (57), (56), (58) and (59) leads to the expression
/ ﬁp SOHW,(S
§+1(S): ( ) t( ) (60)

[Wisa (8) = (1 = Bm)nNehyyr (5)]
Dividing top and bottom by N, gives an expression for Q™ (S’) in terms of per

capita variables w; and h(.5).
B (S)p(S")

t+1 (S/) —
t (m+n)we1(5') = (1 = Br)nhea ()
which is Equation (23) in the body of the paper. This equation gives the equilibrium

(61)

value of the price of an Arrow security.
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