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[. Introduction

Quasi-experimental techniques have been proposed as offering the best
strategies for improving measures of the costs and benefits of policies that enhance
environmental quality. This assertion relies on both the logical appeal of the Rubin
[1974] causal model (RCM) and the persuasive arguments found in an array of
recent environmental applications of that logic. Nonetheless, as Greenstone and
Gayer [2009] suggest, transparency in the variation serving to identify an effect
does not in itself guarantee that this strategy measures an economically consistent
benefit or cost concept. To address this issue the analysis must be structured within
an economic model that is consistent with the design used in quasi-experimental
methodology.

An assessment of arguments for and against the RCM logic (versus structural
modeling) for applied welfare analysis requires a controlled setting. This paper
proposes such a framework and illustrates how it can be used. The framework
checks the economic robustness of quasi experimental applications. More
specifically, most applications of the RCM logic argue for their superiority to
structural models largely because they assume less and focus more on what is
revealed by the exogenous events identifying the outcomes analysts can observe.
Their asserted advantages arise from a composite of each author’s logical arguments
(together with the documentation of background detective work) along with the

properties of the statistics used to measure the effects of interest. Each application



using quasi experimental methods for price capitalization has a set of assumptions
forming a composite maintained hypothesis about economic outcomes.

Our proposal uses the information that must be assembled for applications
involving housing price capitalization to calibrate a consistent structural model.
This model provides the basis for developing a set of alternative hypotheses for
judging the economic robustness of the RCM logic. To demonstrate that our
suggestion is feasible we illustrate it with two “real” environmental applications.
The two applications were selected to describe commonly observed, but quite
different, types of environmental applications with hedonic models. The first case
has a transformation in an environmental amenity that would be treated as a
discrete influence to housing prices. This is represented with a change in the
residential landscape for a set of subdivisions from desert (xeric) land cover to
vegetative or “wet” cover with cultivated vegetation, grass, and plants requiring
water.! The second is a discrete change in conditions due to a policy where the
effect would be represented as a change in a continuous measure of the negative
stigma (or risk) of a specific type of land use. This example is represented with the
cleanup of landfills with hazardous substances. The result is characterized using
changes in the proximity of private homes to these landfills.

In each case estimates of actual hedonic price functions are used to calibrate

households’ preferences. A large, spatially delineated, data base on housing

1 As Imbens and Wooldridge [2009] suggest these are often the foci of quasi experiments. Indeed, in a
more recent set of comments on critiques of the RCM Imbens [2009] argues there is a clear value in
these types of evaluations, noting that: “Even if simple average effects of these interventions [as
binary treatments] are not directly answering the questions about plausible economic policies, they
are often closely related to the effects of such policies and therefore are viewed as quantities of
interest” (p.6). The bracketed phrase and a correction for a typo were inserted. “The” was originally
before “answering” in the quoted statement.



transactions in Maricopa County, Arizona is used to define a fixed supply of houses
that is relevant for each application. This dimension of our example is important
because it illustrates how we convey to an abstract evaluation method the specific
features of the houses and neighborhoods along with the associated spatial
correlations that would be present with each application. Each situation exploits the
logic of an assignment model to represent the locational equilibria (see Wheaton
[1974]) before and after the simulated exogenous change in environmental
conditions2. The results of the assignment solutions are used to estimate the
hedonic price equilibrium with and without the exogenous changes to the amenities
involved. These data provide the basis for evaluating the quasi experimental logic
against a wide array of alternatives.

Our results indicate Greenstone-Gayer cautions were warranted. Three
conclusions emerge highlighting the potential importance of developing an
evaluation strategy to judge how well quasi experimental methods measure the
incremental benefits of a policy. First, for the use of a discrete change in landscape
identifying the exogenously “treated” houses that switch from dry to wet (or the
reverse), conventional cross section hedonic models dominate hedonic difference

models with or without ideal instruments that exactly identified treated and control

2 A concern with the assignment approach to representing the changes in the hedonic equilibrium
has been demonstrating the existence of unique equilibria in both the base and control solutions of
each paired experiment. Our normalization strategy assumes the parameter for income in the
indirect utility function is unity for all households. The remaining parameters are structured to be
heterogeneous and vary based on what is estimated in each example, as we explain below. This effect
and the single crossing property assure that the highest income household would be assigned to the
“best” house. This logic defines a unique starting point for computing the equilibrium prices in the
base control solutions. It reduces concerns about the uniqueness of the two equilibria. While we do
not have a formal proof of uniqueness, the logic we are applying is consistent with what would be
needed to develop one (see the logic outlined in the Epple et.al [1993] ).



households. The instrumental variable (IV) estimator, whether using hedonic price
or a difference specification, tends to overestimate the mean general equilibrium
willingness to pay (WTP). OLS hedonic models, by contrast, underestimate the WTP,
but the errors are generally less than ten percent.

Second, in the case of the hypothetical policies intended to represent
hazardous waste cleanups as changes in a continuous measure of a stigma or risk,
the quasi-experimental methods - whether hedonic price or difference models -
provide superior estimates of the GE willingness to pay. Finally, the heterogeneity in
households’ preferences together with the role of sorting responses to exogenous
changes in local amenities imply that judgments about the relative performance of
conventional cross-section versus quasi-experimental methods depend on the sub-
sample selected for these evaluations. Thus our findings for willingness to pay
estimates are consistent with Imbens [2009] recent summary of the objectives and
accomplishments of the RCM literature.?

Our analysis is developed in five sections after this introduction. Section two
outlines our proposal and explains how the quasi-experimental framework has been
applied to evaluate environmental policy based on housing prices. Section three
describes the specific details of the calibration template for evaluating the RCM'’s
logic for non-market valuation. Sections four and five present our results. The first

tracks an evaluation using alternative hypotheses that assume we observe how

3His objective is to respond to criticisms of what seemed to others to be an exclusive reliance on the
RCM as the only reliable approach to evaluating policy. He observes in describing what the literature
has found that: “An important insight is that in settings with heterogeneous effects, instrumental
variables do not identify the average effect of the treatment. However, as shown by IA (Imbens and
Angrist) instrumental variables methods do identify the average treatment effect for a well defined
subpopulation...”(p.4)



people sort in response to the exogenous changes in amenities. The second assumes
the evaluation would be based on hypotheses derived from tracking the price
changes of the same houses before and after a policy change that is considered as a
treatment. The last section summarizes our findings and the potential for wider use

of calibrated models in judging the robustness of quasi experimental applications.

[I. Evaluating Quasi-Experimental Strategies for Non-Market Valuation

Recently, Imbens and Wooldridge [2009] have decomposed the logic of the
RCM into three elements: (a) the distinction between potential and realized
outcomes; (b) the properties of assignment mechanisms that “select” treated and
control entities; and (c) the potential for interaction and / or general equilibrium
effects that might link treatment and control entities through market or non-market
processes. Such links might confound analysts’ ability to isolate the source of
variation in the condition applied to treated subjects. We exploit the Imbens-
Wooldridge structure in designing the features of the examples we use to describe

our methodology.

A. Using Calibrated Preferences to Frame Alternative Hypotheses for an

RCM Application

Our framework has four elements. First, we follow the Cropper et al [1988]

adaptation of the Koopmans-Beckman-Wheaton description for how equilibrium



prices in a housing market could be computed by interactively solving an
assignment problem. Second, the actual data underlying each proposed quasi
experiment is used for model calibration. Most environmental applications
measuring economic benefits or costs of a policy (as opposed to health related
outcomes) are likely to involve housing transactions and actual site specific effects
of the policies. This process assures the spatial correlations in these features,
observed in any particular sample of the housing transactions that would be
involved in estimating the price responses to a policy, will be embedded in the
evaluation. Preferences are calibrated by linking the parameters in the preference
function used in defining the bid functions for the assignment problem to the results
from estimated hedonic price functions. Third, alternatives relevant to the specific
details of each quasi experimental application are framed as a set of scenarios that
might influence price outcomes. By using the actual data these alternatives match
the spatial attributes of the actual sample of housing units selected for each
proposed quasi experiment. The alternative hypotheses are then derived as
different simulations using the calibrated preferences for a set of households
generated to be consistent with the calibrated preference heterogeneity and a
sample of housing units spatially located to mimic the effects of each policy. Finally,
the computed equilibrium prices for baseline and treatment scenarios in each case
are used to estimate different statistical models for each scenario. In this context it
is possible to judge how the features of each alternative affect the performance of a
quasi experimental strategy for estimating the benefits (or the costs) of a policy that

is expected to influence housing prices.



B. Concepts Measured

For most applications associated with environmental policy questions
economists are asked to provide estimates of individuals’ willingness to pay for
changes in amenities. If we assume V; (m;, p, q) is the ith individual’s indirect utility
function with m; the income, p a vector of prices for private goods, and g a vector of
non-market environmental resources available to this person, then equation (1)
provides one definition for a person’s general equilibrium willingness to pay, WTP;.

For this definition we assumed the change in g, Aq, is large enough to change

relative prices for private goods (from p to p) but not income.

Vi(m; —WTP,, p,q + Ag) =V,(m;p,q) (1)

Analysts need to have estimates of the WTP;’s and costs before the policy is
undertaken. Because real experiments with random assignment are usually
technically and / or politically impossible, we must “make do” with observed
variation in q across different places or time periods. The challenge is to use
observable variables, such as the housing prices, that might reveal how differences
in g motivated people to select one place over another and what this implies for the

tradeoffs each would make for Aq. The new focus on quasi-experimental methods

has argued these selections should also seek to mimic, as nearly as possible,



information that allows the analyst to distinguish the tradeoff of interest from other
objectives that also motivate sorting in response to differences in spatial amenities.

There are two aspects of adapting the Imbens - Wooldridge [2009] logic to
this task. The first receives virtually all of the attention in the literature and involves
the internal validity of the estimates measuring the treatment effect. The second
focus, a key element in our evaluation template, arises because what we observed as
the “outcome measure” is not WTP. In many cases it is a housing (or land) price (or
rent).

Greenstone and Gayer effectively summarize how the use of an instrumental
variable can address the problems posed by internal validity and the estimation
concerns for conventional approaches for estimating the capitalization of site
specific amenities into housing prices. As a result we focus on the economic concept
that is measured using estimates of the price capitalization.

The interpretation of capitalization measures has a long history in
economics. Scotchmer’s early papers [1985, 1986] make the key points directly. For
non-marginal changes in spatially delineated amenities she noted that “...even in the
simplest case of homogenous populations, neither the long-run nor short-run
benefits is a simple difference in hedonic prices.” (p. 63) The problem in linking
price capitalization with benefit measurement is not confined to short run
adjustment. Kannemoto [1985] demonstrated that price differences overestimate
long-run benefits.

The literature on non-market valuation has established that the marginal

willingness to pay can be recovered from hedonic price models. However, estimates
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are subject to the identification concerns raised by the quasi-experimental literature
that are an important focus of the Greenstone-Gayer discussion. Nonetheless, if
identification is resolved, as Scotchmer notes, “At best the observer makes local
observations, localized at the endogenous choices of the consumer.” (p. 66) Her
examples highlight how heterogeneous income among consumers, as well as
complementarity (or substitution) relationships in preferences for the amenity, the
amount of land, or other spatially delineated attributes confound the relationship
between price measures and willingness to pay. Equally important, other
differences among consumers’ preferences distinguish the appropriate short run
measure of benefits from price capitalization measures. Indeed, even in the case
when one postulates that the “correct” hedonic price function implies a constant
marginal price, this does not mean the underlying marginal willingness to pay
function will be constant.

Greenstone and Gallagher’s [2008] use of price capitalization for land
improvements to estimate the benefits of those improvements illustrates how the
issues raised by Scotchmer are important to the economic meaning of what is
measured by the RCM logic. Figure 1 reproduces part of their figure 1b for the case
of a perfectly inelastic supply of residential land. Assume an improvement takes
place in the site specific amenities relevant to this land. The demand for land would
increase (in the example represented in the figure from Do to D1 ). Greenstone and
Gallagher assume the effect is small enough that the hedonic price function does not
change and they argue the gain is measured as Po P1 DC -“...the mean change in

prices times the number of residential parcels....” (p.965) Their argument and the
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implicit assumptions of the diagram are subtle. Conventional practice would assume
the gain from the improvement in site specific amenities would be measured by the
increase in the consumer surplus fromPy AC to Po BDC or ABDC. The change in land
prices from Py to P1 affects how this gain is divided between residents and
landowners. Greenstone and Gallagher’s argument is that the gain is perfectly
captured with the price capitalization. This outcome is consistent with their diagram
due to the parallel shift of the demand function (and the area of the parallelogram Pg
P; DC)% If we alter the assumed effect of the site specific amenity on the demand for
land -assuming the demand pivoted at A, instead of a parallel shift, the
correspondence between price capitalization effects and the benefits of the amenity
change no longer holds. This difference illustrates in simple terms the Scotchmer
arguments>®.

These results are recognized by those proposing structural and reduced form
models based on hedonic price functions. What is at issue in these discussions is the
“size” of the exogenous change providing the identifying variation, the
interrelationships between the attributes of houses in preferences and the spatial
correlations inherent in the supply of homes for each application. Considering the

first of these, the exogenous change linked to the environmental service or amenity

4 We are grateful to Chris Timmins for reminding us of this relationship that is central to using the
diagram to illustrate the arguments Scotchmer’s arguments.

5 A closely related set of issues are raised in Starrett [1981] analysis of how to interpret price
capitalization measures. He provides two conditions that guarantee the benefits of an exogenous
change or project will be translated to land rents thru the intensive margin. The first he describes a
requiring the benefits be intramarginal. Or in the terminology of revealed preference approaches to
non-market valuation he assumes weak complementarity holds for households in the boundary
region. Second he assumes residents do not sort within the town according to their relative
preference. Neither of these assumptions will be satisfied by our framework. Sorting mitigatres
capitalization. pp.313-314.
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of interest, that is also inducing the price change, the variation needs to be sufficient
(and exogenous) to assure the analysis has successfully identified a casual change in
outcome of interest. However, large changes, such as those associated with past,
exogenous, policy outcomes, can alter the economic interpretation of the measure
attributed to the treatment effect. Price capitalization, as we suggested, is not
guaranteed to measure either the marginal or the incremental (for large changes)
willingness to pay. Nor does it relate to either a short run or long run measure of the
benefits associated with a given policy change. Its interpretation depends on the
assumptions we make about how the amenity is measured; how it contributes to
individual utility; how diverse preferences for the amenity are across households
being represented with the market effects of the amenity change; and how the
markets, in the case of housing price capitalization, come to equilibrium. To address
these interpretation issues we need an analytical structure with a set of maintained
assumptions for each of the factors contributing to the equilibrium market
adjustment. This structure is what we propose. It is a computational analog to the
rubric that Chetty [2008] outlined for basing the choices between reduced form and
structural models on the ability of each to measure the economic concept sought in
each application®. His strategy uses an analytical framework for policy interactions
that alter prices in accepted ways.

For environmental policies there are different types of connections between
the non-market services and the private goods (i.e. the land and housing) bundled

with them. As a result, the prices for these private goods are affected in a variety of

6 He highlighted the importance of a set of strategic assumptions assuring that the reduced form
estimates involved offer a sufficient economic statistic.
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ways by the policies of interest. Thus, in these cases, an interpretation of what can
be measured is more complicated and, in large part, specific to each application.
Analysts do not know what would be a robust specification for the correlation of the
important non-market amenities with other site and housing attributes. Our
strategy addresses these limitations by using the actual details of each application to
calibrate a model for the process that allows outcomes to be simulated. We can then
evaluate whether quasi-experimental methods with housing price capitalization can
be interpreted as a sufficient statistic for the general equilibrium willingness to pay

for the policies involved.

C. The Assignment Problem

The formal definition for a housing market equilibrium using the assignment
logic maintains the indirect utility function in equation (1) can be redefined in terms
of a vector of housing attributes, 4;, a vector of household characteristics, C;, with j

an index for houses and i the index for households as in equation (2).

vy =Vi(m —B;,A;,C)) (2)

ji!
B;i(V;) is household i’s bid for house j with its utility level at v;; . Assume X =1 if
household i occupies house jand X ; =0 otherwise. An assignment equilibrium

arises when there is (for a given, fixed supply of N houses and fixed number, N,
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households) a set of utilities v* = (v1*, v2*, ... vww*) and housing prices (P1*, P>*, ... Px*)

with the NxN matrix X such that the four equations in (3) are satisfied.
B,;(vi*)=P;*if X;=1foralljandi

Bji(Vi*) <P;* if X =0 foralljand i

Z?ﬂxji -1 i=1,.,N (3)

The first component of equation (3) equates the equilibrium price for each
house to the maximum willingness to pay of the household occupying it. The second
equation states that no one is willing to pay more for a house than the person
assigned to the house. The last two equations imply that all households have houses
and all houses are occupied, respectively.

Our calibration of preferences, selection of the supply of housing units, and
authentic spatial delineation of each policy assure that our computation analog
offers information to judge the performance of quasi-experimental methods in each
application as part of judging their robustness. The specifics of each of our examples
are discussed in the next section. Each requires two solutions to the assignment

model. The first corresponds to a baseline condition defined by the actual spatial



15

distribution of the amenity (or disamenity) associated with the sample of houses
selected for each problem. The second corresponds to changes in the spatially
delineated amenity that are associated with discrete policies.

Our design allows for household specific preference parameters - based on
applying the Brown and Rosen [1982] logic for each application. Because each set of
preference parameters is assumed to represent a household we can track the re-
sorting of these agents among houses from baseline to policy solutions. This
tracking allows two separate interpretations of how a quasi-experimental analysis
might take place. The first matches each household recording their baseline and
policy scenario housing assignments and associated prices. The second matches
each house keeping track of the differences in the households (and their
characteristics) assigned to each house in the baseline and policy equilibrium
solutions.

For the first of these matches, with the household held constant, it is clear
that households’ preferences are the same and the challenge is to use different
housing choices made by each household following the change to recover their
willingness to pay for the environmental change. In the second type of match, with
the house the same, different households may be present in the baseline and policy
solutions. As a result, the challenge for estimation is to ask how the capitalization
relates to each household’s willingness to pay for the environmental change.

The first of these matches corresponds more closely to applications of the
quasi-experimental framework in labor and health related applications than it does

to those for environmental policies. The second is comparable (except for the level
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of aggregation) to the hedonic applications to air quality (Chay and Greenstone
[2005]) and the cleanup of hazardous waste landfills (Greenstone and Gallagher
[2008]).

These contrasting uses of the benchmark and policy samples highlight the
reason why Imbens and Wooldridge discuss the importance of distinguishing
general heterogeneity in the unit effect of a treatment from heterogeneity that is
causal. For benefit measurement we often assume households have different
willingness to pay for changes in amenities. In the context of models that use
capitalization measures to estimate an average effect, the equilibrium sorting of
households influences what can be recovered and the Imbens’ argument (cited
earlier) for the importance of distinguishing the local average treatment effects.

In the more typical case where the analyst tracks the house - the households
are different! This is the issue explicitly raised in the conclusions from Scotchmer’s
analysis. We observe the re-valuation of the properties due to the effect of the
change on the equilibrium but to measure the incremental benefits associated with
the change we need to be able to recover the willingness to pay of the household
who occupies the house after the change.

Some applications argue the change is small in relation to the market so
households don’t move. This is the implicit assumption in figure 1. It is also what is
assumed in cases where the marginal price from a hedonic price function is used to
estimate marginal willingness to pay (and linear approximations used for the
benefit measures for large changes). While this logic may be a reasonable

characterization of the relationship between the effect estimated with a hedonic
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price equation and the marginal willingness to pay, it does not consider the ability of
the statistical model to identify the actual effect of the amenity. This latter concern is
the focus of the quasi-experimental literature. Simultaneity and omitted variables
confound the ability to isolate these effects. Under that argument an exogenous
change is needed to distinguish the effect of the amenity from the endogenously
determined matching that lead to the cross sectional hedonic function. This conflict
is one motivation for developing our computational analog to Chetty’s framework.
Within such a framework it is possible to evaluate the relative importance of the
statistical limitations in interpreting the welfare properties of capitalization
measures for large changes in spatially delineated amenities versus the econometric
limitations in assuming estimates from a snapshot of the equilibrium isolate reliable

estimates for the economic tradeoffs.

[II. Development of the Evaluation Framework

A. Estimation of Hedonic Price Functions

Before getting into the specific details of each application, it is important to
acknowledge that each is a “story.” Our primary interest is illustrating our
evaluation method. Our approach provides insight into what might be the expected
error bounds for a benefit interpretation of the capitalization measures derived
from each quasi-experiment. Thus we seek to assure the relative magnitudes of the

calibrated parameters are consistent with the data and what would be observed in
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practice. We also want the supply structure of houses to represent the correlations
in housing and location specific attributes. Our estimates of each hedonic price
function are used to define the “true” value of the preference parameters.

The first of our examples involves the tradeoffs households are prepared to
make to live in “wet” or irrigated landscapes as compared to desert (xeric)
landscapes in metropolitan Phoenix. Given the scarcity of water, this question has
attracted increasing policy interest. Land cover in the Phoenix area is predominantly
xeric due to the high summer temperatures and limited rainfall. Nonetheless for
historic reasons, due in part to the allocation of water rights to agriculture, a large
number of residential neighborhoods consist of predominantly “wet” landscaping.
Recent research (see Smith et al [2009]) has shown that households are willing to
make significant tradeoffs to reduce minimum summer nighttime temperatures in
the Phoenix metropolitan area. In addition, Brazel et. al. [2007] have shown that
water intensive land cover is associated with cooler nighttime temperatures.

We use these results to motivate our first application. Using land cover data
developed at the Central Arizona Project Long Term Ecological Research Site (CAP-
LTER), together with the Stefanov et al. [2001] classification system, we matched
land cover designation to individual housing parcels. Because temperature is also
related to land-cover, we developed predictions for minimum summer
temperatures. Appendix A outlines the details. Our prediction process assures that
the temperature measure is correlated with land cover. Both are specified in the
hedonic price function and treated as separate arguments of the household

preference function.



19

Our estimates for the hedonic price function are based on housing sales from
1980 through 2004 in Maricopa County (before the “housing bubble” in the area).
We estimate a semi-log specification for the price equation using housing attributes
- square feet of living space, lot size in acres, number of stories, age of home,
presence of a pool, presence of a garage, and two landscape-related variables - a
dummy variable for the wet / xeric classification and our estimate of the July
minimum temperature for each parcel. We also measured the distance to the central
business district. The model included fixed effects for the year of the home sale.
There are 398, 200 observations and as one might expect (with this large a sample)
we are able to estimate the housing and site attributes with considerable precision.
Table 1 reports summary statistics for the sample as well as our estimates of the
first stage hedonic model we use for the landscape application.

Our second application was designed to consider a continuous measure for
the disamenity associated with hazardous waste sites. We selected the inverse of
distance to the closest site with hazardous substances as a measure of the
disamenity. This selection was partially motivated by the recent Greenstone-
Gallagher study calling into question most past hedonic analysis and because the
Phoenix area offers an ideal location for studying this issue. The Phoenix area
contains no less than seven sites on the National Priorities List (NPL). Our analysis
considered three of these sites: Motorola 52nd street, 19th Avenue Landfill, and
Indian Bend Wash. Appendix B provides a brief description of the three sites. As
shown in figure 1, the Motorola and Indian Bend sites are located relatively close to

each other, while the 19t Avenue Landfill site is located away from other NPL sites.
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We use these geographic features to vary the effects of cleanup on our measure of
the disamenity effects of proximity to a hazardous waste site.” For this application
we limit our sample of housing sales in Phoenix to the years 1990 to 1999. This
selection assures that the seven hazardous waste sites were listed as NPL sites and
known to the public. There were 242,827 single family residential transactions
during this period. In addition to the housing attributes used for the landscape
application, we included city and block group fixed effects to account for other
spatially varying unobservable factors that could impact housing prices, as well as
temporal fixed effects. Table 2 reports the sample characteristics and the estimates

for the first stage semi-log specification in this case.

A. Preference Estimates and Simulating Household Heterogeneity

Following Brown and Rosen [1982], if we assume a common preference
structure together with independent identifying variation distinguishing marginal
price and virtual price equations for attributes, hedonic price functions can be used
to estimate preference parameters®. Equation (4) provides the preference
specification of our example. It is the Generalized Leontief function expressed in
terms of housing attributes (the Ajk’s), household income (m;), and the rental price

of housing type k (Px ).

7 This design is intended to reflect the concerns Nancy Bockstael raised with the Greenstone-
Gallagher use of census aggregates in attempting to detect the effects of cleanup of hazardous waste
sites on housing values.

8 Here we are using the algebraic logic and not requiring the exogenous variation distinguishing
marginal price and virtual price functions, since the objective is to calibrate a preference function for
gauging the robustness of each quasi experiment to different alternative hypotheses.
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Vik = ZL:ajAjk% + B(m; - Pk)% (4)

The virtual price function for an attribute, for example A1, (with I1a1 the virtual price

for Ay )is then given as in equation (5).

b
Vi a, ( m-PR
. = |kA1= “ k 5
& Vikm (ﬂ)( Ay ] ©)

Or taking the logarithm of both sides we have equation (6).

InIt, =|n(0%j+%|n(m—|3k)—%|nn1k (6)

In general the parameter f cannot be separately identified from the «;’s% In our

case we normalized it to unity. We estimate the preference parameters for all of the

attributes jointly, using the estimates from the marginal price equations for each

9 This same logic could be adapted with alternative preference specifications. We selected the
generalized Leontief because it has advantages over the translog in representing substitution
patterns between the attributes of differentiated goods when these substitution elasticities are
relatively small. In a related application Kuminoff, Parameter and Pope [2009] (KPP) evaluated the
sensitivity of the Cropper Deck and McConnell[1988] conclusions about the properties of alternative
hedonic specifications to omitted variables. The KPP study considers whether fixed effect and
temporal differences alter the guidance offered by Cropper et al. KPP found their conclusions on the
effects of omitted variables and spatial fixed effects were not influenced by the functional form used
to characterize household preferences. While our objectives are different, their findings suggest that
consideration of a wide array of functional specification may not need to be a component of the
evaluation rubric we are proposing for quasi experimental applications.
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hedonic function. The resulting estimates for the aj's provide the basis for
calibrating the preference functions for each of our applications. The estimated
covariance matrix for the estimates of the o’s provides the basis for introducing
heterogeneity in preferences across the households in our simulation. Our estimate
for household income is derived from the Census and corresponds to the block
group mean assigned to each house within a particular block group. Housing price is
annualized at a rate of 11%. Appendix C reports the specific estimates for the
second stage hedonic preference estimation. We considered all of our experiments
using the estimated heterogeneity as well as greater levels of heterogeneity, induced
by scaling the covariance structure by a factor of ten. This increase did not alter any
of our findings. As a result, our models are based on the heterogeneity estimated for

the sample in each application.

B. Samples of Houses

Both of our examples are based on samples of 1000 houses from the same
Phoenix area used for the hedonic models. For the first experiment, we identified
23,000 unique subdivisions from the Maricopa County assessor GIS files. For each
subdivision, we calculate the percentage of homes classified as either “wet” or
desert and restrict attention to subdivisions with a minimum of 25 single family
residential parcels. For each of those subdivisions, we define a subdivision as wet if
at least 90% of the houses within it are classified wet and we define a desert

subdivision as having no wet houses. Using the reduced sample of houses with only
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wet and dry subdivisions, 20 houses were selected from each of 25 wet and 25 xeric
subdivisions.19 By selecting subdivisions that are either wet or xeric, rather than just
selecting 1000 houses randomly, our sample reflects unobserved spatial correlation
between distinct types of subdivisions that would be expected in an actual
application of the quasi-experimental methodology to estimate the economic effects
of a landscape amenity on housing prices.

Our strategy for the second experiment was also structured to portray the
spatial array of houses in relation to NPL sites in a way that reflects proximity in
Maricopa County. We focus on three hazardous waste sites that we identified earlier
as important to our experiments. 500 houses were randomly selected based on
being located within 3 miles of both Indian Bend Wash and the Motorola 524 Street
plant. The remaining 500 houses are randomly drawn from within 3 miles of the
19th Avenue Landfill and are not within three miles of any other hazardous waste
site. Furthermore, our selection criteria assured that we compiled 250 houses
whose closest site was Indian Bend and 250 houses whose closest site was
Motorola. As our preference structure assumes the disamenity effect is for the
nearest hazardous waste site, we do not allow for effects from the more distant site

even though it is within 3 miles of each house.

C. Design of Experiments

10 Only wet houses were selected from wet neighborhoods.



24

As noted above the landscape treatment assumes a discrete change in
conditions. Half of the baseline wet homes switch to desert landscape and half the
xeric to wet. The instruments in this case correspond to dummy variables
identifying the specific homes switching from wet to dry or the reverse. The second
case involving the cleanup of hazardous waste sites can describe a wider array of
alternative implications for the resulting dis-amenity effect influencing housing
prices. Here the non-market effect is represented through a continuous variable (i.e.
the inverse distance to the closest site). As a result, the calibrated preference
specification for the hazardous waste case was used in two separate ways. Both
hazardous waste experiments share a common baseline with different assumed
treatment effects. In the first experiment we specify that the Motorola site present
in the baseline hedonic price function was cleaned up leading to a change in distance
to the closest site for a subset of the houses. The houses whose initial closest site
was Motorola become closest to the Indian Bend site after the cleanup. Thus the
quality change is represented as an increase in the distance to the closest site with
hazardous substances. Figure 2 displays the positioning of the two sites along with
the overlap in the areas with homes that could be affected by the cleanup of one of
the sites. This overlap is the basis for a cleanup altering the site which is closest to a
subset of the homes (i.e. some of the ones closet to Motorola become closer to
Indian Bend when the Motorola site is cleaned up).

The second treatment maintains a policy that simultaneously changes two
sites and thus the new prices would reflect sorting in response to both changes as

they affect different houses in the set of 1000 contributing to the equilibrium. One of
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the changes involves the assumed cleanup of the Motorola site, as before. For those
houses close to the Motorola site, their closest site is once again the Indian Bend
site. The second cleanup is based on the 19t Avenue Landfill. To maintain an
isolated NPL site for a comparison following the cleanup, we divide the 500 houses
selected near the 19t Avenue site into two groups of 250 houses, chosen randomly.
In effect, this converts the single, isolated 19t Avenue Landfill site into two isolated
sites with an identical structure for the underlying unobserved spatial correlation.
The policy cleans up only one of these sites, reducing the dis-amenity effect of
proximity to zero. Thus, while there is a differential effect for each of the houses
close to this site (because in the baseline they are all different distances from the
site), after the treatment some houses no longer experience an effect of any
hazardous waste site influencing the preferences of those simulated households
living near the cleaned up site.

The analysis challenge in the first cleanup case arises because a subset of the
houses close to Indian Bend in the treated sample experienced an improvement. The
analyst using the ex post cross sectional sample would not know which ones. For the
second case distance changes mean different things depending on which site was
cleaned up. While the preference specification treats them as affecting distance to
the disamenity and thus they would have equivalent effects, this need not be the
case and the analyst does not have this information when specifying instruments for
separating each potential policy change. This is important because we can define

different types of instruments to reflect the exogenous identifying information
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associated with the treatment that would be added as part of the logic of the quasi
experimental method.

For the case of the experiments measuring the cleanup effects for hazardous
waste sites, we have several different instruments. In the first of these experiments,
cleaning a single site, it would be the identification of which of the homes close to
Indian Bend in the treated sample were initially close to Motorola and therefore
received the cleanup. For the second example, this variable along with the
identification of the houses close to the isolated site that was cleaned could be used
as instruments. These two instruments can be compared to the situation where we
simply have a dummy variable identifying that a house is close (in the baseline
sample) to a site that was “cleaned-up”. The issue we consider is whether this

distinction enhances the properties of the quasi experimental estimates.

D. Reduced Form Models

Our experimental design allows two different ways of interpreting the
treatment components of each of our experiments. Each has different implications
for the reduced form models used to estimates the effects of a treatment on
equilibrium housing prices. The first matches the baseline and treatment price
equilibrium by the simulated household. This formulation, as we noted, is more
consistent with the objective of measuring the willingness to pay for each change
but implies we observe the household in different homes. For hedonic applications,

to our knowledge, this level of resolution simply does not exist in any of the existing
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applications.11 The second approach matches houses and is more consistent with
the practice adopted for environmental applications. It implies that potentially
different households will occupy each house in the benchmark and treated
solutions. For each situation a somewhat different set of models is likely to
characterize what would be used in practice to implement the quasi-experimental
method. We will not attempt to consider every possible alternative. Instead, a
representative set of models are used: single cross sectional models, difference
models, and instrumental variable models used to represent the quasi-experimental
methods. In practice the specifications of this later group can be variations on one of
the first two types. The results reported in the next two sections were selected to

document a set of general conclusions that emerge from our experiments.

E. What s the Standard?

The final issue to be considered in evaluating our models concerns what we
assume is the true value to be measured. Our experiments assume each household
has different preference parameters, income, and thus will have a different
willingness to pay for the environmental changes represented in each experiment.
As a result, our standard could be the average of these values. Alternatively, if we
assume the policy is a change in a site-specific amenity - we might use the “true”
willingness to pay of those observed to be directly affected by the change. This

distinction is important because the matched samples reflect the policy’s effects in

11 This matching is more characteristic of the applications in labor economics.
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different ways. When we consider the same households in the baseline and treated
circumstances we could consider individuals selecting houses with the improved
state. By contrast, with matched houses we could consider willingness to pay of
households in the affected houses before or after the exogenous change. This is an
important element in the Kuminoff and Pope [2009] discussion of the results of
what can be expected from empirical models of capitalization. Hedonic models
estimated with the baseline sample reveal marginal willingness to pay for small
changes in attributes before the “large” exogenous treatment, while those after are
for the prices defining the new equilibrium. This result is consistent with the point
raised by Schotchmer and identified in Kuminoff and Pope’s extension to Epple’s
[1995] analytical derivation of the hedonic price function. To account for these
issues, our summary includes both sample means and sub-sample results to allow

for comparisons.

[V. Results — Match on Individuals

As our discussion to this point has suggested, there are a number of aspects
of the property value capitalization framework that distinguish it from the
traditional one used to describe quasi-experimental methods. In this case, none of
the three Imbens-Wooldridge attributes exactly “fit” the conventional setting. The
potential outcome that is measured, even under ideal conditions, does not
correspond to what we would like to estimate. The treatment is usually assigned to

houses (or groups of houses) while estimates of the tradeoffs are what households
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would make. These tradeoff measures should be the focus if the objective is to
measure the benefits from a policy.

Everyone in the market “experiences” the treatment through the interactions
that define a hedonic equilibrium. Assuming the household in a treated house is the
only one experiencing the effect ignores this general equilibrium process. Equally
important stratification at spatial thresholds can arise as a byproduct of sorting to a
new equilibrium. For these reasons we evaluated the two sets of equilibrium prices
in each experiment in two ways - (a) matching the simulated households with
information on the houses they selected in the baseline and treatment equilibria and
(b) matching the houses with the information on which households occupy them in
these two situations. This section describes our findings for the case of matching the
households before and after the simulated treatments for each of our three
experiments.

Our preference specification assures a closed form expression for the
willingness to pay measure associated with each policy experiment. In each case we
assume the willingness to pay is for the change in the environmental service we
seek to measure with the treatment effect. We adopt a general equilibrium
perspective and view each change as a discrete transformation in the conditions.
Thus, for the landscape case the tradeoff is for an irrigated (or wet) set of conditions
and the general equilibrium dimension arises because of re-sorting, a new set of
house prices, and an income effect to homeowners that arise due to the price

changes in their initially assigned houses.
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The two experiments involving sites with hazardous substances use a
continuous index to represent the dis-amenity effect. They involve the inverse of the
distance to the closest site. For the first experiment we assume policy leads to the
cleanup of the Motorola site. This change will alter the closest site for those houses
closest to the Motorola site. As noted earlier, after the simulated clean-up they will
be closest to the Indian Bend site. Inverse distance enters household preferences so
this policy implies a different change for each house. Moreover, with sorting,
households can relocate. Some of the households closest to Indian Bend following
the cleanup of Motorola will be the same ones that were closest to Indian Bend
before the simulated policy (i.e. in the baseline case). Others will not have moved
houses but directly experience the policy. Still others will re-locate into houses that
are now closer to Indian Bend. Each group of households will experience different
types of changes along with price changes implied by the new equilibrium.

The second hazardous waste policy involving the clean-up of multiple
landfills has two types of changes. For some houses, closest to the cleaned up
component of the 19t Avenue Landfill, the disamenity effect is removed by the
treatment. In these cases the inverse distance measure is zero after the policy for
these houses!2. For houses closest to the Motorola site, the change is the same as
with the first hazardous waste experiment. Cleanup implies these houses will now
be closest to the Indian Bend site. Both site cleanups contribute in the same way to

preferences — a change in inverse distance. In addition to accounting for the initial

12 Qur preference specification does not treat this case differently. Some studies have argued that the
elimination of a stigma or dis-amenity has a larger effect than simply reducing the disamenity effect
to zero. To consider this type of effect would require a different preference specification.
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cleanups, households can relocate thereby adding to the complexity associated with
the general equilibrium perspective which takes explicit account of re-sorting in
response to large changes.

The simultaneous changes to the two sites are considered as one experiment
because the analyst could decide to represent these types of changes differently. We
discuss the results from each experiment separately using the individual matched

sample and then offer a comparative summary at the end of this section.

A. Landscape Findings

Table 3 presents the mean, median, and thresholds for the 5 and 95
percentiles for the true willingness to pay and the same statistics for each model’s
estimates of the willingness to pay. These findings are reported for the overall
sample and for a sub-sample confined to households living in homes with irrigation
after the change. Both linear and semi-log specifications are used for cross sectional
hedonic, difference, and the instrumental variable estimates. The first column in
each of our results tables identifies the true value for the willingness to pay and then
the model specification used for each of the models used. The second column
describes the sample used to construct the summary statistics. The third provides
the specification used for the empirical model and the fourth identifies the
instruments used in the IV models. The remaining columns provide the summary
statistics. For the semi-log estimates with qualitative independent variables we use

the Halvorsen-Palmquist [1980] interpretation for the estimated coefficient for the
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dummy variable along with Goldberger’s [1968] suggested correction for bias with
logarithmic transformations.

The implications are direct and robust in that they hold for a wide range of
models and sub-samples. The cross sectional hedonic models, whether on the
baseline sample or using the equilibrium prices after the change, offer the best
estimates of the mean willingness to pay. The errors with hedonic models range
from 1.8% to 5.7% using the full sample means. All of the hedonic models with
instruments intended to mimic the quasi experimental logic in this case are inferior
to these simple cross sectional strategies and yield estimates for the mean WTP that
exceed the true mean by twenty-nine percent or more for the full sample. There is
some relative improvement in the difference and instrumental variable models for
the sample in the irrigated houses in the treatment equilibrium. This improvement
seems to arise because the true value for mean willingness to pay is larger for this
group and the estimates remain about the same. The simple hedonic models remain
superior but in this case understate the true value by about four percent with the
treatment sample offering the best estimate.

The models considered include specifications using price differences in
linear and semi-log form, as well as instrumental variable models using both
specifications with several instrument definitions. We refer to one formulation as
involving a “general” instrument because it assumes knowledge of whether a house
changed its state between baseline and treated samples. It does not identify whether
the change was from a desert to an irrigated sub-division or the reverse. An

unrestricted set of instruments assumes that these two changes can be
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distinguished. In general, models based on the unrestricted information are
superior.

The true willingness to pay measures span a wide range and none of these
reduced form models is able to track individual heterogeneity in the true values. At
best, they offer imprecise measures of average willingness to pay. The bottom line
conclusion from this experiment would be that a hedonic price model estimated
under baseline conditions without adjustment for potential endogeneity provides a
superior estimate for the overall mean willingness to pay. A hedonic applied to the
treatment sample is superior in estimating willingness to pay for households
selecting irrigated homes after the treatment. Nonetheless, the difference in before
and after hedonic estimates is small and substantially less than the error in the

quasi-experimental estimates.

B. Cleanup of One Hazardous Waste Site

Table 4 reports the same summary statistics for the “true” willingness to pay
as well as several models accounting for the cleanup of the Motorola site. Our design
implies 250 houses experience the cleanup. About forty percent of the households in
these affected homes (85 of 250) move to new locations. Thus, re-sorting is an
important element in understanding the results. Of those who move the majority
(246 of the 250) select homes that are close to Indian Bend, the closest landfill after
the simulated cleanup. This re-allocation of simulated households is important

when we consider analysis of the results matched by house. In this case identifying
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the house affected by the policy does not assure the household in that house will be
the same before and after the change. This difference will not have a large effect on
the marginal willingness to pay but can be expected to affect the use of these results
to approximate the general equilibrium willingness to pay for site cleanup.

For this experiment the quasi-experimental methods, using the first
difference specification that includes a fixed effect identifying whether the initial
location is a house affected by the policy together with the changes in other housing
attributes, offers the best estimates for mean willingness to pay. This method
exploits an ideal instrument that assumes knowledge of whether each individual
initially lived in a house affected by the policy. The linear specification has about a
4.5% overstatement. With the semi-log specification the error for the model’s
estimate of the mean general equilibrium WTP increases to 8.6%. The conventional
cross section hedonic and first difference models (ignoring the instrument)
understate the willingness to pay and are inferior estimates with errors exceeding
sixteen percent.

One might argue that comparisons for the full sample are less relevant than
for the households in the homes affected by the policy after the simulated cleanup.
This argument would be consistent with a focus on local average treatment effects.
Their choices reveal greater concern about proximity to sites with hazardous
substances. The second set of results in Table 4 present the findings for this
subsample. As expected, the “true” general equilibrium willingness to pay is larger
but the relative ranking of methods does not change. As with the full sample the

relative superiority of the quasi-experimental method relies on both the instrument
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and the fixed effect identifying whether the house was one impacted by the cleanup

policy.

C. Cleanup of Two Hazardous Waste Sites

The second hazardous waste example introduces a number of complexities
for the evaluation problem. The policy is assumed to impact two sites in different
ways. As a result, the GE sorting responses are more complex. In these cases half of
the houses near the 19t Avenue Landfill are no longer impacted by the negative
effects of a site with hazardous waste. Those near the Motorola site experience the
same type of change as in our one site example. That is, with the Motorola site
cleaned they are now close to the Indian Bend site. Thus, households can sort into
houses that are not close to a hazardous waste site or they can alter their proximity
to a site. In the one-site scenario every house had some disamenity consequences
from proximity to a waste site. The true GE benefit measure is capturing the change
from the baseline distance to the 19th Avenue Landfill to a situation with no effect
on household preferences

Table 5 summarizes the results. Consider first the implications of adding
sites with the prospect of avoiding the disamenities due to sites with hazardous
waste for the market equilibrium. Over 200 of the original households in these
cleaned 19th Avenue houses remained when they faced the opportunities posed
with altered distances, housing attributes, and prices. Thirty-eight moved accepting

proximity to a site in exchange for other desirable attributes - housing attributes or



36

prices that were available as a result of the new equilibrium alternatives. In this
scenario we have two GE willingness to pay measures: a distance change and the
elimination of the effect of a site (a distance change to zero). These are compared for
the full sample and the two sub-samples corresponding to households in houses
initially experiencing either the change in the Motorola cleanup or those
experiencing the 19th Avenue cleanup.

An important issue in interpreting of these findings is the selection of the
sample used in evaluating performance. Using the standard of households
experiencing the policy, the quasi-experimental models with the difference
specification, whether linear or semi-log, using one instrument (identifying houses
that experience any cleanup of a site) provide superior estimates. The case of two
instruments has approximately comparable performance in a few cases with semi-
log models. In these situations the estimates tend to understate the true GE
willingness to pay. By contrast, the hedonic model using transactions prices before
the policies overestimate the GE willingness to pay for the 19th Avenue Landfill
sample with errors of 38 percent and 32 percent for linear and semi-log
specifications, respectively. For the sample associated with the Motorola site
cleanup the estimates understate the effect and are larger in absolute magnitude.
The other cross-sectional hedonic models yield larger errors. If we were to use the
full sample estimates of WTP and the sub-sample means for the true values as the
standard, the conclusions would be the same.

Overall, it appears that the advantages of “ideal” instruments in quasi-

experimental methods are realized with continuous measures of the environmental
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amenity. When the change in site specific conditions is discrete, as with our example
of xeric versus wet landscaping, the cross sectional hedonic (before or after the
simulated policy change) provided superior estimates of the general equilibrium
willingness to pay. In contrast, for both of the examples involving hazardous waste
sites when cleanup led to changes in the continuous indicator for the disamenity the
quasi-experimental models using the price differences and accounting for changes

in other housing attributes provided superior estimates of the GE willingness to pay.

V. Results for Matched Houses

Most quasi-experimental analyses measuring the benefits of environmental
policies are closer to a match of control and treated samples based on the houses in
each category. As a result, this section considers the same three experiments but re-
analyzes the results based on matching the houses in the baseline sample to those in
the treated sample. As noted earlier, different households can be in each house for
the two samples. This difference must be considered in determining which
household’s willingness to pay is used in evaluating the performance of each model.
We propose to use the household selecting the house after the change. As a result,
the mean values reported for the “true” willingness to pay are associated with the

households occupying the houses after the exogenous treatment.

A. Landscape Findings
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Table 6 reports the findings for the matched house landscape models. Using
either the full sample or the sample of houses with irrigated landscape, the quasi-
experimental estimates with the discrete indicator of a change to an irrigated status
as an instrument are closer to the mean willingness to pay of households who
ultimately select the houses in the treated sample. For the full sample the semi-log
quasi experimental specification provides the best estimates while the linear quasi
experimental specification is preferred in the subsample of wet houses. Under the
linear specification for the full sample and the semi-log specification for the wet
sample, the simple cross section provides superior estimates with errors of less than
6% compared to over 10% with the quasi experimental estimates. Overall these
findings indicate a simple cross section hedonic based on equilibrium prices after
the change provides estimates comparable to the quasi experimental IV models and

doesn't require the consistent identification of the “correct” instrument.

B. Cleanup of One Hazardous Waste Site

Table 7 provides estimates for the cleanup of the Motorola site using the
house matched sample so each price change is for the same house. In this case only
the proximity to the hazardous waste site changes between baseline and treated
samples. We follow the same convention and use the willingness to pay of the
household in each house after the cleanup. The overall sample and a subset of the
houses near the Motorola site are each considered. The results are consistent

regardless of the sample with the conventional first difference model (for both
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specifications linear and semi-log) providing the best estimate of mean GE
willingness to pay using the final household as the standard. While the differences
between the quasi-experimental and this simple approach can be small - a 9% error
with the conventional first difference versus 12% with the quasi-experimental IV
estimator for the full sample, the ranking is consistent for all samples and model
specifications. As a result, in this case a quasi experimental estimation strategy
offers little advantage over conventional first difference models that do not attempt
to isolate an instrument for the source of the “treated” houses experiencing cleanup

outcomes.

C. Cleanup of Two Hazardous Waste Sites

Table 8 provides the estimates for the analysis matching houses before and
after the simulated policy cleaning up two sites. Here only the sub-samples of
houses affected by each change provide the basis for evaluation. For the Motorola
site the quasi-experimental difference models provide mean GE willingness to pay
estimates closest to the “true” mean for willingness to pay for households who
select the cleaned house after the change, with errors of 9% for the linear and 12%
for the semi-log. For the case of eliminating the disamenity effects of the 19th
Avenue Landfill site, the quasi-experimental difference is again the best with the
conventional cross-sectional difference and hedonic models using prices after the

change resulting in much larger errors.
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Considering all models for both of the hazardous waste cleanup scenarios the
results for the matched houses suggest the quasi-experimental methods are
generally superior to simple cross-sectional hedonic or difference models. This
conclusion relies on selecting the ideal instrument and using the willingness to pay

of households who select the houses after the treatment.

VI. Implications

Under ideal conditions (where we know how to correctly measure
environmental amenities) our results imply conventional hedonic practice can yield
estimates closer to the true mean general equilibrium willingness to pay. However
in other cases the quasi experimental estimates for the overall mean as well as for
special sub-groups would be superior. Quasi experimental estimates tend to be
superior when the policy changes are complex. The performance gain can be
substantial. This conclusion is relevant to the environmental applications where
hedonic property value studies have been conducted using the same house before
and after a policy change and the proxy measure for the amenity service is
continuous. This is true even though different households will occupy the house
before and after the change providing the source of a treatment and the associated
identifying variation. The estimated price differential exploiting the exogenous
treatment as an instrument provides a measure of the mean general equilibrium
willingness to pay for the change in the amenity resulting from that treatment for

those households occupying the treated houses following the change. The
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performance gain of this estimate over simple hedonic approaches varies with
application but can be large.

For a discrete condition that shifts preferences - wet versus xeric - the
advantage does not appear present. Indeed, in this case we have more than simply a
direct example of how our proposed method would work. That is, the simulation of
market equilibria under different circumstances confirms that our cross sectional
hedonic price function used in calibration would have been the best choice to
estimate the tradeoffs households would make for wet landscapes in their sub-
divisions. As a result, we can conclude that the hedonic estimates of the willingness
to pay for green landscape are likely to provide a reliable gauge of the value of “wet”
landscape. We found that the analysis can rely solely on the cross sectional variation
across subdivision in xeric versus wet conditions.

The performance of conventional versus quasi experimental methods is also
not as clear for the case of cleanup of a single hazardous waste site (with matched
house sample). The preferred estimator can in this case depend on the specification
selected for the hedonic price equation.

When we consider samples tracking households the challenge is greater
because households can alter the mix of attributes and the complementarity or
substitution between these attributes. In addition, preferences can influence the
ability to successfully control for the interacting effects that result from the
exogenous treatment. At a conceptual level these factors were the reasons for
Starrett’s conditions guaranteeing capitalization measured benefits of external

changes to a community (see note #5) as well as for Schotchmer’s general point
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concerning the difficulty in measuring general equilibrium willingness to pay with a
hedonic price equation. It is also what we observed with the matched individual
results. Quasi-experimental methods were not always best in terms of their
estimates for the mean GE willingness to pay.

Our focus was primarily on the mean estimates. The true values for WTP
displayed considerable heterogeneity and all of the approaches failed to capture
these differences. All the methods are reduced forms so this result should not be
surprising. Quasi-experimental methods acknowledge the difficulties in estimating
conditional means that attempt to capture the role of observable sources of this
heterogeneity.

Nonetheless these findings need to be interpreted carefully in relation to the
studies with actual data that motivated our inquiry. They assume ideal instruments
are known. We did not consider other cases because there are no clear guides to
distinguish good from “poor” instruments. Thus, with strict adherence to the quasi-
experimental admonition that analysts must be prepared to devote considerable
effort (the proverbial equivalent of the “shoe leather”) in identifying instruments,
our results confirm some of the current enthusiasm for this strategy where the
equilibrium prices are influenced by a complex sorting response to a policy change.

There are some important caveats to these general conclusions. First, as we
noted earlier, our standard was a mean effect not differential values based on
observable attributes of households. Second, it assumed the analyst is working with
the actual prices for each house not summary statistics for sets of houses, such as

the means or medians used in Chay and Greenstone and in Greenstone and
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Gallagher. Third, our results rely, as we noted above, on knowledge of the ideal
instrument and correct specifications (i.e. no omitted variables) for the hedonic
functions, including the measure for the non-market amenity. Finally, it assumed the
spatial linkages connecting houses and households to environmental amenities are
known. With these caveats our proposal offers a new method consistent with the
logic developed in the Chetty and the Imbens and Wooldridge frameworks to
evaluate when structural and quasi experimental methods are likely to be best. It is
directly relevant to a large number of environmental applications when the
empirical models must use price capitalization to recover the tradeoffs that
motivate general equilibrium adjustment of households in response to changes in
spatially delineated amenities.

An important final question is how do our specific results relate to other
situations with different types of spatial interconnections? In effect, what general
implications can be extracted from these detailed case studies designed to match
real world conditions in a specific metropolitan area? The best answer we can offer
is that we have demonstrated this is the wrong question to ask. One of the points of
this paper is that numerical generalizations are unlikely to be effective in addressing
the issues of when quasi experimental methods provide advantages over
conventional hedonic price functions in measuring willingness to pay thru housing
price capitalization. Instead, we need a framework that can be undertaken for each
application. We have demonstrated this strategy is feasible. Our computational
rubric offers a tractable approach to conducting an assessment with no more

information than is routinely available with quasi experiments involving housing
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price capitalization. By following our proposed four step method each new quasi-
experimental application can be used to calibrate preferences within an application-
specific assignment study and use this template to establish the likely error bounds.
Formal statistical decision rules could also be derived by repeating the process in a

Monte Carlo framework?!3,

13 Qur approach to this point has focused on using the estimated covariance matrix for the calibrated
parameters as the basis for inducing preference heterogeneity rather than a reflection of estimation
uncertainty. Any evaluation of the performance of tests or our computational rubric would require a
full specification of the sources of error in the equilibrium price vectors used to gauge the effects of
changes in spatially delineated environmental amenities.
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Table 1: Landscape calibration first-stage hedonic

Hedonic Estimates

Summary Statistics

Variable Estimate Std Err t-stat Mean  Std Dev Min Max
Constant / Price® 8.010 0.027 297.330 16,048 10,583 1,870 184,250
Square feet (100s) 0.040 0.000 327.600 17.81 6.42 6.00 45.00
Acres 0.149 0.002 69.120 0.22 0.22 0.05 19.96
Stories -0.182 0.001 -127.530 1.14 0.34 1.00 4.00
Bathrooms 0.140 0.001 128.420 2.43 0.81 0.50 6.00
Age -0.003 0.000 -80.080 17.71 15.92 1.00 85.00
Pool 0.112 0.001 110.300 0.26 0.44 0.00 1.00
Garage 0.125 0.002 61.520 0.95 0.22 0.00 1.00
Wet 0.070 0.001 61.370 0.18 0.38 0.00 1.00
July min temp -0.006 0.000 -17.970 78.75 2.01 67.16 86.30
CBD distance 0.002 0.000 21.750 14.13 5.94 0.51 42.84
Year Dummy Variables

1981 -0.277 0.013 -20.770

1982 -0.402 0.015 -26.360

1983 0.102 0.009 11.790

1984 0.149 0.008 17.720

1985 0.204 0.008 24.930

1986 0.238 0.008 29.730

1987 0.228 0.008 28.490

1988 0.226 0.008 28.250

1989 0.236 0.008 29.310

1990 0.222 0.008 27.810

1991 0.214 0.008 27.000

1992 0.229 0.008 29.180

1993 0.293 0.008 37.440

1994 0.353 0.008 45.680

1995 0.432 0.008 55.980

1996 0.501 0.008 65.470

1997 0.570 0.008 74.700

1998 0.624 0.008 82.440

1999 0.695 0.008 92.070

2000 0.767 0.008 101.670

2001 0.820 0.008 108.790

2002 0.870 0.008 115.550

2003 0.963 0.008 127.060

2004 1.049 0.008 137.790

Statistics
# Observations 398,200
Adjusted R’ 0.7751

®Price is based on 11% of sale value and corresponds to summary statitics



Table 2: Hazardous waste calibration first-stage hedonic®

Hedonic Estimates

Summary Statistics
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Variable Estimate Std Err t-stat Mean Std Dev Min Max
Constant / Priceb 8.803 0.061 145.350 14,558 9,063 1,870 151,085
Square feet (100s) 0.032 0.000 228.740 18.46 6.49 6.00 45.00
Acres 0.098 0.002 47.650 0.24 0.30 0.05 20.00
Stories -0.084 0.002 -52.420 1.14 0.34 1.00 4.00
Bathrooms 0.054 0.001 43.570 2.53 0.81 0.50 6.00
Age -0.006 0.000 -70.340 14.46 14.60 1.00 80.00
Pool 0.066 0.001 59.710 0.29 0.45 0.00 1.00
Garage 0.053 0.002 21.890 0.96 0.20 0.00 1.00
NPL inverse distance -0.021 0.006 -3.220 0.15 0.18 0.02 14.04
CBD distance 0.001 0.001 0.550 14.72 5.98 0.51 72.17
Year Dummy Variables

1991 -0.005 0.003 -1.880

1992 0.026 0.003 9.690

1993 0.098 0.003 37.470

1994 0.167 0.003 65.920

1995 0.240 0.003 95.580

1996 0.299 0.002 121.490

1997 0.355 0.002 145.610

1998 0.415 0.002 173.430

1999 0.487 0.002 204.360

Statistics
# Observations 242,827
Adjusted R 0.8396

?City fixed effects not reported

PPrice is based on 11% of sale value and corresponds to summary statitics



Table 3: Landscpae WTP using matched individuals

Estimated WTP

Model Sample  Specification Instruments® Mean Median 5% 95% % Error”
True WTP Full 467.4 474.9 191.8 720.1 0.0%
CS Before Full Linear 476.0 476.0 476.0 476.0 1.8%
CS After Full Linear 494.2 494.2 494.2 494.2 5.7%
Difference Full Linear 358.6 358.6 358.6 358.6 -23.3%
IV - CS After Full Linear Wet 641.9 641.9 641.9 641.9 37.3%
IV - Difference Full Linear General 611.1 611.1 611.1 611.1 30.7%
IV - Difference Full Linear Wet 603.8 603.8 603.8 603.8 29.2%
|V - Difference Full Linear Wet, Dry 602.5 602.5 602.5 602.5 28.9%
CS Before Full Log-Linear 479.9 476.5 465.3 504.0 2.7%
CS After Full Log-Linear 492.8 490.1 478.3 516.1 5.4%
Difference Full Log-Linear 362.0 360.0 351.3 379.0 -22.6%
IV - CS After Full Log-Linear Wet 639.5 636.0 620.7 669.7 36.8%
IV - Difference Full Log-Linear General 622.6 619.1 604.3 651.9 33.2%
IV - Difference Full Log-Linear Wet 615.1 611.7 597.0 644.1 31.6%
IV - Difference Full Log-Linear Wet, Dry 613.5 610.1 595.5 642.4 31.3%
True WTP Wet Only 518.3 520.4 225.0 750.2 0.0%
CS Before Wet Only Linear 476.0 476.0 476.0 476.0 -8.2%
CS After Wet Only Linear 494.2 494.2 494.2 494.2 -4.6%
Difference Wet Only Linear 358.6 358.6 358.6 358.6 -30.8%
IV - CS After Wet Only Linear Wet 641.9 641.9 641.9 641.9 23.9%
IV - Difference Wet Only Linear General 611.1 611.1 611.1 611.1 17.9%
IV - Difference Wet Only Linear Wet 603.8 603.8 603.8 603.8 16.5%
IV - Difference Wet Only Linear Wet, Dry 602.5 602.5 602.5 602.5 16.2%
CS Before WetOnly  Log-Linear 483.8 481.2 466.1 507.7 -6.6%
CS After Wet Only  Log-Linear 496.6 493.7 479.2 519.2 -4.2%
Difference Wet Only  Log-Linear 364.7 362.6 352.0 381.4 -29.6%
IV - CS After Wet Only  Log-Linear Wet 644.4 640.7 621.9 673.8 24.3%
IV - Difference Wet Only  Log-Linear General 627.3 623.7 605.4 655.9 21.0%
IV - Difference Wet Only  Log-Linear Wet 619.8 616.2 598.1 648.0 19.6%
IV - Difference WetOnly  Log-Linear Wet, Dry 618.2 614.6 596.6 646.3 19.3%

“Wet = Dry to wet switch; Dry = wet to dry switch; General = Any switch, regardless of direction

®Error computed based on mean willingness to pay



Table 4: Single hazardous waste model performance using matched individuals

Estimated WTP

Model Sample  Specification Instruments® Mean  Median 5% 95% % Error”
True WTP Full Linear 1.9 0.0 -7.9 15.6 0.0%
CS Before Full Linear 0.7 0.0 -5.7 7.5 -62.4%
CS After Full Linear 13 0.0 -10.9 14.3 -28.5%
Difference Full Linear 1.4 0.0 -11.1 14.7 -26.8%
IV - CS After Full Linear 20.3 0.0 -163.7 215.4  975.1%
IV - Difference Full Linear Switch 2.0 0.0 -15.9 20.9 4.5%
IV - Difference Full Linear Mot 1.3 0.0 -10.6 13.9 -30.5%
CS Before Full Log-Linear 0.7 0.0 -5.5 7.5 -62.5%
CS After Full Log-Linear 14 0.0 -10.6 14.4 -27.6%
Difference Full Log-Linear 1.4 0.0 -10.8 14.6 -26.5%
IV - CS After Full Log-Linear 204 0.0 -158.7 216.1 984.6%
IV - Difference Full Log-Linear Switch 2.0 0.0 -15.9 21.6 8.6%
IV - Difference Full Log-Linear Mot 1.3 0.0 -10.4 14.1 -29.1%
True WTP Motorola Linear 6.1 4.3 -7.2 21.7 0.0%
CS Before Motorola Linear 2.1 1.8 -3.0 7.8 -64.6%
CS After Motorola Linear 4.1 3.4 -5.7 14.9 -32.8%
Difference Motorola Linear 4.2 3.5 -5.9 15.2 -31.2%
IV - CS After Motorola Linear 61.4 51.7 -86.2 224.0 911.1%
IV - Difference Motorola Linear Switch 6.0 5.0 -8.4 21.8 -1.7%
IV - Difference Motorola Linear Mot 4.0 3.3 -5.6 14.5 -34.7%
CS Before Motorola  Log-Linear 2.2 1.8 -3.0 8.0 -64.5%
CS After Motorola  Log-Linear 4.2 3.4 -5.8 15.4 -31.5%
Difference Motorola  Log-Linear 4.2 3.4 -5.9 15.7 -30.4%
IV - CS After Motorola  Log-Linear 62.3 50.7 -86.6 230.9 926.4%
IV - Difference Motorola  Log-Linear Switch 6.2 5.1 -8.7 23.1 2.8%
IV - Difference Motorola  Log-Linear Mot 4.1 3.3 -5.7 15.1 -32.9%

®Switch = Indicates individual's moving into a house initially Motorola; Mot = Indicates households initially living nearest Motorola



Table 5: Multiple hazardous waste model performance using matched individuals

Estimated WTP - Distance Reduction

Estimated WTP - Site Removed

Model Sample  Specification Instruments® Mean Median 5% 95% % Error® Mean Median 5% 95% % Error’
True WTP Full Linear 9.8 3.7 -8.9 43.0 0.0% 41.3 41.8 16.3 66.6 0.0%
CS Before Full Linear 34 1.8 -6.4 14.7 -65.5% 38.8 37.8 19.2 58.2 -6.1%
CS After Full Linear 6.8 3.6 -12.9 29.4 -30.8% 23.5 21.4 13.9 42.3 -43.2%
Difference Full Linear 1.7 0.9 -3.2 7.2 -83.0% 13.7 12.5 8.1 24.8 -66.7%
IV - CS After Full Linear Land, Mot 102.6 54.9 -195.2 445.3 947.4% 355.3 323.3 2105 640.6 760.1%
IV - Difference Full Linear Switch 10.3 5.5 -19.6 44.7 5.2% 35.7 32,5 21.1 64.3 -13.6%
IV - Difference Full Linear Land, Mot 8.6 46 -16.3 37.1 -12.7% 29.6 27.0 17.5 53.4 -28.3%
CS Before Full Log-Linear 33 1.8 -6.1 14.0 -66.7% 37.7 36.8 18.4 56.0 -8.8%
CS After Full Log-Linear 6.9 3.8 -129 29.7 -29.1% 24.2 22.3 14.2 43.0 -41.5%
Difference Full Log-Linear 1.5 0.8 -2.8 6.4 -84.7% 13.9 12.8 8.1 24.7 -66.5%
IV - CS After Full Log-Linear Land, Mot 102.0 55.9 -189.1 436.5 941.3% 354.8 327.1 208.2 631.8  758.9%
IV - Difference Full Log-Linear Switch 10.7 59 -19.8 45.7 9.1% 37.2 34.3 21.8 66.2 -10.0%
IV - Difference Full Log-Linear Land, Mot 8.8 4.8 -16.3 37.7 -10.1% 30.7 28.3 18.0 54.6 -25.8%
True WTP Motorola Linear 7.4 5.0 -7.7 254 0.0%
CS Before Motorola Linear 2.4 1.8 -3.6 8.8 -67.2%
CS After Motorola Linear 4.9 3.6 -7.3 17.7 -34.3%
Difference Motorola Linear 1.2 0.9 -1.8 4.3 -83.9%
IV - CS After Motorola Linear Land, Mot 73.5 54.9 -109.8 268.4 893.7%
IV - Difference Motorola Linear Switched 7.4 5.5 -11.0 27.0 -0.2%
IV - Difference Motorola Linear Land, Mot 6.1 4.6 9.2 22.4 -17.1%
CS Before Motorola  Log-Linear 2.4 1.8 -3.6 9.0 -67.3%
CS After Motorola  Log-Linear 5.1 3.8 -7.6 19.1 -30.4%
Difference Motorola  Log-Linear 1.1 0.8 -1.6 4.1 -85.0%
IV - CS After Motorola  Log-Linear Land, Mot 75.5 56.3 -111.4 279.9 921.7%
IV - Difference Motorola  Log-Linear Switched 7.9 59 -11.7 29.3 7.1%
IV - Difference Motorola  Log-Linear Land, Mot 6.5 4.9 -9.6 24.2 -11.7%
True WTP Landfill Linear 31.1 29.7 12.1 50.8 0.0%
CS Before Landfill Linear 42.8 46.5 19.1 59.3 37.7%
CS After Landfill Linear 21.7 17.3 13.7 42.5 -30.2%
Difference Landfill Linear 12.7 10.2 8.0 24.9 -59.1%
IV - CS After Landfill Linear Land, Mot 328.4 262.3 207.4 643.6  956.9%
IV - Difference Landfill Linear Switched 33.0 26.3 20.8 64.6 6.1%
IV - Difference Landfill Linear Land, Mot 27.4 21.9 17.3 53.7 -11.9%
CS Before Landfill Log-Linear 41.0 44.9 18.1 56.7 32.1%
CS After Landfill Log-Linear 22.0 17.9 13.9 43.0 -29.1%
Difference Landfill Log-Linear 12.6 10.3 7.9 24.7 -59.4%
IV - CS After Landfill Log-Linear Land, Mot 323.4 263.6 203.6 631.8  940.7%
IV - Difference Landfill Log-Linear Switched 339 27.6 21.3 66.2 9.0%
IV - Difference Landfill Log-Linear Land, Mot 27.9 22.8 17.6 54.6 -10.1%
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Table 6: Landscpae WTP using matched houses

Estimated WTP
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Model Sample  Specification Instruments® Mean  Median 5% 95% % Error”
True WTP Full 467.4 474.9 191.8 720.1 0.0%
CS - After Full Linear 494.2 494.2 494.2 494.2 5.7%
Wet to Dry - Difference Full Linear 618.5 618.5 618.5 618.5 32.3%
Any Wet - Difference Full Linear 36.0 36.0 36.0 36.0 -92.3%
IV - CS After Full Linear Wet 523.0 523.0 523.0 523.0 11.9%
CS - After Full Log-Linear 488.5 485.8 474.2 511.6 4.5%
Wet to Dry - Difference Full Log-Linear 624.4 620.9 606.1 653.9 33.6%
Any Wet - Difference Full Log-Linear 30.9 30.8 30.0 32.4 -93.4%
IV - CS After Full Log-Linear Wet 460.9 458.3 447.3 482.6 -1.4%
True WTP Wet Only 518.3 520.4 225.0 750.2 0.0%
CS - After Wet Only Linear 494.2 494.2 494.2 494.2 -4.6%
Wet to Dry - Difference Wet Only Linear 618.5 618.5 618.5 618.5 19.3%
Any Wet - Difference Wet Only Linear 36.0 36.0 36.0 36.0 -93.1%
IV - CS After Wet Only Linear Wet 523.0 523.0 523.0 523.0 0.9%
CS - After Wet Only  Log-Linear 492.2 489.4 475.1 514.7 -5.0%
Wet to Dry - Difference Wet Only  Log-Linear 629.2 625.6 607.2 657.9 21.4%
Any Wet - Difference Wet Only  Log-Linear 31.2 31.0 30.1 32.6 -94.0%
IV - CS After Wet Only Log-Linear Wet 464.4 461.7 448.1 485.5 -10.4%

b Error based on median true WTP after



Table 7: Single hazardous waste model performance using matched houses

Estimated WTP

Model Sample Specification Instrument Mean  Median 5% 95% % Error”
True WTP Full 1.9 0.0 -7.9 15.6 0.0%
CS - After Distance Change Full Linear 1.3 0.0 0.0 9.9 -28.5%
CS - After Distance Total Full Linear 1.2 0.0 0.0 8.6 -37.9%
Difference Full Linear 1.7 0.0 0.0 12.6 -9.3%
IV - Difference Full Linear Mot 1.6 0.0 0.0 12.1 -12.9%
IV - CS After Full Linear Mot 2.9 0.0 0.0 21.4 54.2%
CS - After Distance Change Full Log-Linear 1.4 0.0 0.0 10.1 -27.6%
CS - After Distance Total Full Log-Linear 1.1 0.0 0.0 8.2 -41.1%
Difference Full Log-Linear 1.7 0.0 0.0 12.7 -8.7%
IV - Difference Full Log-Linear Mot 1.7 0.0 0.0 12.3 -11.5%
IV - CS After Full Log-Linear Mot 2.7 0.0 0.0 19.8 41.8%
True WTP Motorola 7.7 5.8 0.0 22.2 0.0%
CS - After Distance Change Motorola Linear 5.4 34 0.4 16.0 -29.9%
CS - After Distance Total Motorola Linear 4.7 3.0 0.3 13.9 -39.1%
Difference Motorola Linear 6.8 4.4 0.5 20.4 -11.1%
IV - Difference Motorola Linear Mot 6.6 4.2 0.5 19.5 -14.6%
IV - CS After Motorola Linear Mot 11.6 7.4 0.8 34.6 51.2%
CS - After Distance Change Motorola  Log-Linear 5.5 35 0.4 17.1 -29.0%
CS - After Distance Total Motorola  Log-Linear 4.4 2.8 0.3 13.9 -42.2%
Difference Motorola  Log-Linear 6.9 4.4 0.5 21.6 -10.5%
IV - Difference Motorola  Log-Linear Mot 6.7 4.3 0.5 20.9 -13.2%
IV - CS After Motorola  Log-Linear Mot 10.7 6.8 0.8 335 39.1%




Table 8: Multiple hazardous waste model performance using matched houses

Estimated WTP - Motorola

Estimated WTP - Landfill
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Model Sample  Specification Instruments® Mean Median 5% 95% % Error® Mean Median 5% 95% % Error®
True WTP Full 9.8 3.7 -8.9 43.0 0.0% 41.3 41.8 16.3 66.6 0.0%
CS - After Not Site Specific Full Linear 6.8 0.0 0.0 27.2 -30.8% 6.8 0.0 0.0 27.2 -83.6%
CS - After Site Specific Full Linear 5.6 0.0 0.0 22.6 -42.5% -4.2 0.0 -16.8 0.0 -110.1%
Difference Full Linear 7.1 0.0 0.0 28.5 -27.5% 7.6 0.0 0.0 304 -81.7%
IV - Difference Full Linear Mot, Clean 10.7 0.0 0.0 42.9 9.1% 10.7 0.0 0.0 42.9 -74.1%
IV - CS After Full Linear Mot, Clean 11.9 0.0 0.0 47.6 21.1% 11.9 0.0 0.0 47.6 -71.3%
CS - After Distance Change Full Log-Linear 6.9 0.0 0.0 27.4 -29.1% 6.9 0.0 0.0 27.4 -83.2%
CS - After Distance Total Full Log-Linear -1.9 0.0 -7.7 0.0 -119.8% -10.7 0.0 -42.2 0.0 -125.8%
Difference Full Log-Linear 6.9 0.0 0.0 27.1 -30.0% 7.6 0.0 0.0 30.2 -81.5%
IV - Difference Full Log-Linear Mot, Clean 10.7 0.0 0.0 42.4 9.6% 10.7 0.0 0.0 42.4 -74.0%
IV - CS After Full Log-Linear Mot, Clean 12.1 0.0 0.0 47.8 23.4% 12.1 0.0 0.0 47.8 -70.7%
True WTP Motorola 8.3 6.5 0.0 23.0 0.0%
CS - After Distance Change Motorola Linear 5.7 3.6 0.4 16.9 -31.2%
CS - After Distance Total Motorola Linear 4.7 3.0 0.3 14.1 -42.9%
Difference Motorola Linear 6.0 3.8 0.4 17.7 -27.9%
IV - Difference Motorola Linear Mot, Clean 9.0 5.7 0.6 26.7 8.5%
IV - CS After Motorola Linear Mot, Clean 9.9 6.3 0.7 29.6 20.4%
CS - After Distance Change Motorola  Log-Linear 6.0 3.8 0.4 18.9 -27.2%
CS - After Distance Total Motorola  Log-Linear -1.7 -1.1 -5.3 -0.1  -120.3%
Difference Motorola  Log-Linear 5.9 3.8 0.4 18.6 -28.1%
IV - Difference Motorola  Log-Linear Mot, Clean 9.3 5.9 0.7 29.2 12.4%
IV - CS After Motorola  Log-Linear Mot, Clean 10.5 6.7 0.7 32.8 26.6%
True WTP Landfill 31.6 30.3 11.8 51.3 0.0%
CS - After Distance Change Landfill Linear 21.4 17.3 13.7 41.9 -32.2%
CS - After Distance Total Landfill Linear -13.2 -10.7 -25.9 -8.5 -141.9%
Difference Landfill Linear 23.9 19.3 15.3 46.8 -24.3%
IV - Difference Landfill Linear Mot, Clean 33.8 27.3 21.6 66.1 7.0%
IV - CS After Landfill Linear Mot, Clean 37.5 30.3 24.0 73.3 18.7%
CS - After Distance Change Landfill Log-Linear 21.8 17.7 13.8 41.9 -31.1%
CS - After Distance Total Landfill Log-Linear -33.5 -27.2 -64.4 -21.3 -205.9%
Difference Landfill Log-Linear 24.0 19.5 15.2 46.1 -24.2%
IV - Difference Landfill Log-Linear Mot, Clean 33.6 27.4 21.4 64.8 6.5%
IV - CS After Landfill Log-Linear Mot, Clean 37.9 30.8 24.1 72.9 20.0%




Figure 1: Greenstone and Gallagher Illustration of Price Capitalization
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Figure 2: Hazardous Waste Sites
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Appendix A. Estimating minimum temperature

Estimating a model similar to Brazel et al. [2007], who found that water
intensive land cover is associated with cooler nighttime summer temperatures; we use
actual temperature monitoring data along with land cover data to generate predictions of
July minimum low temperatures for each block group in the study area. The source of
land cover data is satellite interpreted images using the Stefanov et al [2001]
classification system. This system analyzes differences in reflectivity to assign one of 12
land cover types to a 30x30 meter square. The land cover types include cultivated
vegetation, cultivated grass, vegetation, fluvial and lacustrine sediments (canals), water,
undisturbed, disturbed soil with agricultural water rights, compacted soil, disturbed
(commercial/industrial), disturbed (asphalt and concrete), disturbed (mesic residential),
and disturbed (xeric residential).

To predict temperatures, we estimate a model relating low temperatures to
neighborhood land cover. We use daily observed low temperatures at 20 NOAA
monitoring stations located across Phoenix for the years 2000 through 2008 and attach
those temperature monitors to any Census 2000 block group centroid located within 1
mile of each monitor. In total, this results in 308 block groups assigned actual
temperature data. For each block group we calculate the average low temperature for
each month forming our dependent variable. Our independent variables consist of
household income reported by the Census 2000 at the block group, elevation, the
diversity of land cover types, the percentage asphalt, and the percent vegetative cover in

each block group. In addition, we include a series of year and monthly dummy variables.
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Results from this regression are reported in table A.1 and show that vegetative land cover
is predictive of lower summertime temperatures as is the percent of water, higher
elevation, and diversity of types of land cover. Asphalt is associated with higher
temperatures, as expected.

Using the regression results relating land cover to temperature, we predict the
2005 July low temperatures in each block group across the Phoenix region. By
construction, this temperature measure is correlated with land cover, both of which we
specify to enter the "true" utility function for households. Summary statistics for the
predicted July low temperatures are reported in table A.2. In total, we predict
temperatures for 2,113 block groups with July low temperatures ranging from a low of
just over 72 degrees to a high of nearly 86.5 degrees. The mean block group predicted

low temperature is slightly over 80 degrees.



Table A.1: Minimum temperature regression

Variable Estimate Std Err t-stat
Constant 44,743 0.483 92.650
% Vegetative -8.711 0.566  -15.400
% Asphalt 5.546 0.490 11.320
% Water -10.675 2.310 -4.620
Elevation -0.005 0.000 -13.170
Diversity -0.038 0.041 -0.920
Monthly Dummy Variables
February 0.432 0.234 1.850
March 6.485 0.234 27.690
April 10.992 0.231 47.520
May 21.244 0.233 91.120
June 28.077 0.231 121.680
July 37.097 0.233  159.090
August 35.817 0.233  153.650
September 28.002 0.239 117.160
October 18.925 0.240 78.780
November 5.944 0.239 24.890
December -1.683 0.241 -6.990
Year Dummy Variables
2001 0.202 0.212 0.950
2002 -0.324 0.207 -1.560
2003 0.716 0.205 3.490
2004 0.121 0.207 0.590
2005 0.777 0.206 3.780
2006 0.332 0.208 1.600
2007 1.185 0.212 5.600
2008 -0.080 0.239 -0.340
Statistics
# Observations 38,424
Adjusted R’ 0.6766

Table A.2: Predicted 2006 July low temperatures

Temperature Prediction

Block Groups

Mean
Std Dev
Min
Max

2113
80.56
1.22
72.05
86.45
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Appendix B. Description of hazardous waste sites

The Indian Bend Wash site was proposed for listing on the National Priorities List
(NPL) in December, 1982 and received final listing on September, 1983. The site was
listed due to contaminated ground water and includes 12 square miles of land stretching
from Scottsdale to Tempe. As a result of the contamination of ground water, six city
wells were closed. Over 350,000 people live in the contaminated area. The site received
""construction completed” status in 2006 but has yet to be fully deleted from the active
NPL list.

The second hazardous waste site we focus on is the Motorola 52nd Street plant.
This site was proposed for listing in June, 1988 and received final listing in December,
1989. To date, the site has not received construction complete status and remains an
active cleanup site. This site is located on a former semiconductor manufacturing plant
and encompasses 90 acres in the midst of a residential and commercial area. As a result
of a leaking underground storage tank, groundwater and soil were contaminated. The
contaminated water has spread several miles underground, but is not being used for
drinking water, but resulted in the closure of several wells.

The third and final site we examine is the Nineteenth avenue landfill which was
proposed for listing in December, 1982 and received final listing in September, 1983. The
site was deleted in September, 2006. The 213 acre landfill is located in an industrial area
adjacent to the Salt River. Within six miles of the site live over 16,000 people with the
closest people located only 1/3rd of a mile away. As with the previous two sites, this site

is responsible for contaminated ground water and has been made worse intermittently due
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to flooding of the nearby Salt River which had breached areas of the closed landfill.
Unlike the other two sites, there are no residential wells located in the immediate vicinity

of the landfill. Cleanup of the site ultimately cost of 22 million dollars.



Appendix C. Second-stage hedonic preference parameter estimates

Table C.1: Preference calibration second-stage hedonic
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Landscape Hazardous Waste
Variable Estimate Std Err t-stat Estimate Std Err t-stat
Square feet (100s) 1.828 0.007 276.580 1.834 0.006 291.610
Acres 0.803 0.003 302.660 0.591 0.002 285.920
Stories -3.294 0.007 -455.330 -1.780 0.004 -471.370
Bathrooms 2.613 0.009 298.320 1.288 0.004 320.140
Age -0.120 0.000 -257.260 -0.223 0.001 -303.920
Pool 2.045 0.005 434.570 1.313 0.003 405.220
Garage 3.178 0.006  495.070 1.559 0.003 501.870
Wet 1.333 0.003 474.880 n/a n/a n/a
July min temp -0.967 0.002 -520.850 n/a n/a n/a
NPL inverse distance n/a n/a n/a -0.157 0.000 -489.130
CBD distance 0.115 0.000 316.660 0.038 0.000 344.120




