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“ABILITY-GROUPING AND ACADEMIC INEQUALITY: EVIDENCE FROM 
RULE-BASED STUDENT ASSIGNMENTS” 

 

C. Kirabo Jackson¥  
Cornell University (Draft date: 14 April, 2009) 

 
In Trinidad and Tobago students are assigned to secondary schools after fifth grade based on achievement tests, 
leading to large differences in the school environments to which students of differing initial levels of achievement 
are exposed. Using both a regression discontinuity design and rule-based instrumental variables to address self-
selection bias, I find that being assigned to a school with higher-achieving peers has large positive effects on 
examination performance. These effects are about twice as large for girls than for boys. This suggests that ability-
grouping reinforces achievement differences by assigning the weakest students to schools that provide the least 
value-added. 

 
 
I Introduction and Background 
 

In Trinidad and Tobago, students take an exam at the end of fifth grade that is used to 

assign them to secondary school. Students list their secondary school choices, and the likelihood 

of being assigned to their first-choice school increases with their score. Since students usually 

rank higher-achieving schools higher on their lists, high-achieving students typically attend high-

performing secondary schools while low-achieving students typically attend the poorest-

performing schools. Since school ability-grouping groups students by achievement, it has a 

profound effect on the peers to which students are exposed — lowering average peer quality for 

low-achievement students and increasing average peer quality of high-achievement students. 

This is important because several studies have found that students tend to have better outcomes 

when they are exposed to higher-achieving peers.1 Further, the quality of school inputs may be 

endogenous to the quality of peers because schools with bright, motivated students may attract 

better teachers, and may have more affluent alumni networks leading to better facilities and 

better funding.2  As such, ability-grouping may engender large differences in the quality of 

                                                 
¥ I am grateful for feedback received from Ron Ehrenberg, Roland Fryer, Kevin Hallock, Caroline Hoxby, Bob 
Hutchens, Clement Jackson, Lawrence Katz, Jordan Matsudaira and Henry Schneider. I am also grateful for useful 
comments received from participants of the Labor Economics workshop at Cornell University. I am deeply grateful 
to Marcia Riley and I would like to thank Yvonne Lewis, Rosaline Mendez and Simone Rawlins of the Trinidad and 
Tobago Department of Education Research and Evaluation for allowing me to access their data, their assistance and 
generosity. All errors are my own. 
1 Several studies find that students tend to have better outcomes on average when their peers are brighter on average 
[Hoxby (2000),  Hoxby and Weingarth (2005), Sacerdote (2001), Zimmerman (2003)] while others provide mixed 
evidence [Katz, Kling Liebman (2007), Angrist and Lang (2004), Burke and Sass (2006)]. 
2 Supporting this notion, Jackson (forthcoming) finds that a quasi-exogenous repatriation of low-income black 
students into schools at the end of school desegregation was associated with decreases in teacher quality. 
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schools students of different initial achievement levels attend.  

Researchers have linked differences in school quality to differences in labor market 

outcomes (Card and Krueger 1992a;1992b, Betts 1995, and Grogger 1996) and higher test scores 

to higher subsequent earnings (Murnane, Tyler and Willet 2000), suggesting that school ability-

grouping may reinforce achievement differences by assigning low-achievers to schools that 

provide the least value-added. Ability-grouping across schools is currently practiced in several 

nations worldwide3 and elements of ability-grouping exist in the United States where several 

districts have highly selective secondary schools.4 Ability-grouping is likely to reinforce pre-

existing achievement differences, on the margin, as long as all students benefit from attending 

better schools. However, the broader question of whether students benefit from attending 

“better” schools remains unresolved.  

The empirical difficulties in uncovering the causal effect of attending a better school lie 

in the fact that students may self-select into schools. Students with the same incoming test scores 

who attend different schools may have different preferences or levels of motivation. Since 

preferences and motivation are typically not observed, researchers have most recently dealt with 

this issue by relying on plausibly exogenous variation in school attendance. Using lottery 

assignment to schools, Cullen, Jacob and Levitt (2005) find that Chicago students who transfer to 

high-achieving schools show no improvement in test scores while Hastings and Weinstein (2007) 

find that students in Charlotte-Mecklenburg who transfer to substantially better schools 

experience sizable improvements in test scores. Other studies have used Regression 

Discontinuity (RD) designs that compare the outcomes of students with test scores just above 

and just below some exogenously set cut-off above which admission to a high-achievement 

school is very likely and below which admission to such a school is unlikely. Clark (2008) finds 

that gaining admission to selective secondary schools in the United Kingdom does not improve 

test scores, while Pop-Eleches and Urquiola (2008) find that students in Romania who gain 

admission to better schools have better test score performance.5 It is apparent that there is no 

consensus on whether students benefit from attending better schools. 

                                                 
3 This includes Austria, Germany, Japan, Hungary, the United Kingdom, the Slovak Republic, the Czech Republic, 
Jamaica, Barbados and others. 
4 Notable examples are Boston Latin School and Stuyvesant High School in New York City. There also exist 
magnet schools that admit students based on prior achievement. 
5 Using an RD design, Duflo, Dupas and Kremer (2008) find that marginal students who gain admission to high 
ability classrooms within tracked schools have similar outcomes to those students who do not. 



 3

In an attempt to provide some clarity to this literature, I use data from Trinidad and 

Tobago to investigate the following empirical questions: (1) Do students, on average, benefit 

from attending schools with higher-achieving peers on a range of academic outcomes? (2) Does 

ability-grouping across schools increase educational inequality, on the margin, by assigning low-

achievement students to low value-added schools while assigning high-achievement students to 

high value-added schools? (3) Do the marginal effects vary by gender, and (4) Are the marginal 

effects non-linear (i.e. does attending a school with marginally higher-achieving peers have 

larger effects at low or high peer achievement levels)? Trinidad and Tobago data are well suited 

to identifying school ability-grouping effects on the margin because: (a) the student assignment 

mechanism creates exogenous variation in school attendance, (b) there is a national curriculum 

so that school effects are not confounded with large curricular differences,6 and (c) all schools 

have homogenous student populations so that school effects are not confounded with a 

“homogeneous student body” effect.7 As such, differences in school value-added in Trinidad and 

Tobago will primarily reflect differences in peer quality and differences in teacher and input 

quality endogenous to peer quality.  

To address the self-selection bias that often makes it difficult to obtain credible causal 

effects when comparing observationally similar students who attend different schools, I use rule-

based instrumental variables in the spirit of Campbell (1969) and Angrist and Lavy (1999) based 

on the student school assignment rules used by the Ministry of Education. The assignment rules 

(described in Section II) are largely deterministic, non-linear, non-monotonic functions of 

student preferences and incoming test scores that lead to test score cut-offs for each school below 

which admission is unlikely. As suggested in Fisher (1976), I use the deterministic portion of the 

assignment rules to obtain rule-based assignments, which are complicated non-linear functions of 

test scores and preferences, as exogenous instruments while directly controlling for smooth 

                                                 
6 Ability-grouping is often coupled with a dual education system where certain schools have an academic focus 
while others have a vocational focus. Malamud and Pop-Eleches (2007) find that students in Romania were less 
likely to work in manual or craft-related occupations when they received a general education. While selective 
schools in Trinidad and Tobago may teach at a faster pace than non-selective schools, the core material covered will 
largely be the same so that curricular differences, if any, are small. 
7 The main theoretical justification for ability-grouping (both at the school and classroom level) is that a 
homogeneous student body may lead to improved student outcomes by allowing for more student cohesion, greater 
teacher focus, and a curriculum and pace more closely tailored to the particular ability level of the students. 
Researchers have studied the distributional and efficiency effects of classroom ability-grouping, and the results are 
mixed [studies include Betts and Shkolnik (1999); Rees, Brewer and Argys (1999), Figlio and Page (1998, 2002); 
Hoffer (1992)]. Using experimental data, Duflo, Dupas and Kremer (2008) find that the classroom homogeneity 
created by ability-grouping may benefit both high and low-achieving students. 
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functions of these same underlying covariates. The rule based assignments are, in essence, an 

interaction between students’ preferences and student test scores, resulting in two distinct 

sources of plausibly exogenous variation: (a) the variation in schools attended among students 

with the same preferences and similar scores because some scored just above the rule-based cut-

off while others scored just below (conditional on their test scores); and (b) the variation in 

schools attended among students with the same test scores because they had slightly different 

preferences for schools (conditional on the actual preferences). A unique feature of these data is 

that I can observe, and control for, a student’s desired schools so that I can credibly compare the 

outcomes of students who attend different schools even if they did not score near a test score cut-

off. To show that my identification strategy is valid, I present falsification tests showing that, 

conditional on test scores and preferences, the instruments are not correlated with incoming 

student characteristics such as religion, gender, and primary school district. As a further check on 

the strategy, I also show that a more conventional RD strategy (using only the variation due to 

the cut-offs) yields similar, but much less precise, estimates. 

This paper is closely related to the school ability-grouping (often referred to as tracking) 

literature as I estimate the effects of attending a school with marginally higher-achieving peers 

on students in a an ability-grouped schooling system. Researchers generally find that school 

ability-grouping is associated with increased educational and socio-economic inequality. 8 

However, much of this evidence relies on comparisons between observationally similar students 

in ability-grouped and non-ability-grouped school systems. As documented by Dustmann (2004) 

and argued by Manning and Pischke (2006), much of the evidence may not reflect causal 

relationships since students may select into schools based on unobserved characteristics that also 

affect outcomes. As such, the effect of ability-grouping on students remains unclear. Even 

though I do not identify the effect of moving from an ability grouped system to an ungrouped 

system, because the full effect of ability-grouping will reflect, in part, the effect of ability-

grouping on the margin, credible evidence on how students in an ability-grouped education 

system are affected by ability-grouping contributes to this literature.  

While school effects likely reflect a combination of peer, teacher, and school input 

quality effects, it is helpful categorize schools by the achievement level of the students. The 

                                                 
8 Atkinson, Gregg and McConnell (2006); Ariga, Brunello, Iwahashi and Rocco (2005); Brunello and Checci 
(2006); Hanushek and Woessmann (2007); Maurin and McNally (2007). 



 5

results indicate that there is student self-selection such that OLS estimates overstate the benefits 

to attending schools with higher-achieving peers. However, instrumental variables and RD 

estimates show that students who attend schools with higher-achieving peers are more likely to 

stay in school to take the secondary leaving exams, have high test scores, pass more exams, and 

earn the prerequisites for admission to tertiary education. The findings suggest that ability-

grouping may increase educational inequality on a broad range of outcomes by reinforcing pre-

existing achievement differences. I find that the marginal effects are about twice as large for girls 

than for boys, indicating that girls benefit more from attending schools with higher-achieving 

peers than boys. The results suggest that there are benefits to attending better schools at all points 

in the school quality distribution. However, I find that the effect of attending a school with 

marginally higher-achieving peers is very low among schools with low-achieving students. 

The remainder of the paper is as follows: Section II describes the Trinidad and Tobago 

education system and the data used. Section III describes the empirical strategy. Section IV 

presents the results, and Section V concludes. 

 

II  The Trinidad and Tobago Education System and the Data. 

The Trinidad and Tobago education system evolved from the English education system. 

Secondary school begins in first form (the equivalent of grade 6, hereinafter referred to as 6th 

grade) and ends at fifth form (the equivalent of grade 10, hereinafter referred to as 10th grade) 

when students take the Caribbean Secondary Education Certification (CSEC) examinations. 

These are the Caribbean equivalent of the British Ordinary levels (O-levels) examinations.9 The 

CSEC exams are externally graded by examiners appointed by the Caribbean Examinations 

Council. Students seeking to continue their education typically take five or more subjects, and 

the vast majority of testers take the English language and mathematics exams.10  

In Trinidad and Tobago, there are eight educational school districts. Unlike in many 

                                                 
9 There are 31 CSEC subjects covering a range of purely academic subjects such as Physics, Chemistry and 
Geography, and  more work and vocationally related subjects such as Technical Drawing and Principles of Business 
and Office Procedures. 
10 The CSEC examinations are accepted as an entry qualification for higher education in Canada, the United 
Kingdom and the United States. After taking the CSEC, students may continue to take the Caribbean Advanced 
Proficiency Examinations (CAPE), at the end of sixth form (the equivalent of grade 12), which is considered tertiary 
level education but is a prerequisite for admission to the University of the West Indies (the largest University in the 
Caribbean and is the primary institution of higher learning for those seeking to continue academic studies). The 
CAPE is the Caribbean equivalent of the English Advanced Levels (A-Levels) examinations. 
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countries where private schools are often of higher perceived quality, private schools in Trinidad 

and Tobago account for a small share of student enrollment and tend to serve those who “fall 

through the cracks” in the public system.11 There are three types of public secondary schools: 

Government schools, Government Assisted schools and Comprehensive schools. Government 

schools are secondary schools that provide instruction from 6th through 10th grade and often 

continue to 12th grade (called upper-sixth form). These schools teach the national curriculum and 

are fully funded and operated by the Government. Government Assisted schools, often the more 

elite schools, are like Government schools but differ along a few key dimensions. They are run 

by private bodies (usually a religious board) and, while capital expenses are publicly funded, 

their teacher costs are not paid for by the Government. Along all other dimensions, Government 

and Government Assisted schools are identical. The third type of schools, Comprehensive 

schools, are Government schools that were historically vocational in focus. In the past, students 

with low test scores after 5th grade were assigned to such schools and after 3 years took an exam 

to gain admission to a senior secondary school (or possibly a regular Government school) which 

would prepare them for the CSEC examinations. This third type of schools has been phased out 

so that in 2000, the relevant sample period, all schools taught the same academic curriculum and 

only a handful of Comprehensive schools did not provide instruction through to the CSEC 

exams.12 

II.1. Data and Summary Statistics:  

I aim to identify the effects of attending a secondary school with higher-achieving peers 

on students’ CSEC examination performance. The data used come from two sources: the official 

SEA test score data (from 5th grade) for the 2000 cohort and the official 2004 and 2005 CSEC 

test score data. The 2000 cohort SEA data contain each of the nation's 31,593 student’s SEA test 

scores, their list of preferred secondary schools, their gender, age, religion code,13 primary school 

district, and the secondary school to which they were assigned by the Ministry of Education. The 

                                                 
11 This is evidenced by the fact that students who attend private secondary schools have test scores that are a third of 
a standard deviation lower than the average SEA taking student, and half a standard deviation lower than the average 
among those students who take the CSEC exams. 
12 In those few junior Comprehensive schools that do not provide instruction through to the CSEC exams the vast 
majority of students would attend the senior secondary school associated with their junior secondary school. For 
example, a typical student who is assigned to Arima junior secondary school will take the CSEC examinations at 
Arima senior secondary school, provided the student does not drop out of the system. 
13 To preserve confidentiality I was not given access to the actual religion, but a code that identified students’ 
religions. 
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SEA exam is comprised of five subjects that all students take: math, English, science, social 

studies, and an essay. To track these 5th grade students through to secondary school in 10th grade, 

I link the SEA data with the 2005 and 2004 CSEC examination data. Of the 31,593 SEA test 

takers in 2000, 22,876 students were linked to CSEC exam data five years later (or four years for 

early takers).14 The CSEC data contain each student's test grades on each CSEC exam and 

secondary school they attended. In the data, there are 123 public secondary schools and several 

small test taking centers and private schools. Among those students linked to CSEC data, 1,364 

(just under six percent) attended a private institution, were home schooled, or were unaffiliated 

with any public education institution. With the CSEC data, I determine whether a student took 

the CSEC exams, compute the number of examinations taken and passed, and determine if they 

obtained the pre-requirements for tertiary education (passing five CSEC exams including English 

and mathematics). I also report students’ grades on the English and Mathematics CSEC exams. 

In its raw form, lower scores on the CSEC examinations denote better performance. For ease of 

interpretation, the CSEC scores have been recoded so that higher scores reflect better 

performance.  

 Table 1 summarizes the final dataset, broken up by the secondary schools’ rankings in 

incoming SEA scores (i.e. the school with the highest average incoming total SEA scores is 

ranked first and the school with the lowest average total SEA scores is ranked last). The SEA 

scores have been normalized to have a mean of zero and a standard deviation of one. As one can 

see in Table 1, there is substantial variation in school and peer quality in Trinidad and Tobago. 

The average total SEA scores are 1.78 standard deviations higher at the top 40 schools than the 

bottom 40 schools. The difference between the top and bottom ranked schools is a full 4.93 

standard deviations. Schools ranked in the top 40 had students with over one standard deviation 

higher incoming math and English SEA scores than schools ranked between 41 and 80, which in 

turn had students with average math and English incoming scores over half a standard deviation 

higher than schools ranked below 80. To provide a deeper sense of the variation in peer quality 

across schools in Trinidad and Tobago, Appendix Figure A1 shows the distribution of total SEA 

scores for schools with different ranks in mean peer quality. 

 

                                                 
14 Students were matched based on name, gender and date of birth. The match rate was just over 70 percent, which is 
consistent with the national high school dropout rate of one third. 
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Table 1 
Summary Statistics: By School Rank in Average Incoming Total SEA Scores 
Rank Range (by incoming peer scores) 1-40 41-80 81+ 

SEA Cohort Year 2000 

    

Normalized SEA Score Total (incoming) 1.26 0.12 -0.52 

 (0.67) (0.76) (0.80) 

Normalized SEA Score Math (incoming) 1.11 0.01 -0.59 

 (0.68) (0.83) (0.77) 

Normalized SEA Score English (incoming) 1.16 0.06 -0.51 

 (0.67) (0.81) (0.81) 

Female 0.53 0.52 0.55 

 (0.50) (0.50) (0.50) 

Take CSEC 0.90 0.75 0.65 

 (0.30) (0.43) (0.48) 

Exams Taken 6.38 4.43 2.96 

 (2.37) (2.82) (2.69) 

Exams Passed 5.45 2.26 1.03 

 (2.61) (2.43) (1.73) 

English Grade (1=lowest , 7=highest) 5.73 3.68 2.65 

 (1.94) (2.08) (1.88) 

Math Grade (1=lowest , 7=highest) 5.36 3.13 2.36 

 (1.98) (1.88) (1.59) 

Certificate a 0.70 0.18 0.05 

 (0.46) (0.38) (0.22) 

Admitted Cohort Size 179.24 389.18 544.75 

 (150.87) (232.58) (203.32) 

Government Assisted School 0.65 0.00 0.00 

 (0.48) (0.00) (0.00) 

Government School 0.35 0.65 0.64 

 (0.00) (0.47) (0.47) 

    

Observations 5337 10016 16240 

Standard deviations are reported below the sample means.     
a  Certificate denotes passing five CSEC exams including English and math. This is a prerequisite to most tertiary education 
institutions. 

 

As is becoming increasingly common in many countries, females make up slightly more 

than half of students in each school group. As one might expect, those schools that have the 

brightest peers also have the best outcomes. In 2000, 90 percent of students at schools ranked 

better than 40 took the CSEC exams compared to 75 percent for schools ranked 41 to 80, and 65 

percent for schools ranked below 80. Students in the top 40 schools take several more exams and 

pass several more exams than students at lower ranked schools, such that the average student at a 
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top 40 school takes 6.38 exams and passes 5.45 of them, compared to taking 4.43 exams and 

passing 2.2 exams in schools ranked between 41 and 80 and taking 2.93 exams and passing only 

1.03 at schools ranked below 80. Some of these differences reflect the fact that students who do 

not take the CSEC exams have no passes or exams attempted.15 There are also large differences 

in math and English grades earned by these students on the CSEC exams. The CSEC grades go 

from 1 through 7, with 1 being the lowest score and 7 being the highest. A one point difference 

represents the difference between an A and a B. Students who have not taken the CSEC exams 

are given a grade of 7. Students at top 40 schools score on average 2.05 grade points better in 

math and 2.2 grade points better in the English CSEC exams than students in schools ranked 41 

through 80. They also score 3.08 grade points better in math and 3 grade points better in English 

than students at schools ranked below 80. This three grade point difference is the distance from 

an A to a D, such that if the average student at a top 40 school earns a B, the average student at 

schools ranked between 41 and 80 earns a D and a student in a school ranked below 80 earns an 

F. The last outcome is obtaining a certificate. This variable denotes passing five CSEC subjects 

including math and English. This is a common prerequisite for continuing education. There are 

clear differences in this outcome across schools such that 70 percent of students at the top 40 

schools earn a certificate, compared to only 18 percent at schools ranked between 41 and 80 and 

5 percent at schools ranked below 80. Surprisingly, virtually no student who attends a school 

ranked below 80 satisfies the requirement to continue to 11th and 12th grades.  

Table 1 documents that schools with the highest achieving students are on average 

smaller and disproportionately Government Assisted schools, while the schools with the weakest 

performing students are disproportionately Comprehensive schools. Roughly two thirds of the 

top 40 schools are Assisted while none are Comprehensive, and about one third of schools 

outside of the top 40 are Comprehensive schools. In Trinidad and Tobago, as in many nations, 

the schools that attract the brightest students typically have the best school resources. The one 

input for which there is aggregate data across school types is teachers. In 1999, 86 percent of 

teachers at Government Assisted schools had a bachelor’s degree compared to 70 percent for 

Government schools and only 64 percent for Comprehensive schools. Similarly, 31 percent of 

Government Assisted school teachers had an education degree compared to 28 percent for 

                                                 
15 In section IV.1, I decompose the full effect of attending a better school into the effect associated with an increased 
likelihood of taking the CSEC exams and the effect due to improving CSEC performance among students who 
would have taken the CSEC irrespective of the school they attended.  
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Government schools and 12 percent for Comprehensive schools (National Institute of Higher 

Education and Science and Technology 1999). 

To get a sense of the distribution of mean peer quality across schools, Appendix Figure 

A2 shows the distribution of mean incoming SEA scores for the schools to which students were 

assigned. This measure is not identical to the peer quality students are actually exposed to since 

not all students remain in their assigned school. While there are a few schools with mean peer 

test scores lower than one standard deviation below the mean, the remaining schools are 

relatively evenly distributed between 1 standard deviation below the mean and 2 standard 

deviations above the mean.  

 
II.2. Student Assignment Rules (Algorithm): Due to a disparity between the number of 

secondary-school places and the number of school-age children, students compete for a limited 

number of premium slots. After grade five, students take the SEA examinations. Each student 

lists four ordered secondary school choices. These choices and their SEA score are used by the 

Ministry of Education to assign them to schools using the following algorithm. Each secondary 

school has a predetermined number of open slots each year and these slots are filled sequentially 

such that the most highly subscribed/ranked school fills its spots first, then the next highly 

ranked school fills is slots and so on and so forth until all school slots are filled. This is done as 

follows: (1) Each student is tentatively assigned to their first choice school. The school that is 

oversubscribed with the highest “cut off” score fills its slots first. For example, suppose both 

school A and school B have 100 slots, and 150 students list each of them as their top choice. If 

the 100th student at school A has a score of 93% (its “cut-off” score) while the 100th student at 

school B has a score of 89%, school A is ranked first and fills all its spots first. (2) Those filled 

school slots and the students who are assigned to the highest ranked school are removed from the 

applicant pool and the process is repeated, where a student’s second choice now becomes their 

first choice if their first choice school has been filled. 

This process is used to assign over 95 percent of all students. However, there is a group 

of students for whom this mechanism may not be used. Government Assisted schools (which 

account for about 16 percent of school slots) are allowed to admit 20 percent of their incoming 

class at the principal’s discretion. As such, the rule is used to assign 80 percent of the students at 

these schools, while the remaining 20 percent are hand picked by the school principal before the 
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next highest ranked school fills any of its slots. For example, suppose the highest ranked school 

has 100 slots and is a Government Assisted school. The top 80 students will be assigned to that 

school while the principal will be able to hand pick 20 other students who listed the school as 

their top choice. The remaining 20 students would be chosen based on family alumni 

connections, being relatives of teachers or religious affiliation (Since Government assisted 

schools are often run by religious bodies).  Only after all the spots (the assigned 80 percent and 

the hand-picked 20 percent) at the highest ranked school have been filled will the process be 

repeated for the remaining schools. As such, the school assignments are based partly on a 

deterministic function of student test scores and student preferences (which is beyond students’ 

control after taking the SEA exams), and partly on the hand-picking of students by school 

principals (which can potentially be manipulated by students).   

Since student preferences are an important part of the assignment process, it is important 

to better understand them. Students’ school choices are based largely on their own perceived 

ability, geography, and religion. Specifically, higher ability students tend to have higher 

achievement schools in their list, students often request schools with the same religious 

affiliation as their own, and students typically list schools that are geographically close to their 

homes. Since Trinidad and Tobago is small, attending school far from home is uncommon but 

feasible. Figure 2 shows the cumulative distribution of the mean peer incoming SEA scores of 

students’ school choices. As one would expect, the distribution of mean SEA scores of first 

choice schools is to the right of the second choice schools which is to the right of the third choice 

schools which, in turn, is to the right of the fourth choice schools. In other words, students tend 

to put schools with higher-achieving peers higher up on their preference ranking. In fact, on 

average the difference between the mean incoming SEA scores at a student’s top choice school 

and second choice school is 0.277 standard deviations, between the top choice school and the 

third choice school is 0.531 standard deviations, and between the top choice school and the 

fourth choice school is 0.82 standard deviations. Roughly 15 percent of students make their top 

choice school, and for those students who did not, the difference in mean total SEA scores 

between their actual school and their top choice school is 0.87 standard deviations. 
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Figure 1 

Distribution of Peer Quality by School Choice Rank 

 

III Identification Strategy 

 I aim to estimate the effect of attending a better school on students’ academic 

performance. First, in sub-section III.1, I describe a naïve baseline empirical model and point out 

its limitations. I then describe the rule-based instruments, and show that they are a good 

approximation of the real assignment algorithm in sub-section III.2. In sub-section III.3, I discuss 

the sources of exogenous variation in students’ school assignments that are generated by the rule-

based instrument. In sub-section III.4, I outline a regression discontinuity based 2SLS 

identification strategy that isolates part of the exogenous variation due to the rule-based 

instruments, and a 2SLS identification strategy that uses all of the exogenous variation generated 

by the rule-based instruments. Finally, in sub-section III.5, I present specification and 

falsification tests to show the validity of the two identification strategies. 

 
III.1  Naïve Baseline model: To estimate the effect of attending a school with higher-

achieving peers, the basic empirical strategy is to compare the outcomes of students with similar 

incoming test scores at different schools using cross-sectional variation from the 2000 SEA 

cohort. For the naïve baseline specification, I model the outcome of student i at a school s with 
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the following equation. 

[1]   , ,si s i i i sY SEA SEA X                   

In [1], sSEA  is the mean total SEA scores for incoming students at school s, iSEA  is a matrix of 

incoming test scores (the student’s total SEA score, total SEA score squared, total SEA score 

cubed , total SEA score to the fourth power, math SEA score, math SEA score squared, English 

SEA score and English SEA score squared), iX  includes student gender, religion, and primary 

school district, and i,s  is the idiosyncratic error term. Naïve OLS estimates of π  from [1] may be 

biased since (1) students who are unhappy with their initial school assignment can appeal and 

have their assignment changed, (2) students may be able to transfer across schools, and (3) 

Government Assisted schools can admit 20 percent of their incoming class at the discretion of 

the school principal. Because there is ample opportunity for students to self-select into schools, I 

propose a rule-based instrumental variables strategy to deal with this endogeneity concern. 

 

III.2 Rule-Based Instrument: To remove self-selection bias from the actual school 

attendance, one needs the school assignment that would prevail if students could not self-select 

into schools. Such an assignment can be constructed by “tweaking” the school assignment 

mechanism to impose the deterministic portion of the assignment mechanism on all students. 

Since the deterministic portion of the assignment mechanism is used to assign most students to 

schools, the school assignments based on the “tweaked” assignment mechanism should be 

correlated with the schools students actually attend. However, since the deterministic portion of 

the assignment mechanism cannot be manipulated by students or school principals, the 

“tweaked” assignments should be uncorrelated with unobserved student characteristics such as 

motivation and ability, conditional on student test scores and school choices.  As such, I propose 

two instrumental variables strategies based on these “tweaked” assignments. 

The rule-based instrumental variables strategies are in the spirit of Campbell (1969), 

Angrist and Lavy (1999) and Andrabi, Das and Khwaja (2007). I exploit the fact that the school 

attended, and therefore the mean SEA scores of students at the school attended, is partly based 

on a deterministic function of the student’s total SEA score and the student’s school preferences. 

Since this deterministic function is non-linear and non-monotonic, it can be used as an 

instrument while directly controlling for smooth functions of the underlying covariates 
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themselves (Fisher 1976). For each school student pair, I use the following rule for whether 

student i is assigned to school s. 

[2]  

'

0 if                                                            

0 if  s { }                                                        

1 if  and { } and 1 '

i s

is i

i s i is i

SEA c

Rule pref

SEA c j pref Rule s s


 

    
   

Where sc  is the cut-off score for school s, ipref  is the set of school choices for student i, and 

' is s  if student i prefers school s’ over school s. The first condition captures the fact that 

schools use cut-off scores to assign students. The second condition captures the fact that students 

are not assigned to schools that are not in their choice set. The third condition shows that a 

student is assigned to a school if they have a score above the schools cut-off, the school is in 

their choice set, and the student has not already been assigned to a school they prefer. isRule is, in 

essence, the deterministic portion of the student assignment algorithm. isRule shows that the 

school assignments are not only determined by student test score or student preferences, but also 

by the interaction between the two.  This plays a central role in my identification strategy.  

As discussed in section II, the cut-offs are unknown to educators, principals and students 

while the SEA exams are being taken – precluding any gaming of the cut-offs. The cut-offs are 

set to fill all of a school’s available slots each year based on the assignment algorithm. Since I 

want the cut-off that would prevail in the absence of any self-selection or hand-picking, I model 

the cut-off score for school s as the cut off score that would prevail if all students were assigned 

to schools according to isRule . Specifically the cut-off for school s is  

[3]   '[ | { } and 1 ' ]
is ss rank T i is ic SEA s pref Rule s s         

 
Where Rankis is the rank of student i among those who are in the admission pool for school s, so 

that 
is srank TSEA  is the SEA score of the Tth ranked students in school s’s applicant pool. Ts is the 

fixed capacity of school s.  

The rule-based instrument is constructed sequentially as follows: (1) All secondary 

school sizes are given,16 (2) all students are tentatively assigned to their top choice school, (3) the 

school for which the first rejected student has the highest test score fills all its slots (with the 
                                                 
16 School sizes are not endogenous to the application process and are based on strict capacity rules. School sizes are 
determined before students are assigned to schools and based on their predetermined school sizes the algorithm is 
applied. As such, the number of students assigned to a particular school (even if they do not attend) is the actual 
number of predetermined slots at the school.  
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highest scoring students who listed that school as their first choice), (4) the students who were 

rejected from the top choice school are sent back into the applicant pool and their second choice 

school becomes their first choice school, (5) Steps 2 through 5 are repeated, excluding assigned 

students and assigned school slots until the lowest ranked school is filled.  The only difference 

between how students are actually assigned and the “tweaked” rule-based assignment is that at 

step (3) the “tweaked” rule does not allow any students to be hand-picked while, in fact, some 

students are hand-picked by principals only at Government Assisted schools. The resulting 

isRule variables correctly identify the school assignment for 16,705 students. Since students who 

list schools above their score range will not be assigned based on their preferences, there are 

6,177 students with no simulated assignment. Among students assigned to schools within their 

choice set, the rule is correct about two thirds of the time.  

Since I aim to identify the effect of attending a better school using only credibly 

exogenous variation, the final estimation sample is limited to students who (a) were assigned to a 

school that provides instruction through to the CSEC exams and (b) had a simulated school 

assignment. This sample restriction excludes 6,177 students without a simulated school 

assignment, and 2,119 students who were assigned to the three junior secondary schools that 

have no associated senior secondary school and do not provide instruction through to 10th grade 

(form 5).17 Of the 123 public secondary schools in Trinidad and Tobago, 98 of them have 

students who are simulated to be assigned to them.18 As such, the final data set used comprises of 

23,322 students at 98 schools.  

It is clear from equation [2], that if the simulation works well so that the simulated cut-

offs are close to the actual cut-offs, among those students who apply to any given school, the 

likelihood of attending that school should increase relatively sharply for those above the 

simulated cut-off relative to those who score below the cut-off. To provide evidence of this, I 

follow an approach used in Pop-Eleches and Urquoila (2008) for combining several 

discontinuities into one. Specifically, for each school I find all students who list that school as 

                                                 
17 To ensure that the results were not being driven by the exclusion of these schools from the sample, I ran models 
that used the modal secondary school attended by student from these junior secondary schools and included them. 
The results were not appreciably different. 
18 The remaining schools are schools that nobody lists in their preferences, either because they are new schools, or 
because they are undesirable. Since students with low scores will be assigned to the local high school that has 
available space if they “fail” out of their choice schools, students have no incentive to list these schools if they 
believe they have a chance of gaining entry to a higher ranked school.  
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the top choice, re-center all those students' test scores around the cut-off for that school, and then 

create a sample of applicants for each school. I then remove students who were admitted to their 

top choice schools, replace students’ first choice with their second choice, and repeat this process 

with the second choice, third choice, and fourth choice. The applicant samples for all schools are 

then stacked so that every student has one observation for each school for which they were an 

actual applicant. For example, a student who attends their top choice school will only be in the 

data once for their top choice school, while a student who gets into their second choice school 

will be in the data twice (once for their top choice school and once for their second choice 

school). With this stacked dataset, one can see if the likelihood of being admitted to a school 

increases suddenly for those applicants with scores above the cut-off relative to applicants with 

scores below the cut-off.  

0
.2
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.6

.8

30 35 40 45 50
50 quantiles of relative score

by total SEA score (relative to simulated cut-off of preferred school)
Likelihood of being assigned to preferred school

 
Note: Each dot represents the sample averege of the outcomes for the quartile group of the relative score. The linear 
fit is shown on either side of the simulated cut-off. The actual cut-off is dentoded by the vertical line. Since the cut-
off is simulated and therfore not exact, the outcome at the cut-off point (and 2 points on either side) is exluded. 
 
Figure 2 
Likelihood of being Assigned to Preferred School  
 

Figure 2 shows the likelihood of being assigned to the most preferred school for groups 

of students defined by their score relative to the cut-off for the preferred school. The location of 

the simulated cut-off (a relative score of zero) is indicated by the vertical line. Figure 2 provides 
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compelling visual evidence that there were cut-off rules used, and the simulated cut-offs are 

approximately in the same areas as the real cut-offs. A regression predicting the likelihood of 

being assigned to one’s preferred school as a function of scoring above the threshold for the 

preferred school and a linear, quadratic, cubic and quartic in the relative score yields a 

coefficient of 0.72 (se=0.0096). The standard error is adjusted for clustering at the student level. 

In words, on average, an applicant with a test score just above the cut-off for their preferred 

school is 72 percentage points more likely to be assigned to their preferred school than an 

applicant with a test score just below the cut-off. The same model, using mean peer test scores 

yields a coefficient of 0.2 with a standard error of 0.014. This suggests that, on average, an 

applicant with a test score just above the simulated cut-off for their preferred school attends a 

school where mean peer test scores are one fifth of a standard deviation higher than an applicant 

with a test score just below the simulated cut-off. 

The second important aspect of the rule is that students be assigned to schools that are in 

their choice set, and are not assigned to schools that are not in their choice set unless they fail out 

of all their listed schools. Some statistics will show that this is the case. First, of the 31,620 

students who took the SEA exams, 21,466 were assigned to schools in their choice set. Second, 

as shown in Figure 2, students were more likely to be assigned to their preferred school the 

higher their score. Third, among those students who were assigned to schools not in their choice 

set, average mean peer test scores were 0.638 standard deviations lower in the actual school 

assigned than in the student’s fourth ranked school.  

Taken together, the evidence strongly suggests that the assignment mechanism operates 

as described by equation [2], that the simulated rule is a good approximation of the actual 

mechanism, and the assignment rule results in the expected treatment differential.  

 

III.3 Sources of Variation: Conditional on incoming test scores and preferences, 

isRule captures two plausibly exogenous sources of variation. The first source comes from 

comparing the outcomes of students at different schools who score just above and just below a 

school’s cut-off. The logic behind this source of variation is the familiar regression discontinuity 

logic. Specifically, the likelihood of attending one’s preferred school increases in a sudden and 

discontinuous manner as one’s score goes from below the cut-off to above the cut-off for that 

school. If the location of the cut-off is exogenous to student characteristics, one can reasonably 
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attribute any discontinuous jumps in the outcomes as one’s score goes from below to above the 

cut-offs to the increased likelihood of attending one’s preferred school.  

The second source of variation comes from comparing the outcomes of students with the 

same test scores at different schools because they have different school preference orderings. 

Since preferences are directly observed, and the cut-offs generate exogenous variation in school 

assignments among students with the same preferences, one can directly control for a student’s 

preferences (a unique feature of the Trinidad and Tobago data). To make this more salient, 

consider two students (A and B) with the same test score X at different schools. Suppose both A 

and B list the same first choice school, but list different second choice schools.  If they both just 

missed the cut-off for their top choice school, then they will both end up attending their second 

choice schools. A comparison of the outcomes of A and B across their different schools will 

reflect both differences in preferences and differences in schools. Consider now, two other 

students (A' and B') such that A' has the same preferences as A, and B' has the same preferences 

as B, but A' and B' have the same score X' that is higher than X. If X' is above the cut-off for the 

top choice school, then A' and B' will both attend the same top choice school even though they 

listed different second choice schools. Any difference in outcomes between A' and B' must 

reflect their preferences, since they have the same test scores and attend the same school. Under 

the assumption that differences in outcomes due to preferences are the same across all levels of 

achievement, one can subtract the difference between A' and B' from the difference between A 

and B to isolate the differences in outcomes associated with different schools.   

More generally, since students with the same test scores and different preferences can and 

do end up in the same school, one can control for the effect of preferences on outcomes directly 

– allowing one, in principle, to compare the outcomes of students who have the same test scores 

but who attend different schools even if they did not score just above or below a cut-off.   

  

III.4 Econometric Models  

 In this section, I discuss the two instrumental variables estimation strategies used based 

on the two sources of variation described above. The first method exploits only the variation in 

school attendance driven by the location of the simulated cut-offs, resulting in a fuzzy-RD design. 

Because the simulated cut-offs are not exactly the real cut-offs, the RD method is sensitive to 

functional form assumptions, and there are other useful sources of variation and, I also use a 



 19

rule-based instrumentation strategy based on all the clean variation. The second method, my 

preferred strategy, relies on both the variation in school attendance due to the cut-offs and also 

that due to students having different preferences. These methods are discussed in turn. 

Regression Discontinuity Instrument 

 As an intermediate specification between the naïve OLS model and the rule-based 

instrumentation strategy, I implement an RD methodology based solely on variation driven by 

the cut-offs. Figure 2 demonstrates that having a score above the cut-off for one’s preferred 

school is associated with a relatively sharp increase in the likelihood of attending the preferred 

school. If there is a causal relationship between attending a better school and CSEC performance, 

then scoring above the cut-off should be associated with improved outcomes. Using the stacked 

dataset as described previously, I can use scoring above the cut-off as an instrument for attending 

a school with higher-achieving peers. Specifically, I estimate [4] and [5] with 2SLS. 

[4]   , 1 1 1 1 , , ,1( )s i t ij s i s tSEA f SEA Above                        

[5]   , , , 1 2 ,2 2 , , ,2( ) si s t i t s s i s tY f SEA SEA           

All variables are defined as in [1], sSEA  is the mean total SEA scores for incoming students at 

school s, ijAbove  is an indicator variable that is equal to 1 if student i has a SEA score above the 

cut-off for school j and 0 otherwise, and s  is a fixed effect for each cut-off (preferred school). 

Since we know ex ante that Government Assisted school do not comply with the cut-offs, I 

present results that exclude estimates based on cut-offs for Government Assisted schools. The 

excluded instrument ijAbove  yields a first stage F-statistic greater than 100. Appendix Figure A3 

presents a visual representation of the RD model. Specifically, it shows a relatively sharp 

increase in peer quality right around the simulated cut-offs and also shows relatively sharp 

improvements in outcomes at the simulated cut-offs. While the figure shows a linear fit on either 

side of the cut-off, the actual model includes smooth non-linear functions of the total score. For 

all the results presented in the body of this paper, I limit the sample to all students who score 

within 50 points of the cut-off. The choice of the bandwidth used does not change the results a 

great deal and I present the sensitivity test of this sample choice in Appendix Table A2.  

Rule-Based Instrument 

As explained above, the RD design ignores a large source of credibly exogenous 

variation due to preferences. One way to exploit all the clean variation is to use the rule based 
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assignments as instruments. To do this, I use the rule-based school assignments as instruments to 

isolate exogenous variation in mean SEA scores of the actual schools attended in a two-stage 

least squares (2SLS) regression. Specifically, I estimate the following system of equations. 

[6]  
98

, 1 1 1 , 1 , , ,1
1 1

s i t ij i i p p i s t
j p

SEA SEA Rule X I   
 

                      

[7]  , , , 1 2 ,2 2 , 2 , , ,2
1

si s t i t s i i p p i s t
p

Y SEA SEA X I    


          

All variables are defined as in [1], sSEA  is the mean total SEA scores for incoming students at 

school s,  ,i pI  is an indicator variable equal to 1 if a student’s rank ordering are preference group 

p and equal to zero otherwise19 and the rule-based school assignment ijRule  is excluded in the 

second stage equation. Standard errors are clustered at the school level. The first stage yields an 

F-statistic on the excluded instruments over 100.  

 

III.5 Specification Tests and Falsification Tests:  

To show that my identification strategies are valid, I first present evidence that the RD 

based model is likely to yield consistent and unbiased estimates of the effect of attending a 

school with higher-achieving peers. The first test of the exogeneity of the cut-off is to see if there 

is less density than would be expected by random chance right below a cut-off and more density 

right above the cut-off than would be expected by random chance. Such a pattern would be 

consistent with gaming of the cut-offs. Figure 3 shows the density of incoming test scores and 

the vertical line is the cut-off. There is little evidence of such a pattern visually. Following 

McCrary (2009), I test for discontinuity in the density of the total score at the simulated cut-off 

while controlling for the relative score, and the quadratic, cubic and quartic of the relative score. 

Where the dependent variable is the empirical density, the coefficient on an indicator variable 

denoting “above cut-off” is a statistically and economically insignificant -0.003. Since gaming 

would imply a positive and statistically significant coefficient, this test suggests no gaming. To 

further ensure that the RD results are not driven by gaming or sorting around the cut-offs, and 

because the cut-offs are approximate, I remove all points within 3 points of the simulated cut-off 

                                                 
19 Each preference group is defined by a distinct preference ordering of schools. All students who list schools 
A,B,C,D in that order form a group, while students who list schools B,A,C,D are in a different group because even 
though they have the same list of schools, the ordering is different. There are 4561 preference groups with more than 
one student. 
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in all regression models. This does not affect the results in any meaningfull way. 
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Figure 3 
Evidence of No Gaming of the Cut-Offs 
 

Another good test of the validity of the RD design is to see if scoring above the cutoff is 

associated with a sihft in preferences. If the RD is working correctly, then preferences should be 

roughly balanced above and below the cut-off. If there is sorting around the cut-offs however, 

since having preferences for higher-achievement schools is associated with better outcomes 

(even conditional on test scores and school effects), one would expect that being above the cut-

off is associated with having preferences for higher-achieving schools. Unlike most contexts 

where an RD strategy is employed, I do not have to assume that preferences are balanced around 

a cut-off, and I can test for it directly (and even control for it). To test for differences in 

preferences, I include as the dependent variable the mean peer quality of the student top choice 

school. Such a model yields a coefficient on scoring above the threshold of -0.035 with a 

standard error of 0.026. The same exercise with the second, third, and fourth choice schools yield 

coefficients of -0.012 (se 0.027), -0.004 (se 0.032), and -0.095 (0.051). Only the coefficient for 

the fourth choice school is even marginally statistically significant. Also, all the point estimates 

have negative coefficients which, if interpreted causally, would imply negative selection. As 
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such, the results suggest that there is little or no selection, and if there were selection, the RD 

results are likely to be biased downward.20   

Since the rule-based instrumental variables strategy is my preferred strategy, I present 

evidence of the validity of this method also. I argue that since the rule-based instruments are 

deterministic non-smooth functions of student test scores and preferences, conditional on test 

scores and student preferences, the rule-based school assignments are exogenous to unobserved 

student attributes. While this should be true by construction, I test the validity of this assumption 

by seeing if the instruments are correlated with other observable student characteristics before 

entering secondary school. If the rule-based instruments were correlated with observable student 

characteristics such as gender, religion, and primary school district, it would cast doubt on the 

assertion that they isolate exogenous variation that is free from self-selection bias. On the other 

hand, if the instruments are not correlated with these pre-treatment student characteristics it 

would lend credibility to the identifying assumption. 

I carried out these tests formally by estimating equations [6] and [7] while using student 

religion, gender and primary school district as outcomes. The 2SLS regression coefficients show 

that mean peer total SEA scores, as predicted by the rule-based instruments, are not associated 

with any pre-treatment student characteristics. The p-values associated with the null hypothesis 

that peer achievement (as predicted by the rule-based instrument) is correlated with the pre-

treatment characteristics are all above 0.98. Because student religion is explicitly used by 

principals when hand-picking students at religious schools, the fact that student religion is not 

correlated with the instruments lends credibility to the exogeneity of the rule-based instruments.  

 

IV Main Results: 

 To show how the results differ across various models, I present the effects of attending a 

school with higher-achieving peers (on the margin) using different specifications. For the main 

results, I present the results separately for each outcome (taking the CSEC exams, the number of 

CSEC exams passed, and obtaining a certificate). While categorizing schools by the achievement 

level of the peers is helpful, these results do not only reflect the effect having higher-achieving 

                                                 
20 Scoring above the cut-off does not predict student gender. Of the ten religion indicator variables, nine had p-value 
assoaited with scoring above the threshold greater than 0.3 and one had a p-value of 0.07 (with an economically 
insignificant point estimate of 0.004). Of the eight school district indicator variables, one yeilded a statstically 
significant and small effect, while the remaining seven had p-values above 0.2.  
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peers, but rather the effect of attending schools with higher-achieving peers. These effects will 

reflect a variety of differences across schools such as teacher quality, input quality and peer 

quality. 

 Table 2 shows the results on CSEC taking. The dependent variable is an indicator 

variable equal to 1 if a student took the CSEC exams and equal to zero otherwise. Column 1 

shows the basic relationship between mean peer test scores and CSEC taking with no control 

variables. The coefficient on mean peer test scores is 0.134 with a standard error of 0.003. The 

difference in peer achievement between a student’s top choice school and their third choice 

school is roughly half a standard deviation. As such, I use this difference as my measure of the 

typical difference in peer achievement that a student may face. The point estimate suggests that 

attending a school where peer test scores are half a standard deviation higher is associated with a 

6.15 percentage point increase in CSEC exam taking. Columns 2 through 4 present the OLS 

model with additional controls for incoming test scores, religion, gender, primary-school district 

and student preferences. As one can see, including controls for incoming test scores (in column 3) 

explains away about half of the estimated effect. Specifically, conditional on incoming test 

scores, attending a school with where students test scores are half a standard deviation higher is 

associated with a statistically insignificant 3 percentage point increase in CSEC exam taking. 

Column 4 shows that including indicator variables for students' school preferences in the OLS 

model leads to a small reduction in the estimated coefficient. This implies that while preferences 

may “explain away” some of the effect, conditional on test scores, student preferences do not 

explain a huge amount of the "better school" effect.  

 The first method for addressing possible self-selection bias is the 2SLS-RD model that 

uses scoring above the desired school’s threshold as an instrument for attending a school with 

higher-achieving peers. Column 5 presents the 2SLS-RD model for all schools, and column 6 

presents the 2SLS-RD results without government assisted schools (since there may be some ex 

ante concern over gaming of the cut-offs at assisted schools). Both models include cut-off fixed 

effects and adjust the standard errors for clustering at the student level. The 2SLS-RD results in 

column 5 and 6 are similar to the estimated OLS effect in column 4, yielding coefficients of 

0.053 and 0.04 respectively. The reduced form coefficients (not shown in the Table) on scoring 

above the cut-off are 0.029 (se 0.0165) and 0.01 (se 0.022) for models 5 and 6 respectively.  
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Table 2 
Effect on the likelihood of taking the CSEC exams 
 1 2 3 4 5 6 7 8 9 10 

 OLS OLS OLS OLS 2SLS-RD 2SLS-RD 2SLS 2SLS 2SLS 2SLS 

Mean SEA Scores 0.134 0.137 0.061 0.052 0.053 0.04 0.064 0.049 0.052 0.033 

 [0.038]** [0.038]** [0.038] [0.042] [0.070] [0.089] [0.043] [0.050] [0.061] [0.067] 

           

Controls No Yes Yes Yes No No Yes Yes Yes Yes 

Test scores No No Yes Yes Yes Yes Yes Yes Yes Yes 

Preference dummies No No No Yes No No Yes Yes Yes Yes 

Assisted included Yes Yes Yes Yes Yes No Yes Yes No No 

Order of score 2 2 2 2 4 4 2 4 2 4 

           

Observations 23322 23322 23322 23322 29429 16282 15796 15796 13136 13136 

Number of groups - - - 3424 - - 3424 3424 2911 2911 

Excluded Instrument - - -  Abovei Abovei Ruleij Ruleij Ruleij Ruleij 
+ significant at 10%; * significant at 5%; ** significant at 1%. Robust standard errors in brackets. Standard errors are clustered at the school level 
in all models except the RD model where they are clustered at the student level. The dependent variable is an indicator variable that is equal to 1 
if a student took the CSEC exams and equal to 0 otherwise. 

The 2SLS-RD model is based on the Regression Discontinuity model that uses the indicator for attending the preferred school as an instrument 
for the mean scores. The RD model uses a bandwidth of 50 points and excludes point within 2 point of the simulated cut-off and excludes 
government assisted school that may have gaming around the cut-off. All RD models control for the school cut-off fixed effects. 

 
 Because the 2SLS-RD design ignores all of the information on student preferences for 

identification, and does not explicitly control for student preferences, one might expect that the 

rule-based instrument strategy would yield more precise estimates and would possibly be less 

subject to self-selection bias. I first present the rule based results using a quadratic in the total 

score in column 7, and then the total score, its quadratic, cubic and quartic in column 8. In 

columns 7 and 8, attending a school where peers have half a standard deviation higher test scores 

is associated with statistically insignificant 3.2 and 2.45 percentage point increases in the 

likelihood of taking the CSEC exams respectively. The results are similar to the 2SLS-RD results, 

however the standard errors are about two-thirds as large. The efficiency gains over the 2SLS-

RD model are apparent. In columns 9 and 10, I restrict the estimation sample to those students 

who were not predicted to be assigned to Government Assisted schools to roughly mimic the 

clean RD sample. In these models, while using a quadratic (column 9) and a quartic (columns 10) 

in the total score, attending a school with half a standard deviation higher peer achievement is 

associated with statistically insignificant 2.6 and 1.65 percentage point increases in the likelihood 

of taking the CSEC exams respectively. Since all the specifications yield positive estimates of 

similar orders of magnitude, and the standard errors are about 0.067, I am cautious not to 

interpret this as no effect, but rather as an imprecisely estimated positive effect.  
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 In sum, models that control for student test scores and student preferences, regression 

discontinuity models and rule based instrumental variables models all indicate that attending a 

school where mean peer achievement is half a standard deviation higher would be associated 

with between a 1.65 and 3.2 percentage point increase in the likelihood of taking the CSEC 

exams. This difference in peer quality is roughly the difference between attending one’s top 

choice school and attending one third choice school.  

The next main outcome of interest is the number of exams passed, presented in Table 3. 

For the number of exams passed, all specifications yield a statistically significant positive 

relationship between attending a school with higher-achieving peers and the number of exams 

passed. Specifically, in the descriptive regression (column 1), a half a standard deviation increase 

in peer quality is associated with passing 1.2 more exams. However, conditional on incoming 

test scores and preferences (column 4) this increase is only 0.75 more exams. Columns 5 and 6 

present the 2SLS-RD results for the full sample and then only for those schools that adhere to the 

cut-off rules respectively. The coefficient for the full sample is 1.61 (larger than the OLS 

estimate) while it is only 0.83 (smaller than the OLS estimate) for the clean RD sample. This 

implies one of two things: (1) there is gaming around the cut-offs for the Government Assisted 

schools that lead to an upwards bias or (2) there is non-linearity such that the assisted schools 

provide higher value-added on the margin. I will address the issue of non-linearity in section IV. 

The reduced form coefficients (not shown in the Table) on scoring above the cut-off are 0.323 

(se 0.123) and 0.1873 (se 0.123) for models 5 and 6 respectively.   

 Columns 7 and 8 of Table 4 present the rule-based instrumentation results that include 

controls for a quadratic and quartic of the total SEA score respectively. The coefficient of 0.91 in 

both columns 7 and 8 indicate that a student who attends a school where the peers have half a 

standard deviation higher test scores will pass about 0.45 more exams. However, the rule based 

instrument results excluding students who were assigned to Government Assisted schools in 

columns 9 and 10 indicate that a student who attends a school where the peers have half a 

standard deviation higher test scores will only pass between 0.29 and 0.32 more exams. While 

the point estimates differ somewhat from specification to specification, they all yield positive 

point estimates that are statistically significant at the one percent level, and they all lie within 1.5 

standard errors of each other. The more conservative estimates suggest that having peers with 

half a standard deviation higher test scores will lead to passing between 0.29 and 0.45 more 
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exams. This difference in peer quality is roughly the difference in the mean test score between 

students’ top choice school and their third choice school. The difference in mean peer scores 

between students’ top choice schools and the schools they actually attend is 0.87 standard 

deviations - implying that students who miss their top choice schools will, on average, pass 

between 0.51 and 0.79 fewer exams. 

 
Table 3 
Effect on the number of CSEC exams passed 
 1 2 3 4 5 6 7 8 9 10 

 OLS OLS OLS OLS 2SLS-RD 2SLS-RD 2SLS 2SLS 2SLS 2SLS 

Mean SEA Scores  2.41 2.407 1.321 1.497 1.61 0.83 0.91 0.9 0.588 0.634 

 [0.071]** [0.060]** [0.139]** [0.147]** [0.459]** [0.524] [0.204]** [0.188]** [0.193]** [0.193]** 

           

Controls No Yes Yes Yes No No Yes Yes Yes Yes 

Test scores No No Yes Yes Yes Yes Yes Yes Yes Yes 

Preference dummies No No No Yes No No Yes Yes Yes Yes 

Assisted included Yes Yes Yes Yes Yes No Yes Yes No No 

Order of score 2 2 2 2 4 4 2 4 2 4 

           

Observations 23322 23322 23322 23322 29429 16282 15796 15796 13136 13136 

Number of groups - - - 3424 - - 3424 3424 2911 2911 

Excluded Instrument - - -  Abovei Abovei Ruleij Ruleij Ruleij Ruleij 
Robust standard errors in brackets. Standard errors are clustered at the school level in all model except the RD model where they are clustered at 
the student level. 
+ significant at 10%; * significant at 5%; ** significant at 1%. Robust standard errors in brackets. Standard errors are clustered at the school level 
in all models except the RD model where they are clustered at the student level. The dependent variable is the number of SEA exams passed. 
This variable is equal to zero for student who do not take the CSEC exams. 
The 2SLS-RD model is based on the Regression Discontinuity model that uses the indicator for attending the preferred school as an instrument 
for the mean scores. The RD model uses a bandwidth of 50 points and excludes point within 2 point of the simulated cut-off and excludes 
government assisted school that may have gaming around the cut-off. All RD models control for the school cut-off fixed effects. 
  

   

The last main outcome, obtaining a certificate, is presented in Table 4. Because passing at 

least five CSEC exams including mathematics and English (that is, earning a certificate) is the 

prerequisite to pursuing tertiary education, this outcome is a good measure of the likelihood that 

a student continues on to tertiary education. As with the number of exams passed, all 

specifications show a positive and statistically significant relationship between attending a 

school with higher-achieving peers and obtaining a certificate. In the descriptive regression in 

column 1, an increase in peer quality of half a standard deviation is associated with being 17.6 

percentage points more likely to earn a certificate. However, conditional on incoming test scores 

and preferences, this increase is only 10.45 percentage points. Columns 5 and 6 present the 

2SLS-RD results for the full sample and then only for those schools that adhere to the cut-off 
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rules. The coefficient for the full sample is 0.283 (larger than the OLS estimate) while it is only 

0.19 (smaller than the OLS estimate) for the clean RD sample. The reduced form coefficients 

(not shown in the table) on scoring above the cut-off are 0.0568 (se 0.0027) and 0.0428 (se 0.02) 

for models 5 and 6 respectively. The 2SLS-RD coefficient of 0.19 for the clean sample suggests 

that an increase in peer quality of half a standard deviation due to scoring above a schools cut-off 

is associated with being 9.5 percentage points more likely to earn a certificate. 

 
Table 4 
Effect on the Likelihood of Earning a Certificate 
 1 2 3 4 5 6 7 8 9 10 

 OLS OLS OLS OLS 2SLS-RD 2SLS-RD 2SLS 2SLS 2SLS 2SLS 

Mean SEA Scores  0.353 0.351 0.18 0.209 0.283 0.19 0.189 0.163 0.139 0.12 

 [0.012]** [0.012]** [0.027]** [0.025]** [0.078]** [0.090]* [0.035]** [0.036]** [0.035]** [0.033]**

           

Controls No Yes Yes Yes No No Yes Yes Yes Yes 

Test scores No No Yes Yes Yes Yes Yes Yes Yes Yes 

Preference dummies No No No Yes No No Yes Yes Yes Yes 

Assisted included Yes Yes Yes Yes Yes No Yes Yes No No 

Order of score 2 2 2 2 4 4 2 4 2 4 

           

Observations 23322 23322 23322 23322 29429 16282 15796 15796 13136 13136 

Number of groups - - - 3424 - - 3424 3424 2911 2911 

Excluded Instrument - - -  Abovei Abovei Ruleij Ruleij Ruleij Ruleij 
+ significant at 10%; * significant at 5%; ** significant at 1%. Robust standard errors in brackets. Standard errors are clustered at the school level 
in all model except the RD model where they are clustered at the student level. The dependent variable is an indicator variable that is equal to 1 if 
a student passed five CSEC exams including English and math and equal to 0 otherwise. 
The 2SLS-RD model is based on the Regression Discontinuity model that uses the indicator for attending the preferred school as an instrument 
for the mean scores. The RD model uses a bandwidth of 50 points and excludes point within 2 point of the simulated cut-off and excludes 
government assisted school that may have gaming around the cut-off. All RD models control for the school cut-off fixed effects. 
 

 
The rule-based instrument model on the full sample (columns 7 and 8) yields results that 

indicate that a student who attends a school where the peers have half a standard deviation higher 

test scores will be between nine and seven percentage points more likely to obtain a certificate. 

However, the results obtained while excluding students assigned to Government Assisted schools 

(columns 9 and 10) yield coefficient estimates on mean peer test scores of 0.139 and 0.12 

respectively. These estimates suggest that a student who attends a school where peers have half a 

standard deviation higher test scores will be between six and seven percentage points more likely 

to obtain a certificate. All these effects are statistically significant at the one percent level. While 

the exact point estimates differ across models, the conservative estimates result indicate that a 

student who attends their third choice school as opposed to their first choice school would be 

between 6 and 9 percentage points less likely to obtain the prerequisites to pursue a tertiary 
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education, while a student who missies their top choice school would be between 16 and 10 

percentage point more likely to obtain the prerequisites to pursue a tertiary education. 

 

IV.1 Effects on the Intensive Margin: 

 The results presented in Tables 2, 3 and 4, show that students who attend schools with 

higher-achieving peers are slightly more likely to take the CSEC exams, they pass more exams, 

and they are more likely to obtain a certificate. Since students who do not take the CSEC exams 

necessarily pass zero exams and do not earn a certificate, these outcomes are equal to zero for all 

students who did not take the CSEC exams so that the outcomes can be written as below.  

[8]   1 1( | 1) 0take takeY I Y I     .       

Where 1takeI   is equal to one for CSEC takers and zero otherwise. Equation [8] makes explicit 

that changes in the number of passing grades or the likelihood of obtaining a certificate reflect 

the effects on both the intensive margin (improvements in CSEC performance for students who 

would have taken the CSEC exams irrespective of the school they attend) and the extensive 

margin (the effect of taking the CSEC exams and potentially having some CSEC passes). Using 

the product rule, the expected change in outcomes due to attending a “good” school as opposed 

to a “bad” school can be written as  

[9]  1 0 1 0 1 1[ ] [ ( 1)] ( | 1) ( 1) ( | 1)take take take takeE Y P I Y I P I Y I             . 

Where 0Y  is the outcome of CSEC taking students at the “bad” school, and 0P  is the likelihood 

of taking the CSEC in the “bad” school. Equation [9] shows that changes in outcomes will reflect 

an effect from increasing the likelihood of taking the CSEC exams 

1 0 1[ ( 1)] ( | 1)take takeP I Y I     , and an effect from improvements in the outcomes among those 

students who would have taken the CSEC exams regardless of their assigned school 

0 1 1( 1) ( | 1)take takeP I Y I    .21 To get a lower bound of the effect on the intensive margin, I 

multiply the estimated increase in CSEC taking by the average outcomes of all students who take 

the CSEC exams. Since marginal students are likely to have worse outcomes than the average 

CSEC taker, this calculation will overstate the contribution of the extensive margin yielding a 

lower bound of the effect of attending a better school conditional on taking the CSEC exams.  

                                                 
21 This approach is similar to that use in Jackson (2009) and Lavy (2009). 
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 The average CSEC taker passes 3 exams and obtains a certificate with probability 0.278. 

Given that attending a school with 1 standard deviation higher-achieving peers increases CSEC 

taking by about 5 percent, the extensive margin could at most be responsible for a 0.05*3=0.15 

increase in the number of exams passed and a 0.05*0.278=0.014 increase in the likelihood of 

earning a certificate. Given that attending a school with 1 standard deviation higher-achieving 

peers increases the number of CSEC exams passed by between 0.6 and 0.9 and increases the 

likelihood of earning a certificate by between 0.12 and 0.19, it is clear that most of the 

improvements are experienced by students on the intensive margin. Subtracting the contribution 

of the extensive margin from the full effect and then dividing by the likelihood of taking the 

CSEC exams (0.73) yield implied intensive margin coefficients between 0.6 and 1 for the 

number of exams passed and between 0.14 and 0.23 for obtaining a certificate. In other words, a 

lower bound estimate of the effect of attending a school where peers have half a standard 

deviation higher test scores, among student who take the CSEC exams, is between a 0.3 and 0.5 

increase in the number of exams passed and between a 7 and 12 percentage point increase in the 

likelihood of earning a certificate. 

 Another approach to uncovering the effect of attending a better school, conditional on 

taking the CSEC exams, is to use only the sample of CSEC takers while conditioning on the 

likelihood of taking the CSEC exams (Angrist 1995). The results of this method are very similar 

to those of the decomposition above and are, as such, not presented here. Since the effect on the 

participation margin is small, the fact that most of the effect can be attributed to the intensive 

margin is not surprising. 

 
IV.2 Effects by gender: 

 There is a growing literature documenting that females often benefit from interventions 

while males are unaffected and in some cases perform worse.22  To investigate the effects of 

attending a school with higher-achieving peers by student gender, I estimate the rule-based 

instrumental variables model for the samples of females and males separately. Since the 2SLS-

RD methodology requires large data sets and results in imprecise estimates, I only preset the 

rule-based instrumental variables results here. The 2SLS-RD results are qualitatively similar and 

are presented in Appendix Table A1. Table 5 presents (1) the result of the model that uses the 

                                                 
22 For example Kling, Ludwig, and Katz (2005); Anderson (2007); Angrist, Lang, and Oreopoulos (2007); Angrist 
and Lavy (2007); Hastings, Kane and Staiger (2006a; 2006b). 
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full sample while controlling for a quadratic in the total score, (2) the result of the model that 

uses the full sample while controlling for a quartic in the total score, and (3) the result of the 

model that omits those student who were assigned to assisted schools (all for males and females 

separately). Each model (indicated by a number) represents a different regression. The results for 

males are presented in models 1 through 9, and those for females are in models 10 thought 18. 

All three outcomes are presented in the same table.  

Models 1 through 3 show the effect on males of attending a school with higher-achieving 

peers on SCEC taking. The results are largely the same across specifications. The point estimates 

indicate that a male who attends a school where the peers have incoming test scores half a 

standard deviation higher will be between 3.5 and 4.3 percentage points more likely to take the 

CSEC exams. However, only the model using the full sample and controls for the quadratic in 

test scores yields a marginally statistically significant estimate. The same results for females in 

models 10,11, and 12, yield similar results to the males with slightly smaller point estimates. In 

particular, females attending schools where peers have incoming test scores half a standard 

deviations higher will be between 2.2 and 3.6 percentage points more likely to take the CSEC 

exams. Since the results on CSEC taking by gender are rather imprecise, the slightly larger 

participation response for males is merely suggestive. 

Turing to the number of exams passed (models 4 through 6 for males and models 13 

through 15 for females), large gender differences begin to emerge. Specifically, for males, 

attending a school where peers have incoming test scores half a standard deviation higher results 

in passing between 0.2 and 0.35 additional CSEC exams. In contrast, for females, attending a 

school where peers have incoming test scores half a standard deviation higher results in passing 

between 0.5 and 0.62 additional CSEC exams. The marginal effects are about twice as large for 

females than for males. The point estimates are sufficiently different and precisely enough 

estimated that these differences by gender are both economically and statistically meaningful.  

 The gender differences in obtaining a certificate are similar to those for the number of 

exams passed. For males (models 7 though 9), attending a school where peers have incoming test 

scores half a standard deviation higher increases the likelihood of obtaining a certificate by 

between 2.25 and 6.4 percentage points. However, if one takes out the Government Assisted 

schools, the estimated coefficient of 0.45 is not statistically significant. Given that the standard 

errors are relatively large, this lack of significance likely reflects a lack of power for effect sizes 
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of that magnitude. In contrast, for females (models 16 though 18), attending a school where peers 

have incoming test scores half a standard deviation higher increases the likelihood of obtaining a 

certificate by between 9.3 and 10.9 percentage points. As with the number of exams passed, the 

marginal effects are about twice as large for females than for males, and the point estimates are 

sufficiently different and precisely enough estimated that these differences are both economically 

and statistically meaningful. 

 

Table 5 
Rule based 2SLS results by gender 
  Male 

  1 2 3 4 5 6 7 8 9 

  Take Take Take Passes Passes Passes Cert. Cert. Cert. 

Mean Peer Scores 0.086 0.075 0.079 0.716 0.627 0.408 0.128 0.101 0.045 
  [0.047]+ [0.050] [0.060] [0.241]** [0.214]** [0.232]+ [0.034]** [0.034]** [0.034] 
                   
Polynomial order 2 4 4 2 4 4 2 4 4 

Assisted included Yes Yes No Yes Yes No Yes Yes No 

Observations 6165 6165 5053 6165 6165 5053 6165 6165 5053 

Number of groups 1569 1569 1322 1569 1569 1322 1569 1569 1322 

                   

  Female 

  10 11 12 13 14 15 16 17 18 

  Take Take Take Passes Passes Passes Cert. Cert. Cert. 

Mean Peer Scores 0.073 0.054 0.044 1.232 1.242 1.043 0.218 0.198 0.186 
  [0.052] [0.052] [0.066] [0.255]** [0.225]** [0.237]** [0.044]** [0.040]** [0.042]**
                   
Polynomial order 2 4 4 2 4 4 2 4 4 

Assisted included Yes Yes No Yes Yes No Yes Yes No 

Observations 8484 8484 6952 8484 8484 6952 8484 8484 6952 

Number of groups 2000 2000 1721 2000 2000 1721 2000 2000 1721 

+ significant at 10%; * significant at 5%; ** significant at 1%.  

Robust standard errors in brackets are adjusted for clustering at the school level. 

 

 

IV.3 Effect on Grades Earned 

 Much of the literature on the effect of attending a better school has found benefits on 

non-cognitive outcomes such as the number of subjects taken, being suspended, and other 

behavioral outcomes. However, the findings on the effects on test scores or grades have been 
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mixed. Most studies that look at the effects of attending a better school on student test scores, do 

so in contexts where all students take the tests. To be comparable, I need to estimate the effect of 

attending a school with higher-achieving peers on performance on a particular exam, conditional 

on taking the exam. Because virtually all students who take the CSEC exams take both math and 

English, there is almost no selection to taking these exams conditional on taking the CSEC 

exams. However, since there may be some selection into taking the CSEC exams, one needs to 

take this into account when determining the effect of attending a better school on students math 

and English exam performance for those students who would have taken the CSEC exams 

irrespective of their school attended. I use the two methods described previously. First, I estimate 

the model on all students, assigning the lowest possible grade to students who do no take the 

subject exam, and find a lower bound of the intensive margin effect using the decomposition 

discussed previously. In the second approach, I condition on the likelihood of taking the CSEC 

exams and estimate the model only on those individuals who took the CSEC exams. Since the 

effect of attending a better school on the CSEC participation margin is relatively small, both 

strategies to account for selection yield similar results. 

 Table 6 presents the rule-based instrumental variables estimates of attending a school 

with higher-achieving peers on math and English grades. Models 1 through 5 present the results 

for English and models 6 through 10 present the results for math. Columns 1 and 2 show the 

effects on reading while controlling for the quadratic and quartic of total SEA scores respectively. 

These results are based on the entire sample of students (including those who do not take the 

CSEC exams). Both models 1 and 2 yield the same statistically significant point estimate of 

0.467. These estimates suggest that a student who attends a school where peers have half a 

standard deviation higher test scores will score 0.23 grade points higher in the English exam. 

This represents about a quarter of the distance between an A and a B (or a B and a C). According 

to the decomposition, a student who would have taken the CSEC exams regardless of the school 

assignment would have scored 0.2 grade points (twenty percent of a grade point) higher in the 

English CSEC exam at a school where peer test scores were half a standard deviation higher.23 

 
 
                                                 
23 The average CSEC taking students earns a grade of 4.45 on the English exam, while students who do not take the 
CSEC have a grade of 1. As such the 5 percent increase in CSEC taking could explain at most 0.05*(4.44-1)=0.1725 
of the marginal effect. Removing this effect and dividing by the likelihood of taking the CSEC exams, yields an 
intensive margin coefficient of 0.41. 
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Table 6 
Rule-Based 2SLS Estimates of attending a better school on exam performance 
  1 2 3 4 5 

  English Grade 

Mean of Total SEA 0.467 0.467 0.364 0.486 0.603 

  [0.144]** [0.149]** [0.170]* [0.136]** [0.166]** 

     
Non CSEC takers included Yes Yes Yes No No 

Polynomial order 2 4 4 4 4 

Assisted School included Yes Yes No Yes No 

Control for selection No No No Yes Yes 

Observations 15796 15796 13136 11638 9312 

  6 7 8 9 10 

  Math Grade 

Mean of Total SEA 0.335 0.286 0.073 0.239 0.122 

  [0.133]* [0.137]* [0.153] [0.137]+ [0.165] 

Observations 15796 15796 13136 11638 9312 

Non CSEC takers included Yes Yes Yes No No 

Polynomial order 2 4 4 4 4 

Assisted School included Yes Yes No Yes No 

Control for selection No No No Yes Yes 

Observations 15796 15796 13136 11638 9312 

+ significant at 10%; * significant at 5%; ** significant at 1%. Robust standard errors in brackets are adjusted for clustering at the 
school level. All regressions use the Ruleij variables as the excluded instruments. 

 
 Model 3 shows the results of the same model excluding those students who do not take 

the CSEC exams, while model 4 shows the same model excluding those students who do not 

take the CSEC exams with the estimated likelihood of taking the CSEC included as a covariate. 

As one would expect, the coefficient in model 3 (that does not control for selection to CSEC 

taking) is slightly smaller than those in model 2 – indicating that there is a negative sample 

selection bias. However, the results in column 4 where the estimated likelihood of taking the 

CSEC is included as a covariate are similar to those in models 1 and 2. Column 5 shows the 

selection corrected model using the sample of CSEC takers who were not assigned to 

Government Assisted schools. The estimated coefficient is higher than all the rest at 0.6 – 

suggesting that attending a school where peer test scores are half a standard deviation higher 

increases the English grade by 0.3 grade points (about 1.5 times the lower bound estimate).  

 The results for math in models 6 through 10 are less robust than those for English. The 

results in models 6 and 7 based on the entire sample of students have estimated coefficients of 

0.335 and 0.286 respectively – suggesting that attending a school where peers test scores are half 

a standard deviation higher increases the math grade by between 0.14 and 0.17 grade points. 
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According to the decomposition, a student who would have taken the CSEC exams regardless of 

the school assignment would have scored 0.1 grade points (a tenth of the difference between an 

A and a B) higher in the math CSEC exam at a school where peer test scores were half a standard 

deviation higher.24 

While, the coefficient on the model that excludes non-CSEC takers in column 8 is a 

statically insignificant 0.073, when one controls for selection to CSEC taking, the coefficient is a 

marginally statistically significant 0.239 (in model 9). Similar to the decomposition, this suggests 

that a student who would have taken the CSEC exams regardless of the school assignment would 

have scored 0.12 grade points  higher in the math CSEC exam at a school where peer test scores 

were half a standard deviation higher. Excluding students assigned to Government Assisted  

schools, the estimated coefficient is a statistically insignificant 0.122. Since the point estimates 

are positive for all models, and the standard errors are about 0.15, there may be positive effect on 

math grades that is too small to be detected with these data. The results imply that a lower bound 

estimate for the effect of attending a school with half a standard deviation higher peer quality is 

about 0.06 grade points in math and 0.2 grade points in English. 

Effects on Grades Earned by Gender: 

To test for gender differences in exam grades, I estimate the preferred 2SLS specification 

for the test score outcomes (using the sample of CSEC takers and controlling for the likelihood 

of taking the CSEC) separately for males and females. The effects on Math and reading grades 

by gender exhibit similar patterns to the other outcomes. Table 7 presents the effects of attending 

a school with higher-achieving peers for those students who take the CSEC exams. Columns 1 

through 4 present the results for males. Columns 1 and 2 show that males who attend better 

schools have better grades on the English CSEC exams. These effects are only marginally 

statistically significant and are smaller than those for the entire sample. Columns 5 and 6 show 

strong evidence that female English performance is improved by attending a better school. The 

point estimates are about twice the size of those for males and are statistically significant at the 

one percent level. Specifically the estimates suggest that a female who attends a school with 

peers that have half a standard deviation higher test scores will score about 0.29 grade points 

                                                 
24 Since the average math grade among CSEC takers is 3.9, the extensive margin could explain as much as 0.05(3.9-
1)=0.145. Removing this effect and dividing by the likelihood of taking the CSEC exams, yields an intensive margin 
coefficient of 0.205. 
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higher on her English CSEC exams, while a male would only score between 0.12 and 0.18 grade 

points higher.  

 The results for math (columns 5 through 8) show even starker differences by gender. The 

results indicate that while a female who attends a school with peers that have half a standard 

deviation higher test scores will score between 0.148 and 0.18 grade points higher on her Math 

CSEC exams, males do not appear to benefit at all. In fact, the point estimates in columns 3 and 

4 are negative, suggesting that males could actually have worse math performance when 

attending a school with higher-achieving peers. Since these negative point estimates for males 

are not statistically significant this effect is largely suggestive.  

 

Table 7 
Effect of attending a better school on English and Math CSEC grades by gender 
  1 2 3 4 5 6 7 8 

  Male CSEC takers only Female CSEC takers only 

 

English 
Grade 

English 
Grade 

Math 
Grade 

Math 
Grade 

English 
Grade 

English 
Grade 

Math 
Grade 

Math 
Grade 

Mean of Total SEA 0.241 0.363 -0.092 -0.217 0.575 0.585 0.373 0.286 

  [0.181] [0.205]+ [0.194] [0.216] [0.168]** [0.203]** [0.164]* [0.199] 

Observations 3994 3039 3994 3039 6813 5458 6813 5458 

Number of groups 1088 869 1088 869 1667 1411 1667 1411 

Control for selection Yes Yes Yes Yes Yes Yes Yes Yes 

Assisted School included? Yes No Yes No  Yes No Yes No 

+ significant at 10%; * significant at 5%; ** significant at 1%.  

Robust standard errors in brackets are adjusted for clustering at the school level. 

 

 

IV.4 Elite schools or bad Schools?  

Proponents of school ability-grouping support ability-grouping based on the belief that it 

creates excellent schools at the top of the achievement distribution, while opponents of school 

ability-grouping  are concerned that it creates an underclass of schools with high concentrations 

of low-achieving students that produce very low value-added. Much research on school quality 

has focused on the effect of attending high-achieving or “elite” schools. Since the rule-based 

instruments provide exogenous variation in school attendance for all schools, I can test whether 

the benefits to attending a school with higher-achieving peers, on average, are driven by large 

benefits to elite schools at the top of the school achievement distribution, large ill-effects to 

attending low-achievement schools at the bottom of the school achievement distribution, or if the 
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effect is roughly linear.  

To test for such non-linearly, I put schools into groups based on their rank in incoming 

test scores (top third, middle third, and bottom third). I estimate the rule based 2SLS model for 

subsamples of students assigned to different schools within these groups. These results are 

presented in models 1 through 18 of Table 8. I also present the reduced form RD estimates of the 

effect of scoring above the cut-off for the preferred school for schools in the different groups in 

models 19 through 27 of Table 8. All models in table 8 include the quartic of the total SEA score.  

 

Table 8 

Effect of attending a school with better peers within schools of different ranks 

Rule Based 2SLS variables results 
 1 2 3 4 5 6 7 8 9 

 Take CSEC Exams Passed Certificate 

 Top third 
Middle 

third 
Bottom 

third  Top third
Middle 
third 

Bottom 
third  Top third 

Middle 
third 

Bottom 
third 

Mean of Total SEA -0.086 0.052 0.204 1.635 1.424 -0.232 0.386 0.249 -0.06 
 [0.089] [0.069] [0.118]+ [0.715]* [0.437]** [0.427] [0.121]** [0.076]** [0.053] 
Observations 2299 4551 7951 2299 4551 7951 2299 4551 7951 
Assisted included Yes Yes Yes  Yes Yes Yes  Yes Yes Yes 

  
 10 11 12  13 14 15  16 17 18 
 Take CSEC Exams Passed Certificate 

 Top third 
Middle 

third 
Bottom 

third  Top third
Middle 
third 

Bottom 
third  Top third 

Middle 
third 

Bottom 
third 

Mean of Total SEA - 0.079 0.205 - 1.795 -0.233 - 0.278 -0.06 
 - [0.078] [0.117]+ - [0.466]** [0.424] - [0.079]** [0.052] 
Observations 354 4239 7915 354 4239 7915 354 4239 7915 
Assisted included No No No  No No No  No No No 
          
Regression Discontinuity Estimates 
 19 20 21 22 23 24 25 26 27 
 Take CSEC Exams Passed Certificate 

 Top third 
Middle 

third 
Bottom 

third  Top third
Middle 
third 

Bottom 
third  Top third 

Middle 
third 

Bottom 
third 

Above Cut-off -0.004 0.005 0.059 0.206 0.215 0.06 0.022 0.041 0.009 
 [0.015] [0.017] [0.039] [0.187] [0.116]+ [0.104] [0.033] [0.021]* [0.010] 
Observations 13024 13744 5396 13024 13744 5396 13024 13744 5396 
 Assisted included No No No  No No No  No No No 
+ significant at 10%; * significant at 5%; ** significant at 1%. 
Robust standard errors in brackets are adjusted for clustering at the school level in rule based models and clustering at the student 
level in the RD models. Models 10, 13, and 16 are not reported because the sample sizes are too small to produce a first stag F-
statistic above 10. 

 

Models 1 through 3 suggest that the marginal effect of attending a school with higher-

achieving peers is highest at low levels of peer achievement. The point estimate among the top 
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third of schools is a statically insignificant -0.086, while that for the middle third is a statistically 

insignificant 0.052, and that for the bottom third is a marginally statistically significant 0.205. 

Given that the CSEC taking rate is very low at low levels of incoming achievement, the fact that 

the marginal effects on CSEC taking are larger at lower school rank ranges is not surprising. This 

may reflect the fact that there are more marginal CSEC takers at schools with lower-achieving 

peers than at schools with higher-achieving peers. In models 19 through 21, I use the reduced 

form RD model to estimate the effect of scoring above the cut-off for one’s preferred school for 

these same school groups. These results omit the Government Assisted schools. The point 

estimates in models 19 and 20 are both small and statistically insignificant – indicating that just 

gaining admission to a better school has no effect on CSEC taking for the top two thirds of 

schools. In contrast, the point estimate for scoring above the cut-off among the bottom third of 

schools in model 21, is 0.059 (with a p-value of 0.12). While the RD evidence is imprecise, the 

results are consistent with the rule-based 2SLS results suggesting that students benefit more on 

the CSEC taking margin from improvements in school quality lower down in the achievement 

distribution. 

Models 4 through 6, 13 thought 15, and 22 through 24 show the same specifications for 

the number of exams passed. In both the 2SLS and the RD results, there are larger benefits on the 

margin of attending a school with higher-achieving peers among school in the upper end on the 

achievement distribution. The rule based 2SLS estimates in models 4 through 6 indicate that 

attending a school with half a standard deviation higher peer achievement is associated with  

passing 0.8 more exams within the top third of schools, passing 0.7  more within the middle third 

of schools, and a small statistically insignificant negative effect within schools in the bottom 

third. The RD results are consistent with this pattern. Scoring above the cut-off for a school in 

the top two thirds is associated with passing about 0.2 additional exams. However, scoring above 

the cut-off for a school in the bottom third is not associated with passing more exams.  

Finally, models 7 through 9, 16 thought 18, and 25 through 27 show the same 

specifications for obtaining a certificate. The results are very similar to those for the number of 

exams passed. In both the 2SLS and the RD results, there are larger benefits, on the margin, of 

attending a school with higher-achieving peers among schools in the upper end on the 

achievement distribution. The rule based 2SLS estimates in models 7 through 9 indicate that 

attending a school with half a standard deviation higher peer achievement is associated with a 19 
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percentage point increase in the likelihood of earning a certificate in the top third of schools, a 12 

percentage point increase in the likelihood of earning a certificate in the middle third of schools, 

and a small and statistically insignificant negative effect in the bottom third of schools. The RD 

results in models 25 through 27 indicate that scoring above the cut-off is associated with a 

statistically insignificant 2.2 point increase in the likelihood of earning a certificate in the top 

third of schools, a statistically significant 4.1 point increase in the likelihood of earning a 

certificate in the middle third of schools, and a statistically insignificant 0.9 point increase in the 

bottom third of schools.  

In sum, the results suggest that attending a better school may increase the likelihood of 

taking the CSEC exams among low-achievement schools. The larger marginal effects on the 

CSEC taking margin among these schools likely reflect the fact that students who attend such 

school are more likely to be marginal CSEC takers than those students who attend high 

achievement schools. For the number of exams passed and obtaining a certificate, the results 

suggest that the marginal effects of attending a better school are largest within the top two thirds 

of schools. This may reflect the fact that the top two thirds of schools are better at improving 

student outcomes than schools in the bottom third, or it may reflect that fact that there are more 

marginal certificate earners at these schools. Lastly, the results do not provide any strong 

evidence that the marginal effects of attending better schools are larger among the top third of 

schools than in the middle third. The result suggest that there are benefits to attending better 

schools at all points in the school quality distribution, but that improvements in school quality at 

low levels of achievement improve low level outcomes such as CSEC taking, while 

improvements at higher school quality levels improve higher level outcomes such as passing 

more exams and obtaining a certificate. Insofar as there is any non-linearity, it would appear that 

for the main outcomes of interest, the marginal effects are low at low levels of school peer 

achievement, and are higher at medium and high levels of school peer achievement.  

 

V Conclusions 

Ability-grouping, by grouping students by ability, has a profound effect on the peers to 

which students may be exposed. Since peer quality may be a determinant of other school inputs 

such as funding levels, and teacher quality, ability-grouping may engender large differences in 

the quality of schools to which students of differing initial levels of achievement are exposed. I 
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argue that if students benefit from attending schools with higher-achieving peers, ability-

grouping will tend to exacerbate pre-existing achievement differences, on the margin. 

Unfortunately, the empirical evidence on whether students benefit, on average, from attending 

"better" schools is mixed.  

 To better understand if students benefit from attending better schools, and to deepen our 

understanding of ability-grouping, I use Trinidad and Tobago data, where there are no curricular 

differences across schools, to identify an ability-grouping effect on the margin. Specifically, I 

test whether students benefit from attending schools with higher-achieving peers. Since students 

with higher initial achievement attend schools with higher-achieving peers under ability-

grouping, this is also a test for whether ability-grouping increases educational inequality, on the 

margin, by assigning high-achieving students to schools that produce the most value-added while 

consigning students with low initial achievement to schools that provide the least value-added. I 

exploit the rules used by the Ministry of Education to assign students to secondary schools to 

implement both a RD based and a rule-based instrumentation strategy to remove self-selection 

bias that could affect my findings. Both methods yield similar results, and I present falsification 

tests indicating that the identification strategies are likely valid. After taking self-selection bias 

into account, I show that students benefit on several outcomes from attending schools with 

higher-achieving peers ─ implying that those schools with the highest-achieving peers produce 

more value-added than schools with lower-achieving peers. The findings present compelling 

evidence that students do benefit from attending better schools, and suggest that, on the margin, 

ability-grouping may lead to increased educational inequality on a broad range of academic 

outcomes such as test scores, the number of examinations passed, and years of educational 

attainment.  

 I also show that the marginal effect of attending a school with higher-achieving peers is 

non-linear so that the benefits to attending schools with marginally brighter peers are low at the 

lower end of the peer achievement distribution. However, I do not find evidence that attending 

schools with marginally brighter peers is higher at high-achievement levels than in the middle of 

the peer achievement distribution. Adding to a growing literature documenting stronger benefits 

to interventions for females than for males, I find that females benefit more from attending 

schools with high-achieving peers than do boys on all outcomes. In fact, the marginal effects are 

about twice as large for females than those for males. One implication of this result is that 
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ability-grouping could increase the male-female achievement gap. Given the growing concern 

that boys may be falling behind, particularly in the Caribbean, further research is needed to better 

understand these gender differences. 

Since I estimate the effect of ability-grouping on the margin, (that is, the effect of being 

assigned to a school with marginally higher-achieving peers) these findings do not speak to the 

efficiency implications, or the overall effect, of ability-grouping. However, the results show that 

school ability-grouping could have sizable distributional effects on the margin. If low-income 

students are more likely to have low incoming test scores, they will be systematically placed in 

schools that provide less value-added than those attended by more affluent higher-achieving 

students. Whether ability-grouping leads to increased educational inequality and reinforces 

socioeconomic differences overall is still an unresolved question. However, this paper provides 

credible evidence that the large differences in school quality to which high and low achieving 

students are exposed engendered by ability-grouping will tend to reinforce and exacerbate pre-

existing differences in academic achievement. 

 
 
References 

Angrist, Joshua “Conditioning on the Probability of Selection to Control Selection Bias”, (1995) 
, NBER Technical Working Paper No. 181. Cambridge, Massachusetts. 

Angrist, Joshua D. and Kevin Lang, 2004. "Does School Integration Generate Peer Effects? 
Evidence from Boston's Metco Program," American Economic Review, vol. 94(5), pages 
1613-1634, December. 

Angrist. Joshua and Victor Lavy, "Using Maimonides' Rule To Estimate The Effect Of Class 
Size On Scholastic Achievement," (1999). The Quarterly Journal of Economics, MIT Press, 
vol. 114(2), pp 533-575. 

Ariga, Kenn., Giorgio Brunello, Roki Iwahashi, Lorenzo Rocco, "Why Is the Timing of School 
Tracking So Heterogeneous?" (November 2005). IZA Discussion Paper No. 1854.  

Atkinson, A., P. Gregg, and B. McConnell. “The Result of 11 Plus Selection: An Investigation 
Into Opportunities and Outcomes for Pupils in Selective Schools,” (2006). Centre for Market 
and Public Organization Working Paper 06/150, Bristol University, England. 

Betts, Julian. “Does School Quality Matter? Evidence from the National Longitudinal Survey of 
Youth” (1995) The Review of Economics and Statistics, Vol. 77, No. 2, pp. 231-250. 

Betts, Julian R., and Jamie L. Shkolnik, “The effects of ability-grouping on student math 
achievement and resource allocation in secondary schools.” (1999a), Economics of Education 
Review, 19, 1–15. 

__________ , “Key difficulties in identifying the effects of ability-grouping on student 
achievement” (1999b). Economics of Education Review, Volume 19, Issue 1, Pages 21-26. 

Brunello, Giorgio, and Deniele Chechi, “Does School Tracking Affect Equality of Opportunity?” 
New International Evidence.” (2006), Institute for the Study of Labor Discussion Paper 2346. 



 41

Burke, Mary .A . and Tim R. Sass. "Classroom Peer Effects and Student Achievement," (2006) 
Working Papers wp2006_02_02, Department of Economics, Florida State University. 

Campbell, Donald T. “Reforms and experiments.” (1969), American Psychologist 24:409-29.  
Card, David E.., and Alan B. Krueger, Alan. “School Quality and Black-White Relative Earnings: 

A Direct Assessment.” (February 1992a), Quarterly Journal of Economics.  
____________ “Does School Quality Matter? Returns to Education and the Characteristics of 

Public Schools in the United States” The Journal of Political Economy, Vol. 100, No. 1 (Feb., 
1992b), pp.1-40. 

Clark, Damon. “Elite Schools and Academic Performance” (2007) Institute for the Study of 
Labor (IZA) Discussion Paper 3182. 

Cullen, Julie., Brian Jacob,  and Levitt Steven. “The Impact of School choice on Student 
Outcomes: An Analysis of the Chicago Public Schools.” (2005), Journal of Public Economics. 
89(5-6), 729-760. 

_____________. “The Effect of School choice on Student Outcomes: Evidence from Randomized 
Lotteries.” (2006), Econometrica, 74(5), 1191-1230. 

Das, Jishnu, Tahir Andrabi, and Asim I. Khwaja (2006) “Students Today, Teachers Tomorrow: 
Identifying Constraints for the Provision of Education.” Processed.  

Duflo, Esther, Pascaline Dupas, and Michael Kremer “Peer Effects and the Impact of Tracking: 
Evidence from a Randomized Evaluation in Kenya” Working Paper 

Dustmann, Christian. “Parental Background, Secondary School track Choice and Wages.” (2004), 
Oxford Economic Papers. 56. 209-230. 

Figlio, David N. and Marianne E. Page. "School Choice and the Distributional Effects of 
Achievement Tracking: Does Separation Increase Inequality?," (May 2002) Journal of Urban 
Economics, Elsevier, vol. 51(3), pages 497-514. 

Fisher, Gary. 1976. "The Identification Problem in Econometrics." Robert E. Kreiger Publishing 
Company, Huntington, New York. 

Galindo-Rueda, Fernando, and Anna Vignoles, "The Heterogeneous Effect of Selection in 
Secondary Schools: Understanding the Changing Role of Achievement," (2004) Institute for 
the Study of Labor Discussion Paper 1245 

Gould Eric D., Victor Lavy, and Daniele M. Passerman. “Immigrating to Opportunity: Estimating 
The Effect of School Quality Using A Natural Experiment on Ethiopians in Israel” (May 
2004), Quarterly Journal of Economics. 

Grogger, Jeff:  “School Expenditures and Post-Schooling Earnings: Evidence from High School 
and Beyond” (Nov., 1996), The Review of Economics and Statistics, Vol. 78, No. 4, pp. 628-
637. 

Hastings, Justine S., Thomas Kane and Douglas Staiger (2006b), “Gender, Performance and 
Preferences: Do Girls and Boys Respond Differently to School Environment? Evidence from 
School Assignment by Randomized Lottery,” American Economic Review Papers and 
Proceedings, 96 (2): 232-236. 

Hastings, Justine S., Thomas J. Kane and Douglas O. Staiger "Gender and Performance: Evidence 
from School Assignment by Randomized Lottery", American Economic Review 96(2), pp. 
232-236. 

Hastings, Justine S. and Jeffrey M. Weinstein. (2007) “No Child Left Behind: Estimating the 
Impact on Choices and Student Outcomes", NBER Working paper 13009. 

Hanushek Eric A, and Ludger Woessman,. “Does Educational Tracking Affect Performance and 
Inequality? Differences in Differences Evidence across Countries.” (2006), Economic Journal, 



 42

116(510), C63-C76. 
Heckman, James, Anne Layne-Farrar, and Petra Todd. “Does Measured School Quality Really 

Matter? An Examination of the Earnings-Quality Relationship.” (1996), In Does Money 
Matter? The Effect of School Resources on Student Achievement and Adult Success. G. 
Burtless, editor. Washington D.C. Brookings Institution. 

Horowitz, Joel L. and Charles F. Manski,., 1998. "Censoring of outcomes and regressors due to 
survey nonresponse: Identification and estimation using weights and imputations," Journal of 
Econometrics, Elsevier, vol. 84(1), pages 37-58, May. 

Hoxby, Caroline. “The Effects of Class Size and Composition on Student Achievement: New 
Evidence from Natural Variation.” (1998), NBER WP 6869. 

Hoxby, Caroline. “Peer Effects in the Classroom: Learning from Gender and Race Variation.” 
(2000), National Bureau of Economic Research Working Paper 7867.  

Hoxby, Caroline M., and Weingarth, Gretchen, (2006). Taking Race Out of the Equation: School 
Reassignment and the Structure of Peer Effects. Working Paper. 

Jackson. C. Kirabo (forthcoming). "Student Demographics, Teacher Sorting and Teacher Quality: 
Evidence from the End of School Desegregation" The Journal of Labor Economics. 

Jackson, C. Kirabo. (2009)  “A Stitch in Time: Evaluating the Effects of an AP Incentive 
Program on College Outcomes”, Cornell University, mimeo. 

Katz, Lawrence and Jeffrey Kling and Jeffrey Liebman. (2007). "Experimental Analysis of 
Neighborhood Effects," Econometrica, Econometric Society, vol. 75(1), pages 83-119, 01. 

Lavy, Victor (2009) “Performance Pay and Teachers' Effort, Productivity and Grading Ethics” 
The American Economic Review, forthcoming. 

Malamud, Ofer and Cristian Pop-Eleches: "General Education versus Vocational Training: 
Evidence from an Economy in Transition," (forthcoming) Review of Economics and Statistics. 

Manning, Alan, and Jörn-Steffen Pischke. “Comprehensive versus Selective Schooling in 
England and Wales: What Do We Know,” (2006) NBER Working Paper 12176. 

Maurin, Eric, and Sandra McNally. “Educational Effects of Widening Access to the Academic 
Track: A Natural Experiment” (2007). CEE Discussion Papers with number 0085. 

McCrary, Justin. (2005) Manipulating the running variable in the regression discontinuity design. 
University of Michigan, mimeo. 

OECD, 2004, the PISA , Paris. 
Pop-Eleches, Christian and Miguel Urquiola (2008) “The Consequences of Going to a Better 

School,” Department of Economics. Columbia University. Mimeo. 
Rangvid, Beatrice S. “Educational Peer Effects: Regression Evidence from Denmark with 

PISA2000 data.” (2003), Copenhagen: AKF Institute for Local Government Studies. 
Sacerdote, Bruce. “Peer Effects with Random Assignment: Results for Dartmouth Roommates.” 

(2001), Quarterly Journal of Economics, 116 (2): 681 - 704. 
Summers, Anita A. and Barbara L. Wolfe,. “Do Schools Make a Difference?” (1977), American 

Economic Review, 67, 639-652. 
Tyler, John H., Richard J. Murnane and John B. Willett. "Do The Cognitive Skills Of School 

Dropouts Matter In The Labor Market?," Journal of Human Resources, 2000, v35(4,Fall), 
Zimmerman, David. “Peer Effects in Academic Outcomes: Evidence from a Natural 

Experiment.” (2003), Review of Economics and Statistics, Volume 85, Issue 1 (November). 
 
 
 



 43

Appendix:  
 
Table A1 
Regression Discontinuity based 2SLS results by gender 

Male
  1 2 3 4 5 6    

  Take Take Passes Passes Cert. Cert.   Obs. 
Mean Peer Scores -0.072 -0.027 0.37 -0.128 0.133 0.211   6961
  [0.098] [0.218] [0.500] [1.117] [0.086] [0.195]    

                 
Polynomial order 2 4 2 4 2 4    

                 

Female
  7 8 9 10 11 12    

  Take Take Passes Passes Cert. Cert.   Obs. 
Mean Peer Scores -0.01 0.111 0.955 1.591 0.172 0.213   9321
  [0.054] [0.095] [0.340]** [0.609]** [0.059]** [0.104]*    

                 
Polynomial order 2 4 2 4 2 4     

+ significant at 10%; * significant at 5%; ** significant at 1%
 
 
 
Table A2 
Robustness of RD to bandwidth smooth functions of the total score 

The independent variable is mean peer scores. All models are 2SLS-RD models and exclude assisted schools. 

  Dependent variable 

  Take CSEC Exams Passed Certificate 

Control for total score Bandwidth Coef. SE  Coef. SE  Coef. SE 

quadratic full sample 0.082 [0.027]** 0.996 [0.152]** 0.211 [0.026]** 

quadratic 200 0.078 [0.027]** 1.019 [0.151]** 0.212 [0.026]** 

quadratic 100 0.037 [0.030] 1.039 [0.173]** 0.209 [0.030]** 

quadratic 50 -0.039 [0.049] 0.662 [0.282]* 0.156 [0.048]** 

quadratic 30 -0.037 [0.080] 0.413 [0.463] 0.162 [0.080]* 

quadratic 20 -0.024 [0.147] 0.685 [0.875] 0.178 [0.151] 

quartic full sample 0.076 [0.036]* 0.788 [0.206]** 0.156 [0.036]** 

quartic 200 0.06 [0.035]+ 0.823 [0.204]** 0.167 [0.036]** 

quartic 100 -0.056 [0.046] 0.76 [0.267]** 0.16 [0.046]** 

quartic 50 0.04 [0.089] 0.83 [0.524] 0.19 [0.090]* 

quartic 30 -0.022 [0.213] 0.706 [1.260] 0.273 [0.221] 

quartic 20 -0.746 [0.660]  4.651 [4.110]  0.807 [0.693] 

+ significant at 10%; * significant at 5%; ** significant at 1% 
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Figure A1 
Distribution of total SEA scores by school rank 
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Figure A2 
Distribution of mean SEA scores across actual school assigents 
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Figure A3 
Graphical Evidence of the Dicontintuity at the Simulated cut-off 


