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1. Introduction 

 

The Sharpe (1964) and Lintner (1965) Capital Asset Pricing Model (CAPM) is the 

workhorse of finance for estimating the cost of capital for project selection.  Whatever the 

criticism in the academic literature, it continues to be the preferred model in managerial 

finance courses, and managers continue to use it.  Welch (2008) finds that about 75.0% of 

finance professors recommend using the CAPM to estimate the cost of capital for capital 

budgeting. A survey of CFOs by Graham and Harvey (2001) indicates that 73.5% of the 

respondents use the CAPM.  

The primary empirical challenge to the CAPM comes from several well-documented 

anomalies. A variety of managed portfolios constructed using various firm characteristics earn 

very different returns on average from those predicted by the CAPM.2 Fama and French (1993) 

conjecture that two additional risk factors beyond the stock market factor used in empirical 

implementations of the CAPM are necessary to fully characterize economywide pervasive 

risk in stocks. Their three-factor model has received wide attention and has become the 

standard model for computing risk-adjusted returns in the empirical finance literature.   

Almost all the anomalies documented apply to stock returns. Should that be a reason to 

refrain from using the CAPM to calculate the cost of capital for a project? We review the 

literature and provide new empirical evidence to argue that there is little direct evidence 

against using the CAPM to estimate a project’s cost of capital. The particular model we 

                                                 
2 Notable among the anomalies that challenge the validity of the CAPM are the findings that average returns on 
stocks are related to firm size (Banz, 1981), the earnings-to-price ratio (Basu, 1983), the book-to-market value of 
equity (BM)  (Rosenberg, Reid, and Lanstein, 1985), the cash flow-to-price ratio, sales growth (Lakonishok, 
Shleifer, and Vishny, 1994), past returns (DeBondt and Thaler, 1985; and Jegadeesh and Titman, 1993), and past 
earnings announcement surprise (Ball and Brown, 1968).  Many other studies confirm similar patterns in 
different datasets, including in international markets. 
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consider is Ross's (1976) single-factor linear beta pricing model based on the stock index 

portfolio. We refer to this as the CAPM for convenience, following convention.  

Most firms have the option to undertake, reject, or defer a new project, as well as the 

option to modify or terminate a current project. Therefore, we can look at a firm as a 

collection of current and future projects and complex options on those projects.  McDonald 

and Siegel (1985) observe that managers should optimally exercise these real options to 

maximize a firm’s total value. The resulting firm value will consist of both the net present 

values of the projects and the value of associated real options, which is determined by how the 

firm expects to exercise those options. Berk, Green, and Naik (1999) build on this insight to 

develop a model where the expected returns on all projects satisfy the CAPM, but the 

expected returns on the firm’s stock do not. While the CAPM will assign the right expected 

returns to the primitive assets (projects), it will in general assign the wrong expected returns to 

options on those primitive assets. Gomes, Kogan, and Zhang (2003), Carlson, Fisher, and 

Giammarino (2004), and Cooper (2006) provide several additional insights in building on the 

Berk, Green, and Naik (1999) framework.3 

We bring out the general intuition behind the failure of the CAPM in pricing options on 

primitive assets. This intuition comes from Dybvig and Ingersoll (1982) and Hansen and 

Richard (1987) in which a given stochastic discount factor, like the one corresponding to the 

CAPM, while assigning the right prices to a subset of assets, may assign the wrong prices to 

other assets. We first illustrate this intuition in a factor pricing example similar to that in 

Connor (1984). We then illustrate the impact of options in a numerical example that can be 

                                                 
3 In related work, Bernardo, Chowdhry, and Goyal  (2007) highlight the importance of separating the growth 
options from equity beta. Jagannathan and Wang (1996) argue that because of the nature of the real options 
vested with firms, the systematic risk of firms will vary depending on economic conditions, and the stock returns 
of such firms will exhibit option-like behavior. 
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interpreted using the conditional CAPM of Jagannathan and Wang (1996). An econometrician 

using standard time series methods may conclude that the CAPM does not hold for firms with 

real options, even when the returns on such firms satisfy the CAPM in a conditional sense. 

When the sensitivity of firms’ stock returns to economywide risk factors changes in nonlinear 

ways because of the presence of such real options, even when returns on individual primitive 

projects satisfy the CAPM, it may be necessary to use excess returns on certain managed 

portfolios (like the Fama and French (1993) SMB and HML factors) as additional risk factors 

to explain the cross-section of stock returns.  If that is the case, it would be justifiable to use 

the CAPM for estimating the cost of capital for projects, even if the CAPM cannot explain the 

cross-section of average returns on various managed portfolios. 

In general, both the equity risk premium and the equity beta of a firm will be complex 

functions of the firm’s project beta and real option characteristics. If we project them on a set 

of variables capturing the features of real options using linear regressions, the residual risk 

premium and the residual beta will be option-adjusted, and will more closely resemble the 

underlying project risk premium and project beta. Consequently, the CAPM may work well 

on the option-adjusted risk premium and beta.4 

We first provide support for the option-adjustment procedure and the CAPM with respect 

to the option-adjusted return and beta. We simulate a large cross-section of all-equity-

financed firms, each as a portfolio of a primitive asset (project) and a call option on the asset. 

While the CAPM works for the asset, in the presence of the option, it does not work for the 

                                                 
4 Jagannathan and Meier (2002) discuss another reason why the CAPM may be useful for capital budgeting. 
They argue that organizational capital may be in limited supply in firms with talented managers who generate 
positive net present value (NPV) projects. Such firms will choose to implement only those projects with 
sufficiently large NPVs, as if they use a high hurdle rate by adding a large hurdle premium to their CAPM-based 
weighted average cost of capital.  Jagananthan, Meier, and Tarhan (2011) find that while managers do use a 
significant hurdle premium, the CAPM-based cost of capital is also an important determinant of the hurdle rate 
they use for making capital budgeting decisions. 
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firm as a whole. A cross-sectional regression of the firm risk premium on the firm beta 

produces a large intercept term, a very small slope coefficient, and an R-square close to zero, 

just as we would find in data. Once we option-adjust the firm’s beta by making it orthogonal 

to a set of real option proxies (option moneyness, firm book-to-market ratio, and asset 

idiosyncratic volatility), however, the option-adjusted beta matches the underlying project 

beta very well, and explains a large portion of the cross-sectional variation in option-adjusted 

firm risk premium. 

We also provide empirical evidence supporting the use of the CAPM for calculating the 

cost of capital of a project for a full sample of stocks in the US from 1970 through 2008. 

Although real options are not directly observable, we proxy them using three empirical 

variables. The first variable is the firm’s book-to-market ratio (BM thereafter), a common 

proxy for growth options in the finance literature (see Smith and Watts, 1992, among others). 

Berk, Green, and Naik (1999) explicitly links BM to growth options. The second is the 

idiosyncratic volatility (Ivol). Cao, Simin, and Zhao (2008) and Bekaert, Hodrick, and Zhang 

(2010) establish a theoretical link between the growth options available to managers and the 

idiosyncratic risk of equity. The third is the firm’s return on asset (ROA). Recently, Chen, 

Novy-Marx, and Zhang (2010) argue that ROA is a good empirical proxy for the marginal 

product of capital, which is related to the marginal expansion option as in the real option 

model of Abel, Dixit, Eberly, and Pindyck (1996). 

We examine the performance of the CAPM for project cost of capital calculation using a 

two-stage cross-sectional regression. In the first stage, we regress both the stock excess return 

and the stock beta on the three real option proxies. The real options proxies are measured in 

excess of these measures of the market, and the regression has no intercept terms; such 
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procedures ensure that the CAPM holds for the market exactly. The residual excess returns 

and betas are option-adjusted. In the second stage, we regress the option-adjusted excess 

return on the option-adjusted beta. While the stock beta is not significant in explaining the 

cross-sectional variation in average excess returns, the option-adjusted beta is very significant 

in explaining the cross-sectional variation in average option-adjusted excess returns. We 

correct the errors-in-variables problem in our cross-sectional regression that arises from 

estimation errors associated with the rolling-window betas (Jagannathan, Kim, and Skoulakis, 

2010). After this correction, we find the regression slope coefficient on the option-adjusted 

beta to be closer to the actual market risk premium and the regression intercept to be much 

closer to zero, consistent with the prediction of the CAPM. The option-adjusted beta is related 

to but not exactly equal to the beta on the firm’s asset-in-place. This is because a firm’s beta is 

in general a complicated function of the asset-in-place beta and the beta of embedded options. 

A linear regression procedure will not do a perfect job in isolating the asset-in-place beta. 

Finally, we investigate the impact of real option adjustment on several well-known cross-

sectional expected return anomalies. We find that real option adjustment alleviates or even 

drives out several anomalies related to long-term stock price mean reversion. These anomalies 

include the asset growth anomaly of Cooper, Gulen, and Schill (2008), the investment-related 

anomaly of Anderson and Garcia-Feijoo (2006), Xing (2008), and Chen, Novy-Marx, and 

Zhang (2010), and the long-term return reversal of DeBondt and Thaler (1985). The real 

option adjustment, however, has little impact on anomalies that are related to short-term 

return continuation such as price momentum (Jegadeesh and Titman, 1993) and earnings 

momentum (Chan, Jegadeesh, and Lakonishok, 1996). To the extent that such short-term price 

continuation typically does not persist beyond a few quarters and requires frequent portfolio 



8 
 

rebalancing, it is probably less relevant for the cost of capital calculation for a typical project 

whose life usually extends beyond five years.  

When we confine the analysis to a subsample of stocks after excluding stocks whose betas 

are likely to be measured with large errors, support for use of the CAPM beta in project cost 

of capital calculation becomes even stronger. For instance, the slope coefficient in the cross-

sectional regressions is almost the same as the historical average excess return on the stock 

market index, and the intercept term is insignificantly different from zero. 

Determination of the cost of capital has been an important focus in finance. Fama and 

French make a convincing case that the CAPM fails to describe the cross-section of stock 

returns (Fama and French, 1992, 1996, 1997, 1999, 2004, and 2006).5 Indeed, most of the 

research in the asset pricing literature focuses on understanding the determinants of expected 

returns on stocks.6 Our primary interest, however, is in evaluating the empirical evidence 

against the use of the CAPM for project cost of capital calculations in making capital 

budgeting decisions.   

We illustrate the impact of real options through two examples in Section 2, and also 

provide a more detailed review of the related literature. Section 3 describes a simple 

regression procedure to alleviate the effect of real options and a simulation example. Section 4 

demonstrates the effectiveness of option-adjusted beta and presents evidence that supports use 

of the CAPM in project cost of capital estimation using empirical analysis. Section 5 

concludes.   

                                                 
5 Among many other related works, Ferson and Locke (1998) find that the great majority of the error in 
estimating the cost of equity capital using the CAPM is due to the risk premium estimate; Pastor and Stambaugh 
(1999) show that the cost of equity estimation can be improved in a Bayesian framework; Ang and Liu (2004) 
discuss a general approach for discounting cashflows with time-varying expected returns. 
6 We refer readers interested in the broader asset pricing literature to the excellent surveys by Campbell (2003), 
Duffie (2003), Ferson (2003), and Mehra and Prescott (2003). 



9 
 

 

2. Examples 

Dybvig and Ingersoll (1982) and Hansen and Richard (1987) point out that a given 

stochastic discount factor (SDF thereafter), like the one corresponding to the CAPM, while 

assigning the right prices to a subset of assets, may assign the wrong prices to other assets.  

Treynor and Mazuy (1966), Henriksson and Merton (1981), Merton (1981), Dybvig and Ross 

(1985), Jagannathan and Korajczyk (1986), and Glosten and Jagannathan (1994) make related 

observations – that in an economy where the CAPM holds for stock returns, the returns on 

managed portfolios that have option-like features may not satisfy the CAPM. We use two 

examples to illustrate the intuition behind those observations, i.e., why the CAPM may price 

the expected returns on primitive projects but not those on options.  

We first explain this intuition in a factor pricing example similar to that in Connor (1984). 

In this example, the CAPM may hold conditionally as well as unconditionally for a subset of 

assets but need not hold either conditionally or unconditionally for other assets. In the second 

numerical example, we show that this intuition can also be made clear using the observations 

in Jagannathan and Wang (1996), Gomes, Kogan, and Zhang (2003), and Zhang (2005), who 

show that the CAPM may not hold unconditionally even when it holds in a conditional sense.  

 

2.1. The CAPM in a factor economy of Connor (1984) 

Following Connor (1984), who derives an equilibrium version of Ross’s (1976) Arbitrage 

Pricing Theory, consider an economy with K economywide pervasive factors, where the 

representative investor’s marginal utility for end-of-period wealth is a function of only those 

pervasive factors.  In such an economy, Connor (1984) shows that there is a unique SDF, that 
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is, some nonlinear function of the pervasive factors that assigns the right prices to all assets.   

We will consider the special case where K = 1; i.e., there is only one pervasive factor, and that 

is the return on aggregate wealth portfolio (or the market portfolio).  

Now, following Connor (1984), consider a subset of assets (denoted as projects) whose 

returns have the linear factor structure: 

               

where rm is the market return (all returns in this subsection are gross returns), and E[εi|rm] = 0. 

As a result, the slope coefficient bi (which we call the CAPM beta for convenience) can be 

computed by regressing ri on rm. Let M denote the unique SDF that prices all assets correctly. 

Recall that        , i.e., M is some nonlinear function of only rm. The function f is linear 

only under special circumstances (such as when investors have quadratic utility as shown in 

Dybvig and Ingersoll, 1982). 

The economy may also include options whose returns do not have the linear factor 

structure. Nevertheless, we can still regress the option return on the market return and write: 

               

where εo satisfies E[εorm] = 0 by definition of “regression,” but E[ε0 |rm] is strictly different 

from 0.  In that case, without loss of generality, it should be possible to choose the option in 

such a way (i.e., there exists such an option since we are in a complete market economy) that 

E[ε0f(rm)]= E[ε0M]≠0. 

Since M  is a valid pricing kernel, we have: 

        , 

                           

The assumption E[εi|rm] = 0 implies E[f(rm)εi] = 0 or E[Mεi] = 0. Therefore we have: 
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If a risk-free asset exists, then the risk-free rate satisfies: 

   
 

    
 

Substituting this expression for     into             gives:              

Note that by substituting this expression for ai into the expression for expected returns on 

any project i whose return has a linear factor structure, we get: 

                  

                      

which gives the CAPM linear-beta-pricing relation for all assets, i, with returns that have a 

strict linear factor structure.  

The expected return on the option, however, does not satisfy this CAPM relation. This is 

because when we price the option return using M, we have: 

                           

Since E[Mεo] =E[f(rm)εo] ≠ 0, we  have: 

                      

                       

                               

Thus the CAPM relation will not hold for the option expected return.  

Note, however, that a CAPM-like single-beta relation will hold for all assets, including 

options that do not have linear factor structure when rm is replaced by the return on the asset 

whose payoff is identical to that of M (such asset exists when the market is complete).  

However, the CAPM single beta relation (where beta is the regression slope coefficient of the 
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return on the asset on the return on the market portfolio) will only hold for those assets that 

have a linear factor structure.7 

2.2.  A numerical example and the conditional CAPM 

Now we present a numerical example in which the CAPM correctly prices all primitive 

projects but not the stock expected returns, and asset pricing anomalies such as size and book-

to-market effects will arise. The example is consistent with several empirical regularities: (1) 

value stocks have higher expected returns than the market and have positive CAPM alphas; (2) 

growth stocks have lower expected returns than the market and have negative CAPM alphas; 

(3) value stocks have lower CAPM betas than growth stocks; (4) the equity risk premium is 

countercyclical; (5) value stocks are riskier than growth stocks when the expected risk 

premium is high; and (6) size and BM can describe cross-sectional variation in expected 

returns on stocks. The intuition behind these patterns can be understood in the context of the 

conditional CAPM. 

This example and the first one illustrate that when a firm is endowed with real options, the 

CAPM will not explain its equity expected return, and anomalies such as size and BM effects 

can arise. The CAPM could still hold, however, for the primitive projects, and can be used to 

compute the costs of capital for projects. 

2.2.1. The economy  

For purpose of illustration, we consider an economy with a market risk premium of 5% 

per year, an annual risk-free rate of 5%, and a flat yield curve. There are three possible states 

at the end of the year: Up (probability: 25%), Mid (probability: 50%), and Down (probability: 

                                                 
7 To see this more clearly, let M* denote the linear projection of M on the set of returns that have a linear factor 
structure and let P(M*) denote the price of M*. Then M*/P(M*) – rf = K(rm – rf) where K is a constant, since 
M*/P(M*) is the minimum second moment return on the mean variance return frontier generated by the returns 
that have a linear factor structure (see Hansen and Richard, 1987). 
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25%). The returns on the market portfolio in these three states are: 40.4%, 8.0%, and -16.3%, 

respectively, translating to an expected return of 10.0% for the market portfolio. 

A firm in this economy consists of multiple projects and one option. All projects are 

identical with an initial cost of $1.00 which can be viewed as the book value. Once 

undertaken, each project pays out an expected perpetual annual cash flow of $0.20. By 

assumption, the CAPM prices these projects, which all have a CAPM beta of 1, with an 

appropriate discount rate of 10% (5% + 1× 5%  = 10% as predicted by the CAPM). The 

market value of each project is therefore 0.20/10%  =  $2.00. 

The option can be one of two types: a value option (VO) or a growth option (GO) with the 

state-contingent payoffs: 

 

 State Probability VO 
Payoff 

GO 
Payoff 

Up 0.25 $0.949  $1.808  
Mid 0.50 $0.949 $1.095  

Down 0.25 $0.456 $1.095 
 

2.2.2. Prices and expected returns 

We assume no arbitrage opportunities exist, i.e., all SDFs that assign the right prices are 

strictly positive. Consider one such valid SDF, M = [0.7313, 0.8164, 1.4454] across Up, Mid, 

and Down states. It can be verified that E[M(1+R)] = 1 for the risk-free rate and the market 

return, meaning the SDF can price the risk-free asset and the market portfolio.  

With the SDF, we can price the two options using E[M×payoff]. The results are 

summarized as follows: 
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State Prob 
State 
Price 
(M) 

Riskfree 
Rate 

Market 
Return 

VO  
Payoff 

VO 
Return 

GO  
Payoff 

GO 
Return 

Up 0.25 0.7313 5.0% 40.4% $0.949  30.7% $1.808  54.0% 
Mid 0.50 0.8164 5.0% 8.0% $0.949  30.7% $1.095  -6.6% 

Down 0.25 1.4454 5.0% -16.3% $0.456 -37.1% $1.095  -6.6% 
Price         $0.726      $1.173    
ER   5.0% 10.0%  13.8%  8.5% 

CAPM Beta   0.00 1.00  1.10  1.14 
CAPM ER       10.0%    10.5%   10.7% 

 

Given the prices of these two options, we can compute their annual returns and expected 

returns. With the help of returns on any of the two options, the market is now complete, and it 

can be verified that M is the unique SDF that prices all the assets in this economy. Since there 

are three states, the option payoffs cannot be replicated by trading only the market portfolio 

and the risk-free asset. The option return therefore does not satisfy the factor structure 

assumption (E[εo|rm] = 0) discussed earlier so the CAPM relation does not apply to its 

expected return. This can be seen by computing options’ covariances with the market and 

their CAPM betas. Although value option (VO) has a higher expected return (13.8%) than the 

market while the growth option (GO) has a lower expected return (8.5%) than the market, the 

growth option actually has a higher CAPM beta.  

Because of the higher CAPM beta, the CAPM will predict a higher expected return on the 

growth option (10.7%) than on the value option (10.5%). In other words, the CAPM, although 

perfectly explaining the expected returns on primitive projects in the economy, fails to explain 

the expected returns on these two options. As a result, the value option seems to outperform 

the market (it carries a positive CAPM alpha of 13.8% - 10.5% = 3.3%) while the growth 

option seems to underperform the market (it carries a negative CAPM alpha of 8.5% - 10.7% 

= - 2.2%).  
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2.2.3. The conditional CAPM  

The intuition behind these results can be made clearer using the conditional CAPM of 

Jagannathan and Wang (1996) or, more broadly, the results in Hansen and Richard (1987). 

The conditional CAPM interpretation adds additional economic insights on why the value 

option (VO) earns a higher expected return than the growth option (GO).  

When we add an intermediate time period to the example, the one-period trinomial tree is 

expanded to be a two-period binomial tree. The two states on each node are associated with 

equal probability. The payoffs to an investment in the market portfolio (assuming an initial 

investment of $1) are: 

T = 0 T = Six Months T = One Year 

  Up (UU): $1.404 

 U: $1.200  

$1.000  Mid (UD, DU): $1.080 

 D: $0.900  

  Down (DD): $0.837 

 

The risk-free rate in each six-month period is 1.050.5 - 1 = 2.47%.  

The immediate consequence of adding the intermediate state is that the market is now 

dynamically complete with only two assets: the market portfolio, and the risk-free asset, since 

the option payoff can now be replicated by trading these two assets dynamically. Both the 

value option and the growth option can now be priced using the standard no-arbitrage 

replication argument, which justifies the SDF given in Section 2.2.2 (see Rubinstein, 1976, 

among others). 
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Value Option (VO)  Growth Option (GO) 

T = 0 
T = Six 

Months 
T = One Year 

 
T = 0 

T = Six 

Months 
T = One Year 

  $0.949    $1.808 

 $0.926    $1.390  

$0.726  $0.949  $1.173  $1.095 

 $0.614    $1.069  

  $0.456    $1.095 

Given the payoffs (and the implied returns) of both the market and the options, we can 

compute the values on both nodes U and D for the period from six months to one year: 

 
State ER (Market) Beta (VO) ER (VO) Beta (GO) ER (GO) 

U 3.5% 0.00 2.5% 1.90 4.4% 

D 6.5% 2.97 14.4% 0.00 2.5% 

 

Note first that the expected return on the market going forward is higher following a negative 

market return in state (D), consistent with the fact that the risk premium is counter-cyclical. In 

addition, the CAPM works for both options conditionally (on each node). This is not 

surprising, as the option can be replicated by both the market and the bond, and the CAPM 

prices the expected returns on both assets (see Dybvig and Ross, 1985). 

The value option has a higher expected return unconditionally because it has a higher beta 

in state D, precisely when the market risk premium is high. This is highlighted by 

Jagannathan and Korajczyk  (1986) and is the key insight of the conditional CAPM of 

Jagannathan and Wang (1996).  

Are value stocks indeed riskier when the risk premium going forward is high? Some 

empirical evidence in the literature suggests the answer is yes. For example, Petkova and 

Zhang (2005) find that value betas tend to covary positively, and growth betas tend to covary 

negatively with the expected market risk premium, which offers at least a partial explanation 
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for the value premium.8 Why are value stocks more risky when the expected risk premium is 

high? Zhang (2005) provides an elegant explanation within the framework of the neoclassical 

theory of investment. It is more costly for value firms to downsize their capital assets since 

they are typically burdened with more unproductive capital. As a result, value stocks’ returns 

covary more with economic downturns when the expected risk premium is high.9   

 

2.2.4. Stock characteristics 

Despite the failure of the CAPM in pricing options, the book-to-market ratio and the size 

of the firm serve as two sufficient statistics for describing the expected returns of all firms in 

the economy. To see this, note that all firms in the economy have two components: (1) the 

assets-in-place component, which includes Ii projects, and (2) the option component (Oi = VO 

or GO). The market value or size of each firm is: Vi = 2Ii + Oi. The expected return of the 

firm is a weighted average of expected returns on these two components: ERi = 2Ii/Vi×10% + 

Oi/Vi×ERO. It can easily be verified that, whether a firm is endowed with the value option or 

the growth option, its expected return can be expressed as 20%×BM + 10%/Size. Therefore 

the expected return increases with BM and declines with Size. In addition, BM and Size 

explain the expected returns on all firms. 

                                                 
8 Other recent studies on the conditional CAPM include Wang (2003), Ang and Chen (2007) and Gulen, Xing, 
and Zhang (2010). Similar evidence is provided in the context of the consumption CAPM by Lettau and 
Ludvigson (2001), Santos and Veronesi (2006), and Lustig and Van Nieuwerburgh (2005). 
9 Lewellen and Nagel (2006), however, argue that the variation in betas and the equity premium would have to 
be implausibly great for the conditional CAPM to explain the size of the value premium. Lewellen and Nagel 
(2006) use high-frequency returns in their empirical analysis. Chan, Hameed, and Lau (2003) demonstrate that 
price and return may be driven in part by factors unrelated to fundamental cash flow risk. Such factors, together 
with liquidity events, may contaminate the estimation of beta at higher frequencies (see Pastor and Stambaugh, 
2003). Bali, Cakici, and Tang (2009) and Bauer, Cosemans, Frehen, and Schotman (2009) improve the cross-
sectional performance of the conditional CAPM by using more efficient estimation techniques. Kumar, Srescu, 
Boehme, and Danielsen (2008) and Adrian and Franzoni (2008) demonstrate that once the estimation risk or 
parameter uncertainty associated with beta and risk premium are accounted for, the conditional CAPM will have 
significantly more cross-sectional explanatory power and may explain the value premium after all. 
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Firms with the value option resemble value stocks. These firms have more assets-in-place, 

and because the value option is cheaper, value stocks are associated with higher BM. Because 

the value option has a higher expected return and positive CAPM alpha, so will the value 

stocks. Firms with the growth option resemble growth stocks. Unlike value stocks, growth 

stocks have lower BMs, lower expected returns, and negative CAPM alphas. 

Why do characteristics such as BM and size describe cross-sectional return variations? 

The key intuition follows from Berk (1995). Given expectations about future payoffs, market 

value must be correlated with systematic risk across stocks. In our numerical example, BM 

summarizes the firm’s risk relative to the scale of its asset base, and size describes the relative 

importance of assets-in-place and the option. 

Other work combines this intuition with key insights from the real options literature 

pioneered by McDonald and Siegel (1985) in linking firm-specific investment patterns, 

valuation, and expected returns. A seminal paper by Berk, Green, and Naik (1999) studies the 

implications of the optimal exercise of real investment options. In their model, investment 

opportunities with low systematic risk are attractive to the firm; making such investments 

increases firm value and reduces the average risk of the firm. Consequently, the expected 

return of the firm is dynamically linked to price-based characteristics such as BM and size. 

Gomes, Kogan, and Zhang (2003) show that these results continue to hold in a general 

equilibrium setting as well. Size and BM, correlated with true conditional betas in their model, 

help to explain stock returns in the cross-section, especially when true betas are measured 

with error.  

Carlson, Fisher, and Giammarino (2004) model the optimal dynamic investment behavior 

of monopolistic firms facing stochastic product market conditions. Their approach is similar 
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in spirit to Berk, Green, and Naik (1999), except that they also introduce operating leverage, 

reversible real options, fixed adjustment costs, and finite growth opportunities. They show 

that the BM effect can arise even if there is no cross-sectional dispersion in project risk, as 

BM summarizes market demand conditions relative to invested capital.  

Zhang (2005) demonstrates in an industry equilibrium model that the firm’s optimal 

investments, together with asymmetry in capital adjustment costs and the counter-cyclical 

price of risk, can generate the BM effect. This is because value firms have difficulty 

disinvesting, making them more risky in bad times when the market risk premium is high. On 

the other hand, Cooper (2006) develops a dynamic model that allows the BM to be 

informative of the deviation of a firm’s actual capital stock from its target. As a firm becomes 

distressed, book value remains constant, but market value falls, resulting in higher BM. Going 

forward, its extra installed capacity allows it to expand production easily without new 

investment, making its payoff more sensitive to aggregate shocks and its equity more risky. 

Empirically, Anderson and Garcia-Feijoo (2006) and Xing (2008) together provide supporting 

evidence that the investment dynamics of a firm drive the BM effect. More recently, Liu, 

Whited, and Zhang (2009) show that the dispersion in investment-to-capital between value 

and growth firms is the main driving force of the BM effect. 

 

3. The CAPM and the real option adjustment 

 

More generally, both the equity risk premium and beta will be functions of the project beta 

and other variables capturing real option effects. Assume that these functions can be 

linearized around the values of the market portfolio with small errors: 
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where i and i are the equity risk premium and the equity CAPM beta on stock i; p
i and p

i

denote the project risk premium and the project CAPM beta on stock i; and iOP represents the 

vector of variables that captures the effect of real options. Subscript M denotes the market 

portfolio. By construction, MM
p
M OPf  ),(  and .1),(  MM

p
M OPg   While the CAPM 

may fail to explain the equity risk premium ( Mii   ) because of the presence of real 

options, it may work for projects themselves ( M
p

i
p

i   ). The linearization thus suggests 

that if we remove the real option effects (terms involving iOP ) from i and i , the residual (or 

real option-adjusted) equity risk premium and beta should generally satisfy a linear relation 

(subject to linearization errors). 

Cross-sectional regressions (without the constant) can be used to remove the effect of iOP  

from i and i : 

 

 

The residuals, OA
i and OA

i , can be viewed as the option-adjusted equity risk premium and the 

equity CAPM beta on stock i and in that case we should expect .OA
i

OA
i    

Since the market index portfolio is a value-weighted average of all stocks, if we take the 

cross-sectional (value-weighted) average of the option-adjusted equity risk premium and beta 

across all stocks, we have: 
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Since M = 1 by construction, ,M
OA
i

OA
i   which in turn implies: 

,M
OA
i

OA
i    

This constitutes the main testable hypothesis of our work: the option-adjusted CAPM beta 

explains the cross section of option-adjusted equity returns. We test this hypothesis first using 

simulation analysis. 

 

3.1.  Simulation evidence 

 

In a simulation exercise to evaluate the effect of real options on expected firm stock 

returns and the performance of the CAPM, we consider a large cross-section of all-equity-

financed firms. Each firm consists of one primitive asset (project) and a call option on the 

asset. The assets differ in their CAPM beta ( p
i ) and idiosyncratic volatility (Ivoli). For 

simplicity, we assume that all assets are associated with a book value of $1 and a market value 

of $1 and that the expected return on the primitive asset satisfies the CAPM. 

All call options expire in one year and differ in their moneyness ( ik ). We assume that the 

call option can be priced using the standard Black-Scholes (1973) model. The cross-sectional 

variation in the call prices is therefore driven by three parameters: ik , Ivoli, and p
i , and the 

last two parameters jointly determine the volatility of the asset (  
     

    
 
      

 ). The 

call price then determines iw , or the weight of the option as a percentage of the total value of 

the firm i. More precisely,                 , where Ii is equal to 1 (-1) if firm i is taking a 
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long (short) position in the call option, and Oi denotes the option value. In this simple 

economy, the book-to-market ratio (BM) of the firm perfectly reveals its option weight 

(    
 

      
      ). The expected return on the firm does not satisfy the CAPM 

because there is a call option. Overall, the risk premium on firm i ( i ) is a value-weighted 

average of the risk premium on the project ( p
i ) and the option ( O

i ): 

.)1()1( O
iiM

p
ii

O
ii

p
iii wwww    

We generate the cross-section of firms by choosing the parameter values as follows (on an 

annual basis): a market risk premium ( M ) of 8.00%; a market risk-free rate of 1.00%; a 

market volatility of 0.20 (on the log market return); values for ik from 0.75 to 1.25 in 

increments of 0.05 at a time, values for Ivoli from 0.10 to 0.70 in increments of 0.10 at a time; 

and values of the primitive project beta ( p
i ) from 0 to 2 in increments of 0.10 at a time. 

Finally, for each firm with a short position in a call option, we also generate two otherwise 

identical firms, each with a long position in the same option so options are in positive net 

supply overall. 

For each firm we can compute the risk premium ( i ) and the CAPM beta ( i ) of the 

stock numerically.10 Finally, the CAPM beta is measured with errors, and the measurement 

error is drawn from a normal distribution of zero mean and a variance of 0.01. 

As the CAPM cannot price the expected return on the option component, it will not be 

able to price the expected return on the firm either. Panel A of Figure 1 confirms this result. 

When we plot the firm’s expected return vs. its CAPM betas, we do not observe a significant 

                                                 
10 Specifically, for each firm, we use Monte Carlo simulation to simulate 10,000 possible project payoffs at the 
end of the year. For each project payoff, we compute the corresponding option payoff. The expected payoffs are 
computed as averages across all 10,000 paths. The covariance between the firm return and the market return and 
the beta can also be computed using these 10,000 realizations.  
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positive relation as would be predicted by the CAPM. In fact, if we run a cross-sectional 

regression of firm expected return on firm CAPM betas, we confirm the well-documented 

failure of the CAPM to explain the cross-sectional variation in equity risk premium. First, the 

slope coefficient, which can be interpreted as the market risk premium, is only 2.04%, which 

is way below the assumed value of 8.00%. Second, when the risk premium estimate is biased 

toward zero, the intercept term is likely to be positive and significant. This is exactly what we 

find. The intercept term is 7.00% with a t-value of about 24.40. Finally, the regression R-

square is lower than 2.00%. 

As the CAPM holds on the primitive projects by construction in our simulation, the failure 

of the CAPM to predict firm returns should not invalidate its use for the purpose of project 

cost of capital calculation. Our main hypothesis posits that the CAPM should hold 

approximately for the option-adjusted equity risk premium and beta, and we test that in our 

simulated sample. 

The cross-sectional variation in real option effects in our example can be fully captured by 

three parameters: the book-to-market ratio (BMi), the moneyness of the call option ( ik ), and 

the idiosyncratic volatility (Ivoli). Therefore, the option proxies ( iOP ) in this example are a 

vector of cross-sectionally demeaned [ iBM , ik , iIvol ].  

We remove the option effects from the firm CAPM beta by regressing it on the option 

proxies in a cross-sectional regression with no constant. The residual or the option-adjusted 

beta ( OA
i ) should therefore capture the project CAPM beta. We verify this in Panel B of 

Figure 1. When plotted together, the project beta ( p
i ) lines up quite well with the option-

adjusted beta ( OA
i ). When we regress p

i on OA
i , we get an R-square almost of 90.00% and 
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a slope of 0.91. Despite the nonlinear nature of the option effect, a simple linear regression 

seems to be quite successful in removing option effects from the firm beta and recovering the 

project beta. 

In addition, we regress the firm risk premium ( i ) on the option proxies in the cross-

section with no constant to obtain the option-adjusted firm risk premium ( OA
i ). The option-

adjusted risk premium should capture the risk premium on the project. Our main hypothesis 

predicts that OA
i will be equal to the product of the option-adjusted beta and the market risk 

premium, or M
OA
i

OA
i   . Panel C of Figure 1 provides supporting evidence for the 

hypothesis. We find that OA
i is clearly positively related to OA

i . When we regress OA
i on 

OA
i , we find a slope coefficient of 8.10%, quite close to the assumed market risk premium of 

8.00%. At the same time, the intercept term is -0.04%, not significantly different from zero. In 

other words, the CAPM performs better once the option effects are removed with a simple 

regression procedure. Finally, the R-square is also much higher at 50.5%. The R-square is not 

equal to 1 for several reasons. First, linear approximation errors affect both OA
i and OA

i . 

Second, beta is assumed to be measured with error.  

 

4. The CAPM and project cost of capital: empirical analysis 

 

For our empirical analysis, we conduct monthly Fama-MacBeth (1973) cross-sectional 

regressions at the individual stock level with the Newey-West (1987) correction using a lag of 

36. Each month, we regress monthly stock excess return (over the risk-free rate) on betas and 
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stock characteristics that are measured using the most recent return and accounting data 

available to investors.  

 

4.1.  Sample and variable definitions 

 

We start with firms covered by CRSP with common shares outstanding over 1970-2008, 

with the exclusion of penny stocks (with prices lower than $5), and firms listed for less than 

three years. For each sample firm, the beta estimates are calculated as the slope coefficients of 

the CAPM regressions; while Beta_MKT, Beta_SMB, and Beta_HML are computed as the 

slope coefficients of the Fama-French three-factor regressions, both using the prior 60 months 

of return records from CRSP.11  

Two return anomaly variables are constructed using the CRSP data: medium-term price 

momentum (Momt) as the cumulative monthly stock return of [t - 13, t - 2], and long-term 

return reversal (Lret) as the cumulative monthly stock returns of [t - 60, t - 13], prior to month 

t. Monthly idiosyncratic volatility (Ivol) in month t is computed following the procedure in 

Ang, Hodrick, Xing, and Zhang (2006). 

Our CRSP sample is further intersected with COMPUSTAT data where accounting 

information is available. We require a minimum six-month gap in matching the accounting 

data of calendar year t - 1 to monthly return data of calendar year t to ensure that the 

accounting information is available to market investors. We construct a number of variables 

using information available from COMPUSTAT files. BE is book value (in millions) as the 

                                                 
11 Hoberg and Welch (2007) argue that investors may be slow in adjusting to recent changes in market risk, and 
recommend the use of aged beta. For this reason, we also examine aged betas (the CAPM beta estimated using [t 
- 85, t - 25] five-year rolling windows after skipping the most recent two years) and find them to produce similar 
results in the cross-sectional regressions.  
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sum of stockholders’ equity, deferred tax, investment tax credits, and convertible debt, minus 

the liquidation value of preferred stocks (Fama and French, 1992, 1993). BM is the ratio of 

BE over firm market capitalization measured as of the most recent June. ROA is the ratio of 

quarterly earnings scaled by the one-quarter-lagged asset in the prior quarter. The asset 

growth rate (Ast_gw) is calculated as the year-on-year percentage change in total assets 

(Cooper, Gulen, and Schill, 2008), while investment-to-capital ratio (Inv) is the annual change 

in gross property, plant, and equipment scaled by the lagged book value of assets (Chen, 

Novy-Marx, and Zhang, 2010). Earnings surprise (Sue) is computed using the difference in 

quarterly earnings in the [t - 3, t - 6] window and the corresponding value announced 4 

quarters ago scaled by the standard deviation of the corresponding earnings change over the 

previous 8 quarters prior to return measurement in month t (Chan, Jegadeesh, and Lakonishok, 

1996) .  Table 1 defines all the variables. 

We focus on BM, Ivol, and ROA as our empirical real option proxies. BM is a common 

proxy for growth options in the finance literature (see Smith and Watts,1992, among others). 

The choice of Ivol is motivated by Cao, Simin, and Zhao (2008) and Bekaert, Hodrick, and 

Zhang (2010), which establish a theoretical link between growth options available to 

managers and the idiosyncratic risk of equity. Finally, Chen, Novy-Marx, and Zhang (2010) 

argue that ROA is a good empirical proxy for the marginal product of capital, which is related 

to the marginal expansion option as in the real option model of Abel, Dixit, Eberly, and 

Pindyck (1996). The choices of these three real option proxies are consistent with the 

simulation example in Section 3.1. 

Table 2 reports pairwise correlations among our empirical variables. Several interesting 

patterns emerge. First, asset growth (Ast_gw), investment-to-capital ratio (Inv), and past long-
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term return (Lret) are highly correlated with one another, suggesting that those anomalies are 

related, and all seem to capture a long-term return reversal pattern. These three variables are 

also significantly correlated with BM. To the extent that BM proxies for the real option, these 

correlations suggest that asset growth, investment-related, and long-term reversal anomalies 

could be related to real option features and thus may be partially alleviated if we control for 

BM in our option adjustment. Second, not surprisingly, earnings surprise (Sue) and medium-

term price momentum (Momt) are positively correlated, and they are both correlated with 

ROA, suggesting that earnings and price momentum may be alleviated if we control for ROA 

in our option adjustment. 

Our final sample consists of a panel of monthly stock observations with non-missing real 

option proxies (BM, Ivol, ROA) from July 1970 through June 2008. There are on average 

2,087 stocks each month. We denote this as our full sample. We also consider a subsample 

where we further eliminate stocks whose CAPM betas are likely to be estimated with large 

errors. We use two filters for this purpose. First, we exclude stocks that do not have complete 

five-year data to estimate betas. Second, we exclude stocks whose CAPM betas are extreme 

(below the 5th percentile or above the 95th percentile in the cross-section). The second filter 

is similar to what Mamaysky, Spiegel, and Zhang (2008) use in their analysis of mutual fund 

performance persistence. Altogether, these two filters remove about 14.6% (or 5.3% by 

market capitalization) of stocks from our full sample. Our subsample thus includes about 

1,783 stocks per month on average.  

 

4.2. Cross-sectional regression analysis: full sample 
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When there are real options associated with the primitive projects undertaken by the firm, 

both equity returns and equity betas are complicated functions of these real options, and the 

CAPM may not hold. Table 3 confirms the well-documented failure of the CAPM beta to 

explain the cross-sectional variation in returns. In Model 1, when we regress monthly 

individual stock excess return (in excess of the risk-free rate) on the CAPM beta, we get a 

slope coefficient very close to zero and a huge intercept term (78 basis points per month or 

9.36% per year).  

Models 2-6 confirm the presence of several well-known asset pricing anomalies in our 

sample. For example, firms with higher asset growth rates are associated with lower stock 

returns (asset growth anomaly, see Cooper, Gulen, and Schill, 2008); firms with higher 

investments are associated with lower stock returns (investment-related anomaly; see 

Anderson and Garcia-Feijoo, 2006; Xing, 2008; and Chen, Novy-Marx, and Zhang, 2010); 

stocks with higher long-term past returns are associated with lower returns (long-term reversal; 

see DeBondt and Thaler, 1985); stocks with higher returns in the last year have higher current 

returns (price momentum; see Jegadeesh and Titman, 1993); and stocks with positive earnings 

surprises have higher returns (earnings momentum; see Bernard and Thomas,1990). The 

CAPM beta is not significant at all in the presence of these anomalies. 

Models 7-12 add the Fama-French three factor betas estimated using the standard five-

year [t - 60, t - 1] rolling window. While the HML factor beta becomes significant, the MKT 

factor beta remains insignificant and is associated with a close-to-zero risk premium. In 

addition, all five anomalies remain to be significant after the inclusion of two additional SMB 

and HML factor betas. 
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Under our main hypothesis, if the failure of the CAPM on equity return is driven by real 

options, then removing the effect of real options from equity returns and betas should improve 

the performance of the CAPM. We follow the procedure described in Section 3 to conduct 

real option adjustment using a cross-sectional regression. In the first-stage regression, we 

regress the monthly (excess) stock return or the factor loadings (including the CAPM beta) on 

the three real option proxies (BM, Ivol, and ROA). All three variables are measured in terms 

of the excess over their counterparts for the market portfolio, and the regression has no 

intercept term. These procedures ensure that the CAPM relation holds for the market portfolio. 

The residuals from these regressions are the option-adjusted (excess) returns and option-

adjusted betas. Given the fact that true real options, which are not directly observable, affect 

both returns and betas in highly complicated and nonlinear fashion, our simple regression 

approach may not fully remove real option effects. Yet to the extent that our real option 

proxies correlate with the true real options, the option-adjusted (excess) returns and option-

adjusted betas from the first-stage regression should more closely resemble the risk premium 

and betas of the underlying primitive projects. If so, the CAPM should perform better after 

real option adjustments.  

Table 4 reports results of the regression analysis in Table 3 but after the first-stage real 

option adjustments. In Model 1, we find the option-adjusted CAPM beta becomes 

significantly and positively related to the option-adjusted (excess) stock return. The slope 

coefficient is 42 bps per month (or 5.04% per year with a t-value of 3.11). In addition, the 

intercept term drops from 78 bps per month in Table 3 to 20 bps per month (or 2.40% per 

year), which is still significant (t-value = 3.14).  
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Models 2-6 find the option-adjusted CAPM beta to be still highly significant (with t-

values usually above 2.6) even in the presence of the anomaly variables. Interestingly, the 

option-adjusted CAPM beta helps to weaken or even drive out several anomalies that are 

associated with long-term stock price mean reversion (Ast_gw, Inv, and Lret). For instance, 

after real option adjustment, the t-value associated with asset growth (Ast_gw) drops from -

3.79 (in Table 3) to -2.34. Furthermore, investment-to-capital ratio (Inv) and past long-term 

return (Lret) become insignificant with t-values of -1.49 and -0.94, respectively. This result is 

consistent with recent findings by Cooper and Priestley (2010), which suggest that firms’ real 

options are likely driving the asset growth and investment-related anomalies. On the other 

hand, the real option adjustment has little impact on anomalies that are related to short-term 

return continuation. Both price and earnings momentum (Momt and Sue) remain highly 

significant. Additional unreported diagnostic tests confirm that both anomalies, at monthly 

frequency, are driven by components in Momt and Sue that are orthogonal to ROA. To the 

extent that short-term price continuation typically does not persist beyond a few quarters and 

requires frequent portfolio rebalancing, it is probably less relevant for the cost of capital 

calculation for a project whose life usually goes beyond five years. Models 7-12 again include 

the Fama-French three factor betas after the real option adjustment. The CAPM beta now 

drives out the factor loading on HML in explaining option-adjusted stock returns. 

Our analysis so far suffers from the standard errors-in-variables problem as the time-series 

estimation of betas introduces measurement errors. Kim (1995) shows that the problem leads 

to a lower risk premium estimate and a higher intercept estimate in the cross-sectional 

regression, potentially explaining why we find that the slope coefficient is smaller than the 

market risk premium, and the intercept term is significantly different from zero. Following 
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Jagannathan, Kim, and Skoulakis (2010), we directly correct the biased cross-sectional 

regression estimates for the errors-in-variables problem. The details of the correction are 

presented in the Internet Appendix. The bias-corrected regression coefficients and their t-

values are reported in Table 5. 

A comparison of the results in Table 5 and those in Table 4 shows that bias correction in 

general increases the slope estimates on the CAPM beta and reduces the intercept estimates. 

For example, in Model 1, a single CAPM beta receives a slope estimate of 53 bps per month 

(or 6.36% per year), closer to the historical annual market risk premium of about 8.00% in the 

US. In fact, the slope coefficient of 6.36% per year is not significantly different from 8.00%. 

In addition, the intercept term drops to 14 bps (or 1.68% per year) and becomes less 

significant (t-value = 2.45). With the Fama-French three factor model (Model 7), the intercept 

term becomes even smaller at 6 bps per month (or 0.72% per year). 

Figure 2 demonstrates the effect of option adjustment on selected portfolios.  We compare 

the results of the portfolio average annualized excess returns plotted against portfolio average 

betas (left-hand panel); with those of the portfolio average option-adjusted excess returns 

against portfolio average option-adjusted betas (right-hand panel). The regression estimates 

are presented below the plots. In Panel A, based on results for the 25 book-to-market and size- 

sorted portfolios, the failure of the CAPM without option adjustment is evident in the left plot; 

the intercept term is huge, while the slope coefficient is small and even negative. The 

improvement in the performance of the CAPM after the option adjustment is significant as 

seen in the right plot; the intercept term becomes much smaller (dropping from 13.19% to 

1.09%), and the slope coefficient of 7.60% becomes significant. Furthermore, the R-square 

increases from less than 4% to almost 60%. 
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Panel B examines the Fama-French 48 industry portfolios and underlies similar 

conclusions. In the case of regression of portfolio excess returns on portfolio betas, the 

intercept term is huge and significant, while the slope coefficient is small and insignificant. 

The option adjustment again improves the regression. In the case of regression of option-

adjusted portfolio excess returns on option-adjusted portfolio betas, the intercept term 

becomes close to zero and insignificant (dropping from 8.33% to 0.11%), and the slope 

coefficient of 6.19% becomes very significant. Furthermore, the R-square improves from less 

than 1% to almost 19%. 

 

4. 3. Cross-sectional regression analysis: subsample 

 

Table 6 reports the bias-corrected regression results for our subsample, after excluding 

about 14.6% of stocks in the full sample whose CAPM betas are likely to be estimated with 

large errors, by following the procedures described in Mamaysky, Spiegel, and Zhang (2008).  

Removing these stocks further strengthens support for the CAPM after real option adjustment. 

For example, in Model 1, a single CAPM beta receives a slope estimate of 65 bps per month 

(or 7.80% per year), very close to the historical market risk premium of about 8.00% in the 

US. In addition, the intercept term drops to 8 bps per month (or 0.96% per year) and becomes 

insignificant (t-value = 1.61). For the Fama-French three-factor model (Model 7), the 

intercept term becomes even lower at 2 bps per month (or 0.24% per year) and insignificant. 

We again find that real option adjustment helps to weaken or even drive out several anomalies 

that are associated with long-term stock price mean reversion (Ast_gw, Inv, and Lret).  
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We thus provide direct evidence suggesting that the failure of the CAPM to explain stock 

returns is likely attributable to the real options effect. Once these real options are “removed,” 

the CAPM works reasonably well in explaining the risk premium on the primitive projects. 

The Internet Appendix contains robustness results from additional regressions where we drop 

one real option proxy at a time. We find our main conclusion to be robust to the exclusion of 

any of the three proxies. 

 

5. Conclusion 

We have evaluated the empirical evidence against the standard CAPM from the 

perspective that it can nevertheless provide a reasonable estimate of a project’s cost of capital. 

To do this, we differentiate the required expected return on potential primitive projects 

available to a firm from the required expected return on a firm’s stocks.   

We find that a firm’s embedded real option to modify and abandon established projects 

and undertake new projects may be an important reason behind the poor performance of the 

CAPM in explaining the cross section of returns on size- and book-to-market-sorted stock 

portfolios. This lends support to the Berk, Green, and Naik (1999) observation that stock 

returns need not satisfy the CAPM even when the expected returns on all individual projects 

do.   

We propose a cross sectional regression method for constructing the option-adjusted 

returns of firms and the corresponding project betas.  We provide simulation and empirical 

evidence supporting the use of the method.  When we compute project betas using the cross 

sectional regression procedure, we find that the CAPM does a reasonable job in explaining 

option-adjusted stock returns at the individual stock level.  
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Levy and Roll (2010) make the interesting observation that small variations in the values 

of sample parameters can make commonly used market proxies mean variance efficient, and 

“the CAPM (i.e., ex ante mean/variance efficiency of the market index proxy) is consistent 

with the empirically observed return parameters and the market proxy portfolio weights.”  In 

this paper we provide an alternative explanation for the continued use of the CAPM by 

finance professionals.  Our findings support the view that the CAPM provides a reasonable 

estimate of a project’s cost of capital, provided that any embedded real options associated 

with the project are evaluated separately for capital budgeting purposes.  
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Figure 1  Option-Adjusted Betas and the CAPM: Simulation Evidence 

We generate a large cross-section of firms. Each firm is a portfolio of a primitive asset (project) and a call option on it. The call 
options expire in one year. We assume a market risk premium ( M ) of 8.00% and a market risk-free rate of 1.00%. We also assume a 
market volatility of 0.20 (on the log market return). We vary option moneyness ( ik ) from 0.75 to 1.25 in increments of 0.05. We vary 
asset idiosyncratic volatility (Ivoli) from 0.10 to 0.70 in increments of 0.10. We vary the primitive project beta ( p

i ) from 0 to 2 in 
increments of 0.10. For each firm with a short position in a call option, we also generate two otherwise identical firms, each with a 
long position in the same option. For each firm, we compute the risk premium ( i ) and the CAPM beta ( i ) of the stock numerically 
using Monte Carlo simulations. The option-adjusted beta ( OA

i ) is the residual of regressing the firm CAPM beta on the option proxies 
[ iBM , ik , iIvol ] in a cross-sectional regression with no constant. The option-adjusted firm risk premium ( OA

i ) is the residual of 
regressing the firm risk premium ( i ) on the option proxies in the cross-section with no constant. Finally, we add a measurement error 
to the CAPM beta, drawn from a normal distribution of zero mean and a variance of 0.01. Panel A plots the firm risk premium against 
firm CAPM beta. Panel B plots the firm CAPM beta against option-adjusted beta. Panel C plots the option-adjusted risk premium 
against option-adjusted beta. 
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Figure 2  Portfolio Excess Returns and Portfolio Betas 

 
Lefthand-side graphs plot portfolio average monthly excess returns against portfolio average betas. Righthand-side graphs plot 
portfolio average option-adjusted excess returns against portfolio average option-adjusted betas. The regression estimates of excess 
returns on betas are presented below the plots. Panel A examines 25 portfolios sorted on book-to-market and size and Panel B 
examines 48 industry portfolios constructed using the Fama-French industry classifications. The option adjusted variables are 
constructed as the residuals from regressing the raw variables with independent variables of BM, Ivol, and ROA. 
 
Panel A: 25 Book-to-market and size- sorted portfolios 
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Panel B: 48 Industry portfolios 
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Table 1  Variable Definition 

 

Variable Definition 
Beta  CAPM beta estimated using 5-year monthly return data prior to return 

measurement in month t. 
  
Size Market capitalization (in millions) measured on the last trading day of 

June. 
  
BE Book value (in millions).  

If the data item of  Compustat Data216 is not missing, then BE= 
Data216 - Data10 + Data35 + Data79, otherwise BE =Data6 - Data181-
Data10 + Data35 + Data79. 

  
BM Ratio of BE to Size. 
  
ROA Ratio of quarterly earnings scaled by the one-quarter-lagged asset in the 

prior quarter. 
  
Ivol Monthly idiosyncratic volatility in month t-1 computed following the 

procedure described in Ang et al. (2006). 
 

Momt Cumulative monthly stock returns of [t - 13, t - 2] prior to return 
measurement in month t. 

 
Sue 

 
Earnings surprise computed using the difference in quarterly earnings 
in the [t - 3, t - 6] window and the corresponding value announced 4 
quarters ago scaled by the standard deviation of the corresponding 
earnings change over the previous 8 quarters prior to return 
measurement in month t.  
 

Ast_gw Growth rate of total asset value in the prior year computed following 
the procedure as described in Cooper et al. (2008). 
 

Inv Investment-to-capital ratio as the annual change in sum of gross 
property, plant, and equipment and inventories scaled by lagged book 
assets as described in Chen et al. (2010). 
 

Lret Cumulative monthly stock returns of [t - 60, t - 13] prior to return 
measurement in month t. 
 

MKT, SMB, 
and HML 

Fama-French three-factor with MKT as the CRSP value-weighted 
return on all stocks, and SMB and HML the size and value factors. 
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Table 2 Correlation Matrix  
 

Pearson correlations of CAPM beta, betas of Fama-French three-factor (Beta_MKT, Beta_SMB, and Beta_HML), other return anomaly variables (Ast_gw, Inv, Lret, 
Momt, and Sue); and real option variables (BM, Ivol, and ROA) are presented. ***, **, and * denote significance at the 1%, 5%, and 10% levels. 

 
 

 
Beta Beta_MKT Beta_SMB Beta_HML BM Ivol ROA Ast_gw Inv Lret Sue Momt 

Beta  1 
  

         

Beta_MKT  0.8224*** 1 
          Beta_SMB 0.2960*** 0.0054 1 

         Beta_HML -0.2314** 0.1659** 0.0717* 1 
        BM -0.1907** -0.1027** 0.0027* 0.2787*** 1 

       Ivol 0.3843*** 0.2126** 0.3970*** -0.0874* -0.0594* 1 
      ROA -0.0446 -0.0296 -0.0896* -0.0583* -0.2439** -0.1071** 1 

     Ast_gw 0.1055 0.0609* 0.0393 -0.0970* -0.1688*** 0.0722 0.0233 1 
    Inv 0.0442 0.0326 -0.0016 -0.0553 -0.1265** 0.0403 0.0375 0.6400** 1 

   Lret 0.0682* 0.0310 0.0211 -0.0892* -0.2977*** 0.0279 0.1470** 0.1981** 0.1596** 1 
  Sue 0.0003 0.0063 -0.0725 -0.0570 -0.2491*** -0.0973* 0.3877*** 0.0315 0.0107 0.0931* 1 

 Momt -0.0041* -0.0001* 0.0271* 0.0281* -0.1753* -0.0150* 0.1902** -0.0255 -0.0349 0.0219 0.2625*** 1 
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Table 3 Cross-Sectional Regression: Full Sample 
The dependent variable is monthly excess returns; independent variables are beta, betas of Fama-French three-factor (Beta_MKT, Beta_SMB, and 
Beta_HML), and the return anomaly variables (Ast_gw, Inv, Lret, Momt, and Sue). The regression coefficients for the sample period of 1970/07-
2008/06 are averaged across time. T-values (in parentheses) are computed using the Fama-MacBeth procedure and the Newey-West (1987) 
formula with a lag of 36. Log-transformations are applied to Size and BM. There are on average 2,087 stocks each month in our full sample. 
 

Variable Const. Beta Beta_MKT Beta_SMB Beta_HML Ast_gw Inv Lret Sue Momt Adj R2 
Model 1 0.0078 -0.0001 - - - - - - - - 2.61% 

 
(4.21) (-0.09) 

         Model 2 0.0084 0.0003 - - - -0.0082 - - - - 2.83% 

 
(4.57) (0.21) 

   
(-3.79) 

     Model 3 0.0084 0.0001 - - - - -0.0098 - - - 2.83% 

 
(4.42) (0.09) 

    
(-2.57) 

    Model 4 0.0081 -0.0001 - - - - - -0.0012 - - 3.00% 

 
(4.50) (-0.04) 

     
(-2.08) 

   Model 5 0.0072 -0.0002 - - - - - - 0.0015 - 3.00% 

 
(3.90) (-0.12) 

      
(6.59) 

  Model 6 0.0066 -0.0004 - - - - - - - 0.0075 3.71% 

 
(3.71) (-0.34) 

       
(5.28) 

 Model 7 0.0067 - 0.0002 0.0004 0.0022 - - - - - 4.15% 

 
(4.19) 

 
(0.21) (0.46) (2.64) 

      Model 8 0.0074 - 0.0005 0.0004 0.0018 -0.0068 - - - - 4.31% 

 
(4.62) 

 
(0.47) (0.53) (2.29) (-3.78) 

     Model 9 0.0073 - 0.0004 0.0004 0.0019 - -0.0082 - - - 4.32% 

 
(4.39) 

 
(0.39) (0.53) (2.36) 

 
(-2.45) 

    Model 10 0.0071 - 0.0004 0.0002 0.0018 - - -0.0009 - - 4.46% 

 
(4.57) 

 
(0.36) (0.25) (2.29) 

  
(-2.19) 

   Model 11 0.0061 - 0.0001 0.0006 0.0024 - - - 0.0015 - 4.49% 

 
(3.71) 

 
(0.12) (0.70) (2.94) 

   
(7.26) 

  Model 12 0.0056 - 0.0000 0.0003 0.0023 - - - - 0.0068 5.03% 

 
(3.53) 

 
(-0.05) (0.45) (3.15) 

    
(5.20) 
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Table 4 Cross-Sectional Regression after Real Option Adjustment: Full Sample 

The dependent variable is the option adjusted monthly excess returns; independent variables are beta, betas of Fama-French three-factor (Beta_MKT, 
Beta_SMB, and Beta_HML), and the return anomaly variables (Ast_gw, Inv, Lret, Momt, and Sue). The regression coefficients for the sample period 
of 1970/07-2008/06 are averaged across time. T-values (in parentheses) are computed using the Fama-MacBeth procedure and the Newey-West 
(1987) formula with a lag of 36. Log-transformations are applied to Size and BM. The option adjusted variables are constructed as the residuals 
from regressing the raw variables with independent variables of BM, Ivol, and ROA. There are on average 2,087 stocks each month in our full 
sample. 
 

 
Const. Beta Beta_MKT Beta_SMB Beta_HML Ast_gw Inv Lret Sue Momt Adj R2 

Model 1 0.0020 0.0042 - - - - - - - - 3.90% 

 
(3.14) (3.35) 

         Model 2 0.0021 0.0046 - - - -0.0043 - - - - 4.08% 

 
(3.38) (3.98) 

   
(-2.34) 

     Model 3 0.0020 0.0045 - - - - -0.0048 - - - 4.09% 

 
(3.25) (3.74) 

    
(-1.49) 

    Model 4 0.0019 0.0044 - - - - - -0.0004 - - 4.16% 

 
(3.60) (3.67) 

     
(-0.94) 

   Model 5 0.0016 0.0035 - - - - - - 0.0016 - 4.10% 

 
(2.78) (2.79) 

      
(9.75) 

  Model 6 0.0014 0.0031 - - - - - - - 0.0080 4.78% 

 
(2.61) (2.66) 

       
(6.52) 

 Model 7 0.0016 - 0.0041 0.0017 0.0009 - - - - - 4.97% 

 
(3.06) 

 
(3.58) (1.98) (1.43) 

      Model 8 0.0017 - 0.0045 0.0018 0.0007 -0.0041 - - - - 5.12% 

 
(3.33) 

 
(4.24) (2.17) (1.13) (-2.32) 

     Model 9 0.0017 - 0.0044 0.0018 0.0007 - -0.0047 - - - 5.12% 

 
(3.18) 

 
(4.00) (2.15) (1.15) 

 
(-1.65) 

    Model 10 0.0016 - 0.0044 0.0017 0.0007 - - -0.0005 - - 5.19% 

 
(3.53) 

 
(4.05) (1.92) (1.21) 

  
(-1.21) 

   Model 11 0.0013 - 0.0034 0.0016 0.0009 - - - 0.0016 - 5.15% 

 
(2.66) 

 
(2.96) (1.86) (1.51) 

   
(9.82) 

  Model 12 0.0011 - 0.0031 0.0014 0.0007 - - - - 0.0073 5.67% 

 
(2.48) 

 
(2.85) (1.71) (1.40) 

    
(6.21) 
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Table 5 Bias-Corrected Cross-Sectional Regression with Real Option Adjustment: Full Sample 
The dependent variable is option adjusted monthly excess returns; independent variables are beta, betas of Fama-French three-factor (Beta_MKT, 
Beta_SMB, and Beta_HML), and the return anomaly variables. The regression coefficients for the sample period of 1970/07-2008/06 are first 
corrected using procedures described in the Internet Appendix and averaged across time. T-values (in parentheses) are computed using the Fama-
MacBeth procedure and the Newey-West (1987) formula with a lag of 36. Log-transformations are applied to Size and BM. The option adjusted 
variables are constructed as the residuals from regressing the raw variables with independent variables of BM, Ivol, and ROA. There are on 
average 2,087 stocks each month in our full sample. 

 
Const. Beta Beta_MKT Beta_SMB Beta_HML Ast_gw Inv Lret Sue Momt Adj R2 

Model 1 0.0014 0.0053 - - - - - - - - 1.80% 

 
(2.45) (3.42) 

         Model 2 0.0014 0.0061 - - - -0.0057 - - - - 1.99% 

 
(2.56) (4.05) 

   
(-3.26) 

     Model 3 0.0014 0.0059 - - - - -0.0065 - - - 1.96% 

 
(2.54) (3.80) 

    
(-1.94) 

    Model 4 0.0013 0.0058 - - - - - -0.0006 - - 1.96% 

 
(2.72) (3.73) 

     
(-1.38) 

   Model 5 0.0012 0.0045 - - - - - - 0.0016 - 1.94% 

 
(2.18) (2.82) 

      
(8.49) 

  Model 6 0.0009 0.0039 - - - - - - - 0.0083 2.77% 

 
(1.98) (2.70) 

       
(7.13) 

 Model 7 0.0006 - 0.0054 0.0024 0.0030 - - - - - 1.18% 

 
(1.96) 

 
(3.53) (1.47) (1.82) 

      Model 8 0.0007 - 0.0059 0.0025 0.0026 -0.0045 - - - - 1.23% 

 
(2.16) 

 
(4.06) (1.57) (1.66) (-2.94) 

     Model 9 0.0007 - 0.0058 0.0026 0.0026 - -0.0056 - - - 1.30% 

 
(2.12) 

 
(3.87) (1.60) (1.66) 

 
(-2.18) 

    Model 10 0.0007 - 0.0059 0.0024 0.0028 - - -0.0007 - - 1.28% 

 
(2.20) 

 
(3.96) (1.48) (1.71) 

  
(-2.08) 

   Model 11 0.0005 - 0.0046 0.0023 0.0028 - - - 0.0013 - 1.34% 

 
(1.56) 

 
(2.96) (1.45) (1.80) 

   
(8.34) 

  Model 12 0.0004 - 0.0039 0.0029 0.0035 - - - - 0.0049 1.71% 

 
(1.48) 

 
(2.54) (1.66) (1.67) 

    
(2.52) 
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Table 6 Bias-Corrected Cross-Sectional Regression with Option Adjustment: Subsample 

Cross-sectional regression analysis is conducted on the subsample of stocks after excluding stocks whose betas are likely estimated with large errors. The 
dependent variable is the optioned-adjusted monthly excess returns; independent variables are beta, betas of Fama-French three-factor (Beta_MKT, Beta_SMB, and 
Beta_HML) and the return anomaly variables. The regression coefficients for the sample period of 1970/07-2008/06 are first corrected using procedures described 
in the Internet Appendix and averaged across time. T-values (in parentheses) are computed using the Fama-MacBeth procedure and the Newey-West (1987) 
formula with a lag of 36. Log-transformations are applied to Size and BM. The option adjusted variables are constructed as the residuals from regressing the raw 
variables with independent variables of BM, Ivol, and ROA. There are on average 1,783 stocks each month in our subsample. 
 

 
Const. Beta Beta_MKT Beta_SMB Beta_HML Ast_gw Inv Lret Sue Momt Adj R2 

Model 1 0.0008 0.0065 - - - - - - - - 1.64% 

 
(1.61) (3.75) 

         Model 2 0.0008 0.0074 - - - -0.0054 - - - - 1.85% 

 
(1.57) (4.31) 

   
(-3.11) 

     Model 3 0.0008 0.0072 - - - - -0.0065 - - - 1.80% 

 
(1.61) (4.05) 

    
(-1.76) 

    Model 4 0.0007 0.0071 - - - - - -0.0005 - - 1.80% 

 
(1.62) (4.05) 

     
(-1.38) 

   Model 5 0.0007 0.0056 - - - - - - 0.0015 - 1.87% 

 
(1.46) (3.10) 

      
(7.97) 

  Model 6 0.0005 0.0047 - - - - - - - 0.0087 2.67% 

 
(1.28) (2.98) 

       
(7.75) 

 Model 7 0.0002 - 0.0063 0.0024 0.0024 - - - - - 0.83% 

 
(0.60) 

 
(3.42) (1.36) (1.24) 

      Model 8 0.0002 - 0.0069 0.0025 0.0022 -0.0040 - - - - 0.99% 

 
(0.63) 

 
(3.73) (1.45) (1.12) (-2.77) 

     Model 9 0.0002 - 0.0068 0.0026 0.0021 - -0.0053 - - - 0.89% 

 
(0.72) 

 
(3.58) (1.49) (1.07) 

 
(-1.78) 

    Model 10 0.0002 - 0.0070 0.0024 0.0021 - - -0.0006 - - 0.97% 

 
(0.63) 

 
(3.80) (1.38) (1.08) 

  
(-2.34) 

   Model 11 0.0001 - 0.0054 0.0024 0.0023 - - - 0.0012 - 1.01% 

 
(0.33) 

 
(2.90) (1.36) (1.20) 

   
(7.30) 

  Model 12 0.0001 - 0.0060 0.0006 -0.0017 - - - - 0.0074 1.36% 

 
(0.29) 

 
(3.32) (0.27) (-0.42) 

    
(4.34) 
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Appendices with Supplementary Materials for  
CAPM for Estimating Cost of Equity Capital: Interpreting the Empirical Evidence 

 

This document contains supplementary material to the paper titled “CAPM for estimating cost of 

equity capital: Interpreting the empirical evidence.” Appendix A describes the procedures we 

adapt from Jagannathan, Kim, and Skoulakis (2010) to correct the biased cross-sectional 

regression estimates for the errors-in-variables problem. Appendix B presents results from 

additional cross-sectional regressions where we drop one real option proxy at a time. 

 

Appendix A Bias correction in three-stage cross-sectional regression 

The cross-sectional regressions in Section 4.2 and Tables 5 and 6 are ran in three stages. In 

the first stage, we estimate betas using a rolling-window time-series regression with a window 

length equal to 60 months. In the second stage, we conduct real options adjustment by projecting 

returns and betas on option-related stock characteristics in the cross-section and compute the 

residuals. In the third stage, we regress option-adjusted returns on option-adjusted betas and 

other return anomaly variables in the cross-section following the Fama-MacBeth (1973) 

procedure. 

Since betas are estimated with errors in the first stage, we will have an errors-in-variables 

problem in the final cross-sectional regression, resulting in biased risk premium estimates as 

observed by Kim (1995). The procedures described here are adapted from procedures in 

Jagannathan, Kim, and Skoulakis (2010). 

In the first stage, for each stock, at time T, we estimate the beta(s) using a rolling window 

time-series regression from T - K to T - 1 as follows: 

 𝑅𝑖,𝑡 = 𝛼𝑖 + 𝛽𝑖𝑥𝑡 + 𝜀𝑖,𝑡, (A-1)  

where βi and xt are M by 1 vectors. We ignore the time T subscript throughout the appendix. To 

further simplify notation, we define the following: 

𝑅𝑖 = �
𝑅𝑖,𝑇−1
⋯

𝑅𝑖,𝑇−𝐾
� 

𝑋 = �
𝑥𝑇−11 ⋯ 𝑥𝑇−1𝑀

⋯ ⋯ ⋯
𝑥𝑇−𝐾1 ⋯ 𝑥𝑇−𝐾𝑀

� 



2 
 

𝜀𝑖 = �
𝜀𝑖,𝑇−1
⋯

𝜀𝑖,𝑇−𝐾
� 

(A-1) can be rewritten in matrix form as follows: 

 𝑅𝑖 = (1 𝑋) �
𝛼𝑖
𝛽𝑖� + 𝜀𝑖. (A-2)  

After de-meaning Ri  and X for simple notation, we get: 

 𝛽𝑖𝑂𝐿𝑆 = (𝑋′𝑋)−1𝑋′𝑅𝑖 = 𝛽𝑖 + (𝑋′𝑋)−1𝑋′𝜀𝑖. (A-3)  

In the second stage, at each time T, we run cross-sectional regressions without constants to 

compute option-adjusted returns and residual betas: 

 𝑅 = 𝑍𝐴 + 𝑅� , 

𝛽𝑂𝐿𝑆 = 𝑍𝐵 + 𝛽�𝑂𝐿𝑆, 
(A-4)  

where Z is an N by P matrix of real option proxies (assuming to be measured without errors). 

Estimates of loadings are: 

𝐴̂ = (𝑍′𝑍)−1𝑍′𝑅, 

𝐵� = (𝑍′𝑍)−1𝑍′𝛽𝑂𝐿𝑆 

As a result: 

𝑅� = 𝐾𝑅, 

𝛽�𝑂𝐿𝑆 = 𝐾𝛽𝑂𝐿𝑆, 

𝐾 = 𝐼 − 𝑍(𝑍′𝑍)−1𝑍′. 

K is  N by N symmetric and idempotent. It rotates the original returns and betas to remove the 

option effect from the cross-section. The CAPM holds better with the option-adjusted returns and 

betas. 

In the third stage, we run Fama-MacBeth cross-sectional regressions. At time T, we have the  

cross-sectional regression: 

 𝐾𝑅𝑖,𝑡 = 𝛾0 + 𝛾1𝐾𝛽𝑖 + 𝛾2𝑉𝑖,𝑡 + 𝜀𝑖,𝑡, (A-5)  

where 𝛾0 = 𝛾2 = 0 under the null. V captures additional characteristics measured without error. 

𝑉𝑖,𝑇 and 𝛾2 are L by 1 vectors. To simplify notation, we define: 

𝐾𝑅𝑇 = 𝐾 �
𝛾1,𝑇
⋯
𝛾𝑁,𝑇

� ,𝐾𝛽 = 𝐾�
𝛽′1
⋯
𝛽′𝑁

� ,𝐾𝐵 = 𝐾�
𝛽1𝑂𝐿𝑆′
⋯

𝛽𝑁𝑂𝐿𝑆′
� 
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𝜀𝑇 = �
𝜀1,𝑇
⋯
𝜀𝑁,𝑇

� ,𝑉 = �
𝑉′1,𝑇
⋯
𝑉′𝑁,𝑇

� , 𝜀 = �
𝜀1
⋯
𝜀𝑁
� 

(A-5) can be rewritten as: 

𝐾𝑅𝑇 = 𝛾0 + 𝐾𝛽𝛾1 + 𝑉𝛾2 + 𝜀𝑇 

= 𝛾0 + 𝐾𝐵𝛾1 + 𝑉𝛾2 − 𝐾𝜀 ′𝑋(𝑋′𝑋)−1𝛾1 + 𝜀𝑇, 

or: 

[1 𝐾𝐵 𝑉]′𝐾𝑅𝑇 = [1 𝐾𝐵 𝑉]′[1 𝐾𝐵 𝑉] �
𝛾0
𝛾1
𝛾2
� + [1 𝐾𝐵 𝑉]′[−𝐾𝜀 ′𝑋(𝑋′𝑋)−1𝛾1 + 𝜀𝑇] 

Multiplying both sides by [1 𝐾𝐵 𝑉]′[1 𝐾𝐵 𝑉]−1, we have: 

 
�
𝛾0
𝛾1
𝛾2
�
𝑂𝐿𝑆

= �
𝛾0
𝛾1
𝛾2
� + [[1 𝐾𝐵 𝑉]′[1 𝐾𝐵 𝑉]]−1  �

1
𝐾𝐵
𝑉
� [−𝐾𝜀 ′𝑋(𝑋′𝑋)−1𝛾1 + 𝜀𝑇]. (A-6)  

We assume 𝜇𝑦 = lim𝑁→∞∑
𝑦𝑖
𝑁

𝑁
𝑖=1 , a cross-sectional mean of a vector of random variables, and 

𝜇𝑥𝑦 = lim
𝑁→∞

�
(𝑥𝑖 − 𝜇𝑥)(𝑦𝑖 − 𝜇𝑦)

𝑁

𝑁

𝑖=1

, 

a cross-sectional covariance of vectors of random variables. We also assume all the second 

moments to be finite and the usual orthogonality condition holds. 

We focus on the second term of the RHS in Equation (A-6). As 𝑁 → ∞: 
 

�
1′1 1′𝐾𝐵 1′𝑉 ′
𝐵′𝐾 ′1 𝐵′𝐾 ′𝐾𝐵 𝐵′𝐾 ′𝑉
𝑉 ′1 𝑉 ′𝐾𝐵 𝑉 ′𝑉

�

−1

�
1′
𝐵′𝐾 ′
𝑉 ′

� �[−𝐾𝜀 ′𝑋(𝑋′𝑋)−1𝛾1 + 𝜀𝑇]� 

 

=

⎣
⎢
⎢
⎢
⎢
⎡ 1′1

1′𝐾𝐵
𝑁

1′𝑉′
𝑁

𝐵′𝐾′1
𝑁

𝐵′𝐾′𝐾𝐵
𝑁

𝐵′𝐾′𝑉
𝑁

𝑉′1
𝑁

𝑉′𝐾𝐵
𝑁

𝑉′𝑉
𝑁 ⎦

⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎡ −𝐾𝜀 ′𝑋(𝑋′𝑋)−1

𝑁
𝛾1 +

1′𝜀𝑇
𝑁

−𝐵′𝐾′𝐾𝜀′𝑋(𝑋′𝑋)−1

𝑁
𝛾1 +

𝐵′𝐾′𝜀𝑇
𝑁

−𝑉𝐾′𝜀′𝑋(𝑋′𝑋)−1

𝑁
𝛾1 +

𝑉′𝜀𝑇
𝑁 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

→ −𝑄 �
𝛾0
𝛾1
𝛾2
� (A-7)  

Where:  

𝑄 = �
1 𝐸[𝐾𝐵] 𝐸[𝑉]

𝐸[𝐵′𝐾 ′] 𝐸[𝐵′𝐾 ′𝐾𝐵] 𝐸[𝐵′𝐾 ′𝑉]
𝐸[𝑉 ′] 𝐸[𝑉 ′𝐾𝐵] 𝐸[𝑉 ′𝑉]

�

−1

�
0 0 0
0 𝑆 0
0 0 0

�. 

In the expression above, E[⋅] denotes the cross-sectional means, estimated using sample 
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moments. 𝑆 = (𝑋′𝑋)−1𝑋′𝛴𝐾𝑋(𝑋′𝑋)−1, where ∑𝐾 = 𝐸[𝜀𝐾 ′𝐾𝜀 ′]. 

 

Appendix B  Additional cross-sectional regression results 

We report results from additional cross-sectional regressions after real option adjustment 

(with bias-correction) where we drop one real option proxy at a time. Table B1 (excluding Ivol), 

B2 (excluding BM), and B3 (excluding ROA) present results on our full sample. Table B4 

(excluding Ivol), B5 (excluding BM), and B6 (excluding ROA) present the corresponding results 

on the subsample, where we remove about 14% of the stocks whose betas are most likely to be 

measured with noise. 

Overall, our main conclusions are robust to the exclusion of any of the three real option 

proxies. In all six tables, the CAPM betas are associated with positive and significant 

coefficients. When comparing Table B1-B6 in the Appendix to Table 5-6 in the paper, we find 

all three real option proxies to be useful. The standard CAPM (Model 1) always perform better 

with smaller intercept term and higher risk premium estimate when all three real option proxies 

are included.  

In the paper, we have used BM as a real option proxy. Berk (1995) argues that BM in general 

will be a good proxy for expected return as well, even in an economy where the CAPM holds, 

and could be a better expected return proxy when the beta is estimated with error. In such an 

economy, the book-to-market ratio will drive out historical betas in explaining the cross-section 

of stock returns. Hence, our finding that the CAPM beta helps to explain the cross-section of 

returns after controlling for BM only strengthens our argument in favor of the CAPM for project 

cost of capital calculation. Nevertheless, we also consider excluding BM as a real option proxy 

and report the bias-corrected regression results in Table B2 and B5. The key finding here is that 

the CAPM beta remains highly significant and the intercept term becomes insignificant in the 

subsample. The anomaly variables become slightly more significant after the exclusion of BM in 

the real option adjustment, which is not too surprising as BM is considered as an important real 

option proxy. 
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Table B1: Bias-Corrected Cross-Sectional Regression with Real Option Adjustment: Full Sample 
The dependent variable is option adjusted monthly excess returns; independent variables are beta, betas of Fama-French three-factor (Beta_MKT, 
Beta_SMB, and Beta_HML), and the return anomaly variables. The regression coefficients for the sample period of 1970/07-2008/06 are first 
corrected using procedures described in the Internet Appendix and averaged across time. T-values (in parentheses) are computed using the Fama-
MacBeth procedure and the Newey-West (1987) formula with a lag of 36. Log-transformations are applied to Size and BM. The option adjusted 
variables are constructed as the residuals from regressing the raw variables with independent variables of BM and ROA (excluding Ivol). There 
are on average 2,087 stocks each month in our full sample. 

 
Const. Beta Beta_MKT Beta_SMB Beta_HML Ast_gw Inv Lret Sue Momt Adj R2 

Model 1 0.0027 0.0035 - - - - - - - - 1.90% 

 
(2.51) (2.19) 

         Model 2 0.0028 0.0043 - - - -0.0058 - - - - 2.03% 

 
(2.60) (2.68) 

   
(-3.50) 

     Model 3 0.0028 0.0041 - - - - -0.0068 - - - 2.02% 

 
(2.58) (2.55) 

    
(-2.04) 

    Model 4 0.0026 0.0040 - - - - - -0.0006 - - 2.02% 

 
(2.77) (2.43) 

     
(-1.44) 

   Model 5 0.0023 0.0030 - - - - - - 0.0015 - 2.08% 

 
(2.26) (1.88) 

      
(8.73) 

  Model 6 0.0019 0.0025 - - - - - - - 0.0080 2.92% 

 
(2.11) (1.74) 

       
(6.89) 

 Model 7 0.0016 - 0.0043 0.0012 0.0032 - - - - - 1.34% 

 
(2.32) 

 
(2.74) (0.83) (1.99) 

      Model 8 0.0017 - 0.0048 0.0014 0.0029 -0.0043 - - - - 1.51% 

 
(2.43) 

 
(3.12) (0.91) (1.83) (-2.78) 

     Model 9 0.0017 - 0.0047 0.0014 0.0029 - -0.0057 - - - 1.47% 

 
(2.41) 

 
(3.02) (0.96) (1.83) 

 
(-2.13) 

    Model 10 0.0016 - 0.0047 0.0011 0.0030 - - -0.0007 - - 1.52% 

 
(2.57) 

 
(3.04) (0.75) (1.87) 

  
(-1.88) 

   Model 11 0.0013 - 0.0037 0.0013 0.0031 - - - 0.0013 - 1.50% 

 
(1.98) 

 
(2.33) (0.88) (1.98) 

   
(8.57) 

  Model 12 0.0012 - 0.0030 0.0016 0.0035 - - - - 0.0051 2.06% 

 
(1.84) 

 
(1.97) (1.00) (1.81) 

    
(2.76) 
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Table B2: Bias-Corrected Cross-Sectional Regression with Real Option Adjustment: Full Sample 

The dependent variable is option adjusted monthly excess returns; independent variables are beta, betas of Fama-French three-factor (Beta_MKT, 
Beta_SMB, and Beta_HML), and the return anomaly variables. The regression coefficients for the sample period of 1970/07-2008/06 are first 
corrected using procedures described in the Internet Appendix and averaged across time. T-values (in parentheses) are computed using the Fama-
MacBeth procedure and the Newey-West (1987) formula with a lag of 36. Log-transformations are applied to Size and BM. The option adjusted 
variables are constructed as the residuals from regressing the raw variables with independent variables of Ivol and ROA (excluding BM). There 
are on average 2,087 stocks each month in our full sample. 

 
Const. Beta Beta_MKT Beta_SMB Beta_HML Ast_gw Inv Lret Sue Momt Adj R2 

Model 1 0.0027 0.0050 - - - - - - - - 1.54% 

 
(2.93) (3.22) 

         Model 2 0.0028 0.0061 - - - -0.0082 - - - - 1.76% 

 
(3.02) (3.93) 

   
(-3.80) 

     Model 3 0.0028 0.0058 - - - - -0.0090 - - - 1.75% 

 
(3.01) (3.62) 

    
(-2.35) 

    Model 4 0.0027 0.0059 - - - - - -0.0013 - - 1.75% 

 
(3.04) (3.76) 

     
(-2.45) 

   Model 5 0.0026 0.0043 - - - - - - 0.0013 - 1.77% 

 
(2.83) (2.74) 

      
(7.70) 

  Model 6 0.0024 0.0037 - - - - - - - 0.0082 2.56% 

 
(2.78) (2.59) 

       
(7.14) 

 Model 7 0.0010 - 0.0054 0.0026 0.0048 - - - - - 1.12% 

 
(2.51) 

 
(3.60) (1.58) (2.68) 

      Model 8 0.0011 - 0.0061 0.0027 0.0044 -0.0055 - - - - 1.25% 

 
(2.70) 

 
(4.16) (1.67) (2.49) (-3.60) 

     Model 9 0.0011 - 0.0059 0.0027 0.0044 - -0.0064 - - - 1.34% 

 
(2.65) 

 
(3.96) (1.69) (2.50) 

 
(-2.46) 

    Model 10 0.0011 - 0.0061 0.0026 0.0043 - - -0.0010 - - 1.38% 

 
(2.78) 

 
(4.13) (1.60) (2.49) 

  
(-2.82) 

   Model 11 0.0009 - 0.0048 0.0026 0.0049 - - - 0.0011 - 1.44% 

 
(2.24) 

 
(3.12) (1.60) (2.73) 

   
(6.95) 

  Model 12 0.0008 - 0.0043 0.0027 0.0050 - - - - 0.0048 1.89% 

 
(2.08) 

 
(2.93) (1.75) (2.84) 

    
(3.63) 
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Table B3: Bias-Corrected Cross-Sectional Regression with Real Option Adjustment: Full Sample 

The dependent variable is option adjusted monthly excess returns; independent variables are beta, betas of Fama-French three-factor (Beta_MKT, 
Beta_SMB, and Beta_HML), and the return anomaly variables. The regression coefficients for the sample period of 1970/07-2008/06 are first 
corrected using procedures described in the Internet Appendix and averaged across time. T-values (in parentheses) are computed using the Fama-
MacBeth procedure and the Newey-West (1987) formula with a lag of 36. Log-transformations are applied to Size and BM. The option adjusted 
variables are constructed as the residuals from regressing the raw variables with independent variables of Ivol and BM (excluding ROA). There 
are on average 2,087 stocks each month in our full sample. 

 
Const. Beta Beta_MKT Beta_SMB Beta_HML Ast_gw Inv Lret Sue Momt Adj R2 

Model 1 0.0015 0.0049 - - - - - - - - 1.81% 

 
(2.46) (3.08) 

         Model 2 0.0015 0.0057 - - - -0.0056 - - - - 1.98% 

 
(2.56) (3.69) 

   
(-3.27) 

     Model 3 0.0015 0.0054 - - - - -0.0055 - - - 1.98% 

 
(2.53) (3.40) 

    
(-1.59) 

    Model 4 0.0013 0.0052 - - - - - -0.0003 - - 1.98% 

 
(2.66) (3.25) 

     
(-0.82) 

   Model 5 0.0011 0.0040 - - - - - - 0.0021 - 2.05% 

 
(2.11) (2.48) 

      
(10.31) 

  Model 6 0.0010 0.0036 - - - - - - - 0.0092 2.86% 

 
(1.95) (2.41) 

       
(7.99) 

 Model 7 0.0007 - 0.0051 0.0022 0.0028 - - - - - 1.22% 

 
(2.13) 

 
(3.30) (1.35) (1.67) 

      Model 8 0.0008 - 0.0056 0.0023 0.0025 -0.0043 - - - - 1.31% 

 
(2.31) 

 
(3.79) (1.44) (1.51) (-2.95) 

     Model 9 0.0008 - 0.0055 0.0023 0.0025 - -0.0048 - - - 1.41% 

 
(2.25) 

 
(3.59) (1.45) (1.51) 

 
(-1.84) 

    Model 10 0.0007 - 0.0055 0.0021 0.0025 - - -0.0004 - - 1.30% 

 
(2.26) 

 
(3.58) (1.28) (1.52) 

  
(-1.22) 

   Model 11 0.0005 - 0.0042 0.0022 0.0027 - - - 0.0018 - 1.56% 

 
(1.51) 

 
(2.62) (1.37) (1.68) 

   
(10.03) 

  Model 12 0.0005 - 0.0036 0.0028 0.0034 - - - - 0.0060 1.81% 

 
(1.56) 

 
(2.30) (1.59) (1.49) 

    
(2.81) 
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Table B4: Bias-Corrected Cross-Sectional Regression with Real Option Adjustment: Subsample 
Cross-sectional regression analysis is conducted on the subsample of stocks after excluding stocks whose betas are likely estimated with large 
errors. The dependent variable is the optioned-adjusted monthly excess returns; independent variables are beta, betas of Fama-French three-factor 
(Beta_MKT, Beta_SMB, and Beta_HML) and the return anomaly variables. The regression coefficients for the sample period of 1970/07-2008/06 are 
first corrected using procedures described in the Internet Appendix and averaged across time. T-values (in parentheses) are computed using the 
Fama-MacBeth procedure and the Newey-West (1987) formula with a lag of 36. Log-transformations are applied to Size and BM. The option 
adjusted variables are constructed as the residuals from regressing the raw variables with independent variables of BM and ROA (excluding Ivol). 
There are on average 1,783 stocks each month in our subsample. 

 
Const. Beta Beta_MKT Beta_SMB Beta_HML Ast_gw Inv Lret Sue Momt Adj R2 

Model 1 0.0021 0.0044 - - - - - - - - 1.48% 

 
(1.73) (2.33) 

         Model 2 0.0020 0.0053 - - - -0.0052 - - - - 1.65% 

 
(1.71) (2.76) 

   
(-3.23) 

     Model 3 0.0020 0.0051 - - - - -0.0064 - - - 1.65% 

 
(1.74) (2.64) 

    
(-1.74) 

    Model 4 0.0019 0.0050 - - - - - -0.0004 - - 1.65% 

 
(1.77) (2.57) 

     
(-1.29) 

   Model 5 0.0018 0.0038 - - - - - - 0.0015 - 1.73% 

 
(1.57) (1.97) 

      
(8.02) 

  Model 6 0.0014 0.0030 - - - - - - - 0.0087 2.64% 

 
(1.48) (1.78) 

       
(7.81) 

 Model 7 0.0009 - 0.0053 0.0011 0.0028 - - - - - 0.88% 

 
(1.29) 

 
(2.70) (0.64) (1.43) 

      Model 8 0.0009 - 0.0058 0.0012 0.0026 -0.0037 - - - - 0.98% 

 
(1.31) 

 
(2.95) (0.71) (1.32) (-2.49) 

     Model 9 0.0010 - 0.0057 0.0012 0.0025 - -0.0052 - - - 1.05% 

 
(1.41) 

 
(2.84) (0.76) (1.27) 

 
(-1.71) 

    Model 10 0.0009 - 0.0059 0.0009 0.0025 - - -0.0006 - - 0.99% 

 
(1.34) 

 
(3.02) (0.57) (1.26) 

  
(-2.07) 

   Model 11 0.0007 - 0.0045 0.0012 0.0027 - - - 0.0012 - 1.10% 

 
(1.09) 

 
(2.30) (0.70) (1.41) 

   
(7.31) 

  Model 12 0.0007 - 0.0057 -0.0019 -0.0024 - - - - 0.0063 1.59% 

 
(1.13) 

 
(2.51) (-0.72) (-0.49) 

    
(2.55) 
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Table B5: Bias-Corrected Cross-Sectional Regression with Real Option Adjustment: Subsample 
Cross-sectional regression analysis is conducted on the subsample of stocks after excluding stocks whose betas are likely estimated with large 
errors. The dependent variable is the optioned-adjusted monthly excess returns; independent variables are beta, betas of Fama-French three-factor 
(Beta_MKT, Beta_SMB, and Beta_HML) and the return anomaly variables. The regression coefficients for the sample period of 1970/07-2008/06 are 
first corrected using procedures described in the Internet Appendix and averaged across time. T-values (in parentheses) are computed using the 
Fama-MacBeth procedure and the Newey-West (1987) formula with a lag of 36. Log-transformations are applied to Size and BM. The option 
adjusted variables are constructed as the residuals from regressing the raw variables with independent variables of Ivol and ROA (excluding BM). 
There are on average 1,783 stocks each month in our subsample. 

 
Const. Beta Beta_MKT Beta_SMB Beta_HML Ast_gw Inv Lret Sue Momt Adj R2 

Model 1 0.0015 0.0071 - - - - - - - - 1.26% 

 
(1.73) (3.91) 

         Model 2 0.0014 0.0084 - - - -0.0083 - - - - 1.54% 

 
(1.55) (4.50) 

   
(-3.56) 

     Model 3 0.0014 0.0081 - - - - -0.0098 - - - 1.48% 

 
(1.63) (4.17) 

    
(-2.24) 

    Model 4 0.0012 0.0083 - - - - - -0.0013 - - 1.48% 

 
(1.51) (4.48) 

     
(-2.70) 

   Model 5 0.0014 0.0063 - - - - - - 0.0012 - 1.52% 

 
(1.75) (3.40) 

      
(6.86) 

  Model 6 0.0014 0.0053 - - - - - - - 0.0087 2.30% 

 
(1.88) (3.21) 

       
(8.02) 

 Model 7 0.0001 - 0.0068 0.0028 0.0044 - - - - - 0.65% 

 
(0.15) 

 
(3.24) (1.55) (1.96) 

      Model 8 0.0000 - 0.0076 0.0029 0.0039 -0.0052 - - - - 0.73% 

 
(0.09) 

 
(3.52) (1.63) (1.75) (-3.64) 

     Model 9 0.0001 - 0.0074 0.0030 0.0039 - -0.0064 - - - 0.76% 

 
(0.16) 

 
(3.38) (1.67) (1.76) 

 
(-2.06) 

    Model 10 0.0000 - 0.0077 0.0029 0.0038 - - -0.0009 - - 0.84% 

 
(0.10) 

 
(3.55) (1.64) (1.78) 

  
(-3.50) 

   Model 11 0.0000 - 0.0062 0.0028 0.0044 - - - 0.0010 - 0.84% 

 
(0.03) 

 
(2.84) (1.57) (2.00) 

   
(5.03) 

  Model 12 0.0001 - 0.0052 0.0031 0.0049 - - - - 0.0052 1.50% 

 
(0.20) 

 
(2.53) (1.77) (2.22) 

    
(3.85) 
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Table B6: Bias-Corrected Cross-Sectional Regression with Real Option Adjustment: Subsample 
Cross-sectional regression analysis is conducted on the subsample of stocks after excluding stocks whose betas are likely estimated with large 
errors. The dependent variable is the optioned-adjusted monthly excess returns; independent variables are beta, betas of Fama-French three-factor 
(Beta_MKT, Beta_SMB, and Beta_HML) and the return anomaly variables. The regression coefficients for the sample period of 1970/07-2008/06 are 
first corrected using procedures described in the Internet Appendix and averaged across time. T-values (in parentheses) are computed using the 
Fama-MacBeth procedure and the Newey-West (1987) formula with a lag of 36. Log-transformations are applied to Size and BM. The option 
adjusted variables are constructed as the residuals from regressing the raw variables with independent variables of Ivol and BM (excluding ROA). 
There are on average 1,783 stocks each month in our subsample. 

 
Const. Beta Beta_MKT Beta_SMB Beta_HML Ast_gw Inv Lret Sue Momt Adj R2 

Model 1 0.0009 0.0061 - - - - - - - - 1.69% 

 
(1.66) (3.50) 

         Model 2 0.0009 0.0070 - - - -0.0053 - - - - 1.85% 

 
(1.62) (4.04) 

   
(-3.16) 

     Model 3 0.0009 0.0068 - - - - -0.0055 - - - 1.81% 

 
(1.65) (3.74) 

    
(-1.43) 

    Model 4 0.0008 0.0066 - - - - - -0.0003 - - 1.81% 

 
(1.65) (3.67) 

     
(-0.81) 

   Model 5 0.0007 0.0051 - - - - - - 0.0019 - 1.96% 

 
(1.45) (2.83) 

      
(9.13) 

  Model 6 0.0006 0.0044 - - - - - - - 0.0095 2.70% 

 
(1.31) (2.75) 

       
(8.57) 

 Model 7 0.0003 - 0.0060 0.0023 0.0022 - - - - - 0.88% 

 
(0.88) 

 
(3.21) (1.30) (1.10) 

      Model 8 0.0003 - 0.0066 0.0024 0.0020 -0.0038 - - - - 1.01% 

 
(0.91) 

 
(3.51) (1.40) (0.98) (-2.86) 

     Model 9 0.0003 - 0.0064 0.0025 0.0019 - -0.0044 - - - 0.97% 

 
(0.99) 

 
(3.34) (1.42) (0.94) 

 
(-1.47) 

    Model 10 0.0002 - 0.0065 0.0022 0.0018 - - -0.0004 - - 1.01% 

 
(0.85) 

 
(3.47) (1.26) (0.91) 

  
(-1.28) 

   Model 11 0.0001 - 0.0050 0.0023 0.0021 - - - 0.0017 - 1.15% 

 
(0.45) 

 
(2.62) (1.32) (1.08) 

   
(8.20) 

  Model 12 0.0001 - 0.0052 0.0013 -0.0013 - - - - 0.0100 1.41% 

 
(0.32) 

 
(3.16) (0.70) (-0.38) 

    
(5.11) 
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