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1 Introduction

The use of racial preferences in college and university admissions has generated much debate.

Proponents of racial preferences argue that race-conscious admissions are important both for helping

minorities overcome the legacy of the institutionalized discrimination and for majority students to

receive the benefits from diverse classrooms.1 Opponents of racial preferences assert that race-

conscious admissions are unfair and may actually be damaging to the intended beneficiaries by

placing them at institutions where they are unlikely to succeed.2

Recently the controversy over race-conscious admission policies has increasingly moved from a

normative to a positive perspective. On one front, several papers attempted to empirically exam-

ine the educational benefits of attending racially diverse colleges. For example, Black, Daniels and

Smith (2001) found a positive relationship between proportion of blacks in the college attended

and the post-graduate earnings in the National Longitudinal Survey of Youth; Arcidiacono and

Vigdor (2009), using information on graduates of 30 selective universities in College and Beyond

data, found only weak evidence of any relationship between collegiate racial composition and the

post-graduation outcomes of white or Asian students.3 Duncan et. al. (2006), exploiting condi-

tional random roommate assignment at one large public university, found that cross-racial exposure

influences individual attitudes and friendship patterns.

A second front, spurred by the provocative article of Sander (2004) and followed up by Ayres and

Brooks (2005), Ho (2005), Chambers et. al. (2005), Barnes (2007) and Rothstein and Yoon (2008),

attempts to empirically examine whether the effects of affirmative action policies on the intended

beneficiaries is positive or negative. These papers essentially tests for the so-called “mismatch

hypothesis,” i.e. whether the outcomes of minority students might have been worsened as a result

of attending a selective university relative to attending a less selective school.

But even if some of the outcomes for minority students are worse under affirmative action, it

still may be the case that minority students are better off under affirmative action. To illustrate

this point, suppose that one can convincingly establish that blacks are less likely to pass bar exams

after attending an elite law school. Does this necessarily mean that blacks are worse off in an ex

ante expected utility sense? If attending an elite university also makes it possible for blacks to be

high-profile judges, and if the outcome of being a high-profile judge is valued by blacks much higher

than just passing the bar exam, blacks could still be better off ex ante under affirmative action.

Alternatively, it is possible that elite universities may provide amenities to minority students that

1In both Regents of University of California v. Bakke 438 U.S. 265 (1978) and more recently in Grutter v.

Bollinger, 539 U.S. 306 (2003), the Supreme Court ruled that the educational benefits of a diverse student body is a

compelling state interest that can justify using race in university admissions.

2See Kellough (2006) for a concise introduction to various arguments for and against affirmative action.

3Arcidiacono, Khan, and Vigdor (2008) also suggest that affirmative action actually leads to less inter-racial

interaction due to the exacerbation of the within-school gap between minority and majority academic backgrounds.
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more than compensate the worse outcome measures that are examined by the researcher, thus

making the minority students better off ex ante in an expected utility sense.

In this paper we take a new and complementary viewpoint to the above-mentioned literature

on mismatch by bringing to the center the rational decision of the minority students who are

offered admission to a selective school, possibly due to affirmative action policies. The question we

ask is, why would students be willing to enroll themselves at schools where they cannot succeed,

as the mismatch hypothesis stipulates? Posing the question in this way immediately leads us to

focus our attention to the role of asymmetric information. We show that a necessary condition for

mismatch to occur once we take into account the minority students’ rational enrollment decisions

is that the selective university has private information about the treatment effect of the students.4

In the absence of asymmetric information about her treatment effect in the selective university

(relative to attending a non-selective university), a minority student will choose to enroll in the

selective university only if her treatment effect is positive, thus there is no room for mismatch to

occur. However, when the selective university has private information about a minority student’s

treatment effect, it is possible that a minority student with a negative treatment effect may end up

enrolling in the selective university if offered admission. The reason is simple: when the minority

student decides whether to enroll in the selective university, she can only condition her decision

on the event that her treatment is above its admission threshold. When the selective university’s

admission threshold for the minority student is negative, due to its desire to satisfy a diversity

constraint for example, it may still be optimal for a minority student with a negative treatment

effect to enroll as long as the average treatment effect conditional on admission is higher than that

from the non-selective university.

The central message from the simple model is that the presence of private information by the

selective university regarding the students’ treatment effect is a necessary condition for mismatch

effect as a result of affirmative action. This simple observation leads to a novel test for a necessary

condition for mismatch, which is a test for whether selective universities possess private information

regarding the students they admit. We will emphasize that our test is only a test for necessary

condition: if we find strong evidence for asymmetric information, it does not necessarily imply

that mismatch has occurred. However, if we find no evidence for asymmetric information, then we

can rule out mismatch without having to rely on strong unverifiable assumptions needed for the

assessment of counterfactual outcomes.

We propose a non-parametric method to test for asymmetric information. We assume that the

researcher has access to the elite university’s assessment of the applicants, the applicants’ subjective

4There is some evidence in the literature that students’ expectations about their performance are inaccurate and

updated over time. Stinebrickner and Stinebrickner (2008) have information at multiple points during the student’s

college career from Berea college. They find strong evidence of students updating their expectations over time and

making decisions (such as the decision to drop out) based upon the new information they receive through their grades.
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expectation about their post-enrollment performance in the selective university and their actual

performance. We show that the celebrated Kotlarski (1967) theorem can be used to decompose the

private information possessed by the applicant, the private information possessed by the selective

university, and the information common to the selective university and the applicant but unobserved

to the researcher.5 We propose an estimation method after the Kotlarski decomposition to test

whether the selective university possess private information important for the prediction of the

students’ actual post-enrollment outcomes.

We use data from the Campus Life and Learning Project (CLL), which surveys two recent

consecutive cohorts of Duke University students before and during college. The survey was ad-

ministered to all under-represented minorities in each of the cohorts as well as a random sample

of whites and Asians. The CLL provides information about the participants’ college expectations,

social and family background, and satisfaction measures as well as providing confidential access to

students academic records. The key features of the data for our purposes is that we have Duke

Admission Office’s ranking of the applicants as well as the student’s pre-enrollment expectations

about their grade point average. We also have a rich set of control variables about the students’

family and high school background.

We test whether Duke’s private information is important to outcomes such as grade point aver-

age after conditioning on what is in the student’s information set, including the private information

in the student’s expected grade point average. Not only is Duke’s private information important for

both grades and graduation rates even after conditioning on the student’s information set, but we

also find that the student has virtually no private information on their probabilities of succeeding.

That is, once we condition on Duke’s information set, the student’s expected grade point average

is virtually uncorrelated with their grades.

We will also discuss in Section 7 how we can follow up our necessary condition test with addi-

tional data collection to more conclusively establish the presence or absence of mismatch. It is also

important to note that, regardless of whether we can empirically establish the presence/absence of

mismatch, our simple theory highlighting the rational enrollment decisions of the students naturally

suggests policies that will be effective to decrease the possibility of mismatch, namely, to increase

the information flow from the selective university to the minority students that can assist them in

predicting their post-enrollment educational outcomes.

The remainder of the paper is structured as follows. In Section 2 we discuss the mismatch

literature. In Section 3 we present a simple model of a selective university’s admission problem with

rational students to clarify the key concepts of mismatch in our framework, and illustrate that the

selective university’s private information is a necessary condition for mismatch to occur. In Section

4 we describe the Campus Life and Learning (CLL) Project data that we use in our application

5Kotlarski theorem has been applied in economics in Krasnokutskaya (2008) and Cunha, Heckman and Navarro

(2005).
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to test for private information. In Section 5 we provide some baseline regressions to provide

some preliminary bounds the importance of Duke and student private information in predicting

students’ performance at Duke. In Section 6 we describe a non-parametric empirical method to

identify private information and present our main empirical results. In Section 7 we discuss two

potential avenues to provide more conclusive evidence for mismatch; and Section 8 concludes. In

the Appendix, we discuss some data attrition issues and report some omitted regression coefficients.

2 Mismatch Literature

The mismatch literature to date has focused on comparing the “outcome” (e.g., GPA, bar

passage, post-graduate earnings etc.) of the minority students enrolled in elite universities relative

to the corresponding counterfactual outcome when these minority students attend less selective

universities. As well summarized in Rothstein and Yoon (2008), the papers differ in how the

counterfactual outcomes are assessed. For example, Sander (2004) first used a comparison of black

and white students with the same observable credentials, who typically attend different law schools

because of affirmative action, to estimate a negative effect of selectivity on law school grades; he

then included both selectivity and grades in a regression for graduation and bar passage where he

found that both selectivity and grades have positive coefficient, with the latter much larger than

the former.6 Combining these two findings, he concluded that, on net, preferences in law school

admission in favor of black students depressed black outcomes because such preferences led black

students into more selective schools, lowering their law school grades, which swamps the positive

effective of attending a selective school on their graduation and passing the bar.

Ayres and Brooks (2005), Ho (2005), Chambers et. al. (2005) and Barnes (2007), however,

used versions of selective-nonselective comparison, i.e., comparing students of the same race and

same observable admission credentials who attend more- and less-selective schools to assess whether

attending more selective schools has negative effects.7 All strategies used above to assess the coun-

terfactual outcome are likely to yield biased estimates when there are unobservable characteristics

that may be considered in admission but unobserved by researchers. For example, the selective-

unselective comparison used by Ayres and Brooks (2005), Ho (2005), Chambers et. al. (2005) and

Barnes (2007) are likely to underestimate mismatch effect because those who are admitted to more

6Loury and Garman (1995) appears to be the predecessor of the “mismatch” literature. They found that college

selectivity and performance at college both have significant effects on earnings. The earnings gain by black students

from attending selective colleges are offset by worse college performance for those Black students whose own SAT

scores are significantly below the median of the college they attended, i.e. those “mismatched” blacks.

7Barnes (2007) also explains that the performance for black students may suffer in a selective school both because

of mismatch, i.e., they are over-placed in such selective schools, or because there are race-based barriers to effective

learning in selective schools.
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selective schools are likely to have better unobserved credentials.8 In contrast, Sanders (2004), by

attributing the black’s lower grades in selective schools to school selectivity instead of potential

unobserved credentials, is likely to overstate the mismatch effect.

Finally, Rothstein and Yoon (2008) used both the selective-unselective and the black-white

comparisons to provide bounds for the mismatch effect in law school. They find no evidence of

mismatch effects on any students’ employment outcomes or on the graduation or bar passage rates

of black students with moderate or strong entering credentials, a group that makes up 25% of the

sample. However, they could not conclusively find effects for the bottom 75% of the distribution

due to not having enough whites with similar credentials. We will argue that the success of the

top 25% is necessary for mismatch to occur if blacks at least know the overall relationship between

credentials and success while only have expectations on their own credentials. Namely, if all blacks

were mismatched then there would be no scope for students making rational decisions to attend

schools where they were mismatched: there has to be some non-mismatched black students in order

for rational mismatch to occur.

To summarize, the existing literature on the mismatch effect differs in the empirical strategy

used to assess the counterfactual outcome of minority students attending less selective universities;

and the evidence is mixed. We want to recast the mismatch problem in the context of rational de-

cision making which, as show in the next section, points us towards examining whether universities

have private information on the future success of their students.

3 The Model

Consider two universities that differ in selectiveness. For convenience, suppose that only one

university is selective, which we refer to as the elite university. The elite university has an enrollment

capacity C; but the non-selective university, which essentially encompasses all the other options for

the students in our model, does not have a capacity constraint.

Students belong to one of two racial groups, and for concreteness, we will call them “White

(w)” and “Black (b).” The total number of race r applicants is given by Nr for r ∈ {w, b} . Let

Tr ∈ R denote the “treatment effect” of a student with race r ∈ {w, b} from attending the elite

university. The “treatment effect” measures the difference in a student’s outcome from attending

8Dale and Krueger (2002) proposed and applied a strategy to control for the unobservable credentials in estimating

the treatment effect of attending highly selective colleges by comparing students attending highly selective colleges

with others admitted to these schools but enrolled elsewhere. Ayres and Brooks (2005) and Sanders (2005b) also

attempted to approximately apply the Dale and Krueger strategy by comparing law students who reported attending

their first choice schools with those who reported attending their second choices because their first choices were too

expensive or too far from home. A potential problem is that they do not know whether those reporting attending

their second choice would have been admitted to the schools attended by the former group, thus it is not clear that

such a strategy does control for unobserved credentials.
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the elite university instead of her second option (which in this model is the non-elite university).

Importantly, this treatment effect is determined by the quality of matching between the student’s

own characteristics and the university’s characteristics. To the extent that the non-elite university

is better suited to some students, Tr could be negative. In the population of race r students, Tr is

distributed according to a continuous CDF Fr with density function fr.

We assume that the objective of the elite university is to maximize the total treatment effect

for the admitted students subject to a capacity constraint and to a diversity constraint.9, 10 We

assume that the student is risk neutral, and thus will choose the university (if she is admitted) that

offers her the highest treatment effect.

3.1 The Case of Symmetric Information and Diversity Concerns

We first consider the case that the students know their treatment effects from attending the

elite university.11 In this symmetric information case, no students with a negative treatment effect

will matriculate in the elite university, even if they are admitted. Note if the university admits

a student of race r and treatment effect T ′r, then it will also admit all students of race r who

have treatment effects above T ′r. Let T ∗r denote the lowest treatment effect among those who are

admitted of race r. Thus the matriculation constraint for the students must be

T ∗r ≥ 0 for r ∈ {w, b} .

It is this constraint that effectively makes ex ante mismatch under symmetric information im-

possible: no student will attend a school where their treatment effect is negative. Note that the

matriculation constraint must hold regardless of the objective function of the elite university.

The elite university’s problem is then to maximize the treatment effect of its student body

subject to three constraints:

• That enrollment is no larger than C (capacity constraint);

• That the fraction of blacks attending is no less than λ ≥ 0 (diversity constraint);

9The elite university may have other factor besides the treatment of the student in their objection function such

as future donations or whether the treatment effect is positive relative to not attending college. We note the effect

of different objective functions throughout this section, though fundamentally a different objective function by the

university will not change our conclusion that mismatch can only occur when the university has private information

about the treatment effect for the student. It will become clear that the key driver of our result is the rational

matriculation constraint of the students, not the objective function of the elite university.

10While we treat diversity as a constraint that must be satisfied here, the qualitative results do not change if we put

a penalty function that penalizes deviations from optimal diversity levels into the objective function. These results

are available upon request.

11Alternatively, both the student and the school could be uncertain about the treatment effect. The key assumption

is that they are operating with the same information set: the university does not have private information.
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• That the expected treatment effect for individuals of both races is positive (matriculation

constraint).

The maximization problem is then:

max
{T ∗w,T ∗b }

∑
r∈{w,b}

Nr

∫ ∞
T ∗r

Trfr (Tr) dTr (1)

s.t.
∑

r∈{w,b}

Nr [1− Fr (T ∗r )] ≤ C, (2)

Nb [1− Fb (T ∗b )]
Nw [1− Fw (T ∗w)]

≥ λ

1− λ
, (3)

T ∗r ≥ 0 for r ∈ {w, b} , (4)

We index the solutions to the above problem by T ∗r (λ) . Thus, the solution when there is no

diversity constraint is T ∗r = T ∗r (0) . When λ = 0, the university is indifferent between black and

white students conditional on their treatment effect, implying that T ∗r (0) = T ∗(0) for all r. If

setting the cutoff treatment effect to zero does not violate the capacity constraint, then T ∗(0) = 0.

Otherwise, T ∗(0) uniquely solves

Nw [1− Fw (T ∗)] +Nb [1− Fb (T ∗)] = C.

Note that even though the admission cutoffs are the same for blacks and whites, the racial com-

position of the student body may be very different from the overall composition of the applicants

because Fw (·) 6= Fb (·) .
The solution found when λ = 0 will be the same as the solution for all λ’s that are sufficiently

small. Denote as p∗(0) the fraction of blacks in the student body when λ = 0:

p∗(0) =
Nb [1− Fb (T ∗b (0))]

C
.

Let λ1 = p∗(0). If λ ≤ λ1, then the presence of the diversity constraint does not affect the solution to

the elite university’s maximization problem: varying λ in this range has no impact on the diversity

of the elite university.

The second relevant cutoff point is when the admissions standard is set to zero, leading all

blacks who have positive treatment effects to be admitted. Denote this cutoff by λ2:

λ2 =
Nb [1− Fb (0)]

C
.

When λ ∈ [λ1, λ2] , the solution to the elite university’s problem are implicitly characterized by:

Nb [1− Fb (T ∗b (λ))] = λC

Nw [1− Fw (T ∗w (λ))] = (1− λ)C.

7



-

6

-

6

λ

λλ1 λ2

Φb(λ)

Φw(λ)

Figure 1: The Total Treatment Effects as a Function of the Diversity Concern λ: The Symmetric

Information Case.

Notes: At λ < λ1, the diversity constraint does not bind. At λ ≥ λ2, all blacks with positive treatment effects attend

the elite university.

That is, T ∗b (λ) and T ∗w (λ) will be chosen to satisfy exactly the capacity and the diversity constraints.

When λ > λ2, however, the optimal solution is to set T ∗b (λ) = 0, to choose T ∗w (λ) to meet the

diversity constraint, and leave the capacity constraint slack. No more blacks are induced to attend

by increasing λ as all blacks who have positive treatment effects are already attending. The cutoff

treatment effect for white, T ∗w (λ), is then chosen so that

Nb [1− Fb (0)]
Nb [1− Fb (0)] +Nw [1− Fw (T ∗w (λ))]

= λ

That is

Nw [1− Fw (T ∗w (λ))] =
1− λ
λ

λ2C.

Under this admission policy, the total enrollment is given by

λ2C

λ
,

which is less than the allowable capacity C.

We now have all the pieces we need to qualitative describe the total treatment effect for each

race as a function of λ. Define the total treatment effect for group r as:

Φr (λ) =
∫
T ∗r (λ)

Trfr (Tr) dTr.
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Given the above discussion, we know that Φr (λ) can be depicted as in Figure 1. Between 0 and

λ1, the treatment effect for blacks and whites is unchanged with increases in λ as the diversity

constraint is slack. Between λ1 and λ2, the treatment effect for blacks rises at the expense of the

treatment effect for whites. Past λ2, the treatment effect for whites falls with no change in the

black treatment effect as blacks are already at their maximum treatment effect at λ2.

In sum, when both the university and the student operate from the same information set,

diversity constraints at least weakly increase the treatment effect for blacks:

Proposition 1 When there is symmetric information about students’ treatment effects, the optimal

admission policy of the elite university with diversity concerns must have non-negative admission

standards; and the total treatment effect of black students is non-decreasing in the degree of diversity

concern as measured by λ.

3.1.1 The Case of Asymmetric Information and Diversity Concerns

Now we consider the case where the elite university has private information about the treatment

of the students. The elite university’s optimization problem becomes:

max
{T ∗w,T ∗b }

∑
r∈{w,b}

Nr

∫ ∞
T ∗r

Trfr (Tr) dTr (5)

s.t.
∑

r∈{w,b}

Nr [1− Fr (T ∗r )] ≤ C, (6)

Nb [1− Fb (T ∗b )]
Nw [1− Fw (T ∗w)]

≥ λ

1− λ
, (7)

E [Tr|Tr ≥ T ∗r ] ≥ 0 for r ∈ {w, b} , (8)

where λ ≥ 0 again measures the degree of the elite university’s diversity concern. Note that the only

difference between the case with asymmetric information from the case with symmetric information

lies in the difference between the student matriculation constraints (4) and (8). Under asymmetric

information, the elite university can potentially attract students with negative treatment effects to

enroll as long as the expected treatment effect is positive.

To characterize the solution to the elite university’s maximization problem, it is useful to denote

T̂b < 0 as defined by

E
[
Tb|Tb ≥ T̂b

]
= 0.

Furthermore, let

λ3 =
Nb

[
1− Fb

(
T̂b

)]
C

;

that is, λ3 is the maximal fraction of black students that can be achieved by the elite university

under asymmetric information and black students’ rational matriculation decisions. Note also that

9
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Φb(λ)
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λ̂

Figure 2: The Total Treatment Effects as a Function of the Diversity Concern λ: The Asymmetric
Information Case.
Notes: At λ ≤ λ1, the diversity constraint does not bind. At λ ≥ λ2, the marginal admitted black has a negative

treatment effect. At λ ≥ λ3, the matriculation constraint binds. For λ ≥ λ̂, blacks are overall worse off with

affirmative action than without affirmative action in terms of ex ante expected treatment effects.

by definition, the total treatment effect for blacks at λ3 is exactly zero:

Φb (λ3) = 0.

Again consider the interesting case where the elite university’s capacity constraint binds. The

solution to the elite university’s problem is again very simple. If the diversity concern λ is less

than λ1, the elite university does not need to modify its admission standards; if λ ∈ (λ1, λ3) ,

the elite university would have to lower the admission threshold for the blacks, and as a result of

the capacity constraint, to increase the admission threshold for the whites correspondingly. The

admission thresholds T ∗r (λ) are again implicitly defined by

Nb [1− Fb (T ∗b (λ))] = λC

Nw [1− Fw (T ∗w (λ))] = (1− λ)C.

When λ > λ3, the elite university can no longer increase black enrollment by lowering the admission

standard because of the binding enrollment constraint (8). Thus the only way it can satisfy the

diversity constraint is to admit fewer white students. As a result, when λ > λ3, the elite university’s

total enrollment will be
λ3C

λ
,

10



which is less than the allowable capacity C. The effect of the diversity concern λ on the total

treatments of black and white students in this case is depicted in Figure 2. Note that the key

difference between Figure 1 (the symmetric information case) and Figure 2 (the asymmetric in-

formation case) is that in the asymmetric information case, increases in λ may lead a decrease of

the black total treatment effect relative to the case with no diversity concerns (λ = 0) . In fact, the

total black treatment effects are smaller than those with no diversity concerns for λ > λ̂ where

Φb

(
λ̂
)

= Φb (0) .

The following proposition summarizes the key results from this section:

Proposition 2 In the asymmetric information case, the elite university’s admission threshold for

the black students, T ∗b (λ) , is strictly decreasing in the extent of the diversity concern λ as long

as λ ≤ λ3. However, the total treatment effect for the blacks, Φb (λ) , is not monotonic in λ. In

particular, when λ > λ̂, Φb (λ) < Φb (0) .

3.2 Mismatch and Asymmetric Information

We are now ready to present our main conclusion from the analysis so far. First, let us pro-

vide several notions of “mismatch” as a result of affirmative action admission policies by the elite

university.

Definition 1 We say that affirmative action admission policy by the elite university leads to a local

mismatch effect for blacks if some black students with negative treatment effects are admitted and

enroll, that is, if T ∗b (λ) < 0.

Definition 2 We say that affirmative action admission policy by the elite university leads to a

global mismatch effect for blacks if black students as a whole are made worse off in expectation,

i.e., ∫
T ∗b (λ)

TbdFb (Tb) <
∫
T ∗b (0)

TbdFb (Tb) . (9)

Equivalently, (9) can be written as

E [Tb|Tb ≥ T ∗b (λ)] [1− Fb (T ∗b (λ))] < E [Tb|Tb ≥ T ∗b (0)] [1− Fb (T ∗b (0))] .

Note that T ∗b (0) = T ∗b ≥ 0 regardless of whether the elite university has asymmetric information

about the students’ treatment effects. Together with the fact that T ∗b (λ) is weakly decreasing in

λ, we can conclude that a global mismatch is possible only if T ∗b (λ) is sufficiently negative. Thus

global mismatch must imply local mismatch.

Because both the local and global notions of mismatch require that the admission thresholds for

blacks, T ∗b (λ), to be sufficiently negative, and students with negative treatment effect will choose to

attend the elite university only when they are not fully knowledgeable about their treatment effect,
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we conclude that a necessary condition for mismatch to occur is that the elite university has private

information regarding the students’ treatment effect. Combining the results from Propositions 1

and 2, we have:

Proposition 3 A necessary condition for either local or global mismatch to result from affirma-

tive action admission policy is that the elite university has private information about the students’

treatment effect.

4 The Campus Life and Learning (CLL) Project Data

In Section 3, we argued that once we take into account the students’ rational matriculation

decisions, a necessary condition for either local mismatch or global mismatch to arise is that the elite

university has private information about the students’ treatment effects. In our empirical section,

we propose tests for private information by the elite university. If our tests reject the presence of

private information by the elite university, then we can conclude that mismatch does not arise as

a result of affirmative action admission policies; however, if we detect private information, it is not

sufficient to establish that mismatch occurred.

In this section, we describe data from the Campus Life and Learning Project (CLL) at Duke

University that will allow us to test whether Duke has private information regarding the future

success of their students.12 CLL is a multi-year prospective panel study of consecutive cohorts of

students enrolled at Duke University in 2001 and 2002 (graduating classes of 2005 and 2006).13

The target population of the CLL project included all undergraduate students in Duke’s Trinity

College of Arts & Sciences and Pratt School of Engineering. Using the students’ self-reported racial

ethnic group from their Duke Admissions application form, the sampling design randomly selected

about 356 and 246 white students from the 2001 and 2002 cohorts respectively, all black and Latino

students, about two thirds of Asian students and about one third of Bi-Multiracial students in each

cohort. The final design across both cohorts contains a total of 1536 students, including 602 white,

290 Asian, 340 black, 237 Latino and 67 Bi-Multiracial students.

Each cohort was surveyed via mail in the summer before initial enrollment at Duke, in which

they were also asked to sign an informed consent document, as well as given option of providing

confidential access to their student information records at Duke. About 78 percent of sample mem-

bers (n = 1185) completed the pre-college mail questionnaire; with 91 percent of these respondents

providing signed release of their institutional records for the study. In the spring semester of the

12A description of the CLL Project and its survey instruments can be found at

http://www.soc.duke.edu/undergraduate/cll/, where one can also find the reports by Bryant et. al. (2006, 2007).

13Duke is among the most selective national universities with about 6,000 undergraduate students. Duke’s accep-

tance rate for its regular applications is typically less than 20 percent.
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first, second and fourth college year, each cohort was again surveyed by mail.14 However, response

rates declined in the years following enrollment with 71, 65 and 59 percent responding in the first,

second and fourth years of college, respectively.15

The pre-college survey provides detailed measurement of the students’ social and family back-

ground, prior school experiences, social networks, and expectations of their college performance.

In particular, students were asked

“What do you realistically expect will be your cumulative GPA at Duke after your first

year?”

We can then relate this measure to the student’s actual first year grade point average (GPA).The

in-college surveys contain data on social networks, performance attributions, choice of major, resi-

dential and social life, perception of campus climate and plans for the future.

For those who released access to their institutional records, we also have information about their

grades, graduation outcomes, test scores (SAT and ACT) and financial aid and support. Further,

we have the Duke Admission Officers’ rankings of their applications on six measures: achievement,

curriculum, essay, personal qualities, recommendations and test scores. Each of these rankings are

reported on a five point scale. It is these rankings coupled with student expected performance that

will be used to disentangle what the student knows from what the institution knows about how

well the student will perform in college.

Table 1 contains summary statistics for the key variables in the CLL data set by race. The first

rows reveal that there is substantial amount of variation in entering credentials among students of

difference races. Asians and Whites tend to have higher evaluations by Duke Admission Officers in

all six categories than black and Latino students, with test score showing by far the largest gap.

Despite these differences in credentials, black and white students have quite similar expectations

about their GPA during their first year in college (3.51 for whites and 3.44 for blacks).16

However, Table 1 shows that there is a significant racial difference in the actual first year

cumulative GPAs. The actual GPA for blacks is on average 2.90, in contrast to that for whites

(3.33) and for Asians (3.40). In fact a t-test rejects the null hypothesis of equal means. Notice

that, for all races, the students’ actual first year GPAs are on average lower than their expected

GPAs. This suggests that all students have over-optimistic expectations. However, this optimism

bias is much stronger for black (0.54) and Latino (0.4) students than for white (0.18) and Asian

(0.27) students. Again, a t-test rejects the null hypothesis of equality of means.

Of course, part of the actual GPA differences across races are predicted by observable differences

across races in their entering credentials. For example, Table 1 shows Asians and whites have

14The survey was not conducted in the third year as many Duke students study abroad during that year.

15In the appendix we examine who attrits and test for non-repsonse bias.

16A t-test cannot reject the null hypothesis of equal means.
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substantially higher (more than one standard deviation) SAT scores than Latino and black students.

Average family income for Black students tend to be lower than Asians and Latinos, which in turn

are lower than the whites. The parents of white students tend to have higher educational attainment

than blacks.

The key question is then, why do the black and Latino students suffer a worse bias in their

expectation about their academic performance at Duke? Does Duke Admission Office’s evaluation

of their application contain valuable information that would have been useful in help these stu-

dents form more realistic expectations? If the black and Latino students were able to form more

realistic expectations about their academic performance at Duke, would they have reconsidered

their decisions to enroll at Duke? These are the key empirical questions related to the mismatch

hypothesis.

5 Baseline Regressions

While the CLL data set has the advantage of reporting both information from the students

regarding their expected grades and information from Duke regarding the ranking of the applicant,

disentangling Duke’s private information from what the student knows is challenging. We begin by

running some baseline regressions which may bound the amount of private information both the

student and Duke have about student’s performance.

We begin by examining the difference between the student’s expected GPA for their freshman

year, ExpGPA, and their actual cumulative GPA for their freshman year, GPA.17 Specifically we

see how forecastable this difference is with variables the student should know the effects of, such as

their race and SAT scores. Let Z indicate this set of variables. We then add variables the student

might only have partial information about such as Duke’s ranking of the student (DukeEv). The

forecast error for student i is then:

GPAi −ExpGPAi = Ziα1 + εi1 (10)

GPAi −ExpGPAi = Ziα2 + DukeEviβ2 + εi2 (11)

where the ε’s are the projection errors.

Results from regressions (10) and (11) are reported in Table 2.18 For ease of interpretation, we

adjusted the SAT score such that it has zero mean and a standard deviation of one. Column 1 of Ta-

ble 2 shows that students underestimate the relationship between their SAT score and performance.

17In our data, the correlation between student’s actual cumulative GPA (GPA)and their expected GPA

(ExpGPA)at the end of their first year is 0.178.

18We have also experimented with specifications that include high school characteristics (private, public, religious

etc.) in the regressions. Their coefficients are not significant and they neither affect the other coefficient estimates,

nor significantly increase the R2 of the regressions.
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Table 2: The Components of Students’ Forecasting Error.

Variable (1) (2)

Constant
-0.256∗∗

(0.046)

-0.883∗∗∗

(0.370)

Male
-0.120∗∗∗

(0.037)

-0.093∗∗∗

(0.036)

Black
-0.131∗∗

(0.060)

-0.110∗

(0.063)

White
0.144∗∗∗

(0.048)

0.118∗∗

(0.051)

Asian
-0.010

(0.057)

-0.051

(0.059)

Adjusted SAT
0.106∗∗∗

(0.022)

0.061∗∗∗

(0.023)

Controls for Duke Eval? No Yes

R2 0.088 0.148

Notes: Dependent variables is (GPA−ExpGPA); N = 938. Adjusted SAT is the SAT score normalized to have zero

mean and a standard deviation of one. The coefficients on the Duke evaluation rankings are reported in Table A.1

in the Appendix. *, ** and *** indicate that the coefficient is significant at 10%, 5% and 1% respectively.

Virtually all groups on average over-predict their performance, with the one exception being white

females with SAT scores more than one standard deviation above the mean. As expected given

the descriptive statistics in Table 1, blacks significantly overestimate their performance relative to

the other racial groups. Further, the variance of (GPA-ExpGPA) is 0.27 and is actually higher

than the variance of first year GPA, which is 0.22. Clearly if we assume that the student’s only

information about their future performance is captured in their expected GPA, then there is a lot

of information that the university possesses and a significant amount of noise in expected GPA.

Moreover, the statistically significant coefficient estimates on the Adjusted SAT and race variables

indicates that the student does not accurately know how these characteristics translate into their

future performance. Duke, however, is likely to know more accurately about the relationship be-

tween characteristics and performance. Column 2 in Table 2 adds controls for Duke’s evaluation

rankings of the students. The R2 increases from 0.088 to 0.148 when we include Duke’s rankings,

again suggesting that Duke has either private information about the student’s future performance

or in how information known to both the student and Duke translates into future performance.19

19The coefficients on the Duke evaluation ranking variables are given in Table A.1 in the Appendix .
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The expected GPA of the student, however, may not reflect the student’s true information

set. We now test whether the university has private information under a more restrictive setting.

Namely, we assume students know how their SAT scores and other demographics translate into

future performance. The information set for both the student and the university then contains

this common observed information plus common information that is unobserved to the researcher.

Under these assumptions, running the regression

GPAi = Ziα3 + εi3, (12)

and calculating the R2 then leads to a lower bound on the amount of common information that the

student and the university have regarding the student’s future performance as it does not include

common unobserved information. Results from this regression are reported Column 1 of Table 3.20

Close to 19 percent of the variation in grades can be explained by these observables. Comparing

this result with that in Column 1 of Table 1 suggests that students underestimate the relationship

between SAT scores and performance by more than 50 percent.

To this baseline regression, we add the student’s expected GPA:

GPAi = Ziα4 + ExpGPAiδ4 + εi4. (13)

The difference in R2 between (12) and (13) should provide an upper bound on the student’s private

information as it includes not only the student’s private information, but also common unobserved

information that is correlated with student’s private information. These results are reported in

Column 2 of Table 3. The differences in R2 between Column 2 and Column 1 in Table 3 indicates

that including the expected GPA of the student increases the R2 by less than 0.01, which provides

an upper bound of the importance of student’s private information.

Finally, we add Duke’s evaluation rankings of the students:

GPAi = Ziα5 + ExpGPAiδ5 + DukeEviβ5 + εi5. (14)

The difference in R2 between (13) and (14) should provide a lower bound on the importance of

Duke’s private information. Notice from Column 3 that controlling for Duke’s rankings increase

the R2 by more than 0.12, again suggesting substantial Duke private information.21 Note that this

still leaves two-thirds of the variation in GPA unexplained, perhaps due to course selection and

shocks to how students respond to college life.

20Adding additional variables such as family income and mother’s education had little effect on the R2 but did

lead to some attrition.

21One can also reverse the order of the regressions such that we first control for Duke’s evaluation rankings and

then add student’s expected GPA. The addition of the student’s expected GPA in this order increases the R2 by only

0.001, with an insignificant coefficient estimate on expected GPA.
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Table 3: Baseline Tests of Private Information.

Variable (1) (2) (3)

Constant
3.309∗∗∗

(0.039)

2.792∗∗∗

(0.187)

1.828∗∗∗

(0.325)

Male
-0.080∗∗

(0.037)

-0.086∗∗∗

(0.036)

-0.043

(0.029)

Black
-0.191∗∗∗

(0.051)

-0.182∗∗∗

(0.052)

-0.158∗∗∗

(0.053)

White
0.047

(0.041)

0.061

(0.041)

0.030

(0.042)

Asian
0.037

(0.049)

0.030

(0.049)

-0.010

(0.049)

Adjusted SAT
0.178∗∗∗

(0.018)

0.167∗∗∗

(0.018)

0.103∗∗∗

(0.017)

Expected GPA
0.145∗∗∗

(0.052)

0.050

(0.047)

Controls for Duke Eval? No No Yes

R2 0.188 0.196 0.321

Notes: Dependent variables is GPA; N = 938. Adjusted SAT is the SAT score normalized to have zero mean and

a standard deviation of one. The coefficients on the Duke evaluation rankings are reported in Table A.1 in the

Appendix. *, ** and *** indicate that the coefficient is significant at 10%, 5% and 1% respectively.
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A drawback of this empirical strategy is that we do not fully observe common information; as

a consequence, there is no guarantee that the reported bounds are in fact the real ones. Further,

measurement error in the expected GPA variable may be contaminating the results. In the follow-

ing section, we implement a different strategy that overcomes these limitations; and it allows us to

identify private and common information in order to perform a more accurate variance decompo-

sition analysis. However, it is worth mentioning that both strategies provide surprisingly similar

results.

6 Non-Parametric Identification of Private Information

There is a large existing economics literature that tests for asymmetric information particularly

for adverse selection in the empirical analysis of a variety of insurance markets.22 Most of these

papers test whether the data supports a positive association between insurance coverage and ex

post risk occurrence, a robust prediction of the classical models of insurance market developed by

Arrow (1963), Pauly (1974), Rothschild and Stiglitz (1976) and Wilson (1977).23

Our setting substantially differs from the insurance market setting studied in the existing liter-

ature. The empirical insurance literature assumes that private information is possessed by one-side

of the market, the potential insured, and it is manifested through their insurance purchase and

their ex post risk occurrence. In our setting, there is presumably private information about the

treatment effect by both the student and the university. Moreover, the empirical insurance lit-

erature typically assumes either to have access to observations for individuals with and without

insurance and their risk realizations, or to have access to observations for individuals with different

amount of coverage and their risk realizations. In particular, the risk realization may be related to

insurance coverage due to moral hazard, but will be unrelated to which insurance company provides

the coverage. In our setting, if a student does not attend the elite university, we will not observe

the student’s outcome had he attended it; or if the student attends the elite university, we will not

observe the student’s outcome had he not attended. For these reasons, we describe below a new

empirical strategy to identify private information in our setting.

6.1 Available Data and Assumptions

As we mention in section 3, we have data about an observed student outcome Y (i.e. first

year cumulative GPA, denoted by GPA). Conceptually, we assume that Y is a linear function of

22The rapidly growing literature includes Cawley and Philipson (1999) for life insurance market, Chiappori and

Salanie (2000) for auto insurance market, Cardon and Hendel (2001) for health insurance market, Finkelstein and

Poterba (2004) for annuity market, Finkelstein and McGarry (2006) for long-term care insurance market and Fang,

Keane and Silverman (2008) for Medigap insurance market.

23See Chiappori et. al. (2006) for a general derivation of the positive association property.
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XU , XS and XC where XU denotes the unobserved university’s private information about student

performance, XS denotes the unobserved student’s private information and XC denotes the in-

formation that is common to both students and the university but unobserved by the researcher.

Of course, we can also include a set of variables Z that are common information to the univer-

sity and the students and are observed by researchers, such as observed family and high school

characteristics; we will ignore Z for the discussion here for simplicity.

Specifically, suppose that

Y = XCγC +XUγU +XSγS + ε, (15)

where ε is noise. By construction, and thus without loss of generality, we assume that XC , XU , XS

and ε are independent.

Suppose that we also have access to two additional variables: a variable, denoted by WU ,

that measures the selective university’s assessment about the student’s treatment effect given its

private knowledge about the match between the student and the university XU , as well as the

common information XC ; and another variable denoted by WC that measures the student’s own

performance expectation in the selective university given the common information XC and her own

private information XS .24 We assume that (WU ,WS) are related to XC , XU and XS as follows:

WU = XC +XU , (16)

WS = XC +XS . (17)

To summarize, suppose that we observe a data set consisting {WU ,WS , Y } and assume that

there exists independent variables XC , XU , XS and ε such that {WU ,WS , Y } are generated by

(15)-(17).

The question we are interested in is, how do we estimate the coefficients αC , αU and αS , and/or

decompose the importance of common information XC , student private information XS , university

private information XU and noise ε in explaining the variation of Y in the data?

6.2 Empirical Strategy

We propose an empirical strategy that consists of the following steps:

1. Invoking Kotlarski’s (1967) theorem, we separately recover the marginal distributions of

XC , XU and XS from the observed joint distribution of (WU ,WS) ;

2. We draw random samples of {XCi, XUi, XSi} from the marginal distributions of XC , XU and

XS recovered in step 1;

24We will describe in Subsection 6.3 below the empirical counterparts of WU and WS in our setting.
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3. We obtain samples of {WUi,WSi} from the random samples of {XCi, XUi, XSi} generated in

step two, and then recover a sample of Yi conditional on {WUi,WSi} using multiple imputation

methods.25

4. We run regressions of Y on XC , XU , XS using the pseudo-sample {Yi, XCi, XUi, XSi} simu-

lated above to estimate γC , γU and γS , and to do variance decomposition.

Now we provide more details about the above empirical strategy. The key is the first step which

uses a mathematical result known as the Kotlarski’s theorem:

Theorem 1 (Kotlarski’s Theorem) Let XC , XU and XS be three independent real-valued ran-

dom variables. Suppose WU and WS are generated as in (16) and (17). Then the joint distribution

of (WU ,WS) determines the marginal distribution of XC , XU , XS up to a change of the location as

long as the characteristic function of (WU ,WS) does not vanish (i.e., it does not turn into zero on

any non-empty interval of the real line).

This well-known theorem is first proved in Kotlarski (1967) and the proof can also be found in

Rao (1992, pp 7-8).26 The proof of the theorem also suggests how the marginal distributions for

XC , XS and XU can be constructed. Let

Ψ (t1, t2) = E exp (it1WU + it2WS) (18)

denote the characteristics function for the observed joint random vector (WU ,WS) , and let

Ψ1 (t1, t2) ≡ ∂Ψ (t1, t2)
∂t1

= E [iWU exp (it1WU + it2WS)] (19)

denote the derivative of Ψ (·, ·) with respect to its first argument. Then Kotlarski theorem shows

that the characteristic function for random variables XC , XU , XC are respectively given by

ΨXC
(t) = exp

(∫ t

0

Ψ1 (0, t2)
Ψ (0, t2)

dt2

)
,

ΨXU
(t) =

Ψ (t, 0)
ΨXC

(t)
,

ΨXS
(t) =

Ψ (0, t)
ΨXC

(t)
.

25See Rubin (1987) for an extensive description of this methodology.

26Kotlarski theorem has been widely used in measurement error models in econometrics (e.g., Li and Vuong 1998).

It has been applied elsewhere in economics, e.g. Krasnokutskaya (2008) used in the context of identifying and

estimating auction models with unobserved auction heterogeneity, and Cunha, Heckman and Navarro (2005) used it

to distinguish uncertainty from heterogeneity in their analysis of life-cycle earnings.
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Finally the characteristic functions of these three random variables uniquely determines the prob-

ability density function via an inversion formula. Let fXC
, fXU

, and fXS
respectively denote the

marginal probability density function for random variables XC , XU and XS . We have, following the

inversion formula described in Horowitz (1998, pp. 104)

fXK
(xK) =

1
2π

∫ +∞

−∞
exp (−itxK) ΨXK

(t) dt for K ∈ {C,U, S} .

Once we have the marginal distributions for XK for K ∈ {C,U, S} , the remaining steps 2-4

described above are rather straightforward. Now we describe the somewhat standard estimation

procedure to carry out step 1.27 The key is to estimate Ψ (·, ·) and Ψ1 (·, , ·) by their sample analogs:

given a sample
{
W j
U ,W

j
S

}n
j=1

,

̂Ψ (t1, t2) =
1
n

n∑
j=1

exp
(
it1W

j
U + it2W

j
S

)
̂Ψ1 (t1, t2) =

1
n

n∑
j=1

iW j
U exp

(
it1W

j
U + it2W

j
S

)
.

The characteristic functions ΨXK
(t) for K ∈ {C,U, S} can in turn be estimated by replacing Ψ (·, ·)

and Ψ1 (·, , ·) by their estimates above.

Remarks. We have assumed in equation (15) that the student outcome Y is a linear function

of XC , XU , XS . This is for simplicity only. With the pseudo data sets we simulated in Step 3, we

can also estimate Y as a nonlinear function of these variables, or even non-parametrically estimate

their relations.

It is also worth noting in specification (16) and (17), we interpret XU and XS are respectively

the true private information for the university and the student, and assume away noise in the

measurement of the variables WU and WS . If instead the variables we extract in step 1 contain the

true private information of the university and students contaminated by noise, then we will have,

in step 4, a mismeasured independent variables in the regressions. This may bias our coefficient

estimates for γU and γS downward, but when we do variance decomposition for Y, we should still

be able to recover the importance of the true private information of the university and the student

in explaining the variance of the outcome variable Y.

6.3 Implementation Details and Results

As we have already mentioned, it is necessary to have access to (at least) two variables {WU ,WS}
in order to apply Kotlarski’s decomposition. Here we provide the details of these variables in our

empirical application.

27See Krasnokutskaya (2008) for similar estimation procedure. Horowitz (1998, Chapter 4) describes some useful

suggestions for issues related to smoothing.
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WU is specified as Duke’s predicted first year GPA for the student, which we denote by GPAU .

Specifically, GPAU is predicted student GPA from the estimated regression

GPAi = Ziα6 + DukeEviβ6 + εi6,

where GPAi denotes the actual first year GPA. Recall that Zi are the observed SAT scores and

demographics and DukeEv refers to the Duke ranking variables.

For WS , we consider two alternative specifications. The first specification for WS is the student’s

predicted GPA, which we denote by GPAS , predicted from the estimated regression equation (13)

from the previous section:

GPAi = Ziα4 + ExpGPAiβ4 + εi4.

This specification implies that students have an accurate idea about how to weight each informa-

tional variable (e.g. SAT) when they predict their performance. The second specification for WS is

the expected GPA (ExpGPA) reported by the student before coming to Duke in the CLL survey.

To the extent that the students may not properly weigh the effect of the observable variables on

their actual GPA, as documented in Table 2, we will be attributing some of the students’ wrong

weighting on the importance of common information XC to Duke private information.

Applying Kotlarski’s decomposition to {WU ,WS} allow us to recover a sample of {XCi, XUi, XSi},
and to construct a sample of {WUi,WSi}. The next step is to obtain a sample of grades (i.e. Yi)

conditional on WUi and WSi by multiple imputation, which we follow Rubin (1987).28, 29

Once we have Yi and {XCi, XUi, XSi} , we perform a variance decomposition analysis (keeping

in mind that XCi, XUi, XSi are orthogonal to each other) to establish the contributions of Duke

and students private and common information to the variation in GPA.

Table 4 reports the variance decomposition of GPA following two different specifications for

WS as described above. Specification (1) assumes that students know how to weight the available

information when they predict their performance; results show that Duke’s private information

explains 9.1 percent of the variance in the students’ actual first year cumulative GPA; the stu-

dent’s private information explains no more than 0.05 percent and the common information 26.5

28The basic steps of Rubin multiple imputation are as follows. (1). Calculate V = (W ′W )−1, β̂ = VW ′Y and

Ŷ = W ′β̂ where W = {WU ,WS} ; (2). Draw a random g from χ2 distribution with degree of freedom nobs − r; (3).

Calculate σ2
∗ = (Y − Ŷ )′(Y − Ŷ )/g; (4). Draw an r-dimensional Normal random vector D˜N(0, Ir), where Ir is the

identity matrix of order r; (5). Calculate β̂∗ = β̂ + σV 1/2D, where V 1/2 is the triangular square root of V obtained

by the Cholesky decomposition; (6). Calculate predicted values Ŷi = W ′i β̂∗; (7). For each missing value find the

respondent whose Ŷ is closest to Ŷi and take Y of this respondent as the imputed value (predictive mean matching).

29In order to test for robustness of the results we also implemented a nonparametric approach to recover Yi.

Basically, we draw a sample of Zi conditional on {WUi,WSi} from the observed conditional distributionG(Y |WU ,WS),

which was obtained using the Epanechnikov kernel (K(u) = 3
4
(1−u2)1(|u|≤1)). The smoothing parameter was selected

by following a refined plug in method, which tries to find the bandwidth that minimizes the mean integrated square

error. Results obtained using this strategy did not differ significantly from those using multiple imputation technique.
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Table 4: Regressing GPA on Duke Private Information, Student Private Information and Common

Information.

(1) (2)

WU = GPAU ,WS = GPAS WU = GPAU ,WS = ExpGPA

Coef. Std. Err. R2 Coef. Std. Err. R2

Duke Priv. Inf. (XU ) 1.070∗∗∗ 0.037 0.091 0.957∗∗∗ 0.023 0.235

Student Priv. Inf. (XS) 0.066∗ 0.040 0.0004 0.037∗ 0.022 0.0005

Common Inf. (XC) 0.993∗∗∗ 0.018 0.265 0.994∗∗∗ 0.044 0.081

Total 0.356 0.317

Notes: *, ** and *** indicate that the coefficient is significant at 10%, 5% and 1% respectively.

percent. Specification (2) allows that students may not know how to weight the information, as a

consequence, the fraction of the variance in GPA explained by Duke private information increases

to 23.5 percent, that by common information declines to 8.1 percent, but the fraction explained by

student private information remains about 0.1 percent.

It is worth noting the changes in R2 depending on the specification. First the total R2 in

specification (2) is smaller than in specification (1), this could be due to the loss of valuable

information when students do not correctly weight the available information or it could be due

to students reporting expected GPA with error. Second, there is an important change, similar in

magnitudes but in opposite directions, of the proportion of the variance that could be explain by

common information and duke private information. This seems to suggest that the size of Duke

private information not only depends on what information is not available to the students, but also

how they weigh the information available to them in forecasting their performance at Duke.

Assuming that students are rational implies that coefficient on students private information

should be equal one; however as we can see from Table 4, this is not the case. One possible

explanation to this discrepancy is that students may report with error their expected GPA. The

attenuation bias from the measurement error might drive the small R2 we found for the students

private information reported in Table 4. However, if we assume that the discrepancy between

estimated γ̂S and the postulated value γS = 1 under rational expectations is completely due

to measurement error, we can easily provide an estimate of the variance of the student private

information without measurement error. To see this, note that in the case of orthogonal explanatory

variables with classical errors-in-variables, we have:

γ̂S = γS
Var(X∗S)
Var(XS)

,

where Var(X∗S) is the variance of the student private information when it is purged of measurement

error, and Var(XS) is X∗S measured with error. Given that we know γ̂S , γS (which is equal 1
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under the rational expectation assumption) and Var(XS), then Var(X∗S) = γ̂SVar(XS). Thus the

fraction of the variation in GPA explained by X∗S , denoted by R2∗, is simply the R2 reported

in Table 4 divided by γ̂S . Therefore, once we correct for measurement error, the fraction of the

variation in GPA that is explained by student private information measured without error (i.e. X∗S)

under specifications (1) and (2) are respectively equal to 0.006 (≈ 0.0004/0.066) and 0.0135 (≈
0.0005/0.037); again, both are substantially smaller in magnitude than the private information

possessed by Duke.

Finally, the results obtained in this section are quite similar to those obtained from the baseline

regressions. Thus, the conclusion that Duke does possess private information that can predict the

students’ post-enrollment performance is robust to different empirical strategies.

7 Discussion

We have argued that for affirmative action to lead to mismatch effect in the sense that its

intended beneficiary may be made worse off, a necessary condition is that the selective univer-

sity has private information about the student’s treatment effect. However, even though we have

shown substantial evidence that Duke does possess private information about the student’s future

performance, we can not conclude that there is mismatch.

We would also like to propose two potential avenues that may lead to a more conclusive test of

mismatch. The first potential avenue requires the cooperation of the selective university’s Admis-

sion’s Office. After the admission decisions are made, the Admissions Officer could randomly assign

admitted minority students into two groups: the first group will receive the standard admission

letter; and the second group will receive the standard admission letter together with additional

information (e.g. the Admissions Officer’s evaluation rankings of the applicant) that the Admis-

sions Officer thinks are relevant to predict the applicants’ post-enrollment performance. Then if

we observe that the enrollment rate for the second group is smaller than the first group, this will

prove that the university’s private information may have generated mismatch.

The second potential avenue to test for mismatch is to ask the admitted students two questions:

Q1. “What do you realistically expect will be your cumulative GPA at Duke after your

first year?”

Q2. “Suppose your expected GPA at Duke was X. Would you still have chosen Duke?”

If a researcher with access to the Admission Officer’s private information would have predicted

a student’s cumulative GPA to be lower than the stated threshold by the student in Q2, we could

also conclude that there is mismatch.30

30Note that in both cases we would be testing for local mismatch rather than global mismatch.
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However, it is worth noting that even if one cannot conclusively prove the existence of mis-

match, evidence that a selective university possesses valuable ex ante information could be used

in preventing mismatch. To the extent that a university with active affirmative action programs is

concerned about potential mismatch, it suggests that releasing more information to their applicants

about how the admission officers feel about their fit with the university will minimize possibilities

for actual mismatch. More transparency and more effective communication with the students, and

possibly pre-enrollment sit-ins in college classrooms etc. can help minority students enrolling in an

elite university potentially find out that they would have been better off elsewhere.

8 Conclusion

We argue that once we take into account the students’ rational enrollment decisions, mismatch

in the sense that the intended beneficiary of affirmative action admission policies are made worse off

could occur only if selective universities possess private information about students’ post-enrollment

treatment effects. This necessary condition for mismatch provides the basis for a new test. We

propose an empirical methodology to test for private information in such a setting. The test is

implemented using data from Campus Life and Learning Project (CLL) at Duke. The evidence

shows that Duke does possess private information that is a statistically significant predictor of

the students’ post-enrollment academic performance. We also propose strategies to evaluate more

conclusively whether the evidence of Duke private information has generated mismatch.
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Appendix.

In this appendix, we examine the CLL data for drop-out bias and non-response bias. Also, we

report the coefficients for the Duke ranking measures from Tables 2 and 3.

A Drop-out Bias and Non-Response Bias

The Registrar’s Office data provided information on students who were not enrolled at the end

semester in each survey year. Non-enrollment might occur for multiple reasons including academic

or disciplinary probation, medical or personal leave of absence, dismissal or voluntary (including a

small number of transfers) or involuntary withdrawal. Fewer than one percent of students (n = 12)

were not enrolled at the end of the first year; about three percent by the end of the second year

(n = 48) and just over five percent (n = 81) by the end of the senior year. We combined all of

these reasons and tested for differences in selected admissions file information of those enrolled

versus not enrolled at the end of each survey year. The test variables included racial ethnic group,

SAT verbal and mathematics score, high school rank (where available), overall admission rating

(a composite of five different measures), parental education, financial aid applicant, public-private

non-religious-private religious high school and US citizenship. Of over 40 statistical tests, only two

produced significant differences (with p-value less than 0.05): (1). At the end of the first year,

dropouts had SAT-verbal scores of 734 versus 680 for non-dropouts; (2). by the end of the fourth

year, those who had left college had an overall admissions rating of 46.0 (on a 0-60 scale) while

those in college had an average rating of 49.7. No other differences were significant. We conclude

that our data contain very little drop-out bias.

We conducted similar tests for respondents versus non-respondents for each wave for the same

variable set plus college major (in 4 categories: engineering, natural science/mathematics, social

science, humanities), whether or not the student was a legacy admission, and GPA in the semester

previous to the survey semester. Seven variables show no significant differences or only a few small

sporadic differences (one wave but not others), including racial ethnic category, high school rank,

admissions rating, legacy, citizenship, financial aid applicant, and major group. However, several

other variables show more systematic differences:

• Non-respondents at every wave have lower SAT scores (math: 9-15 points lower, roughly

one-tenth to one-fifth of a standard deviation; verbal: 18-22 points lower, roughly one-third

of a standard deviation).

• Non-respondents have slightly better educated parents at waves one and three, but not waves

two and four.
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• Non-respondents at every wave are less likely to be from a public high school and somewhat

more likely to be from a private (non-religious) high school.

• Non-respondents have somewhat lower GPA in the previous semester compared with respon-

dents (by about one-quarter of a letter grade).

These differences are somewhat inconsistent in that they include lower SAT and GPA for non-

respondents, but higher parental education and private (more expensive) high schools. In general,

the non-response bias is largest in the pre-college wave and smaller in the in-college waves even

though the largest response rates are in the pre-college wave. In general, we judge the non-response

bias as relatively minor on most variables and perhaps modest on SAT measures.

B Omitted Coefficients For Duke Evaluation Rankings in Tables

2 and 3

Here we report coefficients for the Duke ranking variables that were omitted from Tables 2 and

3. Column 1 shows the coefficients when the dependent variable is GPA-ExpGPA, the omitted

coefficients from column 2, Table 2. Column 2 shows the coefficients when the dependent variable

is GPA, the omitted coefficients from column 3, Table 3. The Admission Officer’s ranking of the

student’s achievement and personal qualities are very significant in both regressions suggesting that

they may be the key variable for Duke’s private information. Recommendations, however, are only

significant in the second column, suggesting that student’s may have some idea of the informational

content of their recommendation letters.
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Table A.1: Coefficients on Duke Evaluation Rankings.

(1) (2)

(GPA-ExpGPA) GPA

Achievement 3
0.217

(0.137)

0.227**

(0.103)

Achievement 4
0.256*

(0.138)

0.305***

(0.105)

Achievement 5
0.448***

(0.135)

0.520***

(0.102)

Curriculum 3
0.307

(0.275)
0.301

(0.224)

Curriculum 4
0.246

(0.258)
0.400*
(0.212)

Curriculum 5
0.273

(0.259)
0.452**
(0.213)

Essay 3
-0.086
(0.105)

-0.104
(0.103)

Essay 4
-0.026
(0.107)

-0.038
(0.104)

Essay 5
-0.124
(0.137)

-0.196
(0.129)

Personal Qualities 3
0.053

(0.198)
0.116

(0.168)

Personal Qualities 4
0.047

(0.198)
0.118

(0.168)

Personal Qualities 5
0.213
(0.209

0.305
(0.175)

Recommendations 3
0.010

(0.210)
0.393**
(0.168)

Recommendations 4
0.026

(0.217)
0.423**
(0.173)

Recommendations 5
0.014

(0.221)
0.427**
(0.176)

Notes: Base category for each evaluation measure is 2, none of the sample had 1’s for any of these measures. Column

1 refers to the omitted coefficients in Table 2 (Column 2), Column 2 refers to the omitted coefficients in Table 3

(Column 3). *, ** and *** indicate that the coefficient is significant at 10%, 5% and 1% respectively.
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