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1 Introduction

We highlight two puzzling data features which help isolate the economic risks that
drive asset prices. First, in the data there is strong evidence for large and predom-
inantly negative moves in returns, which occur on average once every 18 months.1

Consistent with these large negative moves, the distribution of asset prices in the
data is non-Gaussian and exhibits negative skewness and heavy tails. Second, av-
eraging across all the large asset-price moves, there is no persuasive evidence in the
data for large contemporaneous or subsequent moves in the real side of the economy
(consumption). That is, the once in 18-month jumps in asset prices do not coincide,
and nor are they followed by any significant large moves in the real side of the econ-
omy2. The apparent lack of close connection between the asset prices and the real
side of the economy indicates that the reasons for large asset-price moves can not be
hardwired or built-in as large moves in the real side of the economy. This evidence
begs the question, what risks can explain these large moves in asset prices? What
is the compensation, in equilibrium, for these risks? Can we account for these large
asset-price moves alongside the equity premium and the risk-free rate puzzles?

In this paper we present an equilibrium model that provides insights regarding
these questions. Our model set-up utilizes the recursive utility of Epstein and Zin
(1989) and Weil (1989) and the standard long-run risks specification of Bansal and
Yaron (2004), which features Gaussian dynamics of true consumption growth with
persistent expected growth component and time-varying consumption volatility —
there are no large moves or jumps in the underlying consumption and dividend dy-
namics. However, unlike the standard long-run risks model, the expected growth is
not directly observable, and investors learn about it using a cross-section of signals.
The quality of signals determines the uncertainty that investors face about expected
growth. This uncertainty, referred to as confidence measure, is time-varying and con-
tains large positive shocks. In essence, the quality of information that investors have
about future expected growth is time-varying and subject to occasional large moves.
The confidence measure affects the beliefs of investors about future consumption and
impacts equilibrium asset prices in the economy. We show that large negative asset-
price moves occur during periods when investors have very poor information (i.e.,
large uncertainty) about the future growth of the economy.

We show that when investors have preference for the timing of resolution of un-
certainty, they demand compensation for short-run, long-run, consumption volatility
risks and confidence risks. The novel contribution of the model is that the confidence

1Recent work featuring jump risks in asset prices includes Pan (2002), Andersen, Benzoni, and
Lund (2002), Eraker, Johannes, and Polson (2003), Broadie, Chernov, and Johannes (2007).

2 Both the frequency (18 months) and the magnitude of the jumps that we focus on are quite
distinct from once in 600 months disaster states discussed in Gabaix (2007), Barro (2006) and Rietz
(1988)
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risks are priced in equilibrium, and carry a positive risk premium. Notably, confidence
jump shocks receive risk compensation even though there are no large moves (jumps)
hardwired in consumption. Learning and confidence jump risk channel can explain
the key features of returns in the data. Large positive shocks in the confidence mea-
sure (high uncertainty) endogenously translate into large negative jumps in returns.
This can account for negatively skewed and heavy-tailed distribution of returns, even
though consumption growth is Gaussian. Further, in the model both the expected
excess returns and the price-dividend ratios can be predicted by the confidence mea-
sure, which can account for the predictability of excess returns by price-dividend ratio
in the data.

Learning about the expected growth is featured in a number of asset-pricing mod-
els. In the class of learning models considered by David (1997), Veronesi (1999),Veronesi
(2000), Ai (2007), unobserved drift is modeled as a regime-shift process, so that in-
vestor’s uncertainty about the estimate is stochastic and is related to the fundamental
shocks in the economy3. Alternative learning models are presented in Hansen and
Sargent (2006), who specify model-selection rules which capture investors’ concerns
about robustness and potential model misspecification, and Piazzesi and Schneider
(2007), who use survey data to characterize and study the subjective beliefs of the
agents in the economy. Bansal and Shaliastovich (2008) modify standard Kalman fil-
tering problem to account for endogenous learning about the true state after paying
a cost. Relative to the models in the literature, the novel dimension of this paper
is the time-variation in the quality of signals and ensuing confidence risks in the as-
set markets. The fluctuations and large moves in confidence measure are consistent
with the theoretical model of Veldkamp (2006) and Van Nieuwerburgh and Veldkamp
(2006), where information flow about unobserved economic state endogenously varies
with the level of economic activity.

The main target in this paper is to quantitatively explain the key non-Gaussian
features of asset prices and at the same time account for the key dimensions of con-
sumption and confidence measure in the data. To give quantitative content to the
model, we directly measure confidence using survey data. More specifically, we rely
on the cross-section of forecasts from the Survey of Professional Forecasters and con-
struct confidence measure as a cross-sectional variance of the average forecast in the
data. These calculations are consistent with the theoretical setup of the model. We
show that the average (consensus) forecast based on real GDP and industrial produc-
tion data is persistent and very informative about future economy, even controlling
for the history of the data. Next, we find that confidence measure in the data is quite
small and on average equals about 1/15 of the volatility of the underlying macroeco-
nomic series. Further, confidence measure exhibits substantial variation in time with
occasional large positive spikes (high uncertainty). We find that the half-life of con-

3Rational learning is also featured in Detemple (1986), Gennotte (1986), Brennan (1998), Brennan
and Xia (2001), David and Veronesi (2008), Croce, Lettau, and Ludvigson (2006).
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fidence shocks is about 6 months, so that the confidence shocks in the data are fairly
short-lived. In addition, we provide strong statistical support for the large moves in
the confidence measure in the data.

We show that confidence measure contains important information about financial
markets data. In particular, large moves in the confidence measure are significantly
related to contemporaneous large moves in returns, while there is no persuasive link
in the data between large moves in real consumption and large moves in returns at the
considered frequencies. Indeed, we show that the correlations of large move indicators
in returns and in consumption are close to zero, both contemporaneously and in
the future. On the other hand, the correlations of large move indicators in returns
and confidence measure are about 35%. Our confidence measure also has significant
information about asset valuations, even controlling for the aggregate volatility in the
economy. We also consider the predictability of implied variance of returns by the
confidence and macroeconomic volatility measures. Using the conditional quantile
regressions, we find that large upward moves in the variance of returns are related
to the fluctuations in confidence measure, rather than to the conditional volatility of
the fundamentals in the economy. This indicates that large moves in asset prices are
closely tied to the confidence risk that we feature in our model.

We calibrate the model to evaluate its quantitative implications for the equity
markets. The calibration of consumption dynamics is standard and is designed to
match the key features of the historical data. Parameters of confidence dynamics
are calibrated to match unconditional moments of the series in the data, as well as
its conditional distribution. In simulations, we verify that the model can match well
the key features of the confidence measure in the data, and in particular, along non-
Gaussian dimensions. Based on the calibration of the model, we show that the model
with fluctuating confidence risks can explain the negatively skewed and heavy-tailed
distribution of returns, even though the consumption dynamics is Gaussian. In the
model, as in the data, large moves in the confidence measure lead to large moves in
asset prices and returns, though they are not mirrored in consumption growth rate.
For this reason, the model is also able to capture near zero correlation between the
large moves in the real side of the economy and in returns, and significant correlation
between large moves in the confidence measure and in returns, as found in the data.

Our model of confidence risks provides a new channel for the variation in equity
risk premium. In principle, in our model the variations in expected excess returns are
driven by fluctuations in consumption volatility risks and confidence risks, however,
quantitatively, almost all of the variation is due to fluctuations in confidence risks.
Exploiting the fluctuations in confidence risks, we show that the model is capable
of capturing short and long horizon predictability of future excess returns by price-
dividend ratios. At the same time, the model is consistent with the general lack of
predictability of future consumption growth rate by price-dividend ratios.
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With learning, the full model generates an unconditional equity premium of about
5.3%. The key risk channels in the model come from confidence risks and long-run
risks, which contribute about 1.7% each to the total premium. The compensations for
short-run consumption shocks and volatility shocks are 1.2% and 0.8%, respectively.
Using the empirical confidence measure and aggregate volatility in the data, we also
construct the estimates of the conditional equity premium and show its decomposition
into the sources of risk in the economy. The magnitudes of the risk compensation in
the data are similar to those in the model. As the confidence risks are mostly jump
risks, the model implies that the compensation for the jump risks in market returns
is about 1/3 of the overall equity premium, which highlights the importance of the
confidence risk channel for the asset markets.

The rest of the paper is organized as follows. In the next section we set up the
model and discuss preferences of the representative agent and dynamics of the econ-
omy given the information set of investors. In Section 3 we solve for the asset prices
and discount factor in the economy. Section 4 contains the empirical description of the
confidence measure in the data, while the calibrations and asset-pricing implications
of the economy are discussed in Section 5. Conclusion follows.

2 Model Setup

2.1 Preferences

We consider a discrete-time real endowment economy. The investors preferences over
the uncertain consumption stream Ct can be described by the Kreps and Porteus
(1978) recursive utility function of Epstein and Zin (1989):

Ut =
{

(1 − δ)C
1−γ

θ
t + δ(Et[U

1−γ
t+1 ])1/θ

}

θ
1−γ

, (2.1)

where γ is a measure of a local risk aversion of the agent, ψ is the intertemporal
elasticity of substitution and δ ∈ (0, 1) is the subjective discount factor. The condi-
tional expectation is taken with respect to the date-t information set of the agent.
For notational simplicity, we define

θ =
1 − γ

1 − 1

ψ

. (2.2)

Note that when θ = 1, that is, γ = 1/ψ, the above recursive preferences collapse to
the standard case of expected utility. As is pointed out in Epstein and Zin (1989), in
this case the agent is indifferent to the timing of the resolution of uncertainty of the
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consumption path. When the risk-aversion exceeds the reciprocal of IES, the agent
prefers early resolution of uncertainty of consumption path, otherwise the agent has
preference for late resolution of uncertainty. In the long-run risk model agents prefer
early resolution of uncertainty.

As shown in Epstein and Zin (1989), the logarithm of the Intertemporal Marginal
Rate of Substitution (IMRS) for these preferences is given by

mt+1 = θ log δ − θ

ψ
∆ct+1 + (θ − 1)rc,t+1, (2.3)

where ∆ct+1 = log(Ct+1/Ct) is the log growth rate of aggregate consumption and rc,t+1

is the log of the return (i.e., continuous return) on the asset which delivers aggregate
consumption as its dividends each time period. This return is not observable in
the data. It is different from the observed return on the market portfolio as the
levels of market dividends and consumption are not equal: aggregate consumption is
much larger than aggregate dividends. Therefore, we assume exogenous process for
consumption growth and use a standard asset-pricing restriction

Et[exp(mt+1 + rt+1)] = 1, (2.4)

which holds for any continuous return rt+1 = log(Rt+1), including the one on the
wealth portfolio, to solve for the unobserved wealth-to-consumption ratio in the
model. This enables us to express the discount factor in terms of the underlying
state variables and shocks in the economy. We can then use the solution to the
discount factor and the Euler equation (2.4) to price any asset in the economy.

We describe the dynamics of the real economy and the information set of the agent
in the next section.

2.2 Consumption Process

The log consumption growth ∆ct+1 process incorporates a time-varying mean xt and
stochastic volatility σ2

t :

∆ct+1 = µ+ xt + σtηt+1, (2.5)

xt+1 = ρxt + ϕeσtǫt+1, (2.6)

σ2

t+1 = σ2 + νc(σ
2

t − σ2) + ϕwσtwc,t+1. (2.7)

where ηt, ǫt and wc,t+1 are independent standard Normal shocks which capture short-
run, long-run and volatility risks in consumption, respectively. Parameters ρ and
νc determine the persistence of the conditional mean and variance of the consump-
tion growth rate, while ϕe and ϕw govern their scale. Notably, short-run, long-run
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and consumption volatility shocks are Gaussian – there are no large moves (jumps)
hard-wired into the underlying consumption. The empirical motivation for the time-
variation in the conditional moments of the consumption process comes from the
long-run risks literature, see e.g. Bansal and Yaron (2004), Hansen, Heaton, and Li
(2008) and Bansal, Kiku, and Yaron (2007b).

The agent knows the structure and parameters of the model and observes con-
sumption volatility σ2

t , however, the true expected growth factor xt is not directly
observable and has to be inferred from the data. Based on the available informa-
tion, investors form an estimate of the current state. This estimate is subject to a
learning error and is necessarily imprecise, and the amount of imprecision reflects
the confidence of the investors about future economic growth. The time-variation in
the quality of information about future economy gives rise to fluctuating confidence
and confidence risks, which we show have important asset-pricing implications in the
economy.

2.3 Confidence About Growth

We consider a specification where in addition to observing current consumption,
agents also receive n signals about the expected growth of the economy xi,t, for
i = 1, 2, . . . n. These signals together with consumption data provide all the informa-
tion about the expected growth state.

We assume that each signal deviates from the true state xt by a random noise ξi,t,

xi,t = xt + ξi,t, (2.8)

where the errors ξi,t are randomly drawn from Normal distribution and are uncorre-
lated with fundamental shocks in the economy.

The date-t imprecision in signal i is captured by Vi,t :

ξi,t ∼ N(0, Vi,t). (2.9)

In general, the imprecision in the signal can be different across signals and can vary
across time, hence subscripts i and t. However, we further assume that all signals i
are ex-ante identical and come from the same distribution at each date t. Then, the
precision of each signal is the same, and we denote V0,t ≡ Vi,t for all i.

As all the signals come from the same distribution and are ex-ante equally in-
formative, the investor assigns same weight to each of them. That is, in the end
the average signal is a sufficient statistic for the cross-section of all the individual
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ones. Define the average signal x̄t, which corresponds to the sample average of the
individual signals. Then, using (2.8),

x̄t ≡
1

n

∑

xi,t = xt + ξt, (2.10)

where the uncertainty in average signal Vt and the average signal error are given by

Vt =
1

n
V0,t, ξt =

1

n

∑

ξi,t, (2.11)

so that
ξt ∼ N(0, Vt). (2.12)

The uncertainty Vt determines the confidence of investors about their estimate of
expected growth and is referred to it as confidence measure. In the model, confidence
measure is assumed to be observable to investors. It can be estimated in the data
from the cross-section of the individual signals xi,t. Indeed, the signal equation (2.8)
implies that

E

(

1

n− 1

n
∑

i=1

(xi,t − x̄t)
2

)

= E

(

1

n− 1

n
∑

i=1

(ξi,t − ξt)
2

)

= V0,t, (2.13)

so that the cross-sectional variance of the signals adjusted by the number of signals
n can provide an estimate of the confidence measure Vt in the data.

The confidence measure in the model captures the uncertainty that the agents have
about their estimate of future growth. The variation in the confidence measure across
time reflects the fluctuations in the quality of information in the economy, so that at
times when information is poor, signals are less precise and the uncertainty is high
(Vt increases). The time-variation in the confidence measure and ensuing confidence
risks are the novel contribution of the model. Standard learning models, see for
example David (1997), Veronesi (2000) and Brennan and Xia (2001), feature constant
imprecision in observed signals, while Hansen and Sargent (2006) specify alternative
learning rules robust to model misspecification. We discuss the specification of the
confidence measure dynamics in the next section.

2.4 Confidence Dynamics

As discussed in the previous section, the confidence measure Vt reflects the uncertainty
of investors about future growth. Our objective is to specify a model where the
confidence measure is time-varying, and is subject to occasional large increases. Our
specification for Vt is motivated by theoretical literature on this issue and the empirical
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work. In terms of theoretical work, Veldkamp (2006) and Van Nieuwerburgh and
Veldkamp (2006) present a model with endogenous learning, which features large
discrete moves in the information about future economy. These moves are broadly
consistent with our model specification for confidence dynamics. The large, discrete
moves in investors’ uncertainty about future economy also obtain in the costly learning
models due to lumpy information, as shown in Bansal and Shaliastovich (2008). Our
time-series model is further motivated by strong empirical evidence for large positive
moves in the confidence measure in the data, as discussed in Section 4.

Based on these arguments, we specify a following discrete-time jump-diffusion
model for the confidence measure, which features persistence in the series and both
Gaussian and jump-like innovations:

Vt+1 = σ2

v + ν(Vt − σ2

v) + σw
√

Vtwt+1 +Qt+1. (2.14)

The parameters σ2
v is the mean value of Vt, ν captures its persistence while σw deter-

mines the volatility of the smooth Gaussian shock wt+1. The non-Gaussian innovation
in the variance process is denoted by Qt+1. We model it as a compound Poisson jump,

Qt+1 =

Nt+1
∑

i=1

Ji,t+1 − µjλt,

where Nt+1 is the Poisson process, whose intensity λt ≡ EtNt+1 corresponds to the
probability of having one jump in continuous-time model, while Ji,t+1 determines
the distribution of the size of the jump. Parameter µj is the mean of jump size, so
subtracting µjλt on the right-hand side of the above equation ensures that the jump
innovation Qt+1 is conditionally mean zero4. In continuous time, it is possible to
guarantee that Vt never falls below zero by placing an upper bound on the volatility
parameter σw and considering only positive jumps. In the simulations, we consider
positive jumps drawn from an exponential distribution, and verify that the conditions
for non-negativity of Vt are satisfied.

To capture the dependence of jump probability on the level of variance, we assume
that the arrival intensity λt is linear in Vt,

λ = λ0 + λ1Vt. (2.15)

Positive values of loading λ1 implies that confidence jumps are more likely when the
level of confidence measure Vt is high.

4Indeed,
Et(Qt+1) = Et(Et(Qt+1|Nt+1)) = Et(µjNt+1) − µjλt = 0.
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This specification of the dynamics of confidence measure is very similar to the
models Broadie et al. (2007) and Eraker and Shaliastovich (2008) for the variance
process in continuous time. Such model specification facilitates the analytical solution
of the model.

2.5 Learning Dynamics

At each point in time, the agent estimates the latent expected consumption growth
given the information set It, which includes the data on current and past consumption,
signals and the confidence measure:

It =
{

{

∆ct−j , σ
2

t−j , {xi,t−j}i=1,2,..., Vt−j
}

j=0,1,...

}

. (2.16)

Let x̂t denote the conditional mean of the expected growth state xt given past
consumption and signals data,

x̂t = E(xt |It), (2.17)

and denote ω2
t the variance of the filtering error which corresponds to the estimate

x̂t :
ω2

t = E
(

(xt − x̂t)
2 |It

)

. (2.18)

That is, x̂t is the best predictor of future consumption given all the available infor-
mation in the economy, and ω2

t captures the uncertainty due to learning.

In Appendix A.1 we show that the general solution of the filtering problem of
the agent has one-step ahead innovation representation, where the agent updates the
expectations about future growth using the consumption and the average signal data.
The filtered beliefs of the agent satisfy standard Kalman Filter representation,

∆ct+1 = µ+ x̂t + ac,t+1, (2.19)

x̄t+1 = ρx̂t + ax,t+1, (2.20)

x̂t+1 = ρx̂t +K1,t+1ac,t+1 +K2,t+1ax,t+1, (2.21)

where the expressions for Kalman Filter weights assigned to consumption and average
signal innovations are provided in Appendix A.1. Notably, the magnitudes of these
weights depend on the level of precision in the average signal relative to the volatility
of consumption growth rate.
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The innovations into consumption and signals contain fundamental short and
long-run consumption shocks and the filtering errors; in general, the three cannot be
separately identified based on the information set of the agent:

ac,t+1 = xt − x̂t + σtηt+1,

ax,t+1 = ρ(xt − x̂t) + ϕeσtǫt+1 + (x̄t+1 − xt).
(2.22)

With learning, investor’s confidence affects their beliefs about the distribution of
future consumption. Even if the fundamental consumption volatility is constant, the
variance of consumption growth tomorrow given the available information of investors
is time-varying due to the variation in the precision of the signals, as lower confidence
of investors (high Vt) implies higher uncertainty about future consumption.

The uncertainty of investors about their estimate of expected growth ω2
t is directly

related to the confidence measure:

ω2

t = K2,tVt. (2.23)

If uncertainty about future growth and consumption volatility are constant, a stan-
dard Kalman Filter result obtains that the steady-state variance of the filtering error
is constant. On the other hand, when confidence of investors is stochastic, the vari-
ance of the filtering error fluctuates with the uncertainty about future growth.

The general specification above nests standard cases in the literature when the
agent learns about the expected state from the univariate consumption series, and the
complete information case when the expected growth state is completely observable.
Indeed, if the signals are completely uninformative about the expected state and the
agent learns only from consumption data, thenK2 is zero. Such models are considered
by Piazzesi and Schneider (2005) and Croce et al. (2006); Hansen and Sargent (2006)
further modify standard model-selection rules to capture investors’ concerns about
robustness. On the other hand, when average signal is fully informative about the
expected growth, the model reduces to the standard long-run risks specification, see
Bansal and Yaron (2004). In this case, K1 = 0 and K2 = 1, and the agent has
a complete confidence about the future growth. In general case, the solutions to
investor’s estimate and filtering uncertainty are non-linear functions of the history of
consumption, signal and confidence measure. That is, investor optimally filters the
expected state using consumption and average signal data, and the weights assigned
to signals and consumption news are time-varying due to fluctuating confidence and
time-varying consumption volatility.

To simplify the solution of the model and get analytical solutions to the asset
prices, we consider an approximate setup and set the Kalman Filter weight on con-
sumption news to 0, and that on signal news to the steady-state value of K2 – positive
number slightly less than 1. Indeed, when confidence measure is much smaller than
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the volatility of consumption growth, signals are much more informative about the
expected growth state than the consumption data, so the weight K1,t+1 on the con-
sumption innovation is negligible, and the time-series variation inK2,t+1 is quite small.
In the data, as discussed below, this is indeed the case, as the confidence measure
(which determines the variation in K2,t+1) is an order of magnitude smaller than the
volatility of consumption growth. Given this, we consider a model specification in
which K1,t+1 is set at 0, and K2,t+1 is set at a constant equal to its steady-state value.
We verify by numerical methods the accuracy of this approximation, and we find that
the approximation error relative to the full model is extremely small5. The correlation
between the expected growth states from the two specifications is in excess of 0.99,
and the asset price and utility implications are very similar.

Based on the approximate setup, the dynamics of the economy given the informa-
tion of the agent can be rewritten in the following way:

∆ct+1 = µ+ x̂t + ac,t+1, (2.24)

x̄t+1 = ρx̂t + ax,t+1, (2.25)

x̂t+1 = ρx̂t +K2ax,t+1, (2.26)

In this specification, the agents update their expectations about the true expected
growth based only on the news about the average signal ax,t+1. The estimate of the
expected state can also be written as a weighted average of the expected value of the
state as of last period and current average signal:

x̂t+1 = (1 −K2)ρx̂t +K2x̄t+1, (2.27)

where the weight on the average signal news K2 is constant and is given by the
steady-state solution to the Kalman Filter (see Appendix A.1).

The equations (2.24) - (2.26), together with the time-series model for the confi-
dence measure in (2.14) and consumption volatility in (2.7) fully describe the evo-
lution of economy given period-t information of the agent. In the next section, we
incorporate preferences of the agents to solve for the equilibrium asset prices in the
economy.

5We use quadrature-based methods to numerically solve the full-blown model specification dis-
cussed in equations (2.19)-(2.21) and verify that the difference between the full and the approximate
models is small.
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3 Model Solution

3.1 Discount Factor

We use the Euler equation of the agent in (2.4) to solve the model.

The equilibrium asset prices in the economy are derived using standard log-
linearization of returns, discussed in Campbell and Shiller (1988). In Appendix B we
show that the equilibrium price-consumption ratio is linear in the expected growth
state, consumption volatility and the confidence measure of the investors:

pct = B0 +Bxx̂t +BvVt +Bσσ
2

t ,

where the expressions for the loadings are provided in Appendix.

The loading Bx measures the sensitivity of price-consumption ratio to the expected
growth prospects. It is positive for ψ > 1, so that when substitution effect dominates
income effect, prices rise following positive news about the expected growth rates.
The sign of the loading Bv depends on the preference of the agent for the timing
of the resolution of uncertainty. When the agent has a preference for early resolu-
tion of uncertainty (γ > 1/ψ), this loading is negative, so that lack of confidence
of investors, i.e. high Vt, leads to a decline in equilibrium asset valuations. Simi-
larly, as in a standard long-run risks model, positive news to consumption volatility
decrease equilibrium price-consumption ratio (Bσ < 0), when agents have preference
for early resolution of uncertainty. The magnitude of the consumption volatility load-
ing, however, is smaller in absolute value in the model with learning and fluctuating
confidence. Indeed, in complete information case when true expected growth state is
known, consumption volatility σ2

t explains all the conditional variation in short-run
and long-run consumption shocks. On the other hand, with learning, the volatility
of future consumption given investors’ information also depends on the investors’
confidence measure Vt, as shown in (2.22). Consequently, the contribution of the
consumption volatility channel diminishes relative to standard models.

The equilibrium log discount factor can be expressed in terms of the underlying
state variables and shocks in the economy:

mt+1 = m0 +mxx̂t +mvVt +mσσ
2

t

− γac,t+1 − λxK2ax,t+1 − λv

(

σw
√

Vtwt+1 +Qt+1

)

− λσϕwσtwc,t+1.
(3.1)

The solutions for the discount factor loadings and prices of risks are pinned down by
the model and preference parameters of the investors. Their expressions are provided
in Appendix B.
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The innovations into the discount factor are important as they highlight the risks
that investors face in the economy. The risk compensation for the immediate con-
sumption risks ac,t+1 is equal to the risk aversion coefficient γ. The price of the long-
run risks ax,t+1 is given by λxK2. As in the standard long-run risks model, the risk
compensations for these shocks continue to be positive. However, as investors cannot
separate true short-run and long-run consumption innovations, the price of long-run
risks decreases while the price of short-run risks goes up, relative to complete infor-
mation case; this is consistent with Croce et al. (2006). The novel dimension of our
paper is that the confidence risks (σw

√
Vtwt+1 + Qt+1) are priced. Notably, confi-

dence jump shocks Qt+1 are the source of the jump risk in the economy, even though
there are no jump risks in the underlying consumption. When agents have prefer-
ence for early resolution of uncertainty, the price of confidence risks λv is negative,
as investors dislike positive shocks in the confidence measure (high uncertainty). Fi-
nally, the price of consumption volatility risks ϕwσtwc,t+1 is given by λσ. It is negative
as in a standard long-run risks model; however, due to learning, the magnitude of
the risk compensation for consumption volatility risks decreases in absolute value, as
discussed above.

Using the solution to the discount factor, we can derive the expressions for the
equilibrium risk-free rates in the economy. Interest rates are linear in the expected
growth state, the confidence level of the investors and consumption variance, where
the expressions for price of zero coupon bonds with n months to maturity are given
in the Appendix B:

pt,n = F0,n + Fx,nx̂t + Fv,nVt + Fσ,nσ
2

t . (3.2)

In particular, real yields rf,t increase in the expected growth state, and decrease when
confidence of investors drops or consumption volatility increases.

3.2 Equity Prices

To obtain implications for the equity prices, we consider a dividend process of the
form

∆dt+1 = µd + φ(∆ct+1 − µ) + ϕdσtηd,t+1, (3.3)

where ηd,t+1 is a dividend shock independent from all other innovations in the econ-
omy. We continue to maintain the assumption that the average signal data is much
more informative about the expected growth than consumption or dividend data, so
investors learn about the expected state only from the average signals (see specifica-
tion (2.24)-(2.26)).
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The equilibrium price-dividend ratio is linear in the expected growth state and
the confidence level of the investors:

pdt = H0 +Hxx̂t +HvVt +Hσσ
2

t , (3.4)

where the solutions for the loadings are provided in the Appendix B. Similar to the
valuation of consumption asset, equity prices increase in expected growth factor and
decrease when the confidence measure is high or the consumption volatility is high.
In particular, large positive moves in Vt endogenously translate into large jumps in
asset valuations and returns. Indeed, the equilibrium log return on the dividend asset
satisfies

rd,t+1 = µr + bxx̂t + bvVt + bσσ
2

t + φac,t+1 + κd,1Hxax,t+1

+ κd,1Hv

(

σw
√

Vtwt+1 +Qt+1

)

+ κd,1Hσϕwσtwc,t+1 + ϕdσeηd,t+1.
(3.5)

As the return beta to confidence measure is negative (Hv < 0), when investors lose
confidence about their estimate of expected growth, changes in the confidence measure
are substantially magnified due to investors’ concerns about the long-run growth, and
can have large negative impacts on the equilibrium asset prices. This channel can
account for the large moves in asset prices in the data. Notably, the large negative
moves in equilibrium returns obtain even though there are no corresponding large
moves in the real consumption. Further, the conditional variance of returns is linear in
consumption volatility and confidence measure, so that jumps in confidence measure
also translate into simultaneous jumps in market variance.

The expected excess returns given the information of the agent depend on the
consumption volatility and confidence measure states:

E(rt+1| It) − rf,t = r0 + rvVt + rσσ
2

t , (3.6)

where the loadings r0, rv and rσ are determined by the model parameters. The total
equity premium can be further decomposed into the compensations for confidence
risks and short-run, long-run and consumption volatility risks.

Notably, the confidence measure drives both the expected returns and the price-
dividend ratio in (3.4), even if consumption volatility is constant. Hence, in the model,
as in the data, asset valuations predict future returns. We examine the quantitative
implications of return predictability in Section 5.
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4 Data

4.1 Evidence on Large Return Moves

The data on market returns and the risk-free rate correspond to monthly observations
of broad value-weighted portfolio returns and average 1 month yields from CRSP from
1927 to 2007. Return data are adjusted by inflation to convert to real series. Real
consumption data come from the BEA tables of real expenditures on non-durable
goods and services; the quarterly consumption data are available from mid 1947 to
end of 2007, while monthly data are from 1959 to 2007. Real GDP series also comes
from the BEA tables from 1947 to 2007, quarterly, while the index of industrial
production series is taken from the FRED dataset from 1927 to end of 2007, monthly.

Table 1 presents summary statistics for market returns and the risk-free rate.
The average equity premium in the sample is 6%, and the level of the real risk-free
rate is about 0.6%. The magnitudes of the equity premium and the risk-free rate
constitute the well-known equity premium and risk-free rate puzzles (see e.g. Mehra
and Prescott, 1985). Further, the market return is very volatile, as its standard
deviation is almost 19%, while the volatility of the risk-free rate in the sample is about
1%. The risk-free rate series is very persistent, with an autoregressive coefficient of
0.98. Summary statistics for consumption growth rate are shown in the first column
of Table 8. Over the long historical sample, consumption growth rate averages 2%,
its volatility is 2% and it is mildly persistent with an autoregressive coefficient of 0.4.

The evidence from the higher-order moments of returns suggest that the distribu-
tion of market returns exhibits substantial heavy tails and negative skewness. Table
1 shows that the kurtosis of market returns is 9.7, while its skewness is −0.44. The
kurtosis and skewness of Normal distribution are 3 and 0, respectively, so that the
excess kurtosis and negative skewness in the return series are indicative of abnormal
and predominantly negative moves which thicken the left tail of the distribution of
returns.

For a direct empirical evidence on large return moves in the data, we identify two
standard deviation or above innovations in the series.6 Table 2 shows the number of
identified large moves in returns, as well as the average magnitude of returns in those
periods. On monthly frequency, we observe 54 two standard deviation or above return
moves over 80-year time-period. This translates into large moves at a frequency of
once every 18 months. Further, 70% of these moves are negative, which explains the
reasons for a negative skewness of returns in the data. The frequency of large negative
moves below 2 standard deviations is almost 2 times higher than under the Normality
assumption, which goes a long way to explain the heavy tails of returns in the data

6Calculation of standardized innovations are based on AR(1)-GARCH(1,1) fit to the data.
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relative to Normal distribution.7 Figure 1 show the time-series of monthly returns
from 1927 to 2007 and identified periods with large return moves. Most prominent
large move occurred in October 1987, when the monthly return dropped 6 standard
deviations below its mean. Other examples include large moves in the beginning of
1930s, and a series of negative moves in the 1960s.

4.2 Confidence Data

In the model, investors can observe the confidence measure in the economy. To
give quantitative content to the model, we directly measure investors’ confidence
using survey data. More specifically, we rely on the cross-section of forecasts from
the Survey of Professional Forecasters (SPF) and construct confidence measure as
a cross-sectional variance of the average forecast in the data. These calculations
are consistent with the theoretical setup of the model and follow equation (2.13),
assuming that each forecaster reports an individual expectation of the next-period
series, so that the forecasts correspond to the signals in the model.

The Survey of Professional Forecasts started in the last quarter of 1968 as a joint
project of the American Statistical Association and the National Bureau of Economic
Research; in 1990 it was taken by the Federal Reserve Bank of Philadelphia. The data
set contains quarterly forecasts on a variety of macroeconomic and financial variables
made by the professional forecasters, who largely come from the business world and
Wall Street, see Croushore (1993) for details and Zarnowitz and Braun (1993) for a
comprehensive study of the survey.

We use the cross-section of individual forecasts from the SPF to calculate the
average (consensus) forecast and the confidence measure for real GDP series for the
period of 1968 Q4 to 2008 Q18. As we observe the identification codes for each
forecaster, we can pair the forecasts of price index and nominal GDP to back out the
implied forecast for the corresponding real series. Specifically, for each quarter t let
NGDPi,t denote the next quarter forecasts of nominal GDP made by the forecaster
i, while Pi,t stand for the next quarter forecast of the price level. If nt is the number
of forecasts, then we calculate the average forecast for the log real GDP (RGDP )
growth rate as

∆ log(RGDP )t =
1

nt

nt
∑

i=1

(

log
NGDPi,t
NGDPt

− log
Pi,t
Pt

)

, (4.1)

7It is worth noting that as one moves from monthly to quarterly and annual frequency, returns
are smoothed out due to time-aggregation, and the frequency of large moves declines.

8Prior 1992, the GDP forecasts are for nominal GNP and GDP price index forecasts are for GNP
deflator. In the data, the growth rates for the realized real GDP and GNP are very close to each
other, with correlation in excess of 0.99.
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where NGDPt and Pt are the current values of the series known to the forecasters9.

We can further calculate the cross-sectional variance of the forecasts at each point
in time, and compute the estimate of the uncertainty in the average forecasts, which
corresponds to the confidence measure in the model. That is, based on the real GDP
forecasts,

Vt =
1

nt
V ar

(

log
RGDPi,t
RGDPt

)

=
1

nt

(

1

nt − 1

nt
∑

i=1

(

log
NGDPi,t
NGDPt

− log
Pi,t
Pt

− ∆ log(RGDP )t

)2
)

.

(4.2)

To make the inference robust to possible outliers and errors, we delete observations
which are more than two standard deviations from the sample mean. We use a similar
approach to construct the empirical confidence measures based on the forecasts of
industrial production index.

David and Veronesi (2008) and Buraschi and Jitsov (2006) use very similar com-
putations to obtain the uncertainty and disagreement measures in the economy, which
rely on the cross-sectional dispersion in forecasts from the SPF. Anderson, Ghysels,
and Juergens (2007) also associate the uncertainty with the dispersion in professional
forecasters, and assign different weights across forecasts.

In the data, we find that the SPF average forecasts are persistent and very infor-
mative about future economy, even controlling for the past history of the data. The
persistence of the average forecast of next-quarter real GDP growth is 0.72, relative
to 0.25 in the underlying real GDP growth. Further, we assess the predictability of
future macroeconomic series by the Kalman Filter estimate of the expected growth
from the history of the series, and the SPF average forecast. We find that the ad-
dition of the survey forecast doubles the adjusted R2 and makes the Kalman Filter
estimate insignificant at 1 quarter horizon, while the R2 increases from 4% to 26% as
we add the survey average forecast to predict the real GDP growth 4 quarters ahead.
The results for the other macroeconomic series, such as industrial production and
corporate profits growth rates, are very similar.

In the top panel of Table 7 we report summary statistics for the square-root
of the confidence measure scaled by the average volatility of the underlying series,
based on the next-quarter forecasts of real GDP and industrial production. These
statistics are very similar for the two series. The level of the confidence measure in
the data is about 1/15th of the volatility of the underlying series. This implies that
the uncertainty of investors regarding their estimate of expected growth is on average
quite small. Indeed, at the calibrated consumption parameters, the two standard

9In the data, the average number of forecasts is 34.
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deviation band for the investors’ estimate of the expected growth is [1.8%, 2.2%],
assuming the expected consumption growth of 2%. Confidence measure fluctuates in
time, and the standard deviation of the confidence measure scaled by the volatility of
the underlying series is about 4%. We show the plot of the time-series of confidence
measure on Figure 2. It is important to note on the graph that confidence measure in
the data exhibits large, positive moves. We discuss the connection between the large
moves in the confidence measure and returns in the next section, and statistically
evaluate the evidence on fluctuations and large moves in the confidence measure in
Section 5.

4.3 Predictability Evidence

In this section, we empirically evaluate the connection between large moves in returns
and all the relevant macroeconomic variables, such as consumption and confidence
measure. To do so, we construct a two standard deviation or above move indicators
in returns and the corresponding macroeconomic series. We compute the dynamic
relationship between these large move indicators in the data, which is summarized in
Table 3. We also consider the link between the fluctuations in the confidence measure
and the level and variation in asset prices and report our empirical findings in Table
4.

In the left panel of Table 3 we document the correlations between the large move
indicators (zero-one variables) in returns and contemporaneous or future large move
indicators in the macroeconomic series. The Table suggests that the contemporaneous
correlation between large move indicators in returns and in consumption is essentially
zero: the magnitudes of the correlations are -0.02 and -0.03 at monthly and quarterly
frequency, respectively, and are statistically insignificant. Further, large moves in
returns today do not anticipate jumps in future consumption, as the correlations
of jump indicators in returns and jump indicators in future consumption 6 and 12
months ahead are economically and statistically insignificant. This evidence indicates
that large moves in returns do not reflect jumps in consumption contemporaneously
or in the future. Very similar conclusions obtain when we consider industrial pro-
duction or real GDP data; we omit the results to save space. On the other hand,
the empirical evidence suggests that the large moves in the confidence measure in the
data are significantly related to contemporaneous large moves in returns. It is impor-
tant to note that the contemporaneous correlation of large move indicators in returns
and in confidence measure is 34% and is statistically significant. This evidence high-
lights the importance of confidence risks in asset prices. Further, the large moves in
returns are not correlated with large moves in the confidence measure in the future,
indicating that the large moves in confidence measure are relatively short-lived. It is
our objective to replicate this empirical correlation pattern in the model.
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In the middle panel of Table 3 we report the correlation between the jump in-
dicators in macroeconomic variables and the level of returns. In particular, we find
that the correlations of returns with contemporaneous or future jump indicators in
consumption are essentially zero; using industrial production or real GDP measures
produces similar results. This evidence implies that periods with large moves in
macro variables do not correspond to any systematic moves in returns. However, the
contemporaneous correlation between the jump indicator in confidence measure and
the level of returns is equal to −0.32 and is highly significant. That is, returns are
significantly lower in periods when the confidence measure experiences large positive
shock.

The right panel of Table 3 presents some evidence for a negative contemporane-
ous correlation between large return move indicators and contemporaneous level of
consumption growth, though, the correlation is close to zero for future consumption
growth. This evidence suggests that large moves in returns are more likely when con-
sumption growth is relatively low; however, it does not imply that jumps in returns
are driven by large moves in consumption, as we discussed above.

Our main empirical findings is that in the data, there is no persuasive link between
the large moves in real consumption and large moves in returns at the considered fre-
quencies; however, the large moves in the confidence measure are significantly related
to contemporaneous large moves in returns. In Table 4 we further show that the
confidence measure has significant information about the asset valuations and the
variation in asset prices. In the first panel of Table 4 we consider contemporaneous
projections of quarterly price-dividend ratio on the confidence measure and the condi-
tional variance of real GDP. The loadings on the conditional variance and confidence
measure are negative and statistically significant, which provides an empirical sup-
port for the economic risk channels featured in our model. The results further imply
that the fluctuations in confidence measure have additional information about prices
beyond the standard time-series volatility; we also verify that the confidence measure
has significant information about future price-dividend ratio for several years ahead.
Hence, the confidence risk is a potentially important channel that drives asset prices
in the data.

We also consider the predictability of the variance of returns based on the implied
volatility (VIX) index by the confidence and volatility measures. To highlight the
tail properties of the return variance, we run the conditional quantile regression of
the variance of returns on the confidence and GDP volatility measures. The results
reported in second panel of Table 4 suggest that the confidence measure has important
information about the right tale of the conditional distribution of variance of returns,
while macroeconomic variance does not. That is, large upward moves in the variance
of returns are related to the fluctuations in confidence measure, rather than to the
conditional volatility of the fundamentals of the economy. This evidence is consistent
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with Buraschi and Jitsov (2006), who show that the cross-sectional dispersion of
forecasts from the survey data has information about the level and slope of the option
smile and realized volatility of returns.

Overall, our empirical results indicate that fluctuations and large moves in the
confidence measure contain important information for the asset prices in the data.
We further discuss the important features of the confidence dynamics in the data,
and present strong statistical support for the fluctuations and jump-like shocks in the
confidence measure in the next Section.

5 Estimation of Confidence Dynamics

In this section, we focus on the empirical evidence for the confidence measure in the
data, and present statistical support for the key features of our model specification
of the confidence measure dynamics.

To quantitatively evaluate the evidence on fluctuation and large moves in confi-
dence measure, we fit the jump-diffusion model for the confidence measure presented
in Section 2.4:

Vt+1 = σ2

v + ν(Vt − σ2

v) + σw
√

Vtwt+1 +Qt+1.

The shock wt+1 is the Gaussian innovation into the confidence measure, while Qt+1

is Poisson jump-like shock. The confidence measure jumps come from exponential
distribution with mean µj. To capture the predictability of jumps, we allow the jump
probability (intensity) to depend on the level of confidence, λt = λ0 + λ1Vt. Positive
estimate of λ1 then suggests that large moves in confidence measure are more likely
to occur when the confidence measure Vt is high. For comparison, we also estimate
a restricted model for the confidence measure where we shut off the jump channel,
that is, where we set µj, λ0 and λ1 to zero. With these restrictions imposed, there are
no jumps in the confidence measure, so that confidence measure follows a standard
square-root process driven by Gaussian innovations wt+1.

Table 5 shows the estimation results for the considered series. The unconditional
mean of the confidence measure is quite small; indeed, σv is estimated at 0.12%, annu-
alized, for real GDP and 0.18% for industrial production, which corresponds to 1/15
of the volatility of the underlying series (see also Table 7). The estimated persistence
of the confidence measure is 0.7, so that the half-life of confidence shocks is about 6
months. This evidence suggests that the fluctuations in the confidence measure are
very different from the variations in the aggregate volatility in the economy – the
shocks to real GDP volatility are much more persistent, with the half life of 3 years.
Hence, the confidence risk channel is distinct from the macroeconomic volatility risks
in the economy.
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The estimation results of the full model with confidence jumps suggest that Pois-
son jumps capture above 80% of the variation in the confidence measure. The mean
jump size is quite large: its estimated value is close to an unconditional level of confi-
dence σ2

v . Further, we find that the probability of confidence jumps strongly depends
on the level of confidence measure: the jump intensity loading λ1 is positive in the
data and significant for both series. The fluctuations in confidence measure are hard
to explain using Gaussian model. The estimation of the square-root specification of
the confidence measure dynamics suggests that, to capture a sizeable variation in the
confidence measure, the scale parameter σw increases fourfold, relative to the model
with confidence jumps. Nevertheless, the Gaussian model is misspecified, as it fails
to capture the spikes and the variation in the confidence measures. The distribution
of the extracted confidence shocks ŵt+1 is heavy-tailed and positively-skewed: the
sample kurtosis for these shocks is 20 for real GDP and 14 for industrial production,
and sample skewness is 3 for both series. We additionally do a likelihood ratio test
where the jump parameters µj, λ0 and λ1 are jointly equal to zero. As shown in the
Table 5, the p-value for the test is indistinguishable from zero. This result suggests
that the Gaussian model for the confidence measure is strongly rejected in favor of
the model with confidence jumps.

Overall, the empirical evidence in the data provides a strong support for our
model specification of the confidence measure dynamics, which features large positive
moves in the series. We also show that these confidence jumps are more likely to
happen when Vt is high. We match these key empirical features in the calibration of
the confidence measure in the data, and discuss the asset-pricing implications of the
confidence risks in the next Section.

6 Asset-Pricing Implications

6.1 Calibration

The model is calibrated on monthly frequency. The baseline calibration values for
the preference and endowment dynamics parameters, which are reported in Table
6, are very similar to the ones used in standard long-run risks literature (see e.g.
Bansal and Yaron, 2004). Specifically, we let the subjective discount factor δ equal
0.9992. The risk aversion parameter is set at 10, and the intertemporal elasticity of
substitution at 1.5. This configuration implies that the agent has a preference for early
resolution of uncertainty, which has important implications for equilibrium prices, as
we discussed in Section 3. As for the consumption dynamics, we set the persistence
in the expected growth ρ at 0.975. The choice of ϕe and σ ensures that the model
matches the historic volatility and persistence of consumption growth. Similar to
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Bansal, Kiku, and Yaron (2007a), we set the persistence of the consumption variance
to νc = 0.995, and calibrate the volatility of volatility parameter ϕw = 5.19e− 04. To
calibrate dividend dynamics, we set the leverage parameter of the corporate sector φ
to 2.75 and ϕd to 3 to match the properties of dividend growth rates in the data. We
calibrate the model on monthly frequency and then time-aggregate to annual horizon.
Table 8 shows that we can successfully match the mean, volatility, auto-correlations
and variance ratios of the consumption dynamics in the data.

We calibrate confidence dynamics to match its unconditional moments in the data,
as well as its conditional distribution. Consistent with the empirical evidence, we set
the level of the confidence measure σv to be 1/15 of the volatility of consumption
growth. The calibrated persistence coefficient ν = 0.91 implies that the half-life
of confidence shocks is 7 months, which is consistent with the the estimated half-
life of shocks to empirical confidence measure in the data (see Table 5). In the
estimation of the confidence measure dynamics we found that most of the variation
in the confidence measure in the data is coming from non-Gaussian shocks. Then,
for parsimony of parameters, we set the volatility scale parameter σw to 0, so that
the confidence measure in the model is driven purely by Poisson jumps. To calibrate
the intensity of jumps λ0 + λ1Vt, we set λ0 to 0.18, as in the data, and divide it by
3 to convert to monthly frequency. Similarly, we calibrate the parameter λ1 = 20 in
the middle of range in the data and multiply by 40000 to adjust for the scaling of the
confidence measure used in the estimation of the model. At the calibrated parameter
values, the model-implied average frequency of jumps is one every 5 months. Finally,
the jump size is set to match the distribution of the confidence measures in the data.
Specifically, we set the mean jump µj to twice the unconditional level of confidence
measure σ2

v to target skewness and kurtosis of the confidence measure in the data.

In simulations, we verify that the calibrated distribution of the confidence measure
in the model can match the key features of the confidence measure in the data. We
summarize the results in Table 7, where we report the moments of the square-root
of confidence measure Vt scaled by the average volatility of the underlying series in
the data and in the model. Such a normalization facilitates the comparison of the
confidence measures based on different macroeconomic series; indeed, as the first
panel of the Table suggests, the moments of the confidence measure based on real
GDP and industrial production forecasts are very similar. The Table 7 shows that
we can match well the unconditional distribution of the series in the data, as all the
statistics in the data are close to their counterparts in the model, and are within the
5%−95% confidence band. In particular, the calibration of the jump component can
realistically match the non-Gaussian dimension of the distribution, as the skewness
and kurtosis of confidence measure in simulations are close to the values in the data.
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6.2 Jumps and Distribution of Returns

In our model, due to learning, the investors’ confidence about their estimate of ex-
pected growth impacts their beliefs about future consumption, which influences equi-
librium asset valuations and the risk premia in the economy. We illustrate this channel
on Figure 3, where we show the distribution of the true expected growth given the
information of the agents. In the standard long-run risks model (left panel), the true
expected growth is observable by investors, so its distribution is degenerate and cen-
tered at the true value. On the other hand, in our model with learning and fluctuating
confidence risks (right panel), the distribution of the true expected growth depends
on investors’ confidence measure, so that when the quality of signals is low, confi-
dence measure increases and the agents face high uncertainty about the true state.
The fluctuations in confidence lead to the time-variation in agents’ uncertainty about
future consumption, even if the fundamental consumption volatility is constant.

Fluctuating confidence risks play an important role to account for the key features
of the return distribution in the data. For illustration, we first shut off the conditional
volatility of consumption growth, and focus on the implications of the fluctuations
in investors’ confidence for the asset prices. On Figure 4 we first show the uncondi-
tional distribution of consumption growth, which is Gaussian. On the middle panel,
we plot the unconditional distribution of returns when the confidence measure is set
constant, that is, when the fluctuating confidence risks are absent. As the consump-
tion volatility is constant, the distribution of returns in this case is Gaussian as well.
On the other hand, when confidence measure fluctuates, large positive moves in con-
fidence measure endogenously translate into large negative jumps in returns, which
can explain negative skewness and heavy-tails of the distribution of returns in the
data, even though consumption growth is Gaussian. The unconditional distribution
of returns in this case, shown on the right panel of Figure 4, exhibits heavy tails and
negative skewness, as in the data.

We summarize the model output for return distribution in Table 9. As shown in
the Table, in the full model with learning, fluctuating confidence and time-varying
consumption volatility, the average return is 6.7%, and its volatility is almost 20%,
which match the statistics in the data (see Table 1). The distribution of returns is
heavy-tailed and negatively skewed. The kurtosis of market returns is 8.6, and its
skewness is equal to -0.85; these values are close to the estimates in the data. Notably,
the non-Gaussian features of the return distribution are due to the fluctuations and
large moves in the confidence measure. Indeed, we verify that the magnitudes of
the kurtosis and skewness of market returns are very similar even if the consumption
volatility is set constant. Naturally, if both the confidence measure and consumption
volatility are constant, the returns are Gaussian, as shown in Table 7. For comparison,
we also report the model output for return distribution in the standard long-run risks
model. In this case, the true expected growth is known, so that the confidence
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risk channel is absent. The Table 9 suggests that in the standard model, even though
returns exhibit somewhat heavier tails than Normal due to time-varying consumption
volatility, the magnitude of the kurtosis of return distribution (4) is too small relative
to the data (10). In addition, this specification cannot capture negative skewness
of market returns in the data. These results provide additional evidence for the
importance of confidence risks channel for the asset prices.

We verify that the model can broadly match the moments of the risk-free rate
in the data. The mean risk-free rate is about 1% in the data and in the model. It
is very persistent, with autocorrelation coefficient of 0.98 in the data, and 0.91 in
the model, respectively. The model-implied standard deviation of the risk-free rate is
somewhat less than in the data, 0.4 relative to 1.1. The skewness and kurtosis of the
risk-free rate distribution implied by the model are −1.4 and 6.8, which are close to
the estimates in the data.

In our model, asset prices exhibit negative jumps due to large positive moves
in the confidence measure, while there are no jumps in consumption. Thus, our
model can explain the puzzling evidence in the data for significant contemporaneous
link between large moves in returns and in confidence measure, and lack of connection
between large move in returns and large moves in consumption, documented in Section
4.3. We present the quantitative results from the model in Table 10. Using the same
large move identification approach, we find that the large moves in returns occur
about once every 18 months in the model, which matches the frequency of large asset
price moves in the data. Further, the model-implied correlation between large move
indicators in returns and in consumption is 0, both contemporaneously and in the
future. On the other hand, the correlation between large move indicators in returns
and in the confidence measure is 45%, which is close to the estimate of 34% in the
data. The magnitudes of the correlation of large return move indicators with future
large move indicators in confidence measure 6 and 12 month ahead are all zero, as in
the data, as the confidence jump shocks are relatively short-lived. Next, our model
can replicate zero correlation of consumption jump indicator and the level of returns
in the data, both contemporaneously and in the future. Further, the correlation of
returns with the jump indicator in confidence measure is −45% in the model, which
is close to −32% in the data. As in the data, this correlation drops to zero using
future confidence measure 6 and 12 months ahead. Finally, our model implies zero
correlation of jump indicator in returns and the level of consumption growth. As
we discussed in Section 4.3, these correlations are somewhat negative in the data,
though, they are close to zero for the future consumption. The correlation of large
move indicators with the level of confidence measure is also somewhat high in the
model (38%), relative to 11% in the data.

Overall, the results suggest that our model with learning and fluctuating confi-
dence risks can account for the key features of the return distribution, and explain
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the connection between large moves in returns and macroeconomic series in the data.
In the next section, we discuss the implications of the confidence risks for the risk
compensation in the economy.

6.3 Predictability and Risk Compensation

As in a standard long-run risks specification, in our model short-run, long-run and
consumption volatility risks are priced. The novel dimension of our model is that the
confidence risks also receive risk compensation. Notably, confidence jump risks are
priced even though there are no corresponding jumps in the consumption process.
Table 11 reports prices of risks in the standard model with complete information,
and in our model with learning and fluctuating confidence risks. As can be seen in
the Table, the risk compensations for long-run and consumption volatility risks are
smaller, while the compensation for short-run risks is somewhat higher in the model
with learning and fluctuating confidence. For example, the price of risk for 1 standard
deviation shock to the long-run growth is 8.5% in our model relative to 8.8% in the
standard specification, while the price of consumption volatility shocks is −4.2% in
our model relative to −9.1% in the standard specification. The compensation for
the one standard deviation shock to the confidence measure is −6.6% in our model;
naturally, in standard long-run risks specification the true expected growth state is
known, so that the confidence risk channel is absent.

In Table 12 we show the model-implied equity premium for the dividend asset, as
well as its decomposition into short-run, long-run, consumption volatility and confi-
dence measure risks in the economy for different model specifications. For comparison,
the first panel presents the results for a standard long-run risks model, where in-
vestors observe expected growth process, and consumption volatility is time-varying.
The model delivers total risk premium of 5.1%. Most of the risk premium comes from
the compensation for long-run and consumption volatility risks, 1.7% and 2.3%, re-
spectively, while immediate consumption shocks contribute about 1.2% to the total
compensation. These magnitudes are consistent with the long-run risks literature,
see e.g. Bansal and Yaron (2004).

Our full model with learning, confidence risks and time-varying consumption
volatility generates an unconditional equity premium of about 5.3%. Confidence
shocks and long-run risks shocks contribute 1.7% each to the total premium. It
is important to note that, as the calibrated confidence measure is driven by jump
shocks, the compensation for confidence risks thus determines the compensation for
jump risks in the economy. That is, the jumps in the market return demand 1.7%, or
one-third, of the total equity premium in the economy. This magnitude is consistent
with other studies, see e.g. Broadie et al. (2007), Singleton (2006) and Pan (2002),
who use option prices data and other empirical approaches.
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Notably, the compensation for the consumption volatility risks decreases relative
to standard model from 2.3% to 0.8%. That means that quantitatively, the role of the
consumption volatility channel for the asset valuations and risk premia in the economy
diminishes once we introduce learning and fluctuating confidence risks. Without the
time-varying consumption volatility risks, the total equity premium would fall by
0.8%, which corresponds to the risk compensation for the consumption volatility
shocks. On the other hand, as shown in Table 12, without fluctuating confidence
risks, the total equity premium would decrease to below 3%. This highlights the
importance of the confidence risks for the risk compensation in the economy.

Using the analytical results and calibrated model parameters, we can further cal-
culate the magnitudes of the conditional risk premium using the empirical measure
of investors’ confidence based on the GDP forecasts, and the conditional volatility of
real GDP. Specifically, the quarterly expected excess returns in the model are given
by,

E(rt+1 + rt+2 + rt+3| It) − rft,3 = A0 + AvVt + Aσσ
2

t ,

for quarterly risk-free rate rft,3. The loadingsA0, Av andAσ are pinned down by model
and preference parameters. For Vt and σ2

t , we substitute the annualized confidence
measure and conditional variance of real GDP, scaled to match the calibrated level of
consumption volatility. This allows us to compute the quarterly risk premium in the
sample implied by our model, and decompose it into the contributions for short-run,
long-run, consumption volatility and confidence measure risks. We show the empirical
results in the last panel of Table 12. The total equity premium is 5.6%, which agrees
with the estimate in the sample. Most of the total risk premium is explained by the
long-run shocks (1.9%) and confidence risks (2%,) while the remaining 1% goes to
the immediate consumption shocks and 0.7% to consumption volatility shocks. These
estimates are close to the unconditional values in the model.

The time-variation in the confidence of investors in equilibrium generates pre-
dictability of equity returns by price-dividend ratios, as both the expected excess
returns and asset valuations in the model are time-varying with Vt and σ2

t . In Table
13 we report the results from the projections of future excess returns on price-dividend
ratios in the data and in the model. In full specification, the model delivers the R2

of 16% at 5 year horizon, relative to 18% in the data. Confidence risk channel plays
a key role to match the predictability of returns in the data. Indeed, when con-
sumption volatility is constant, the R2 decreases only slightly to 14%. With constant
confidence and constant consumption volatility, however, the small-sample R2 goes
down to 4%. Notably, the standard errors on slope coefficient and R2 are quite large,
and the small-sample slope estimates have a well-known downward bias. We also
verify the predictability of future consumption growth by the current price-dividend
ratio is consistent with the data, as shown in Table 14.
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7 Conclusion

We develop a long-run risks type model in which investors learn about the latent
expected growth using the cross-section of signals. The quality of signals is time-
varying, as in the data. The uncertainty about the true expected growth (confidence
measure) affects the filtered beliefs of investors and consequently influences equilib-
rium asset prices and risk premium. In the model, when investors lose confidence
about their estimate of expected growth, changes in the confidence measure are sub-
stantially magnified due to investors’ concerns about the long-run growth, and can
have large negative impacts on the equilibrium asset prices. This channel enhances
the ability of the model to explain the joint distribution of asset prices and consump-
tion growth, predictability of excess returns and other key asset market facts in the
data.

We construct confidence measure in the data as a cross-sectional variance of the
average forecast from the Survey of Professional Forecasters. While the level of the
confidence measure is quite small, the series exhibits significant variation across time.
We find that fluctuations in confidence can not be explained by smooth Gaussian
innovations, and present statistical evidence for jump-like component in the dynamics
of the series. Further, we show that large moves in confidence measure in the data are
significantly related to large moves in asset prices at frequencies of 18 months, while
in the data there is no link between large moves in real economy and in returns at
the considered frequencies. Similarly, confidence measure has significant information
about the asset prices and the right tale of the distribution of the variance of returns,
even controlling for the aggregate volatility in the economy.

We calibrate the model to match the key dimensions of the consumption data
and the distribution of the confidence measure in the data. The model with learn-
ing and fluctuating confidence can explain the heavy-tailed and negatively skewed
distribution of asset prices, even though fundamental consumption volatility is con-
stant and there are no jumps in consumption. We document that the correlations
of large moves in returns with large moves in consumption and confidence measure
match the evidence in the data. At the calibrated model parameters, confidence jump
risks contribute about one-third to the total equity premium, which highlights the
importance of learning and fluctuations in investors’ confidence for the asset markets.
The confidence jump risk channel can account for the predictability of excess returns
and future consumption growth by the price-dividend ratios in the data. The results
suggest that confidence jumps risk plays an important role to economically explain
the asset prices and sources of risk in the economy.
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A General Specification

A.1 Kalman Filter

Using the dynamics of the underlying economy in (2.5)-(2.6) and the specification of signals
in (2.8), we obtain that the distribution of the states given the current information set and
next-period confidence measure is conditionally Normal:





xt+1

∆ct+1

x̄t+1



 | It, Vt+1 ∼ N









ρx̂t
µ+ x̂t
ρx̂t



 ,Σt+1



 , (A.1)

where the variance-covariance matrix is given by,

Σt+1 =





ρ2ω2
t + ϕ2

eσ
2
t ρω2

t ρ2ω2
t + ϕ2

eσ
2
t

ρω2
t ω2

t + σ2
t ρω2

t

ρ2ω2
t + ϕ2

eσ
2
t ρω2

t ρ2ω2
t + ϕ2

eσ
2
t + Vt+1



 . (A.2)

The innovation representation of the system can then be written in the following way:

∆ct+1 = µ+ x̂t + ac,t+1, (A.3)

x̄t+1 = ρx̂t + ax,t+1, (A.4)

x̂t+1 = ρx̂t +K1,t+1ac,t+1 +K2,t+1ax,t+1, (A.5)

where the Kalman Filter weights and the update for the filtering variance ω2
t satisfy standard

equations

Kt+1 = Σ12
t+1

(

Σ22
t+1

)

−1
,

ω2
t+1 = Σ11

t+1 − Σ12
t+1

(

Σ22
t+1

)

−1
Σ21
t+1,

(A.6)

where the superscripts refer to the partitioning of Σt+1 into four blocks, such that Σ11
t+1 is

the (1, 1) element of the matrix, Σ12
t+1 contain the elements from the first row and second

and third columns, etc. The explicit solutions for the Kalman Filter weights satisfy

K1,t+1 =
ρω2

t Vt+1

(ω2
t + σ2

t )Vt+1 + (ϕ2
eσ

2
t + (ϕ2

e + ρ2)ω2
t )σ

2
t

, (A.7)

K2,t+1 =
(ϕ2

eσ
2
t + (ϕ2

e + ρ2)ω2
t )σ

2
t

(ω2
t + σ2

t )Vt+1 + (ϕ2
eσ

2
t + (ϕ2

e + ρ2)ω2
t )σ

2
t

, (A.8)

while the evolution of the variance of the filtering error is given by

ω2
t+1 = Vt+1K2,t+1. (A.9)
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A.2 Model Solution

In the general case, K1,t+1 and K2,t+1 are time-varying, and their solutions are non-linear
functions of the consumption volatility σ2

t and confidence measure Vt (see expressions (A.7)
and (A.8)).

We conjecture that log price-to-consumption ratio pct is linear in the expected growth
state x̂t, and capture its non-linear dependence on the confidence measure, filtering uncer-
tainty and consumption volatility states by the function f(Vt, ω

2
t , σ

2
t ) :

pct = Bxx̂t + f(Vt, ω
2
t , σ

2
t ). (A.10)

Using the log-linearization of returns (see Campbell and Shiller, 1988), we can write
down the log-linearized return on consumption asset in the following way:

rc,t+1 = κ0 + κ1pct+1 − pct + ∆ct+1

= κ0 + µ+ (Bx(κ1ρ− 1) + 1)x̂t − ft

+ κ1ft+1 + (κ1BxK1,t+1 + 1)ac,t+1 + κ1BxK2,t+1ax,t+1.

(A.11)

Using Euler equation (2.4), we can directly solve for the loading Bx :

Bx =
1 − 1

ψ

1 − κ1ρ
, (A.12)

while the volatility component ft satisfies the recursive equation

ft = log δ + κ0 + (1 − 1

ψ
)µ

+
1

θ
logEtexp

(

θκ1ft+1 +
1

2
θ2

[

κ1BxK1,t+1 + 1 − 1

ψ

κ1BxK2,t+1

]′

Σcx,t+1

[

κ1BxK1,t+1 + 1 − 1

ψ

κ1BxK2,t+1

]

)

,

(A.13)

where

Σcx,t+1 = V ar

([

ac,t+1

ax,t+1

])

=

[

ω2
t + σ2

t ρω2
t

ρω2
t ρ2ω2

t + ϕ2
eσ

2
t + Vt+1

]

. (A.14)

From here it follows that the log discount factor is given by,

mt+1 = θ log δ − (1 − θ)κ0 − γµ− 1

ψ
x̂t + (1 − θ)ft

− (γ + (1 − θ)κ1BxK1,t+1)ac,t+1 − (1 − θ)κ1BxK2,t+1ax,t+1 − (1 − θ)κ1ft+1.

(A.15)

Using the discount factor above, we obtain the interest rates and equity prices in the
economy. These solutions are non-linear functions of the volatility states, which have to be
solved using the numerical methods.
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B Constant K Specification

In the preferred specification, the Kalman Filter weights in the innovations representation
of the system are constant.

In the case when investors do not look at consumption data and only update based on
the average signal, K1 = 0 and K2 simplifies to

K2,t+1 =
ρ2ω2

t + ϕ2
eσ

2
t

ρ2ω2
t + ϕ2

eσ
2
t + Vt+1

. (B.1)

To solve for the steady state of the system, we plug the solution for filtering uncertainty in
w2
t = K2Vt into the above equation and solve a quadratic equation for the constant value

of K2 when the volatility processes Vt and σ2
t are set to their unconditional means.

B.1 Discount Factor

The aggregate consumption volatility σ2
t follows a square-root process specified in (2.7),

while the dynamics of confidence measure is given by a discrete-time jump-diffusion spec-
ification outlined in (2.14). The distribution of jump size Ji,t+1 is defined by its moment
generating function,

l(y) ≡ EeyJi . (B.2)

For example, when jump size follows exponential distribution with mean jump µj,

l(y) = (1 − µjy)
−1. (B.3)

The log price-to-consumption ratio pct is linear in the states of the economy:

pct = B0 +Bxx̂t +BvVt +Bσσ
2
t . (B.4)

The solution for the loading Bx is given in (A.12). The loading on the confidence
measure Bv satisfies non-linear equation

1

2
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(B.5)
for z = Bv + 1

2
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2 , while Bσ solves a quadratic equation
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2
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e
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Finally, the log-linearization parameter, which is pinned down by the equilibrium level
of the price-consumption ratio, satisfies the following non-linear equation:

log κ1 = log δ + (1 − 1

ψ
)µ+Bσ (1 − κ1νc) σ

2

+ (Bv(1 − κ1) + κ1(1 − ν)z) σ2
v +

λ0

θ
(l(θκ1z) − θκ1zµj − 1) .

(B.7)

As in Eraker and Shaliastovich (2008), in case of multiple roots for Bσ and Bv we choose
the solution which is non-explosive as the variation in Vt or σ2

t is approaching zero.

Using the equilibrium solution to the price-consumption ratio, we can write down the
expression for the discount factor in the following way:

mt+1 = m0 +mxxt +mvVt +mσσ
2
t

− λcac,t+1 − λxK2ax,t+1 − λv

(

σw
√

Vtwt+1 +Qt+1

)

− λσϕwσtwc,t+1,
(B.8)

where the discount factor loadings and the prices of risks are pinned down by the dynamics
of factors and preference parameters of the investors. Their solutions are given by,

mx = − 1

ψ
, mv = (1 − θ)Bv(1 − κ1ν), mσ = (1 − θ)Bσ(1 − κ1νc),

m0 = θ log δ + (1 − θ) log κ1 − γµ−mvσ
2
v −mσσ

2,

(B.9)

and

λx = (1 − θ)κ1Bx, λσ = (1 − θ)κ1Bσ, λv = (1 − θ)κ1Bv. (B.10)

B.2 Asset Prices

Consider a log payoff tomorrow expressed as,

pn−1,t+1 = F0,n−1 + Fx,n−1x̂t+1 + Fv,n−1Vt+1 + Fσ,n−1σ
2
t+1 + Fg,n−1∆ct+1 + Fd,n−1σtηd,t+1.

(B.11)

Then, the solution for the coefficients in its log price today pn,t satisfies

Fg,n = Fd,n = 0,

Fx,n = mx + Fx,n−1ρ+ Fg,n−1,

Fσ,n = mσ + Fσ,n−1νc +
1

2

(

(Fg,n−1 − λc)
2 + ϕ2
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2 + ϕ2

w(Fσ,n−1 − λσ)2 + F 2
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)

,
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1

2
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2
q2vxσ

2
w + λ1(l(qvx) − qvxµj − 1),

F0,n = m0 + F0,n−1 + Fg,n−1µ+ Fσ,n−1σ
2(1 − νc) + (qvx + λv)σ2

v(1 − ν) + λ0(l(qvx) − qvxµj − 1)

(B.12)
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for qvx = Fv,n−1 − λv + 1

2
(Fx,n−1 − λx)

2K2
2 .

Setting F0,n−1 = Fx,n−1 = Fv,n−1 = Fσ,n−1 = Fg,n−1 = Fd,n−1 = 0 in the above
recursion, we can obtain the solution to n−period real risk-free rate.

On the other hand, the price-dividend ratio is given by,

pdt = H0 +Hxx̂t +HvVt +Hσσ
2
t , (B.13)

where the loadings satisfy the following equations:

Hx = mx + κd,1ρHx + φ,
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1
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(B.14)

for qvx = κd,1Hv − λv + 1

2
(κd,1Hx − λx)

2K2
2 , and the log-linearization parameter

log κd,1 = m0 + µd +
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Hv(1 − κd,1ν) +
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2
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2K2
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(B.15)
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Tables and Figures

Table 1: Return Summary Statistics

Mean Vol AR(1) Skew Kurtosis

Market Return 6.51 18.81 0.10 -0.44 9.68
(2.27) (1.60) (0.05) (0.50) (1.24)

Risk-free Rate 0.57 1.13 0.98 -0.80 6.91
(0.42) (0.14) (0.01) (0.56) (1.32)

Summary statistics for market return and the risk-free rate. Monthly data from 1927 to

2007. Standard errors are Newey-West adjusted with 12 lags. Mean and volatility are

annualized, in percent.

Table 2: Large Return Move Evidence

Negative 2std Positive 2std

Number of observations 38 16
Average Return -139.30 148.91

Number of large return moves, and the average return level in those periods. Large return
moves correspond to negative and positive 2 standard deviations or above innovations in
the series, calculated based on AR(1)-GARCH(1,1) fit.
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Table 3: Large Move Correlations in Returns and Macro Series

Correlations: Return Jump Ind., Return, Return Jump Ind.,
Factor Jump Ind. Factor Jump Ind. Factor

0m 6m 12m 0m 6m 12m 0m 6m 12m

Monthly :
Consumption -0.02 -0.01 0.02 0.00 -0.01 0.02 -0.12 -0.09 -0.01

(0.03) (0.04) (0.05) (0.03) (0.03) (0.04) (0.04) (0.03) (0.03)

Quarterly :
Consumption -0.03 -0.03 0.09 0.02 -0.04 -0.08 -0.08 0.08 -0.04

(0.02) (0.03) (0.12) (0.04) (0.04) (0.08) (0.04) (0.08) (0.07)

Confidence 0.34 -0.04 -0.04 -0.32 -0.01 -0.05 0.11 0.04 0.06
Measure (0.17) (0.01) (0.01) (0.10) (0.04) (0.07) (0.07) (0.07) (0.05)

Correlations of return moves with current and future moves in macroeconomic variables.

The left panel shows the correlations of large return move indicator with current and future

jump indicators in consumption and confidence measure 6 and 12 months ahead. The

middle panel shows the correlations of the level of returns with current and future large

move indicators in macroeconomic series, while the right panel depicts the correlations of the

large return move indicator with current and future consumption and confidence measure 6

and 12 months ahead. Data on confidence measures are based on forecasts of real GDP from

1968 to 2007, on monthly consumption from 1959 to 2007, and on quarterly consumption

from 1947 to 2007. Jump indicators correspond to 2 standard deviation or above move in

a series, based on AR(1)-GARCH(1,1) fit.
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Table 4: Predictability of Asset Valuation and Return Variance

Confidence Cond. Variance R2

pd −5.31∗ −0.13∗ 0.53
[-2.38] [-5.16]

Implied Variance:

projection 5527.45 243.50∗ 0.16
[1.18] [2.24]

25th quantile 1887.69 345.07∗ 0.21
[1.42] [10.19]

50th quantile 9034.78∗ 337.20∗ 0.24
[3.75] [8.19]

75th quantile 18292.80∗ 192.74 0.11
[3.07] [1.22]

Regression of price-dividend ratio and the variance of returns on confidence measure and

conditional variance of real GDP. Quarterly data on price-dividend ratio, returns and con-

fidence measure are from 1968 to 2007, and implied volatility, based on the VIX index

squared, is from 1990 to 2007. All series annualized in percent. T-statistics are in square

brackets, and star superscript refers to significance at 1% level.
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Table 5: Estimation of Confidence Measure Dynamics

σv ν σw µj λ0 λ1 p− value

Real GDP:

Square-Root 0.12 0.83 0.11
(0.03) (0.10) (0.01)

Square-Root+Jump 0.12 0.73 0.03 0.01 0.18 45.73 0.00
(0.02) (0.10) (0.004) (0.002) (0.13) (16.81)

Industrial Production

Square-Root 0.18 0.66 0.16
(0.02) (0.10) (0.01)

Square-Root +Jump 0.18 0.62 0.04 0.02 0.22 14.48 0.00
(0.02) (0.09) (0.005) (0.004) (0.12) (5.68)

Estimation results for discrete-time jump diffusion model for the confidence measures.

Square-root specification has only Normal innovations, while Square-root+Jump model

features Gaussian shocks and Poisson jumps with time-varying arrival intensity and ex-

ponentially distributed jump size. Quarterly data on confidence measures based on real

GDP and industrial production forecasts from 1969 to 2007, annualized in percent. P-value

is computed for the Likelihood Ratio test that jump parameters µj , λ0 and λ1 are jointly

equal to zero.
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Table 6: Model Parameter Calibration

Parameter Value

Preference Parameters:

δ 0.9992
γ 10
ψ 1.5
Consumption Dynamics:

µ 0.0017
ρ 0.975
σ 0.0064
νc 0.995
ϕw 5.19e-04
ϕe 0.038
φ 2.75
ϕd 3
Confidence Dynamics:

σv 4.33e-04
ν 0.91
σw 0
µj 3.59e− 07
λ0 0.18/3
λ1 20 × 40000

Calibrated parameter values, monthly frequency.
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Table 7: Confidence Measure: Data and Model Calibration

Mean Vol AR(1) Skew Kurt

Real GDP 0.07 0.04 0.68 1.73 7.85
(0.02) (0.02) (0.07) (0.39) (2.04)

IP 0.06 0.04 0.60 1.19 4.06
(0.01) (0.01) (0.12) (0.31) (1.06)

Sim. Median 0.09 0.07 0.59 1.26 4.23
5% 0.05 0.03 0.39 0.80 2.77
95% 0.15 0.12 0.75 1.74 8.04

Summary statistics for square-root of confidence measure scaled by the average volatility of

the underlying series. Data are based on quarterly observations of confidence measure based

on forecasts of real GDP and industrial production from 1969 to 2007. Model estimates

are calculated based on 100 simulations of 40 years of data. The square root of confidence

measure scaled by the volatility of the consumption growth is sampled every third month.

Table 8: Consumption Dynamics: Data and Model Calibration

Data Model
Estimate S.E. 5% Median 95%

Mean 1.95 (0.32) 1.27 1.99 2.73
Vol 2.13 (0.52) 1.43 2.08 3.07
AR(1) 0.44 (0.13) 0.22 0.42 0.56
AR(2) 0.16 (0.18) -0.13 0.14 0.38
AR(5) -0.01 (0.10) -0.21 0.03 0.23
VR(2) 1.58 (0.18) 1.22 1.42 1.56
VR(5) 2.23 (0.86) 1.28 1.95 2.72

Calibration of consumption dynamics. Data is annual real consumption growth for 1930-

2006. Model is based on 100 simulations of 80 years of monthly consumption data aggregated

to annual horizon, based on the full specification with fluctuating confidence and time-

varying consumption volatility.
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Table 9: Model Output for Return Distribution

Mean Vol AR(1) Skew Kurt

Complete Information,

Time-Varying Vol:

Log return 6.31 14.02 -0.01 0.08 3.78
Risk-free rate 1.50 0.26 0.97 -0.38 3.16

Constant confidence,

Constant Vol:

Log return 4.22 10.95 0.01 0.00 3.00
Risk-free rate 1.71 0.23 0.97 0.00 3.00

Time-varying confidence,

Time-Varying Vol:

Log return 6.73 19.97 -0.06 -0.85 8.64
Risk-free rate 1.15 0.37 0.91 -1.35 6.82

Model-implied summary statistics for returns and risk-free rates. Based on 100 simulations

of 80 years of data.

Table 10: Model-Implied Large Move Correlations

Correlations: Return Jump Ind., Return, Return Jump Ind.,
Factor Jump Ind. Factor Jump Ind. Factor

0m 6m 12m 0m 6m 12m 0m 6m 12m

Consumption 0.03 0.00 -0.01 0.01 0.00 0.00 0.00 0.00 0.00
(0.10) (0.08) (0.07) (0.10) (0.07) (0.08) (0.09) (0.09) (0.08)

Confidence 0.39 0.00 0.00 -0.45 -0.01 0.00 0.38 0.15 0.02
Measure (0.08) (0.09) (0.07) (0.07) (0.08) (0.07) (0.10) (0.11) (0.10)

Model-implied correlations of return moves with current and future moves in consumption
and confidence measure. The left panel shows the correlations of large return move indicator
with current and future jump indicators in consumption and confidence measure 6 and 12
months ahead. The middle panel shows the correlations of the level of returns with current
and future large move indicators in macroeconomic series, while the right panel depicts
the correlations of the large return move indicator with current and future consumption
and confidence measure 6 and 12 months ahead. Statistics are calculated based on 100
simulations of 80 years of data.
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Table 11: Prices of Risk

Long-Run Short-Run Confidence Consumption
Growth Growth Measure Volatility

Complete Information 8.81 6.35 -9.06
Fluctuating Confidence 8.52 6.36 -6.06 -4.16

Prices of risk for 1 standard deviation shock, in per cent, in standard long-run risks model

with complete information, and in the model with learning and fluctuating confidence risks.

Table 12: Equity Premium Decomposition

Long-Run Short-Run Confidence Consumption Total
Growth Growth Measure Volatility

Model:

Complete Information 1.67 1.15 2.30 5.11
Time-varying Vol.

Constant Confidence 1.69 1.19 2.87
Constant Vol.

Time-varying Confidence 1.66 1.19 1.69 0.75 5.25
Time-varying Vol.

Data:

Based on Full model 1.94 0.96 1.96 0.74 5.56

Decomposition of equity risk premium into contributions from long-run, short-run, con-

sumption volatility and confidence risks. Equity premium is annualized, in percent. Model-

based decomposition in the data is based on calibrated parameter values and observed series

of confidence measure and real GDP volatility from 1968 to 2007, quarterly.
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Table 13: Predictability of Excess Returns

1y 3y 5y
Estimate S.E. Estimate S.E. Estimate S.E.

Data:

Slope -0.08 (0.04) -0.36 (0.18) -0.40 (0.18)
R2 0.03 (0.05) 0.14 (0.13) 0.18 (0.17)

Constant confidence,

Constant Vol:

Sim. Slope -0.04 (0.12) -0.13 (0.38) -0.25 (0.63)
R2 0.01 (0.02) 0.03 (0.06) 0.04 (0.09)

Time-varying confidence,

Time-Varying Vol:

Sim. Slope -0.32 (0.17) -0.55 (0.32) -0.68 (0.48)
R2 0.10 (0.08) 0.13 (0.12) 0.16 (0.15)

Projection of future excess returns on price-dividend ratio in the data (first panel) and in

the models with constant confidence and constant consumption volatility, and fluctuating

confidence and time-varying consumption volatility (second panel). Monthly observations of

equity returns, price-dividend ratios and risk-free rates from 1927 to 2007. Simulated slopes

and R2 together with 5% − 95% confidence band are calculated based on 100 simulations

of 80 years of data.
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Table 14: Predictability of Consumption Growth

1y 3y 5y
Estimate S.E. Estimate S.E. Estimate S.E.

Data:

Slope 0.01 (0.01) 0.01 (0.02) 0.003 (0.01)
R2 0.08 (0.06) 0.03 (0.02) 0.001 (0.03)

Constant confidence,

Constant Vol:

Sim. Slope 0.13 (0.02) 0.25 (0.07) 0.30 (0.11)
R2 0.43 (0.10) 0.30 (0.12) 0.23 (0.12)

Time-varying confidence,

Time-Varying Vol:

Sim. Slope 0.04 (0.02) 0.09 (0.06) 0.11 (0.10)
R2 0.15 (0.10) 0.11 (0.11) 0.08 (0.11)

Projection of future consumption growth returns on price-dividend ratio in the data (first

panel) and in the models with constant confidence and constant consumption volatility,

and fluctuating confidence and time-varying consumption volatility (second panel). Table

reports slope coefficient β1 and R2 in the regressions
∑K

j=1
∆ct+j = β0+β1pdt+error, where

K is from 1 to 5 years. Annual observations of real consumption growth and price-dividend

ratios from 1930 to 2007. Population slope is based on long model simulation of 100,000

months. Simulated slopes and R2 together with 5% − 95% confidence band are calculated

based on 100 simulations of 80 years of data.
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Figure 1: Time-Series of Returns
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Time−Series of Returns

Time series of returns, monthly, from 1927 to 2007. Stars indicate periods with 2 standard

deviations or above moves in returns.

Figure 2: Time Series of Confidence Measure
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Square-root of confidence measure based on forecasts of next-quarter real GDP, annualized,

in percent. Quarterly observations of confidence measure based on forecasts of real GDP

from 1969 to 2007.
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Figure 3: Distribution of True Expected Growth
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Distribution of true expected growth state, given information set of investors, in a standard

long-run risks model with complete information (left panel), and model with learning and

fluctuating confidence risks (right panel). Consumption volatility is constant, and Low

and High V correspond to 0.25 and 0.75 quantile of calibrated distribution of confidence

measure.

Figure 4: Unconditional Distribution of Consumption and Returns
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Unconditional distribution of consumption growth (left panel) and returns in the model with

constant confidence measure (middle panel) and in the model with fluctuating confidence

risks (right panel). Consumption volatility is constant.
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