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Teacher performance pay is quickly gaining momentum in the United States.  In fact, 

some districts, and even entire states, are already implementing performance-pay programs for 

teachers that involve sizeable public expenditures.  For example, the Texas Governor’s Educator 

Excellence Award Programs (GEEAP) allot a large fraction of their combined 330 million dollar 

annual budget to directly reward classroom teachers based on performance (Podgursky and 

Springer, 2007). 

The aspect of teacher performance that has received the most attention from 

policymakers of late, and is perhaps the most contentious, is value-added to students’ test scores.  

While the literature overwhelmingly indicates that there are important differences in teacher 

quality measured by value-added, there is little consensus on the best approach for estimating 

value-added.  Furthermore, there is ample evidence that value-added measures of teacher quality 

are noisy, which creates some concern about the feasibility of using value-added for large-scale 

teacher evaluation.1  In addition to these unresolved issues, value-added estimates may be 

sensitive to the quantitative properties of the testing instruments upon which they are based. 

This paper evaluates the sensitivity of value-added to a particularly relevant testing-

instrument property – the severity of test-score-ceiling effects.  We refer to the tendency for 

gains in a student’s test score to be smaller if the student’s initial score is toward the top end of 

the distribution, simply because the student has little room for improvement given the difficulty 

level of the test, as a “ceiling effect”.  Ceiling effects will be most pronounced in minimum-

competency or proficiency-based tests, which are being used increasingly across the United 

States.  For example, 22 states nationwide use high school exit exams that are typically pitched at 
                                                       
1 See, for example, Aaronson, Barrow and Sander (2007), Hanushek, Kain, O’Brien and Rivkin (2005), Koedel and 
Betts (2007) and Rockoff (2004).  In addition, Rothstein (2008) shows that value-added estimates may be biased by 
student-teacher sorting. 
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a middle-school or lower high-school level.2  Furthermore, because federal No Child Left Behind 

(NCLB) legislation focuses largely on proficiency, mainstream proficiency-based testing is also 

becoming increasingly common. 

The increased focus on proficiency in education coincides with the growing interest from 

researchers and policymakers in value-added as a tool for measuring teacher performance.  The 

impending collision of ceiling-affected testing instruments with value-added-based teacher 

evaluations motivates our analysis.  Do ceiling effects influence value-added estimation?  If so, 

how important are ceiling effects and how severe must they be to significantly alter value-added 

results? 

We answer these questions using a testing instrument where there is no evidence of a 

test-score ceiling.  Starting with our no-ceiling baseline, we simulate test-score ceilings that vary 

in severity and evaluate their effects on teacher value-added.  Our findings are generally 

encouraging - over a wide range of test-score-ceiling severity we find that value-added estimates 

are roughly impervious to ceiling effects.  However, ceiling conditions approaching the severity 

of those found in minimum-competency testing environments noticeably alter value-added 

results.   

I. Test-Score Ceilings: Introduction and Measurement 

Test-score ceilings structurally restrict students’ test-score gains as test-score levels rise.  

Because a test-score ceiling directly influences the tool by which value-added is measured, it is 

intuitive that it will influence results.  For example, consider a testing instrument where a large 

fraction of the student population is at or near the maximum possible score.  Teachers teaching 

these students will have little opportunity to add value to test scores.  Furthermore, they are 

                                                       
2 The nationwide count applies to 2006 and was calculated based on information in Warren (2007).  
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likely to use advanced curricula that focus at least partly on material that goes beyond the scope 

of the test, making their evaluations based on the test uninformative.   

In practice it might be quite important whether a district uses a norm-referenced or a 

criterion-referenced test for the purpose of evaluating teaching effectiveness.  A norm-referenced 

test is a standardized test that is meant to estimate where a student ranks against the test-score 

distribution of the reference group, typically the national student population.  Such a test, if well-

designed, should exhibit few ceiling effects because it must include questions with a range of 

difficulty so that distinctions can be made among students throughout the test-score distribution.  

Such tests have been in use for many decades.   

More recently, partly as a consequence of NCLB, many states are using testing systems 

designed to measure student understanding of the content standards set by the state’s Department 

of Education.  We speculate that these “criterion-referenced” tests are more likely to exhibit 

ceiling effects, particularly when a state exam is intended, either explicitly or implicitly, to serve 

as a “minimum-competency” test.  For example, in Mississippi the state-level test appears to be 

targeted at a fairly low level.  In 2006-07, 90 percent of fourth-grade students scored at or above 

the “proficient” level in reading on the state-level Mississippi Curriculum Test (MCT).  

However, just 19 percent of these students scored at or above the proficient level on the National 

Assessment of Education Progress (NAEP).3,4  

One way to evaluate the impact of ceiling effects on teacher value-added would be to find 

a population of students that had been tested in several consecutive years using two testing 

                                                       
3 From the US Department of Education, Mapping Mississippi’s Educational Progress 2008. 
4 Cullen and Loeb (2004) illustrate another source of ceiling effects that is directly associated with NCLB –  
reporting requirements that require states to document the percentage of students who are “proficient”.  Their Figure 
12c provides a graphical representation of the mechanical relationship between underlying proficiency levels and 
growth in proficiency.  Clearly, if value-added were estimated based on simple pass-fail measures of student 
achievement, as emphasized by NCLB, ceiling effects would be severe. 
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systems – one that lacked a ceiling effect and another that suffered from a ceiling effect.  

However, it is likely that the different tests in such a scenario would also differ in terms of 

content, confounding the ceiling effect.  A second approach is to use a test that can be 

demonstrated not to suffer from ceiling effects, and then to simulate test-score ceiling effects 

using that instrument.  This creates a counterfactual of what would have happened had the test 

been right-censored.  We adopt this approach by using Stanford 9 math test scores for fourth 

grade students in the San Diego Unified School District.  The Stanford 9 is a nationally norm-

referenced test.  For the population we study we find no evidence of a ceiling effect (see below).  

It thus provides a way of comparing measures of teacher value-added with and without a test-

score ceiling. 

The first step in our analysis is to provide a reliable measure of test-score ceiling severity.  

An intuitive approach would be to evaluate the strength of the negative relationship between test-

score levels and subsequent test-score gains.  However, this approach is problematic because a 

negative relationship will exist due to regression to the mean even in the absence of a test-score 

ceiling.  Furthermore, in cases where a test-score ceiling does exist, there is no obvious way to 

dissect the negative relationship between test-score levels and test-score gains to isolate the 

ceiling effect.  As an alternative, we propose that the distribution of students’ test scores can be 

used to measure test-score-ceiling severity.  Specifically, we can use the degree of negative 

skewness in the test-score distribution as originally suggested by Roberts (1978).  We define 

skewness as the sample analog of 
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the mean and σ is the standard deviation.  Under the assumption that underlying student 

achievement in the population is symmetrically distributed, skewness provides an intuitive and 
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straightforward measure of test-score ceiling severity.  In Section VII, we provide suggestive 

(although not exhaustive) evidence that skewness is a robust measure of ceiling severity. 

Figure 1 displays the frequency distributions of students’ lagged (grade 3) and current 

(grade 4) math test scores from our data, gathered from San Diego Unified School District.  As 

mentioned above, there is no evidence of a test-score ceiling.  In fact, the test-score distributions 

from our sample are skewed mildly positively.  The figure shows kernel-density plots of the 

distributions of actual scores contrasted with normally-distributed overlays.  The skewness in the 

lagged and current-score distributions in our data are 0.25 and 0.17, respectively.  Notice that 

although both of these distributions are skewed slightly positively, they both closely mirror their 

normally distributed analogs.   

In our test-score-ceiling simulations, what is the relevant range of skewness to consider?  

We answer this question using two large-scale, state-level tests: (1) the Texas Assessment of 

Academic Skills (TAAS) and (2) the Florida Comprehensive Assessment Test (FCAT).5  The 

TAAS was administered in Texas from 1991 to 2003 and prior to 1991 was known as the Texas 

Educational Assessment of Minimum Skills.  The minimum-competency-based design of the 

TAAS makes it a useful test upon which to base our most severe test-score-ceiling simulations.  

The FCAT was first administered in 1998 in Florida and continues to serve as the state-level 

standardized test there.    

We simulate test-score-ceiling conditions based on the skewness in the test-score 

distributions of the math portions of the TAAS and FCAT from 2002 and 2007, respectively.  

Figure 2 shows kernel-density plots of third and fourth-grade mathematics scores on the TAAS 

compared to normally-distributed overlays based on 2002 test scores (statewide).  The skewness 

                                                       
5 Statewide distributions of test scores for the TAAS were provided online by the Texas Education Agency 
(http://www.tea.state.tx.us).  FCAT scores were provided by the Florida Department of Education.   
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in these score distributions is large and negative, at -1.60 and -2.08, respectively.  Similarly, the 

top panel of Figure 3 shows kernel density plots of third and fourth-grade mathematics scores on 

the 2007 FCAT (statewide).  The skewness in these score distributions is also negative but much 

milder, at -0.46 and -0.55.  Finally, the bottom panel of Figure 3 shows the distributions of scores 

for ninth and tenth-grade students on the FCAT in 2007 where the skewness in the test-score 

distributions becomes increasingly negative.  The ninth and tenth-grade score distributions from 

the FCAT have skewness of -0.94 and -1.99, respectively.6 

Starting with our no-ceiling baseline, we create counterfactual testing environments 

where students’ scores are impeded by test-score ceilings of varying severity.  Our most severe 

ceiling simulation is designed to mimic the testing conditions from the fourth-grade TAAS.  For 

simplicity, we simulate what we will refer to as “hard” test-score ceilings, where students’ scores 

are restricted at a specific maximum score.  An alternative would be to simulate “soft” test-score 

ceilings that restrict student performance throughout the test-score distribution.  For example, 

students’ scores might taper off as they approach a maximum score.  Soft test-score ceilings 

appear to characterize more accurately the true distributions of test scores in Figures 2 and 3.  

However, there are literally an infinite number of possible soft-ceiling structures that could 

generate the observed skewness in the TAAS and FCAT distributions, making such an analysis 

infeasible.  Instead, we focus on hard test-score ceilings and compare the results that we obtain 

from our simulations to a set of results generated using one possible soft-ceiling structure. This 

analysis is detailed in Section VII and suggests that similarly skewed test-score distributions 

                                                       
6 Students in Florida must pass the math portion of the tenth-grade FCAT to receive a high-school diploma.  It is 
possible that the exam is targeted at a lower level because of this.  Also, students are allowed to take the test more 
than once.  The distribution of tenth-grade FCAT scores reported in Figure 3 is for all tests taken in 2007 (provided 
by the Florida Department of Education), which will include retaken exams.  The retaken exams could either 
positively or negatively skew the distribution. 
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have similar implications for value-added results, regardless of whether a hard or soft ceiling 

generates the ceiling effect. 

Finally, we distinguish two mechanisms by which test-score ceiling effects will influence 

value-added estimation.  First, most straightforwardly, ceiling effects represent lost information 

about student learning.  The more severe is the test-score ceiling, the greater the amount of lost 

information.  Second, ceiling effects will result in model misspecification.  A test-score ceiling is 

a data censor, and as such the typical value-added approach is improperly specified in the 

presence of a ceiling.  In practice this is a non-trivial problem because the underlying data-

censoring structure will be unknown.  Furthermore, the censoring problem is even more 

complicated in the value-added framework than in the typical dependent-variable censoring 

problem because lagged test scores will also be censored.  In the general value-added approach 

(where current test scores are regressed on lagged test scores), this means that there will be 

censoring of an independent variable in addition to the censoring of the dependent variable.  

Converting to gainscores does not circumvent the problem because censoring will be ill-defined - 

censored gainscores will have zero or near zero gains, but non-censored scores can also have 

zero, near zero, or even negative gains. 

The current state of the data-censoring literature in econometrics and statistics is such 

that there is no solution to the data-censoring problem in this context.  Therefore, distortionary 

test-score ceiling effects can be thought of as the product of both of these problems – lost 

information and model misspecification.  For this reason, our primary results are from standard 

value-added models estimated by least squares.  In Section VIII, we further consider the data-

censoring problem and provide some evidence on the extent to which model misspecification 

alone drives our ceiling-effect results.   
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II. Background 

Only a fraction of the recent studies measuring teacher value-added have considered the 

potential importance of test-score ceiling effects.  Furthermore, none have explicitly evaluated 

the direct implications of ceiling effects for value-added results.  Hanushek, Kain, O’Brien and 

Rivkin (2005) provide the most provocative documentation of ceiling effects in the recent value-

added literature.  These authors estimate value-added using the TAAS where scale scores are 

such that a gain of zero implies “typical” progress.  They divide the exam into ten equal test-

score intervals and assign each student to one of ten bins based on his or her period-(t-1) test-

score level.  There is a strong negative relationship between students’ period-(t-1) test-score 

levels and period-t gains, which is suggestive of a ceiling effect (although mean reversion could 

also explain the documented relationship).  More importantly, approximately two-thirds of the 

students in their sample are assigned to a bin where the average test-score gain is negative.  

Where “typical” progress is purported to correspond to a gain of zero, and in the absence of a 

ceiling effect, mean reversion in both directions would suggest that approximately equal shares 

of students should experience positive and negative gains.  That such a large fraction of students 

show negative gains suggests that ceiling effects are an important concern.  Their analysis is one 

of only a few that carefully considers test-score-ceiling effects, although a direct analysis of 

ceiling effects is beyond the scope of their study. 

Of the other recent test-score-based studies of teacher quality, there is little mention of 

ceiling effects.  Koedel (2008) and Koedel and Betts (2007) acknowledge the potential for test-

score ceiling effects and report information on the relationship between students’ gains and 

lagged test-score levels.  Aaronson, Barrow and Sander (2007) measure value-added using two 

tests that differ substantially in terms of the distributions of scores, which they thoroughly 
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document, but they do not explicitly consider ceiling effects.   Rockoff (2004), who estimates 

teacher effects outside of the value-added framework, reports that 3 to 6 percent of the students 

in his sample attain the maximum possible score but he does not go into further detail.  

Lockwood et al. (2007) show that teacher effects are quite sensitive to different testing 

instruments but they do not consider the extent to which ceiling effects might be driving their 

results.  Nye, Konstantopoulos and Hedges (2005) do not discuss test-score-ceiling effects.   

III. Value-Added Models 

We estimate teacher value-added using three different student-achievement 

specifications.  Each specification implies tradeoffs in estimation.  We focus on the general 

value-added model where current test scores are regressed on lagged test scores.  It is somewhat 

common in the literature to use a specific form of the value-added model, the gainscore model, 

where the coefficient on the lagged test score is forced to one and the lagged-score term is 

moved to the left side of the equation.  Although we do not present results from gainscore 

models, our findings are nearly identical using the gainscore framework.  Results from the 

gainscore analogs to the below specifications are available from the authors upon request.    

The first model that we consider, and the simplest, is a basic value-added model that 

allows for the comparison of teacher effects across schools: 

 ( 1) 1 2it t i t it it itY Y X Tφ φ φ θ ε−= + + + +  (1) 

In (1), Yit is the test score for student i in year t, tφ  is a year-specific intercept, Xit is a vector of 

fixed and time-varying student-specific characteristics (see Table 1) and Tit is a vector of teacher 

indicator variables where the entry for the teacher who teaches student i in year t is set to one.  

The coefficients of interest are in the Jx1 vector of teacher effects, θ.  
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We refer to equation (1) as the basic model.  The most obvious omission from the model 

is school-level information, whether in the form of school fixed effects or time-varying controls.  

Researchers have generally incorporated this information because of concerns that students and 

teachers are sorting into schools non-randomly.  This sorting, along with the direct effects of 

school-level inputs on student achievement (peers, for example), will generate omitted-variables 

bias in the value-added results for teachers in equation (1).   

While the omitted-variables-bias concern is certainly relevant, any model that includes 

school-level information will not allow for a true comparison of teacher effectiveness across 

schools.  For example, if school fixed effects are included in equation (1) then each teacher’s 

comparison group will be restricted to the set of teachers who teach at the same school.  

Furthermore, even in the absence of school fixed effects, the inclusion of school-level controls 

will restrict teachers’ comparison groups to some extent because teachers may sort themselves 

based on school-level characteristics.  If this is the case, controls meant to capture school quality 

will also partly capture school-level teacher quality, limiting inference from across-school 

comparisons of teachers.  

For most researchers, concerns about omitted-variables bias dominate concerns about 

shrinking teacher comparison groups.  This leads to the second model that we consider, the 

within-schools model, which is more commonly estimated in the literature and includes time-

varying school-level covariates and school fixed effects.7    

( 1) 1 2 3it t i t it it it itY Y X S Tβ β β β γ ν−= + + + + +     (2) 

                                                       
7 Although teacher effectiveness cannot be compared across schools straightforwardly using value-added estimates 
from (2), this may be acceptable from a policy perspective.  For example, policymakers may wish to identify the 
best and worst teachers on a school-by-school basis regardless of any teacher sorting across schools. 
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In (2), Sit is a vector that includes school indicator variables and time-varying school-level 

information for the school attended by student i in year t. The controls in the vector Sit are 

detailed in Table 1.  The benefit of including school-level information is a reduction in omitted-

variables bias, including sorting bias generated by students and teachers selecting into specific 

schools.   

Finally, we incorporate student fixed effects into the student achievement specification.  

This approach is suggested by Harris and Sass (2006), Koedel (2008) and Koedel and Betts 

(2007):    

( 1) 1 2 3it i t i t it it it itY Y X S T uα α α α α δ−= + + + + + +    (3) 

In going from equation (2) to equation (3) we add the student fixed effects, αi.  The inclusion of 

the student fixed effects also limits the entries in the vector Xit to include only time-varying 

student characteristics.  The benefit of the within-students approach is that teacher effects will 

not be biased by within-school student sorting across teachers based on time-invariant student 

characteristics (such as ability, parental involvement, etc.).  However, again there are tradeoffs.  

Equation (3) further narrows teachers’ comparison groups to those with whom they share 

students.  Thus, identification comes from comparing test-score gains for individual students 

when they were in the third and fourth grades.  In addition, the incorporation of the student fixed 

effects makes the model considerably noisier.8  Finally, the inclusion of the student fixed effects 

restricts the size of the student population that can be considered because a student record must 

contain at least three contiguous test scores, instead of just two, to be included in the analysis.9 

                                                       
8 In fact, a test for the statistical significance of the student fixed effects in equation (3) fails to reject the null 
hypothesis of joint insignificance.  However, the test is of low power given the large-N, small-T panel dataset 
structure (typical of most value-added analyses), limiting inference. 
9 Equation (3) also introduces a potential endogeneity concern if teacher assignments are correlated with the time-
varying error-term component across years.  See Rothstein (2008) and Koedel and Betts (2008). 
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Despite these concerns, econometric theory suggests that student fixed effects will be an 

effective way to remove within-school sorting bias as long as students and teachers are sorting 

based on time-invariant characteristics.  We estimate the within-students model by first-

differencing equation (3) and instrumenting for students’ lagged test-score gains with their 

second-lagged levels.  This general approach was developed by Anderson and Hsiao (1981) and 

has been recently used by Harris and Sass (2006), Koedel (2008) and Koedel and Betts (2007) to 

estimate teacher value-added.10 

Two key issues distinguish the within-students model from the other models that we 

consider.  First, to completely first-difference equation (3) we must incorporate students’ lagged 

teacher assignments, which will appear in the period-(t-1) version of equation (3).  That is, we 

are comparing the effectiveness of students’ current and previous-year teachers.  Second, the 

requirement that each student record contain three contiguous test scores in the within-students 

model not only limits the sample size overall but also restricts the student population to less-

transient students.  Because these students tend to be higher achievers (see, for example, 

Rumberger and Larson, 1998; Ingersoll, Scamman and Eckerling, 1989), a given test-score 

ceiling will have a stronger effect on the restricted student sample.  This issue will be revisited 

when we present our results. 

IV. Data 

We evaluate ceiling effects using administrative data from fourth-grade students in San 

Diego (San Diego Unified School District) who started the fourth grade between 1998-1999 and 

2001-2002.  We chose the fourth grade because it is an elementary-level grade (so that each 

student is linked to just one teacher) and because our student-fixed-effects model requires at least 

                                                       
10 Although all three of these studies use the same basic methodology, Harris and Sass (2006) estimate their model 
using GMM while Koedel (2008) and Koedel and Betts (2007) use 2SLS.  We use 2SLS here. 
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three contiguous test-score records per student (students are first tested in the second grade).  The 

standardized test that we use to measure student achievement is the Stanford 9 mathematics test.  

The Stanford 9 is designed to be vertically scaled such that a one-point gain in student 

performance at any point in the schooling process is meant to correspond to the same amount of 

learning.  As discussed in Section I, there is no evidence of a ceiling effect in the test-score data. 

Students who have fourth grade test scores and lagged test scores are included in our 

analysis.  In our student-fixed-effects models, we also require students to have second-lagged 

test scores.  For each model, we estimate value-added for teachers who teach at least 20 students 

across the data panel and restrict our student sample to the set of students taught by these 

teachers.11  In the models without student fixed effects, we evaluate test-score records for 30,354 

students taught by 596 teachers.  Our sample size falls to 15,592 students taught by 389 teachers 

in the student-fixed-effects model.  The large reduction in sample size is the result of (1) the 

requirement of three contiguous test-score records per student instead of just two, which in 

addition to removing more transient students also removes one year-cohort of students because 

we do not have test-score data prior to 1997-1998 (that is, students in the fourth grade in 1998-

1999 can have lagged scores but not second-lagged scores) and (2) requiring the remaining 

students be assigned to one of the 389 fourth-grade teachers who teach at least 20 students with 

three test-score records or more.12  We include students who repeat the fourth grade because our 

objective is to inform policy and it is unlikely that grade repeaters would be excluded from 

teacher evaluations in practice (because of moral hazard concerns).  In our original sample of 

30,354 students with current and lagged test-score records, just 199 are grade repeaters.  

                                                       
11 This restriction is imposed because of concerns about sampling variation (see Kane and Staiger, 2002).  Our 
results are not sensitive to reasonable adjustments to the 20-student threshold. 
12 Only students who repeated the 4th grade in the latter two years of our panel could possibly have had more than 
three test-score records.  There are 32 students with four test-score records in our dataset. 
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The degree of student-teacher sorting will influence the magnitude of test-score-ceiling 

effects.  At one extreme, random assignment of students to teachers will mitigate ceiling effects 

insofar as they determine teacher rankings regardless of which model from Section III is used 

(although ceiling effects may still lead to an understatement the importance of teacher quality 

overall, and increase the noise associated with value-added estimation).13  At the other, a test-

score ceiling where there is strong student-teacher sorting should lead to a large shift in teacher 

rankings based on value-added.14 

One benefit of our analysis is that we can use real student-teacher matches from a real 

school district, rather than attempting to simulate student-teacher sorting.  This is important 

because there is no consensus in the literature as to how students and teachers are actually 

assigned to one another, making it impossible to artificially generate student-teacher matches.  

However, if parents, students, teachers and administrators in San Diego act similarly to parents, 

students, teachers and administrators in other similar school districts, our results will 

generalize.15   

We document observable student-teacher sorting in our data by comparing the average 

realized within-teacher standard deviation of students’ lagged test scores to analogous measures 

based on simulated student-teacher matches that are either randomly generated or perfectly 

sorted.  This approach follows Aaronson, Barrow and Sander (2007).  Table 2 details our results, 

which are presented as ratios of the standard deviation of interest to the total within-grade 

                                                       
13 If within-teacher student samples are small enough, random assignment will not be sufficient to entirely mitigate 
ceiling effects on teacher rankings. 
14 In addition to differential student-teacher sorting across districts and schools, there will also be differential sorting 
across schooling levels.  Ceilings will have larger distortionary effects in higher grade levels if student-teacher 
sorting is stronger. 
15 The San Diego Unified School District (SDUSD) is the eighth largest school district in the nation, with 
considerable student diversity.  The one notable difference between SDUSD and some other districts is that there is 
a larger-than-average share of English learners at SDUSD.  For basic demographic information about the population 
of students and teachers at SDUSD see Betts, Zau and Rice (2003).   
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standard deviation of the test (calculated based on our student sample).  Note that while there 

does appear to be some student sorting based on lagged test-score performance, this sorting is 

relatively mild.   

V.   Test-Score-Ceiling Simulations and Basic Results 

Our ceiling simulations are based on the distribution of students’ test scores in the fourth 

grade.   For example, one of our simulations imposes a ceiling where the maximum score is set at 

the 95th percentile of the fourth grade test-score distribution.  Because the Stanford 9 is vertically 

scaled, this ceiling definition spills over to third grade scores.  That is, if a student in the third 

grade scores above the 95th percentile in the distribution of fourth-grade scores, her third-grade 

score is set at the maximum.  Our approach generates negative skewness in the test-score 

distributions for each grade.  The skewness will be more pronounced in the fourth grade relative 

to the third grade, and in the third grade relative to the second grade.  After imposing each test-

score ceiling on our data, we re-standardize students’ test scores within grades to have a mean of 

zero and a variance of one.16,17  

                                                       
16 An alternative approach would have been to separately set the ceilings in the 2nd, 3rd and 4th grades such that each 
ceiling is imposed at the 95th percentile of its respective distribution.  However, this approach is inconsistent with 
the evidence from the TAAS and, more mildly, the FCAT, where later-grade test-score distributions are more 
skewed.  We do, however, evaluate such a ceiling structure when we consider the importance of differences in 
skewness across grades.  See Table 6. 
17 Mechanically, the standardization of scores for each grade has no effect on results from the basic and within-
schools models.  In the within-students model, using within-grade standardized scores reduces the distortionary 
impacts of the test-score ceilings, albeit mildly.  This occurs because the first-differenced test scores in the within-
students models are scaled by their respective standard deviations before differencing, and the standard devation of 
fourth-grade scores is smaller than the standard deviation of third-grade scores. This effectively upweights test 
scores for students in the current year relative to the lagged year.  Because ceilings are defined by skewness in the 
test-score distribution, a larger share of students have above average test-scores as ceiling severity increases across 
years.  In our analysis, the relative up-weighting of these scores generated by the standardization appears to partially 
offset the dampening effect of the test-score ceiling.  For any test-score distortions characterized by increased 
skewness over time (positive or negative), standardization should be somewhat helpful, although we note that the 
standardization question is of little practical importance here.  Results from models of scaled scores analogous to 
those from standardized-scores models in the within-students analysis are available from the authors upon request.  
These results suggest even stronger distortionary ceiling effects. 
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We create each test-score ceiling by imposing a maximum possible score that we do not 

allow students’ scores to exceed.  We consider test-score ceilings where the maximum score 

ranges from the 97th percentile to the 33rd percentile of the original distribution of fourth-grade 

scores.  This latter ceiling generates skewness in the current and lagged test-score distributions 

comparable to skewness from the third and fourth-grade TAAS exams in 2002, as well as the 

ninth and tenth-grade FCAT exams in 2007.18  For each ceiling simulation, we report the 

skewness of the generated test-score distributions. 

Tables 3, 4 and 5, respectively, show results from the three value-added models discussed 

above: the basic, within-schools and within-students models.  When the ceilings are imposed, 

these models are misspecified because the data are censored.  Therefore, the results from the 

tables document the combined effects of lost information and model misspecification.  Again, 

because of the complications associated with properly modeling the data censoring given a real-

world test-score ceiling, these results offer the most pragmatic representation of the influence of 

ceiling effects.  We separately consider the data-censoring problem in more detail in Section 

VIII. 

Each column in the tables shows results from a different test-score ceiling.  The ceilings 

are increasing in severity moving from left to right, and the first column in each table shows 

results from our no-ceiling baseline for comparison.  The negative skewness measures reported 

in rows (2) and (3) of each table (and in row (4) in Table 5) indicate the degree of ceiling 

severity.  The eighth column of the tables shows results from our most severely skewed 

simulation, which we refer to as the “minimum-competency-equivalent” ceiling.  For each 

ceiling simulation we report three measures of interest in addition to the skewness measures: (1) 
                                                       
18 The lagged-score distribution is less-skewed than the distribution of 3rd-grade scores on the TAAS and more 
skewed than the distribution of 9th-grade scores on the FCAT.  We evaluate the extent to which differences in 
skewness across grades influence value-added estimation in Table 6 and find very mild effects. 
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the correlation between teachers’ ceiling-affected value-added estimates and estimates from the 

baseline model without ceiling effects, (2) the estimation-error share of the variance of the 

teacher effects and (3) the adjusted and unadjusted effect sizes, by which we mean the predicted 

change in student achievement, as a proportion of one standard deviation of test scores, resulting 

from a one-standard-deviation increase in teacher quality.  The correlations between the ceiling-

affected and baseline estimates provide a quick gauge of the distortionary impacts of the ceilings.  

Teacher effect sizes are commonly used in the literature to evaluate the importance of differences 

in teacher quality.  The unadjusted effect size is just the square root of the raw variance in 

teacher effects, while the adjusted measure accounts for estimation error in the individual 

teacher-effect estimates.  These estimates are reported as ratios of the standard deviation of the 

teacher-effect distribution to the standard deviation of the censored test-score distribution for 

each ceiling simulation.  This metric has a straightforward interpretation.  For example, the 

southwest-most entry in Table 3, if taken at face value, suggests that a one-standard-deviation 

improvement in teacher quality corresponds to a 0.24-standard-deviation improvement in test 

scores.  The estimation-error shares of the teacher-effect variances and the corresponding 

adjusted variance measures are estimated following Koedel (2008), who separates the variance 

of the estimated teacher effects into signal and noise components.19 

The three tables show that teachers’ value-added estimates are roughly impervious to 

test-score-ceiling effects over a wide-range of ceiling severity in each model.  This can be seen 

by looking at the correlations between the teacher effects estimated using the actual test-score 

data and those estimated after the ceilings are imposed.  Notice that even the ceiling that affects 

                                                       
19 For the within-students model we also report the skewness in the second-lagged test-score distribution.  In the 
between and within-schools models we cluster standard errors at the student level.  Because only grade-repeaters 
have more than one record, the clustered standard errors are essentially typical robust standard errors.   Our within-
students model is estimated using robust standard errors. 
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students’ test scores starting at the 75th percentile is largely inconsequential (skewness ≈ -0.64), 

as evidenced by the fairly high correlation between teachers’ baseline value-added estimates and 

their value-added estimates from this ceiling simulation.  So, for example, policymakers should 

feel comfortable using FCAT scores from the third and fourth grades, where the skewness in the 

test-score distributions are around -0.5, to measure teacher value-added at least insofar as ceiling 

effects are a concern.  However, value-added results begin to respond to ceiling effects as the 

ceilings continue to increase in severity.  For instance, when the ceiling begins at the 50th 

percentile of the fourth-grade test-score distribution, the correlation between the teacher-effect 

estimates from the actual data and the data with the ceiling imposed ranges from about 0.85 for 

the basic and within-schools models to 0.80 for the within-students model.  The correlations drop 

further when we impose the ceiling at the 33rd percentile, with the lowest correlation being 0.72 

in the within-students model.  As ceiling conditions approach those found in minimum-

competency testing environments, value-added results are non-negligibly altered.   

Two other observations from Tables 3, 4 and 5 are noteworthy.  First, the estimation-

error share of the variance of teacher effects increases as ceiling severity increases, which surely 

explains part of the pattern in correlations discussed above.  Second, there is a negligible change 

in the adjusted variance of teacher quality regardless of ceiling severity, which may initially 

seem counterintuitive.  However, note that the test-score ceilings are reducing the raw variance 

of test scores overall, and that the teacher-effect variance measures are scaled by this underlying 

variance.  That is, although the standard deviation of the teacher-effect distribution is reduced 

when a ceiling is imposed, the standard deviation of the distribution of test scores is also 

reduced.  In fact, our analysis likely understates test-score-ceiling effects on the measurable 
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variance of teacher quality because it removes variability in test-scores more precisely than 

would be observed in a real-world ceiling.20 

Thus far we have focused on the effect of the magnitude of skewness on value-added 

estimation.  But differences in skewness across grades may also affect value-added results.  We 

evaluate this possibility in Table 6 by simulating variations of our most severe test-score ceiling.  

In the first column of Table 6 for each model, we impose a ceiling at the 33rd percentile of the 

test-score distribution for each grade level separately, rather than basing the ceiling on the 

fourth-grade distribution of scores as in the previous analysis.  This generates more closely 

aligned skewness in the test-score distributions across grades.  In columns (2) and (3), we 

simulate less severe ceilings in the lagged-score distributions – these ceilings approach the 

severity of the ceiling in the lagged-score distribution from our initial simulation at the 33rd 

percentile of fourth-grade scores.  Table 6 shows that regardless of changes in the difference-in-

skewness across grades, the effect of the test-score ceiling on value-added results is roughly 

constant.21  This can be most easily seen by comparing the correlations between the ceiling-

affected value-added estimates and those from the no-ceiling baseline in row (7) of Table 6. 

  Finally, note that the test-score ceilings induce more skewness in the test-score 

distributions from the within-students sample (Table 5) relative to the larger student sample used 

in the basic and within-schools models (Tables 3 and 4).  As mentioned in Section III, this is 

because the restricted student sample used for the within-students model is disproportionately 

affected by the test-score ceiling (that is, the set of students who have three contiguous test 
                                                       
20 Our simulations allow students to demonstrate that they are far above the cutoff, and then we restrict their scores 
ex post.  This removes additional variability in test scores that would be found near the highest possible score in a 
real-world test-score ceiling.  For example, we might observe a student scoring at the 80th percentile of the actual 
distribution of test scores and restrict her score to the 50th percentile such that she obtains the maximum possible 
score in our simulation.  However, with a real-world ceiling where she would have to answer every question 
correctly to score at the maximum, she might bubble in a wrong answer by accident, read a question incorrectly, etc.  
This would add to the underlying variability in test scores, but of course would not be explained by teacher effects. 
21 That is, over the fairly wide range of differences in skewness that we consider. 
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scores is higher achieving, on average, than the set of students who have just two test scores).  

Interestingly, the influence of each test-score ceiling on value-added is similar across the three 

models despite the fact that each ceiling is more strongly felt by students in the within-students 

model.  It appears that the stronger skewness in the test-score distributions for the restricted 

student sample is roughly offset by the benefit of looking within students, where ceiling effects 

will be partially controlled for by the first-differencing procedure. 

VI. Implications of Minimum-Competency Testing for Value-Added Analysis 

We further evaluate the sensitivity of teacher value-added to the imposition of our most 

severe test-score ceiling, designed to replicate minimum-competency testing conditions, using 

transition matrices to compare teacher rankings before and after the test-score-ceiling 

transformation.  The transition matrices provide an alternative documentation of the correlations 

reported in the final columns of Tables 3, 4 and 5. 

To construct the transition matrices, we estimate each model before and after the ceiling 

is imposed.  In each case, we keep the vector of estimated teacher effects and rank them from 1 

to J, 1 being the lowest and J being the highest.  We divide teachers into quintiles based on their 

value-added rankings, where quintile-5 teachers are those with the highest value-added.  The 

transition matrices compare the stability of these quintile assignments before and after the ceiling 

is imposed.  This type of analysis is particularly relevant in the context of teacher accountability.  

For example, an accountability system might reward the top 20 percent of teachers and sanction 

the bottom 20 percent as measured by value-added.  Our results are reported in Table 7 for each 

of the value-added specifications described in Section III.   

The vertical dimension of the transition matrices represents teachers’ quintile rankings 

without the ceiling and the horizontal dimension teachers’ rankings after the ceiling is imposed.  
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Each cell in Table 7 indicates the percentage of teachers who fall into a given quintile set, where 

a quintile set is defined by the pair of quintile-rankings for a given teacher with and without the 

ceiling (e.g., the set (1,4) would indicate a quintile ranking of “1” in the no-ceiling case and a 

quintile ranking of “4” after the ceiling is imposed).  If ceiling effects did not influence value-

added rankings, the diagonal entries in Table 7 would all equal 100 percent and the off-diagonal 

entries would all equal zero.   

The transition matrices show that ceiling effects alone can significantly influence value-

added rankings.  For example, across the three models, just 49 to 56 percent of the teachers who 

are identified as being in the top 20 percent of the value-added distribution based on students’ 

actual test scores are also identified as being in this group once test scores are transformed.  

Furthermore, 14 to 17 percent of these teachers are pushed below the 60th percentile of the 

distribution of teacher effects. 

In an omitted analysis available upon request, we also consider whether certain types of 

teachers are helped or harmed in terms of their value-added rankings by minimum-competency 

testing. The mechanism through which we might expect an effect is student-teacher sorting 

within and across schools.  For example, if teachers with master’s degrees teach a 

disproportionate share of high-achieving students, their value-added rankings will be more 

adversely affected by test-score-ceiling effects.  Not surprisingly, we find that more qualified 

teachers, teachers with higher salaries, and teachers who teach at more advantaged schools are 

harmed by test-score ceiling effects in value-added rankings (the latter result related to the 

socioeconomic advantage of students across schools, of course, is only applicable in the basic 

value-added model). 
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VII. Robustness of the Negative Skewness Measure 

In this section we evaluate the robustness of the negative skewness measure by 

evaluating whether differentially constructed test-score ceilings that produce similar negative 

skewness have similar implications for value-added results. In particular, we construct a set of 

soft test-score ceilings that are designed to replicate the negative skewness in some of the hard-

ceiling simulations and look to see if the soft-ceiling design has different implications for value-

added results.  We stress that our analysis here is far from exhaustive - for any given level of 

negative skewness in a test-score distribution, there are literally an infinite number of soft test-

score ceiling structures that could generate the skewness.  We focus on just one possibility here, 

creating soft test-score ceilings using a spline such that for a student with uncensored test score 

Yi: 
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In (4), iY%   is the transformed score for student i, 1 1n nS S S−> > >K  where the Sj, j=1,…,n 

represent the test-score levels at which the n knots appear, and 1 2 11 n nX X X X−≥ ≥ ≥ ≥K , 

meaning that the test-score ceiling is non-decreasing in severity as students’ test scores rise.  

Specifically we define Sn as the score at the nth decile of the fourth-grade test-score distribution 

for these simulations.  For student i whose score falls between S2 and S3, her transformed score 

can be written (where Yi is her observed test score): 
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1 1 2 1 2 2( ) ( )i iY S X S S X Y S= + − + −%         (5) 
 

We generate three soft test-score ceilings using this basic structure.  These ceilings are 

designed to produce skewnesss in the distributions of test scores comparable to those from our 

hard-ceiling simulations imposed at the 75th, 50th and 33rd percentiles.  Table 8 displays the Xn 

vectors for each of these three ceilings. 

Table 9 displays the effects of the three soft ceilings on value-added estimates from each 

of the three models discussed in Section III.  The results are comparable to those in columns (6), 

(7) and (8) in Tables 3, 4 and 5.  Although the effects of the soft ceilings are slightly more mild 

than those from their hard-ceiling counterparts, the results suggest that similarly skewed test-

score distributions have similar implications for value-added estimation. 

VIII. The Model Misspecification Problem 

Finally, we explicitly consider the model-misspecification problem, which has partly 

driven our results thus far.  A least-squares approach (and variants thereof), which is typically 

used in the value-added literature, will be misspecified when there is a test-score ceiling because 

the ceiling acts as a data censor.  When ceiling effects are severe, the misspecification problem 

will be amplified.   

In theory one could estimate a censored-data model, such as a tobit model, to correct this 

misspecification.  However, as a practical matter, there are three complications that arise with 

respect to resolving the model-misspecification problem in the value-added context where a test-

score ceiling is detected.  First, the censor points in a real-world test-score ceiling will be 

unknown and, in fact, discontinuous censor points may not even exist.  Evidence from Carson 

and Sun (2007) suggests that mis-identifying the censor points will produce substantially biased 
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estimates of the model parameters, meaning that “guessing” at the censor points based on some 

observed distribution of scores is unlikely to resolve the problem.22  

A second complication of data censoring in the value-added context is that both current 

and lagged scores are likely to be censored.  In the general value-added model, this means that an 

independent variable will be censored in addition to the dependent variable.  The gainscore 

framework does not solve this problem because the censoring in a gainscore model is ill-defined 

(censored gains will be zero or near zero, but non-censored gains can also be zero, near zero, or 

even negative).  Although dependent-variable data censoring has received considerable attention 

in research, there is a much smaller literature that considers independent-variable data censoring.  

Austin and Brunner (2003) and Austin and Hoch (2004) provide MLE solutions to the 

independent-variable censoring problem with a known censor point, but their solutions are 

sensitive to an assumption about the joint distribution of the independent variables.  Where 

possible, even these authors strongly recommend circumventing the censoring problem 

altogether by obtaining uncensored data, or if the sample size permits, restricting the analysis 

only to uncensored observations.23 

A third complication in the context of teacher value-added is that as the data censoring 

gets more severe, more and more teachers teach fewer and fewer students whose scores are not 

censored.  At extreme ceiling severities, some teachers do not teach any students whose scores 

                                                       
22 There has been some work in the econometrics literature that looks at data censoring when the censor points are 
unknown, but this literature is inapplicable to the case of a test-score ceiling because a key assumption required to 
overcome the unknown censoring process is that the censoring is independent of the underlying value of the 
censored variable (see Chen, 2002; GØrgens and Horowitz, 1999). This assumption obviously does not apply when 
the dependent variable, the test score, is subject to a ceiling effect. 
23 Whereas thus far we have treated ceiling effects as a ‘problem’ for value-added estimation, an alternative view is 
that ceiling effects simply signify a shift in the objective function of administrators toward helping students whose 
scores are not impacted by the ceiling.  In such cases, modeling student achievement only for students whose scores 
are below the ceiling, if such a ceiling can be reasonably identified, will be a viable option.  However, if school 
administrators do not want to shift disproportionate weight to low-achieving students in teachers’ value-added 
estimates, the ceiling ‘problem’ resurfaces. 
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are not censored.  Clearly, as a larger fraction of the student population’s scores are censored, 

inference for more and more teacher effects becomes unreliable.  Thus, where ceiling effects are 

mild and the misspecification issue has little bearing on the results, a model that appropriately 

treats the censored data could in principle be informative for most if not all of the teacher effects.  

However, as ceiling effects become increasingly severe, and therefore the data-censoring 

correction would be most useful, the estimates for more and more teachers become 

uninformative. 

Overall, these three issues suggest that a statistical solution to the misspecification 

problem, although theoretically possible, is unlikely to be successful.  If a severe test-score 

ceiling is detected, the most reasonable solution is to find a different testing instrument.  The 

results from this analysis can be useful for determining whether a test-score ceiling is sufficiently 

severe such that an alternative test should be considered.   

Despite these practical difficulties, as a thought experiment it may be of interest to 

identify the separate impacts of lost information and model misspecification on value-added 

results.  In Table 10, we briefly evaluate this question at the level of school effects (for our 

baseline sample of fourth-grade students) using a basic tobit model.24  We focus on school 

effects to circumvent the problem that at the teacher level, some teachers teach only students 

with censored scores in the most severe ceiling simulations (where this analysis is most 

interesting).  In all schools, there are at least some students below the cutoff in all of our 

simulations.  In addition, we avoid the added complication of independent-variable data 

                                                       
24 Unlike OLS, heteroskedasticity in the case of tobit implies inconsistency in the coefficient estimates, and there is 
substantial heteroskedasticity here.  There is some argument in the literature as to how important this is as a practical 
matter (see, for example, Arabmazar and Schmidt, 1981; Brown and Moffit, 1983; Hurd, 1979), but in our case a 
tobit that directly models the heteroskedasticity in the data performs worse than a simple tobit.  We can only 
speculate as to the cause in our context - one possibility is that in the heteroskedastic tobit, the large number of 
(sometimes imprecisely) estimated heteroskedasticity parameters upon which the parameter-estimates of interest are 
based may be problematic.   



26 
 

censoring by only censoring current scores (in practice this has a negligible effect on results).  

Although our partial-censoring approach to estimating school effects is not directly comparable 

to the preceding analysis, it provides a straightforward setting in which to evaluate separately the 

information-loss and model-misspecification components of test-score-ceiling effects.  For 

brevity, Table 10 reports only the correlations of school effects across models.  In our school-

effect models we control for the student-level covariates documented in Table 1 (that is, we 

replace the vector of teacher indicator variables with a vector of school indicator variables in the 

basic value-added model). 

  Table 10 shows that the tobit specification improves model performance, and 

substantially so.  For example, even in the minimum-competency-equivalent simulation where a 

significant amount of test-score information is lost, modeling the censored data dramatically 

improves performance.  Although the correlation between the baseline school effects and the 

ceiling-influenced school effects is still far from one in the most severe ceiling simulation, it is 

much improved (going from 0.78 to 0.90).  This exercise suggests that the model-

misspecification problem is an important contributor to the ceiling-effect distortions documented 

in our primary analysis.    

IX. Concluding Remarks 

In the current climate of proficiency-based educational reform, test-score ceilings are 

likely to be increasingly common.  We evaluate the extent to which ceiling effects influence the 

estimation of teacher value-added.  There are two mechanisms by which ceiling effects distort 

value-added results.  First, most straightforwardly, a test-score ceiling represents lost information 

about student learning.  Second, a ceiling generally results in model misspecification.  Although 
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in theory this latter issue can be resolved by properly modeling the censored data, in practice a 

statistical solution to the data censoring problem is unlikely to be feasible. 

Our analysis properly treats the test-score-ceiling problem as a combination of these two 

distortionary influences.   Overall, our findings are generally encouraging – given a wide range 

of test-score ceiling conditions, some of which might be casually identified as severe, value-

added estimates are only negligibly affected.  However, researchers and policymakers should be 

concerned when working in minimum-competency or proficiency-based testing environments.  

We show that ceiling conditions in such environments can significantly alter value-added 

assessments for individual teachers.     
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Figures 
 

Figure 1.  Frequency Distributions of Lagged and Current Math Test Scores from our Data Contrasted with Normal-
Distribution Overlays 
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LEFT:  Kernel-density plot of lagged test score distribution – skewness ≈ 0.25 
RIGHT:  Kernel-density plot of current test score distribution – skewness ≈ 0.17 
In each graph the solid line represents the distribution of actual scores and the dotted line the normal-distribution overlay.  Estimates are calculated using the 
Epanechnikov kernel with a bandwidth equal to 2.5 percent of the range of test scores. 
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Figure 2.  Frequency Distributions of Third and Fourth-Grade Math Scores from the TAAS in 2002 Contrasted With Normal-
Distribution Overlays   
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LEFT:  Kernel-density plot of third-grade test score distribution – skewness ≈ -1.60 
RIGHT:  Kernel-density plot of fourth-grade test score distribution – skewness ≈ -2.08 
In each graph the solid line represents the distribution of actual scores and the dotted line the normal-distribution overlay.  Estimates are calculated using the 
Epanechnikov kernel with a bandwidth equal to 2.5 percent of the range of test scores. 
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Figure 3.  Frequency Distributions of Third, Fourth, Ninth and Tenth-Grade Math Scores 
from the FCAT in 2007 Contrasted With Normal-Distribution Overlays 
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UPPER LEFT:  Kernel-density plot of third-grade test score distribution – skewness ≈ -0.46 
UPPER RIGHT:  Kernel-density plot of fourth-grade test score distribution – skewness ≈ -0.55 
LOWER LEFT:  Kernel-density plot of ninth-grade test score distribution – skewness ≈ -0.94 
LOWER RIGHT:  Kernel-density plot of tenth-grade test score distribution – skewness ≈ -1.99 
In each graph the solid line represents the distribution of actual scores and the dotted line the normal-distribution 
overlay.  Estimates are calculated using the Epanechnikov kernel with a bandwidth equal to 2.5 percent of the range 
of test scores. 
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Tables 
 
 
Table 1.  Controls from Value-Added Models 

 
Student-Level Controls (Xit) 
 

 
School (and Classroom)-Level Controls (Sit) 

English-Learner (EL) Status 
Change from EL to English-Proficient 
Expected and Unexpected School Changer 
Parental Education 
Race 
Gender 
Designated as Advanced Student 
Percentage of School Year Absent* 
 

School Fixed Effects 
Classroom-level Peer Performance in Year (t-1) 
Class Size 
 
Percentage of Student Body: 
by Race 
by English Learner Status 
by Free/Reduced-Price Lunch Status 
by School-Changer Status 
 

*The share of days missed by students is sometimes considered endogenous. Fourth-grade students, however, are 
not likely to have much influence over their attendance decisions. 
 
 
 
 
 
 
Table 2.  Average Within-Teacher Standard Deviations of Students’ Period (t-1) Test 
Scores 
  Within Schools Across District 
 Actual Random 

Assignment 
Perfect 
Sorting 

Random 
Assignment 

Perfect 
Sorting 

      
Standard Deviations of 
Lagged Scores 

 
0.81 

 
0.90 

 
0.32 

 
0.99 

 
<0.01 

Note:  The numbers above report the average standard deviation of test scores within the classroom, for various 
scenarios, each divided by the overall standard deviation of test scores district-wide.  In the “Perfect Sorting” 
columns students are sorted by period (t-1) test-score levels in math, first within school and in the final column 
across the district.  For the randomized assignments, students are assigned to teachers based on randomly generated 
numbers from a uniform distribution.  In the second column of numbers, students are not re-assigned across schools; 
in the fourth column, students are re-assigned across schools.  The random assignments are repeated 25 times and 
estimates are averaged across all random assignments and all teachers.  The estimates from the simulated random 
assignments are very stable across simulations.  
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Table 3.  Test-Score-Ceiling Effects on Value-Added Results: Basic Specification 
         
 (1)* (2) 

 
(3) (4) (5) (6) (7) (8) 

Percentile of Fourth-Grade Test-Score 
Distribution Where Ceiling is Set 
 

99.96 
 

97 95 90 85 75 50 33 

Skewness of Period-t Score 
Distribution 
 

0.17 
 

-0.02 -0.07 -0.25 -0.37 -0.64 -1.31 -2.00 

Skewness of Period-(t-1) Score 
Distribution 
 

0.25 
 

0.11 0.07 -0.05 -0.13 -0.32 -0.83 -1.32 

Correlation Between Ceiling-Restricted 
Value-Added Estimates and Baseline 
 

- 
 

0.99 0.99 0.98 0.97 0.94 0.85 0.77 

Estimation-error share of variance of 
teacher fixed effects 
 

0.11 
 

0.11 0.11 0.11 0.12 0.13 0.17 0.24 

Unadjusted Effect Size of Teacher 
Quality  
 

0.26 
 

0.25 0.25 0.25 0.25 0.25 0.26 0.26 

Adjusted Effect Size of Teacher 
Quality  

0.24 
 

0.24 0.24 0.24 0.24 0.24 0.23 0.23 

* Column (1) shows results from the no-ceiling baseline.  Of course, a ceiling is not “set” here – 0.04 percent of the student population attains the maximum 
possible score.  The last two rows show the unadjusted and adjusted estimates of the number of standard deviations by which student achievement is predicted to 
change after a one standard deviation  increase in teacher quality. 
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Table 4.  Test-Score-Ceiling Effects on Value-Added Results: Within-Schools Specification 
         
 (1)* 

 
(2) (3) (4) (5) (6) (7) (8) 

Percentile of Fourth-Grade Test-Score 
Distribution Where Ceiling is Set 
 

99.96 
 

97 95 90 85 75 50 33 

Skewness of Period-t Score 
Distribution 
 

0.17 
 

-0.02 -0.07 -0.25 -0.37 -0.64 -1.31 -2.00 

Skewness of Period-(t-1) Score 
Distribution 
 

0.25 
 

0.11 0.07 -0.05 -0.13 -0.32 -0.83 -1.32 

Correlation Between Ceiling-Restricted 
Value-Added Estimates and Baseline 
 

- 0.99 0.99 0.97 0.96 0.93 0.84 0.73 

Estimation-error share of variance of 
teacher fixed effects 
 

0.24 0.24 0.24 0.25 0.26 0.28 0.35 0.44 

Unadjusted Effect Size of Teacher 
Quality  
 

0.28 0.27 0.27 0.27 0.27 0.27 0.29 0.30 

Adjusted Effect Size of Teacher 
Quality  

0.24 0.24 0.24 0.24 0.23 0.23 0.23 0.22 

* Column (1) shows results from the no-ceiling baseline.  Of course, a ceiling is not “set” here – 0.04 percent of the student population attains the maximum 
possible score.  The last two rows show the unadjusted and adjusted estimates of the number of standard deviations by which student achievement is predicted to 
change after a one standard deviation  increase in teacher quality. 
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Table 5.  Test-Score-Ceiling Effects on Value-Added Results:  Within-Students Specification 
         
 (1)* (2) (3) 

 
(4) (5) (6) (7) (8) 

Percentile of Fourth-Grade Test-Score 
Distribution Where Ceiling is Set 
 

99.96 
 

97 95 90 85 75 50 33 

Skewness of Period-t Score 
Distribution 
 

0.17 
 

-0.10 -0.16 -0.36 -0.49 -0.79 -1.58 -2.39 

Skewness of Period-(t-1) Score 
Distribution 
 

0.25 
 

0.07 0.02 -0.13 -0.22 -0.43 -1.03 -1.62 

Skewness of Period-(t-2) Score 
Distribution 
 

0.15 
 

0.12 0.11 0.07 0.04 -0.04 -0.32 -0.63 

Correlation Between Ceiling-Restricted 
Value-Added Estimates and Baseline 
 

- 0.99 0.99 0.97 0.96 0.92 0.80 0.72 

Estimation-error share of variance of 
teacher fixed effects 
 

0.33 0.33 0.33 0.34 0.34 0.37 0.45 0.51 

Unadjusted Effect Size of Teacher 
Quality  
 

0.29 0.29 0.29 0.29 0.29 0.30 0.32 0.35 

Adjusted Effect Size of Teacher 
Quality  

0.23 0.24 0.24 0.24 0.24 0.24 0.24 0.25 

* Column (1) shows results from the no-ceiling baseline.  Of course, a ceiling is not “set” here – 0.04 percent of the student population attains the maximum 
possible score.  The last two rows show the unadjusted and adjusted estimates of the number of standard deviations by which student achievement is predicted to 
change after a one standard deviation  increase in teacher quality. 
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Table 6.  Effects of Differences in Skewness across Grades on Value-Added Estimates from Each Model, Based on our Most 
Severe Ceiling Simulation 

 Basic Model  Within-Schools Model  Within-Students Model** 
 (1) (2) (3) (4)* 

 
 (1) (2) (3) (4)*  (1) (2) (3) (4)* 

Share of Fourth-Grade Students at Highest 
Score (%) 
 

67 67 67 67  67 67 67 67  67 67 67 67 

Share of Lagged Scores at Highest Score 
(%) 
 

67 60 50 47  67 60 50 47  67 60 50 47 

Share of Second-Lagged Scores at Highest 
Score (%) 
 

N/A N/A N/A N/A  N/A N/A N/A N/A 
 

 67 60 50 25 

Skewness of Period-t Score Distribution -2.00 -2.00 -2.00 -2.00 
 

 -2.00 -2.00 -2.00 -2.00  -2.39 -2.39 -2.39 -2.39 

Skewness of Period-(t-1) Score 
Distribution 
 

-2.21 -1.84 -1.45 -1.32  -2.21 -1.84 -1.45 -1.32  -2.77 -2.27 -1.78 -1.62 

Skewness of Period-(t-2) Score 
Distribution 
 

N/A N/A N/A N/A  N/A N/A N/A N/A  -2.17 -1.79 -1.48 -0.63 

Correlation Between Ceiling-Restricted 
Value-Added Estimates and No-Ceiling 
Baseline 
 

0.79 0.79 0.78 0.77  0.73 0.73 0.73 0.73  0.72 0.69 0.70 0.72 

Estimation-error share of variance of 
teacher fixed effects 
 

0.19 0.21 0.23 0.24  0.45 0.44 0.44 0.44  0.54 0.51 0.48 0.51 

Unadjusted Effect Size of Teacher Quality  
 

0.26 0.26 0.26 0.26  0.30 0.30 0.30 0.30  0.36 0.36 0.36 0.35 

Adjusted Effect Size of Teacher Quality  0.24 0.23 0.23 0.23  0.22 0.22 0.22 0.22  0.24 0.25 0.26 0.25 
* The fourth column for the basic, within-schools, and within-students models shows the results from the eighth column of Tables 3, 4 and 5, respectively, for 
comparison.  That is, 47 percent of third grade students attain the score at the 33rd percentile of the fourth-grade test-score distribution.   
**  In the within-students panel, the ceilings in the fourth-grade and lagged-score distributions are designed based on the full student sample to make the ceilings 
as directly comparable as possible across models (i.e., to replicate as closely as possible the effect of a true ceiling).  Note that a higher share of the restricted 
within-students sample will score at the maximum in each grade level (see Section III for discussion).  Only the ceilings in the second-lagged-score distributions 
are based on the restricted within-students sample.  This causes slightly less skewness in the period-(t-2) distribution of scores in columns (1), (2) and (3) of the 
within-students panel relative to the lagged-score distribution.   
***  The last two rows show the unadjusted and adjusted estimates of the number of standard deviations by which student achievement is predicted to change 
after a one standard deviation  increase in teacher quality. 
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Table 7.  Transition Matrices Documenting the Stability of Teachers’ Value-Added Rankings, 
by Quintile, Before and After the Minimum-Competency-Equivalent Ceiling is Imposed. 
 
Basic Model 
   

Ceiling-Affected Quintile Assignments 
 

 
Baseline 
Quintile 

Assignments 

 1 2 3 4 5 (best) 
 

1 76 17 6 1 0 
2 22 43 25 10 0 
3 2 33 34 23 8 
4 0 7 20 36 38 

5 (best) 0 2 14 30 54 
Notes: Cells report percentage of teachers in each quintile set. 
 
 
Within-Schools Model 
   

Ceiling-Affected Quintile Assignments 
 

 
Baseline 
Quintile 

Assignments 

 1 2 3 4 5 (best) 
 

1 71 17 8 3 0 
2 24 39 24 11 3 
3 4 29 33 21 13 
4 1 13 19 39 28 

5 (best) 0 2 16 26 56 
Notes: Cells report percentage of teachers in each quintile set. 
 
 
Within-Students Model 
   

Ceiling-Affected Quintile Assignments 
 

 
Baseline 
Quintile 

Assignments 

 1 2 3 4 5 (best) 
 

1 58 24 13 4 1 
2 35 35 23 6 1 
3 5 21 31 28 15 
4 3 12 17 37 32 

5 (best) 0 9 17 25 49 
Notes: Cells report percentage of teachers in each quintile set. 
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Table 8.  Soft-Ceiling Simulations Designed to Mimic Hard Ceilings at the 75th, 50th and 33rd Percentiles of the Distribution of 
Fourth-Grade Test Scores. 

  
Soft-Ceiling 1 

 

 
Soft-Ceiling 2 

 

 
Soft-Ceiling 3 

 
Description: Mimics the hard ceiling set at 

the 75th percentile of the fourth-
grade test-score distribution 

Mimics the hard ceiling set at 
the 50th percentile of the fourth-
grade test-score distribution 

Mimics the hard ceiling set at 
the 33rd percentile of the fourth-
grade test-score distribution 

    
X1: 1 1 1 
X2: 1 1 0.60 
X3: 1 0.90 0.40 
X4: 1 0.70 0.20 
X5: 0.90 0.30 0.10 
X6: 0.70 0.10 0.10 
X7: 0.50 0.10 0 
X8: 0.30 0 0 
X9: 0.10 0 0 
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Table 9.  Soft Ceiling Results. 
  

Basic Model 
  

Within-Schools Model 
  

Within-Students Model 
            

Soft Ceiling Number  
(from Table B.1) 
 

(1) (2) (3)  (1) (2) (3)  (1) (2) (3) 
 

Comparable to hard ceiling 
imposed at 

75th 
Percentile 

50th 
Percentile 

33rd 
Percentile 

 

 75th 
Percentile 

50th 
Percentile 

33rd 
Percentile 

 75th 
Percentile 

50th 
Percentile 

33rd 
Percentile 

Share of Fourth-Grade Students at 
Highest Score (%) 
 

0.04 22.40 30.10  0.04 22.40 30.10  0.04 22.40 30.10 

Skewness of Period-t Score 
Distribution 
 

-0.62 -1.30 -1.96  -0.62 -1.30 -1.96  -0.77 -1.55 -2.30 

Skewness of Period-(t-1) Score 
Distribution 
 

-0.34 -0.84 -1.35  -0.34 -0.84 -1.35  -0.45 -1.04 -1.64 

Skewness of Period-(t-2) Score 
Distribution 
 

N/A N/A N/A  N/A N/A N/A  -0.07 -0.35 -0.26 

Correlation Between Ceiling-
Restricted Value-Added Estimates 
and Baseline 
 

0.96 0.88 0.82  0.95 0.86 0.77  0.94 0.84 0.74 

Estimation-error share of variance 
of teacher fixed effects 
 

0.12 0.16 0.20  0.27 0.34 0.40  0.36 0.43 0.46 

Unadjusted Effect Size of Teacher 
Quality 
 

0.25 0.26 0.26  0.28 0.28 
 

0.30  0.30 0.32 0.35 

Adjusted Effect Size of Teacher 
Quality  

0.24 0.23 0.23  0.24 0.24 
 

0.23  0.24 0.24 0.26 
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Table 10.  Test-Score-Ceiling Effects on Value-Added Results for School-Level Effects (N=116) – Tobit Versus OLS 
         
 (1)* (2) 

 
(3) (4) (5) (6) (7) (8) 

Percentile of Fourth-Grade Test-Score 
Distribution Where Ceiling is Set 
 

99.96 
 

97 95 90 85 75 50 33 

Skewness of Period-t Score 
Distribution 
 

0.17 
 

-0.02 -0.07 -0.25 -0.37 -0.64 -1.31 -2.00 

Skewness of Period-(t-1) Score 
Distribution (not censored) 
 

0.25 
 

0.25 
 

0.25 
 

0.25 
 

0.25 
 

0.25 
 

0.25 
 

0.25 
 

Correlation Between Ceiling-Restricted 
Value-Added Estimates estimated by 
OLS and Baseline  
 

- 
 

1.00 1.00 0.99 0.98 0.95 0.86 0.78 

Correlation Between Ceiling-Restricted 
Value-Added Estimates estimated by 
Tobit and Baseline  
 

- 
 

1.00 1.00 1.00 0.99 0.99 0.95 0.90 

* Again, column (1) shows results from the no-ceiling baseline.   
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