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1 Introduction

Regression Discontinuity (RD) designs were first introdubg Thistlethwaite and Campbell (1960) as a
way of estimating treatment effects in a non-experimergtirg) where treatment is determined by whether
an observed “assignment” variable (also referred to initkeakure as the “forcing” variable or the “run-
ning” variable) exceeds a known cutoff point. In their iaitapplication of RD designs, Thistlethwaite and
Campbell (1960) analyzed the impact of merit awards on éuiwademic outcomes, using the fact that the
allocation of these awards was based on an observed test Sdwe main idea behind the research design
was that individuals with scores just below the cutoff (wh dot receive the award) were good compar-
isons to those just above the cutoff (who did receive the dwathough this evaluation strategy has been
around for almost fifty years, it did not attract much attemtin economics until relatively recently.

Since the late 1990s, a growing number of studies have retidRD designs to estimate program effects
in a wide variety of economic contexts. Like Thistlethwadted Campbell (1960), early studies by Van der
Klaauw (2002) and Angrist and Lavy (1999) exploited thrédhales often used by educational institutions
to estimate the effect of financial aid and class size, résed¢ on educational outcomes. Black (1999)
exploited the presence of discontinuities at the geogecapével (school district boundaries) to estimate
the willingness to pay for good schools. Following thesdygaapers in the area of education, the past five
years have seen a rapidly growing literature using RD dedigrexamine a range of questions. Examples
include: the labor supply effect of welfare, unemploymestirance, and disability programs; the effects of
Medicaid on health outcomes; the effect of remedial edangtrograms on educational achievement; the
empirical relevance of median voter models; and the effefctmionization on wages and employment.

One important impetus behind this recent flurry of reseasch fecognition, formalized by Hahn et
al. (2001), that RD designs require seemingly mild asswnptcompared to those needed for other non-
experimental approaches. Another reason for the recersg niakesearch is the belief that the RD design
is not “just another” evaluation strategy, and that causirences from RD designs are potentially more
credible than those from typical “natural experiment” tgges (e.g. difference-in-differences or instru-
mental variables), which have been heavily employed iniagplesearch in recent decades. This notion
has a theoretical justification: Lee (2008) formally sholhat tone need nassumeahe RD design isolates
treatment variation that is “as good as randomized”; irsteach randomized variation iscansequencef

agents’ inability to precisely control the assignment able near the known cutoff.



So while the RD approach was initially thought to be “just thieo” program evaluation method with
relatively little general applicability outside of a fewesific problems, recent work in economics has shown
quite the opposité. In addition to providing a highly credible and transparefiyvof estimating program
effects, RD designs can be used in a wide variety of contexisrog a large number of important economic
guestions. These two facts likely explain why the RD appndagapidly becoming a major element in the
toolkit of empirical economists.

Despite the growing importance of RD designs in economiesggetis no single comprehensive summary
of what is understood about RD designs — when they succeeat thiey fail, and their strengths and weak-
nesses. Furthermore, the “nuts and bolts” of implementing RD designpractice are not (yet) covered in
standard econometrics texts, making it difficult for resbars interested in applying the approach to do so.
Broadly speaking, the main goal of this paper is to fill theapsggby providing an up-to-date overview of
RD designs in economics and creating a guide for researatterssted in applying the method.

Areading of the most recent research reveals a certain ddtgllowisdom” regarding the applicability,
interpretation, and recommendations of practically impmating RD designs. This article represents our
attempt at summarizing what we believe to be the most impbpiaces of this wisdom, while also dispelling
misconceptions that could potentially (and understangdabise for those new to the RD approach.

We will now briefly summarize the most important points abRit designs to set the stage for the rest
of the paper where we systematically discuss identificatrderpretation, and estimation issues. Here, and
throughout the paper, we refer to the assignment variable dseatment is, thus, assigned to individuals

(or “units”) with a value ofX greater than or equal to a cutoff valoe

e RD designs can be invalid if individuals can precisely maniplate the “assignment variable”.
When there is a payoff or benefit to receiving a treatmens iitatural for an economist to consider
how an individual may behave to obtain such benefits. For pignif students could effectively
“choose” their test scor¥ through effort, those who chose a scaréand hence received the merit
award) could be somewhat different from those who choseesqast belowc. The important lesson
here is that the existence of a treatment being a discontsm@unction of an assignment variable is

not sufficient to justify the validity of an RD design. Indeed aifiything, discontinuous rules may

1See Cook (2008) for an interesting history of the RD desiggtincation research, psychology, statistics, and ecosor@izmok
argues the resurgence of the RD design in economics is ungjités still rarely used in other disciplines.

2See, however, two recent overview papers by Van der Klaa®d8gt®) and Imbens and Lemieux (2008) that have begun
bridging this gap.



generate incentives, causing behavior that wauldlidatethe RD approach.

¢ If individuals — even while having some influence — are unablé precisely manipulate the as-
signment variable,a consequence of this is that the variation in treatment near the threshold is
randomized as though from a randomized experiment.
This is a crucial feature of the RD design, since it is theaad?D designs are often so compelling.
Intuitively, when individuals have imprecise control otbe assignment variable, even if some are
especially likely to have values & nearthe cutoff, everyindividual will have approximately the
same probability of having aX that is just above (receiving the treatment) or just belogir(ly de-
nied the treatment) the cutoff — similar to a coin-flip expent. This result clearly differentiates the
RD and IV approaches. When using IV for causal inference,moustassumehe instrument is ex-
ogenously generated as if by a coin-flip. Such an assumgiofian difficult to justify (except when
an actual lottery was run, as in Angrist (1990), or if thereav®ome biological process, e.g. gender
determination of a baby, mimicking a coin-flip). By contratbte variation that RD designs isolate
is randomizedas a consequenaaf the assumption that individuals have imprecise contvelr dhe

assignment variable.

¢ RD designs can be analyzed — and tested — like randomized exjmeents.
This is the key implication of the local randomization résuf variation in the treatment near the
threshold is approximately randomized, then it followst thid“baseline characteristics” — all those
variables determined prior to the realization of the assigmt variable — should have the same distri-
bution just above and just below the cutoff. If there is a oigmuity in these baseline covariates, then
at a minimum, the underlying identifying assumption of iniduals’ inability to precisely manipulate
the assignment variable is unwarranted. Thus, the basatveriates are used testthe validity of
the RD design. By contrast, when employing an IV or a matdhéggession-control strategy, as-
sumptions typically need to be made about the relationshipese other covariates to the treatment

and outcome variablées.

e Graphical presentation of an RD design is helpful and informative, but the visual presentation

should not be tilted toward either finding an effect or finding no effect.

3Typically, one assumes thabnditional on the covariateshe treatment (or instrument) is essentially “as good astiomly
assigned.



It has become standard to summarize RD analyses with a signafgh showing the relationship
between the outcome and assignment variables. This hasakadvantages. The presentation of
the “raw data” enhances the transparency of the researogindes graph can also give the reader
a sense of whether the “jump” in the outcome variable at theficis unusually large compared to
the bumps in the regression curve away from the cutoff. Adsgraphical analysis can help identify
why different functional forms give different answers, arah help identify outliers, which can be a
problem in any empirical analysis. The problem with graphfiresentations, however, is that there
is some room for the researcher to construct graphs maksegin as though there are effects when
there are none, or hiding effects that truly exist. We suglgésr in the paper a number of methods to

minimize such biases in presentation.

e Non-parametric estimation does not represent a “solution’to functional form issues raised by
RD designs. It is therefore helpful to view it as a complemento — rather than a substitute for —
parametric estimation.

When the analyst chooses a parametric functional form éslayy-order polynomial) that is incorrect,
the resulting estimator will, in general, be biased. Whenahalyst uses a non-parametric procedure
such as local linear regression — essentially running assgrn using only data points “close” to
the cutoff — there will also be bidsWith a finite sample, it is impossible to know which case has a
smaller bias without knowing something about the true fiamctThere will be some functions where
a low-order polynomial is a very good approximation and picas little or no bias, and therefore
it is efficient to use all data points — both “close to” and “&away” from the threshold. In other
situations, a polynomial may be a bad approximation, andlentdases will occur with a local linear
regression. In practice, parametric and non-parametgooaghes lead to the computation of the exact
same statisti€.For example, the procedure of regressing the outcémeX and a treatment dummy

D can be viewed as a parametric regression (as discussed) atnoze a local linear regression with a
very large bandwidth. Similarly, if one wanted to exclude ihifluence of data points in the tails of the

X distribution, one could call the exact same procedure ‘fpatdc” after trimming the tails, or “non-

4Unless the underlying function is exactly linear in the d@reing examined.

5See Section 1.2 of Powell (1994), where it is argued thatiisdse helpful to viewmodelsrather than particular statistics as
“parametric” or “nonparametric”. It is shown there how tlzerse least squares estimator can simultaneously viewedw®as to
parametric, semi-parametric, and nonparametric problems



parametric” by viewing the restriction in the rangeXfas a result of using a smaller bandwith.
Our main suggestion in estimation is to not rely on one paldicmethod or specification. In any
empirical analysis, results that are stable across atieenand equally plausible specifications are
generally viewed as more reliable than those that are sengitminor changes in specification. RD

is no exception in this regard.

e Goodness-of-fit and other statistical tests can help rule dwverly restrictive specifications.

Often the consequence of trying many different specifiogtis that it may result in a wide range of
estimates. Although there is no simple formula that workalirsituations and contexts for weed-
ing out inappropriate specifications, it seems reasonabla, minimum, not to rely on an estimate
resulting from a specification that can be rejected by tha déien tested against a strictly more flex-
ible specification. For example, it seems wise to place lesfidence in results from a low-order
polynomial model, when it is rejected in favor of a less lietre model (e.g., separate means for
each discrete value of). Similarly, there seems little reason to prefer a spedcifioathat uses all
the data, if using the same specification but restrictingogeovations closer to the threshold gives a

substantially (and statistically) different answer.

Although we (and the applied literature) sometimes refénéoRD “method” or “approach”, the RD design
should perhaps be viewed as more afescriptionof a particular data generating process. All other things
(topic, question, and population of interest) equal, weesearchers might prefer data from a randomized
experiment or from an RD design. But in reality, like the ramized experiment — which is also more
appropriately viewed as a particular data generating psya@ather than a “method” of analysis — an RD
design will simply not exist to answer a great number of goast That said, as we show below, there has
been an explosion of discoveries of RD designs that coveda v@nge of interesting economic topics and
guestions.

The rest of the paper is organized as follows. In Section 2jis@uss the origins of the RD design and
show how it has recently been formalized in economics udiegpbtential outcome framework. We also

introduce an important theme that we stress throughoutaperpnamely that RD designs are particularly

6The main difference, then, between a parametric and naampetric approach is not in the actual estimation, but raither
the discussion of the asymptotic behavior of the estimat@aanple sizes tend to infinity. For example, standard noanpetric
asymptotics considers what would happen if the bandwhdtithe width of the “window” of observations used for the resgien
— were allowed to shrink as the number of observatidrisnded to infinity. It turns out that i — 0 andNh — c asN — o, the
bias will tend to zero. By contrast, with a parametric apppavhen one is not allowed to make the model more flexible midhe
data points, the bias would generally remain — even withitefisamples.



compelling because they are close cousins of randomizeeriexgnts. This theme is more formally ex-
plored in Section 3 where we discuss the conditions undecwRD designs are “as good as a randomized
experiment”, how RD estimates should be interpreted, andthey compare with other commonly used
approaches in the program evaluation literature. Sectigoe$ through the main “nuts and bolts” involved
in implementing RD designs and provides a “guide to pratticeresearchers interested in using the de-
sign. A summary “checklist” highlighting our key recommatidns is provided at the end of this section.
Implementation issues in several specific situations (eisassignment variable, panel data, etc.) are cov-
ered in Section 5. Based on a survey of the recent literaBeetion 6 shows that RD designs have turned
out to be much more broadly applicable in economics than wgsally thought. We conclude in Section

7 by discussing recent progress and future prospects ig asid interpreting RD designs in economics.

2 Origins and Background

In this section, we set the stage for the rest of the paper sgudsing the origins and the basic structure
of the RD design, beginning with the classic work of Thistledite and Campbell (1960), and moving to
the recent interpretation of the design using modern tobfg@gram evaluation in economics (potential
outcomes framework). One of the main virtues of the RD apgraa that it can be naturally presented
using simple graphs, which greatly enhances its creditalitd transparency. In light of this, the majority
of concepts introduced in this section are representedajphgecal terms to help capture the intuition behind

the RD design.

2.1 Origins

The RD design was first introduced by Thistlethwaite and Qaet§1960) in their study of the impact of
merit awards on the future academic outcomes (career @spsaenrollment in post-graduate programs,
etc.) of students. Their study exploited the fact that tteegards were allocated on the basis of an observed
test score. Students with test sco¥eggreater than or equal to a cutoff valoereceived the award, while
those with scores below the cutoff were denied the award.s §hnerated a sharp discontinuity in the
“treatment” (receiving the award) as a function of the testrs. Let the receipt of treatment be denoted by
the dummy variabl® € {0,1}, so that we hav® = 1if X > c,andD =0if X < c.

At the same time, there appears to be no reason, other thanethieaward, for future academic out-



comes,Y, to be a discontinuous function of the test score. This m@asoning suggests attributing the
discontinuous jump irY at c to the causal effect of the merit award. Assuming that thatimiship be-
tweenY andX is otherwise linear, a simple way of estimating the treatnediect 1 is by fitting the linear
regression

Y=a+Dr+XB+¢ (1)

whereeg is the usual error term that can be viewed as a purely randmnggnerating variation in the value
of Y around the regression lire+ D1 + X. This case is depicted in Figure 1, which shows both the true
underlying function and numerous realizationsof

Thistlethwaite and Campbell (1960) provided some graptaition for why the coefficientr could
be viewed as an estimate of the causal effect of the award llfg&rate their basic argument in Figure 1.
Consider an individual whose scaxeis exactlyc. To get the causal effect for a person scoringve need
guesses for what hat would be with and without receiving the treatment.

Ifitis “reasonable” to assume that all factors (other tHaaward) are evolving “smoothly” with respect
to X, thenB’ would be a reasonable guess for the valu¥ of an individual scoring: (and hence receiving
the treatment). Similarlyy” would be a reasonable guess for that same individual in thetedactual state
of not having received the treatment. It follows tiBat- A” would be the causal estimate. This illustrates
the intuition that the RD estimates should use observatidonse” to the cutoff (e.g. in this case, at points
¢ andc”).

There is, however, a limitation to the intuition that “th@sér toc you examine, the better”. In practice,
onecannot“only” use data close to the cutoff. The narrower the areaithaxamined, the less data there
are. In this example, examining data any closer ttfaandc” will yield no observations at all! Thus, in
order to produce a reasonable guess for the treated an@igatrgtates a = ¢ with finite data, one has no
choice but to use datawayfrom the discontinuity. Indeed, if the underlying function is truly linear, we
know that the best linear unbiased estimator @ the coefficient oD from OLS estimation (using all of
the observations) of Equation (1).

This simple heuristic presentation illustrates two impnottfeatures of the RD design. First, in order

for this approach to work, “all other factors” determinifgmust be evolving “smoothly” with respect to

TInterestingly, the very first application of the RD design Hyistlethwaite and Campbell (1960) was based on discrete da
(interval data for test scores). As aresult, their papargigoints out that the RD design is fundamentally basechaxérapolation
approach.



X. If the other variables also jump atthen the gag will potentially be biased for the treatment effect of
interest. Second, since an RD estimate requires data amaytfre cutoff, the estimate will be dependent
on the chosen functional form. In this example, if the sl@peere (erroneously) restricted to equal zero, it

is clear the resulting OLS coefficient @would be a biased estimate of the true discontinuity gap.

2.2 RD Designs and the Potential Outcomes Framework

While the RD design was being imported into applied econawsearch by studies such as Van der Klaauw
(2002), Black (1999), and Angrist and Lavy (1999), the idferattion issues discussed above were for-
malized in the theoretical work of Hahn et al. (2001), whoatié®d the RD evaluation strategy using the
language of the treatment effects literature. Hahn et @012noted the key assumption of a valid RD design
was that “all other factors” were “continuous” with resp&zX, and suggested a non-parametric procedure
for estimatingr that did not assume underlying linearity, as we have in tinpk example above.

The necessity of the continuity assumption is seen moredltyrmsing the “potential outcomes frame-
work” of the treatment effects literature, with the aid of gh. It is typically imagined that for each
individual i, there exists a pair of “potential” outcomes(1) for what would occur if the unit were exposed
to the treatment ang(0) if not exposed. The causal effect of the treatment is reptedeby the difference
Yi(1) —Yi(0). The fundamental problem of causal inference is that we ataobserve the paiY;(0) and
Yi(1) simultaneously. We therefore typically focus on averadects of the treatment, that is, averages of
Yi(1) —Y;(0) over (sub-)populations, rather than on unit-level effects

In the RD setting, we can imagine there are two underlyingti@iships between average outcomes
andX, represented b [Y; (1) | X] andE[Y; (0) |X], as in Figure 2. But by definition of the RD design, all
individuals to the right of the cutoffc(= 2 in this example) are exposed to treatment, and all thodeeto t
left are denied treatment. Therefore, we only obsé&é (1) |X] to the right of the cutoff andE [Y; (0) | X]
to the left of the cutoff, as indicated in the figure.

It is easy to see that with what is observable, we could trstomate the quantity
B—A=ImE[Yi|Xi =c+¢|-lmEY|X; =c+¢],
€l0 €10

which would equal

ELY (1)~ Y (0)[X = d].



This is the “average treatment effect” at the cutoff

This inference is possible because of the continuity of tiieedying functions€ [Y; (1) | X] andE[Y; (0) |X].2
In essence, this continuity condition enables us to usewige outcome of those right below the cutoff
(who are denied the treatment) as a valid counterfactuahfmse right above the cutoff (who received the
treatment).

Although the potential outcome framework is very useful dfoderstanding how RD designs work in
a framework applied economists are used to dealing withsd mtroduces some difficulties in terms of
interpretation. First, while the continuity assumptiomusds generally plausible, it is not completely clear
what it means from an economic point of view. The problem & @ince continuity is not required in
the more traditional applications used in economics (e.gtching on observables), it is not obvious what
assumptions about the behavior of economic agents areeddoi get continuity.

Second, RD designs are a fairly peculiar application of &&®n on observables” model. Indeed, the
view in Heckman et al. (1999) was that “[r]egression distarity estimators constitute a special case of
selection on observables,” and that the RD estimator igfi& form of matching at one point.” In general,
we need two crucial conditions for a matching/selection bseovables approach to work. First, treatment
must be randomly assigned conditional on observableddtimaability or unconfoundednessssumption).

In practice, this is typically viewed as a strong, and notipalarly credible, assumption. For instance, in
a standard regression framework this amounts to assumat@lirrelevant factors are controlled for, and
that no omitted variables are correlated with the treatrdentmy. In an RD design, however, this crucial
assumption is trivially satisfied. Whefi> c, the treatment dummp is always equal to 1. WheX < c, D

is always equal to 0. Conditional of, there is no variation left i, so it cannot, therefore, be correlated
with any other facto?.

At the same time, the other standard assumptiooveflapis violated since, strictly speaking, it is not
possible to observe units with eithBr= 0 or D = 1 for a given value of the assignment variale This
is the reason the continuity assumption is required - to eoregte for the failure of the overlap condition.

So while we cannot observe treatment and non-treatmenhéosame value of, we can observe the two

8The continuity of both functions is not the minimum that isjued, as pointed out in Hahn et al. (2001). For example,
identification is still possible even if onl [Y; (0) |X] is continuous, and only continuous @t Nevertheless, it may seem more
natural to assume that the conditional expectations aréncmus for all values oK, since cases where continuity holds at the
cutoff point but not at other values &fseem peculiar.

9n technical terms, the treatment dummyfollows a degenerate (concentratedDat 0 or D = 1), but nonetheless random
distribution conditional orX. Ignorability is thus trivially satisfied.



outcomes for values of around the cutoff point that are arbitrarily close to eadteot

2.3 RD design as a Local Randomized Experiment

When looking at RD designs in this way, one could get the isgion that they require some assumptions
to be satisfied, while other methods such as matching onwdisies and IV methods simply require other
assumptiond® From this point of view, it would seem that the assumptionstiie RD design are just
as arbitrary as those used for other methods. As we disupssgtiout the paper, however, we do not
believe this way of looking at RD designs does justice tortimgportant advantages over most other existing
methods. This point becomes much clearer once we compar@Dhdesign to the “gold standard” of
program evaluation methods, randomized experiments. Welhaw that the RD design is a much closer
cousin of randomized experiment than other competing nastho

In a randomized experiment, units are typically dividea itteatment and control groups on the basis
of a randomly generated number, For example, ifv follows a uniform distribution over the rang®, 4],
units withv > 2 are given the treatment while units with< 2 are denied treatment. So the randomized
experiment can be thought of as an RD design where the assignrariable isX = v and the cutoff is
c = 2. Figure 3 shows this special case in the potential outcdragsework, just as in the more general RD
design case of Figure 2. The difference is that because signasent variabl& is now completely random,
it is independent of the potential outcomé$0) andY; (1), and the curve& [Y; (1) |X] andEY; (0) |X] are
flat. Since the curves are flat, it trivially follows that thage also continuous at the cutoff poit=c. In
other words, continuity is a direct consequence of randatiaa.

The fact that the curves[Y; (1) |X] andE[Y; (0) |X] are flat in a randomized experiment implies that, as
is well known, the average treatment effect can be compgleadifference in the mean valueXobn the
right and left hand side of the cutoff. One could also use aragroach by running regressionsyobn X,
but this would be less efficient since we know that if randation were successful, thefis an irrelevant
variable in this regression.

But now imagine that, for ethical reasons, people are cosgied for having received a “bad draw”
by getting a monetary compensation inversely proportiaaghe random numbeX. For example, the

treatment could be job search assistance for the unempleyetithe outcome whether one found a job

10For instance, in the survey of Angrist and Krueger (1999),iREiewed as an IV estimator, thus having essentially theesam
potential drawbacks and pitfalls.
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within a month of receiving the treatment. If people with egk&r monetary compensation can afford to take
more time looking for a job, the potential outcome curved mal longer be flat and will slope upward. The
reason is that having a higher random number, i.e. a loweetaoncompensation, increases the probability
of finding a job. So in this “smoothly contaminated” randoetzexperiment, the potential outcome curves
will instead look like the classical RD design case depidateigure 2.

Unlike a classical randomized experiment, in this contateid experiment a simple comparison of
means no longer yields a consistent estimate of the treateffet. By focusing right around the threshold,
however, an RD approach would still yield a consistent estiinof the treatment effect associated with
job search assistance. The reason is that since peoplebjugt ar below the cutoff receive (essentially)
the same monetary compensation, we still have locally aamimed experiment around the cutoff point.
Furthermore, as in a randomized experiment, it is possibles$t whether randomization “worked” by
comparing the local values of baseline covariates on thestdes of the cutoff value.

Of course, this particular example is highly artificial. &rwe know the monetary compensation is
a continuous function oX, we also know the continuity assumption required for the Rineates of the
treatment effect to be consistent is also satisfied. The fitaporesult, due to Lee (2008), that we will
show in the next section is that the conditions under whicHoselly have a randomized experiment (and
continuity) right around the cutoff point are remarkablyake Furthermore, in addition to being weak,
the conditions for local randomization are testable in thme way global randomization is testable in a
randomized experiment by looking at whether baseline ¢atesr are balanced. It is in this sense that the
RD design is more closely related to randomized experiméais to other popular program evaluation

methods such as matching on observables, differencdfarahces, and IV.

3 Identification and Interpretation

This section discusses a number of issues of identificatidnrderpretation that arise when considering an
RD design. Specifically, the applied researcher may bedsted in knowing the answers to the following

guestions:

1. How do | know whether an RD design is appropriate for my ext®t When are the identification

assumptions plausible or implausible?
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2. Is there any way | can test those assumptions?
3. To what extent are results from RD designs generalizable?

On the surface, the answers to these questions seem gaigird: 1) “An RD design will be appropriate
if it is plausible that all other unobservable factors arertnuously” related to the assignment variable,”
2) “No, the continuity assumption is necessary, so therenareests for the validity of the design,” and
3) “The RD estimate of the treatment effect is only applieatd the sub-population of individuals at the
discontinuity threshold, and uninformative about the @femywhere else.” These answers suggest that the
RD design is no more compelling than, say, an instrumentaalvi@s approach, for which the analogous
answers would be 1) “The instrument must be uncorrelatell thvé error in the outcome equation,” 2) “The
identification assumption is ultimately untestable,” andThe estimated treatment effect is applicable to
the sub-population whose treatment was affected by theumsint.” After all, who's to say whether one
untestable design is more “compelling” or “credible” tharother untestable design? And it would seem
that having a treatment effect for a vanishingly small saptpation (those at the threshold, in the limit) is
hardly more (and probably much less) useful than that forpaujation “affected by the instrument.”

As we describe below, however, a closer examination of thedBf)gn reveals quite different answers

to the above three questions:

1. “When there is a continuously distributed stochastiorecomponent to the assignment variable —
which can occur when optimizing agents do not hawecisecontrol over the assignment variable
— then the variation in the treatment will be as good as ranilesin a neighborhood around the

discontinuity threshold.”

2. “Yes. As in a randomized experiment, the distribution bferved baseline covariates should not

change discontinuously at the threshold.”

3. “The RD estimand can be interpreted as a weighted averaganent effect, where the weights are
the relative ex ante probability that the value of an indinals assignment variable will be in the

neighborhood of the threshold.”

Thus, in many contexts, the RD design may have more in comnitbrrandomized experiments (or circum-

stances when an instrument is truly randomized) — in ternttssirf “internal validity” and how to implement
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them in practice — than with regression control or matchirgghmds, instrumental variables, or panel data

approaches. We will return to this point after first discngghe above three issues in greater detail.

3.1 Valid or Invalid RD?

Are individuals able to influence the assignment varialhe, ifso, what is the nature of this control? This
is probably the most important question to ask when assgsdiether a particular application should be
analyzed as an RD design. If individuals have a great deabwtral over the assignment variable and if
there is a perceived benefit to a treatment, one would crpect individuals on one side of the threshold
to be systematically different from those on the other side.

Consider the test-taking RD example. Suppose there areyjves bf studentsA andB. Suppose type
A students are more able théntypes, and thaf types are also keenly aware that passing the relevant
threshold (50 percent) will give them a scholarship benefitile B types are completely ignorant of the
scholarship and the rule. Now suppose that 50 percent ofubstigns are trivial to answer correctly, but
due to random chance, students will sometimes make caretems when they initially answer the test
guestions, but would certainly correct the errors if thegaked their work. In this scenario, only type
students will make sure to check their answers before tgrinithe exam, thereby assuring themselves of a
passing score. Thus, while we would expect those who baeslyqul the exam to be a mixture of tyjpand
type B students, those who barely failed would exclusively be @mtudents. In this example, it is clear
that the marginal failing students amt represent a valid counterfactual for the marginal pasdingdests.
Analyzing this scenario within an RD framework would be ipegpriate.

On the other hand, consider the same scenario, except asisaingeiestions on the exam aet trivial;
there are no guaranteed passes, no matter how many time¢adbeats check their answers before turning in
the exam. In this case, it seems more plausible that amosg gworing near the threshold, it is a matter of
“luck” as to which side of the threshold they land. Tyfsstudents can exert more effort — because they know
a scholarship is at stake — but they do not know the exact slkeeyewill obtain. In this scenario, it would be
reasonable to argue that those who marginally failed anseplagould be otherwise comparable, and that
an RD analysisvould be appropriate and would yield credible estimates of theahpf the scholarship.

These two examples make it clear that one must have some &igevhbout the mechanism generating
the assignment variable, beyond knowing that if it croshegshreshold, the treatment is “turned on”. It is

“folk wisdom” in the literature to judge whether the RD is appriate based on whether individuals could
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manipulate the assignment variable gomdcisely“sort” around the discontinuity threshold. The key word
here is “precise”, rather than “manipulate”. After all, intb examples above, individuals do exert some
control over the test score. And indeed in virtually evergwn application of the RD design, it is easy to
tell a plausible story that the assignment variable is toesdegree influenced lsomeoneBut individuals
will not always be able to haverecisecontrol over the assignment variable. It should perhaps sd®vious
that it is necessary to rule out precise sorting to justify tise of an RD design . After all, individual self-
selection into treatment or control regimes is exactly winypée comparison of means is unlikely to yield
valid causal inferences. Precise sorting around the thle s self-selection.

What is not obvious, however, is that when one formalizestiteon of having imprecise control over
the assignment variable, there is a striking consequeheezariation in the treatment in a neighborhood of

the threshold is “as good as randomized”. We explain thieviael

3.1.1 Randomized Experiments from Non-Random Selection

To see how the inability to precisely control the assignmvamniable leads to a source of randomized varia-

tion in the treatment, consider a simplified formulationted RD desigrt!

Y =DT+W3& +U )
D=1[X >
X =W& +V

whereY is the outcome of interesD is the binary treatment indicator, afd is the vector of all pre-
determined and observable characteristics of the indifithat might impact the outcome and/or the as-
signment variabl.

This model looks like a standard endogenous dummy vari@ies except that we observe the treat-
ment determining variableX. This allows us to relax most of the other assumptions uguaiide in this
type of model. First, we alloWV to be endogenously determined, as long as it is determiried tprV .
Second, we take no stance as to whether some elemedtoob, are zero (exclusion restrictions). Third,

we make no assumptions about the correlations betWéen andV .

11we use a simple linear endogenous dummy variable setup ¢oilbieshe results in this section, but all of the results ddag
stated within the standard potential outcomes framewark) &ee (2008).
12This is much less restrictive than textbook descriptionsrafogenous dummy variable systems. It is typically assutimad
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In this model, individual heterogeneity in the outcome isnptetely described by the pair of random
variables(W,U); anyone with the same values @,U) will have one of two values for the outcome,
depending on whether they receive treatment. Note thae 9Ri2 designs are implemented by running
regressions of on X, equation (2) looks peculiar sin¢éis not included withV andU on the right hand
side of the equation. We could add a functionXoto the outcome equation, but this would not change
anything to the model since we have not made any assumptimmg ¢he joint distribution ofW,U, and
V. For example, our setup allows for the case whére Xd; +U’ , which yields the outcome equation
Y =D1+Wd +X&+U'. For the sake of simplicity, we work with the simple case vé€is not included
on the right hand side of the equatith.

Now consider the distribution ok, conditional on a particular pair of valu®®¥ =w, U =u. Itis
equivalent (up to a translational shift) to the distribatwfVV conditional oW =w,U = u. If an individual
has complete and exact control overwe would model it as having a degenerate distribution, itammal
onW =wU = u. Thatis, in repeated trials, this individual would chodse $ame score. This is depicted
in Figure 4 as the thick line.

If there is some room for error, but individuals can nevdebe have precise control about whether they
will fail to receive the treatment, then we would expect tleasity ofX to be zero just below the threshold,
but positive just above the threshold, as depicted in Fig@a®the truncated distribution. This density would
be one way to model the first example described above for feeAwtudents. Since typ& students know
about the scholarship, they will double-check their ansveerd make sure they answer the easy questions,
which comprise 50 percent of the test. How high they scoreabite passing threshold will be determined
by some randomness.

Finally, if there is stochastic error in the assignmentalalé and individuals doot have precise control
over the assignment variable, we would expect the densiy(ahd henc#/), conditional oV =w,U =u
to be continuous at the discontinuity threshold, as showfigare 4 as the untruncated distributithlt is
important to emphasize that in this final scenario, the idd@&l still has control oveX : through her efforts,

she can choose to shift the distribution to the right. Thikigsdensity for someone with =w,U = u, but

(U,V) is independent ofV.

13When RD designs are implemented in practice, the estiméfett ef X onY can either reflect a true causal effectobn,
or a spurious correlation betwe&nand the unobservable tefth Since it is not possible to distinguish between these tfectf
in practice, we simplify the setup by implicitly assumingttX only comes into equation (2) indirectly through its (Spugp
correlation withU .

14For example, this would be plausible whihis a test score modeled as a sum of Bernoulli random variakleih is
approximately normal by the central limit theorem.
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may well be different — with a different mean, variance, ash of the density — for other individuals, with
different levels of ability, who make different choices. \We assuming, however, that all individuals are

unable to precisely control the score just around the tlotdsh

Definition: We say individuals have imprecise control oxewhen conditional oW = w and

U =u, the density oV (and hence) is continuous.

When individuals have imprecise control ovethis leads to the striking implication that variation inate
ment status will be randomized in a neighborhood of the Hulels To see this, note that by Bayes’ Rule,

we have
Priw =w,U =]
f (%)

Prw =w,U =ulX=x] = f (XW =w,U = u) (3)

wheref () andf (-|-) are marginal and conditional densities %r So whenf (XYW = w,U = u) is contin-
uous inx, the right hand side will be continuous ¥pwhich therefore means that the distributionvVafU
conditional onX will be continuous irx.®> That is,all observed and unobserved pre-determined character-
istics will have identical distributions on either side ofxc, in the limit, as we examine smaller and smaller
neighborhoods of the threshold.

In sum,

Local Randomization: If individuals have imprecise control ovet as defined above, then
PrlW =w,U = u|X = x] is continuous irnx: the treatment is “as good as” randomly assigned

around the cutoff.

In other words, the behavioral assumption that individdalsiot precisely manipulaté around the thresh-
old has thepredictionthat treatment is locally randomized.

This is perhaps why RD designs can be so compelling. A deapestigation into the real-world details
of how X (and henced) is determined can help assess whether it is plausiblendatiduals have precise
or imprecise control oveX. By contrast, with most non-experimental evaluation cxistelearning about
how the treatment variable is determined will rarely lea@ tmconclude that it is “as good as” randomly

assigned.

15gince the potential outcomeé0) andY(1) are functions oW andU, it follows that the distribution ofY(0) andY (1)
conditional onX is also continuous ix when individuals have imprecise control ovér This implies that the conditions usually
invoked for consistently estimating the treatment efféut Conditional mean&[Y (0)|X = x] andE[Y (1)|X = x] being continuous
in X) are also satisfied. See Lee (2008) for more detail.
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3.2 Consequences of Local Random Assignment

There are three practical implications of the above logadloan assignment result.

3.2.1 Identification of the Treatment Effect

First and foremost, it means that the discontinuity gapeactioff identifies the treatment effect of interest.

Specifically, we have

ImE[Y|X=c+¢|—lmE[Y|X=c+¢|=T1+Iim Z (Wo +u)PrfW =w,U =u|X =c+¢]
€0 €10 SlOW,U
—lim Z(W51+U)PI’[W =wU =uX=c+¢g]
sTO\Mu

=T

where the last line follows from the continuity of ¥ = w,U = u|X = x].

As we mentioned earlier, nothing changes if we augment théemloy adding a direct impact of
itself in the outcome equation, as long as the effeckain Y does not jump at the cutoff. For example,
in the example of Thistlethwaite and Campbell (1960), we aldow higher test scores to improve future
academic outcomes (perhaps by raising the probability wfisglon to higher quality schools), as long as

that probability does not jump at precisely the same cutedfduto award scholarships.

3.2.2 Testing the Validity of the RD design

An almost equally important implication of the above locahdom assignment result is that it makes it
possible to empirically assess the prediction thdWP£ w,U = u|X = x] is continuous irx. Although it

is impossible to test this directly — sint& is unobserved — it is nevertheless possible to assess whethe
PrlW = w|X = x] is continuous irx at the threshold. A discontinuity would indicate a failufettee identi-
fying assumption.

This is akin to the tests performed to empirically assessthdneghe randomization was carried out
properly in randomized experiments. It is standard in tresalyses to demonstrate that treatment and
control groups are similar in their observed baseline dgates. It is similarly impossible to test whether
unobserved characteristics are balanced in the expeinemttext, so the most favorable statement that

can be made about the experiment is that the data “failedeotte¢he assumption of randomization.
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Perfroming this kind of test is arguably more important ie RD design than in the experimental
context. After all, the true nature of individuals’ contrmer the assignment variable — and whether it is
precise or imprecise — may well be somewhat debatable, dtenaagreat deal of investigation into the
exact treatment-assignment mechanism (which itself iaydvadvisable to do). Imprecision of control will
often be nothing more than a conjecture, but thankfullyag testable predictions.

There is a complementary, and arguably more direct andiweuest of the imprecision of control over
the assignment variable: examination of the densit)Xafself, as suggested in McCrary (2008). If the
density ofX for each individual is continuous, then the marginal densftX over the population should
be continuous as well. A jump in the density at the threshelgrobably the most direct evidence of some
degree of sorting around the threshold, and should proveleus skepticism about the appropriateness of
the RD desigrt® Furthermore, one advantage of the test is that it can alwaysetformed in a RD setting,
while testing whether the covariaté are balanced at the threshold depends on the availabilitataf on
these covariates.

This test is also a partial one. Whether each individual'arge density oKX is continuous is fundamen-
tally untestable, since for each individual we only obsesme realization oX. Thus, in principle, at the
threshold some individuals’ densities may jump up whileeathmay sharply fall, so that in the aggregate,
positives and negatives offset each other making the geapjtear continuous. In recent applications of
RD such occurrences seem far-fetched. Even if this weredbe, ®ne would certainly expect to see, after
stratifying by different values of the observalbe chamsties, some discontinuities in the density Xf

These discontinuities could be detected by performingdbalrandomization test described above.

3.2.3 Irrelevance of Including Baseline Covariates

A consequence of a randomized experiment is that the assigrimtreatment is, by construction, indepen-
dent of the baseline covariates. As such, it is not necessanglude them to obtain consistent estimates of
the treatment effect. In practice, however, researchdlgwiude them in regressions, because doing so can

reduce the sampling variability in the estimator. Arguathly greatest potential for this occurs when one of

16another possible source of discontinuity in the densityhsf assignment variab¥é is selective attrition. For example, (Di-
Nardo and Lee, 2004) look at the effect of unionization on egageveral years after a union representation vote was. tdken
principle, if firms that were unionized because of a majovitte are more likely to close down, then conditional on firmviial
at a later date, there will be a discontinuityXn(the vote share) that could threaten the validity of the REigtefor estimating the
effect of unionization on wages (conditional on survivat).that setting, testing for a discontinuity in the densitgr{ditional on
survival) is similar to testing for selective attritionr(ked to treatment status) in a standard randomized expetime
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the baseline covariates is a pre-random-assignment @ligemon the dependent variable, which may likely
be highly correlated with the post-assignment outcomeatstgiof interest.

The local random assignment result allows us to apply thésasito the RD context. For example,
if the lagged value of the dependent variable was deternmpmied to the realization oKX, then the local
randomization result will imply that that lagged dependeariable will have a continuous relationship with
X. Thus, performing an RD analysis dhminus its lagged value should also yield the treatment efiec
interest. The hope, however, is that the differenced outcomeasure will have a sufficiently lower variance
than the level of the outcome, so as to lower the varianceaiRib estimator.

More formally, we have

IME[Y —-WmrX=c+¢]—lImE[Y —-WmnX =c+¢]=T+Iim Z (W(01 — 1)+ u)PrW =w,U = u|X =c+¢€]
€l0 €10 €l0

(4)

—lim Z(W(51— m)+u)PrlW =w,U =u|X =c+¢]

WU

whereWrtis anylinear function, an®V can include a lagged dependent variable, for example. Weret

how to implement this in practice in Section 4.4.

3.3 Generalizability: the RD Gap as a Weighted Average Treahent Effect

In the presence of heterogeneous treatment effects, thendiisuity gap in an RD design can be interpreted
as aweightedaverage treatment effect acradbkindividuals. This is somewhat contrary to the temptation to
conclude that the RD design only delivers a credible treatra#fect for the sub-population of individuals
at the threshold, and says nothing about the treatmentt éffeeyy from the threshold”. Depending on the
context, this may be an overly simplistic and pessimistgeasment.

Consider the scholarship test example again, and defindriéegrhent” as “receiving a scholarship by
scoring 50 percent or greater on the scholarship exam.”|Rbe& the pairW,U characterizes individual

heterogeneity. We now lat(w, u) denote the treatment effect for an individual with=w andU = u, so
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that the outcome equation in (2) is instead given by
Y=Dt(WU)+Wo +U.

This is essentially a model of completely unrestricted togteneity in the treatment effect. Following the

same line of argument as above, we obtain

I|mE[Y\X_c+s]—I|mE[Y]X—c+s :ZT w,u) PrfW =w,U = u|X = ¢
w,u

r(w,u) f(cW=wU=u

T 0 )PI’[W:W,U = 5)

H

where the second line follows from Equation (3).

The discontinuity gap then, is a particular kind of averagatment effecacross all individuals If not

f(cW=wU=u)
for the termT

- f(cW=wU=u)
of the ratloT

weights are directly proportional to the ex ante likelihdbdt an individual’s realization of will be close to

, it would be the average treatment effect for the entire faijmn. The presence

implies the discontinuity is insteadveeightedaverage treatment effect where the

the threshold. All individuals could get some weight, ang similarity of the weights across individuals is
ultimately untestable, since again we only observe oné&zegadn of X per person and do not know anything
about the ex ante probability distribution Xffor any one individual. The weights may be relatively simila
across individuals, in which case the RD gap would be clasé¢id overall average treatment effect; but,
if the weights are highly varied and also related to the ntagdei of the treatment effect, then the RD gap
would be very different from the overall average treatmdfaot While it is not possible to know how
close the RD gap is from the overall average treatment efftemains the case that the treatment effect
estimated using a RD design is averaged over a larger papullitan one would have anticipated from a
purely “cut-off” interpretation.

Of course, we do not observe the density of the assignmeiablaat the individual level so we therefore
do not know the weight for each individual. Indeed, if thensifjto noise ratio of the test is extremely high,
someone who scores a 90 percent may have almost a zero cHaw®iog near the threshold, implying
that the RD gap is almost entirely dominated by those whoesnear 50 percent. But if the reliability is
lower, then the RD gap applies to a relatively broader sytfation. It remains to be seen whether or not

and how information on the reliability, or a second test mearment, or other covariates that can predict

20



the assignment could be used in conjunction with the RD gdeaim about average treatment effects for
the overall population. The understanding of the RD gap agighted average treatment effect serves to
highlight that RD causal evidence is not somehow fundanfigrdesconnected from the average treatment
effect that is often of interest to researchers.

It is important to emphasize that the RD gap is not inforneagéitout the treatment if it were defined as
“receipt of a scholarship that is awarded by scoB80gercenbr higher on the scholarship exam.” This is not
so much a “drawback” of the RD design as a limitation sharetl ewen a carefully controlled randomized
experiment. For example, if we randomly assigned finanaibhaards to low-achieving students, whatever
treatment effect we estimate may not be informative aboeiteffiect of financial aid for high-achieving
students.

In some contexts, the treatment effect “away from the digcaity threshold” may not make much
practical sense. Consider the RD analysis of incumbencypmgressional elections of Lee (2008). When
the treatment is “being the incumbent party,” it is impligiunderstood that incumbency entails winning
the previous election by obtaining at least 50 percent ofvtite!l’ In the election context, the treatment
“being the incumbent party by virtue of winning an electisrhereby 90 percent of the vote is required to
win” simply does not apply to any real-life situation. Thirsthis context, it is awkward to interpret the RD
gap as “the effect of incumbency that exists at 50 percem-sbare threshold” (as if there is an effect at a
90 percent threshold). Instead it is more natural to intdrgfre RD gap as estimating a weighted average
treatment effect of incumbency across all districts, whmaoge weight is given to those districts in which a

close election race was expected.

3.4 Variations on the Regression Discontinuity Design

To this point, we have focused exclusively on the “classi® &esign introduced by Thistlethwaite and
Campbell (1960), whereby there is a single binary treatraadtthe assignment variable perfectly predicts
treatment receipt. We now discuss two variants of this base:cl) when there is so-called “imperfect
compliance” of the rule, and 2) when the treatment of intdsea continuous variable.

In both cases, the notion that the RD design generates laciltion in treatment that is “as good as
randomly assigned” is helpful because we can apply knowteeor randomized instruments to the RD

design, as we do below. The notion is also helpful for addngssther data problems, such as differential

17For this example, consider the simplified case of a two-psysgem.
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attrition or sample selection, whereby the treatment #ffechether or not you observe the outcome of
interest. The local random assignment result means thairicijple, one could extend the ideas of Horowitz
and Manski (2000) or Lee (2009), for example, to provide lasuon the treatment effect, accounting for

possible sample selection bias.

3.4.1 Imperfect Compliance: the “Fuzzy” RD

In many settings of economic interest, treatment is deteethpartly by whether the assignment variable
crosses a cutoff point. This situation is very importantiiagtice for a variety of reasons, including cases of
imperfect take-up by program participants or when facttineiothan the threshold rule affect the probability
of program participation. Starting with Trochim (1984)istketting has been referred to as a “fuzzy” RD
design. In the case we have discussed so far — the “sharp” RiQrde the probability of treatment jumps
from 0 to 1 whenX crosses the threshotd The fuzzy RD design allows for a smaller jump in the prolgpbil

of assignment to the treatment at the threshold and onlyiresqu
imPrD=1X=c+¢)#IimPrD=1X=c+¢).
€l0 £10

Since the probability of treatment jumps by less than onédaithreshold, the jump in the relationship
betweenyY andX can no longer be interpreted as an average treatment effgat.an instrumental variable
setting however, the treatment effect can be recoveredviginly the jump in the relationship betwe&n
andX atc by the fraction induced to take-up the treatment at the bimles- in other words, the discontinuity
jump in the relation betweeld andX. In this setting, the treatment effect can be written as

_ imgoE[Y|X =c+ég] —limgoE[Y|X = c+ ¢
P limg 0E[D|X = c+ ] — lim¢10E[D|X = c+ €]’

where the subscript “F” refers to the fuzzy RD design.

There is a close analogy between how the treatment effedfigadl in the fuzzy RD design and in
the well-known “Wald” formulation of the treatment effect @an instrumental variables setting. Hahn et al.
(2001) were the first to show this important connection anslfggest estimating the treatment effect using
two-stage least-squares (TSLS) in this setting. We disestisiation of fuzzy RD designs in greater detall

in Section 4.3.3.
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Hahn et al. (2001) furthermore pointed out that the inteégti@n of this ratio as a causal effect requires
the same assumptions as in Imbens and Angrist (1994). Thahnésmust assume “monotonicity” (i.&
crossing the cutoff cannot simultaneousBusesome units to take up and others to reject the treatment) and
“excludability” (i.e. X crossing the cutoff cannot impa¥texcept through impacting receipt of treatment).

When these assumptions are made, it follows'that

r = E[Y (1) —Y(0)|unit is complierX = ],

where “compliers” are units that receive the treatment whey satisfy the cutoff ruleX; > c), but would
not otherwise receive it.

In summary, if there is local random assignment (e.g. dubdgtausibility of individuals’ imprecise
control overX), then we can simply apply all of what is known about the aggions and interpretability
of instrumental variables. The difference between therfgshand “fuzzy” RD design is exactly parallel
to the difference between the randomized experiment witfepecompliance and the case of imperfect
compliance, when only the “intent to treat” is randomized.

For example, in the case of imperfect compliance, even ibpgsed binary instrumedtis randomized,
it is necessary to rule out the possibility tiZaaffects the outcome, outside of its influence through treatm
receipt,D. Only then will the instrumental variables estimand — theraf the reduced form effects @ on
Y and ofZ on D — be properly interpreted as a causal effeddafnyY. Similarly, supposing that individuals
do not have precise control ov¥r, it is necessary to assume that whetlecrosses the threshold(the
instrument ) has no impact gnexcept by influencindp. Only then will the ratio of the two RD gaps t
andD be properly interpreted as a causal effedDain.

In the same way that it is important to verify a strong firstggt relationship in an IV design, it is equally
important to verify that a discontinuity exists in the reatship betwee andX in a fuzzy RD design.

Furthermore, in this binary-treatment-binary-instrumngantext with unrestricted heterogeneity in treat-
ment effects, the IV estimand is interpreted as the averaggment effect “for the sub-population affected
by the instrument,” (or LATE). Analogously, the ratio of tlRD gaps inY andD (the “fuzzy design”
estimand) can be interpreted asvaightedLATE, where the weights reflect the ex ante likelihood the in-

dividual’s X is near the threshold. In both cases, the exclusion rastrieihd monotonicity condition must

185ee Imbens and Lemieux (2008) for a more formal exposition.
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hold.

3.4.2 Continuous Endogenous Regressor

In a context where the “treatment” is a continuous variabtah-it T — and there is a randomized binary
instrument (that can additionally be excluded from the onte equation), an IV approach is an obvious
way of obtaining an estimate of the impactlobnY. The IV estimand is the reduced-form impactzobn
Y divided by the first-stage impact @onT.

The same is true for an RD design when the regressor of inisresntinuous. Again, the causal impact
of interest will still be the ratio of the two RD gaps (i.e. thiscontinuities iy andT).

To see this more formally, consider the model

Y=Ty+Wo +U; (6)
T=De+Wy+U;
D=1[X >

X=W&+V

which is the same set-up as before, except with the addedderation, allowing for imperfect compli-
ance or other factors (observablsor unobservabled,) to impact the continuous regressor of intefést
If y=0 andU, = 0, then the model collapses to a “sharp” RD design (with aicontis regressor).
Note that we make no additional assumptions akbuin terms of its correlation withV or V). We do
continue to assume imprecise control o¥efconditional oW andUj, the density ol is continuous}?
Given the discussion so far, it is easy to show that

IME[Y|X=c+¢&]—ImME[Y|X =c+¢]| = {Iim E[TIX=c+¢&]-IImME[T|IX=c+ 5]} y (7)
€l0 £10 €l0 €10

The left hand side is simply the “reduced form” discontiguit the relation betweey andX. The term
precedingy on the right hand side is the “first-stage” discontinuityhie telation betweem andX, which is

also estimable from the data. Thus, analogous to the exaethtified instrumental variable case, the ratio

19Although it would be unnecessary to do so for the identifaaibf y, it would probably be more accurate to describe the
situation of imprecise control with the continuity of thendéy of X conditional on the three variabl@#/,U1,U,). This is because
U, is now another variable characterizing heterogeneitydividuals.
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of the two discontinuities yields the paramejerthe effect ofT onY. Again, because of the added notion
of imperfect compliance, it is important to assume thgiX crossing the threshold) does not directly enter
the outcome equation.

In some situations, more might be known about the rule detémonT. For example, in Angrist and
Lavy (1999) and Urquiola and Verhoogen (2007), class sizaniscreasing function of total school en-
roliment, except for discontinuities at various enrollrnémresholds. But additional information about
characteristics such as the slope and intercept of the lyimdgfunction (apart from the magnitude of the
discontinuity) generally adds nothing to the identificatiirategy.

To see this, change the second equation in (8) oD@+ g(X) whereg(-) is any continuous function
in the assignment variable. Equation (7) will remain the saand thus knowledge of the functign-)is
irrelevant for identificatiorf®

There is also no need for additional theoretical resulthéndase when there is individual-level hetero-
geneity in the causal effect of the continuous regre3soi he local random assignment result allows us
to borrow from the existing IV literature and interpret ttadio of the RD gaps as in Angrist and Krueger
(1999), except that we need to add the note that all averageseaghted by the ex ante relative likelihood

that the individual’sX will land near the threshold.

3.5 Summary: A Comparison of RD and Other Evaluation Stratedes

We conclude this section by comparing the RD design with roéivaluation approaches. We believe it
is helpful to view the RD design as a distinct approach, rathan as a special case of either IV or
matching/regression-control. Indeed, in important wédyes RD design is more similar to a randomized
experiment, which we illustrate below.

Consider a randomized experiment, where subjects arenassggrandom numbet, and are given the
treatment ifX > c¢. By construction X is independent and not systematically related to any obbéror
unobservable characteristic determined prior to the nanition. This situation is illustrated in Panel A of
Figure 5. The first column shows the relationship betweenrdament variabl® andX, a step function,
going from 0 to 1 at th&X = cthreshold. The second column shows the relationship betthesobservables
W andX. This is flat becaus¥ is completely randomized. The same is true for the unobbrwariable

U, depicted in the third column. These three graphs captweepipeal of the randomized experiment:

20As discussed in 3.2.1, the inclusion of a direct effeckdh the outcome equation will not change identificatiorr of
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treatment varies while all other factors are kept constamta§rerage). And even though we cannot directly
test whether there are no treatment-control differencés, we can test whether there are such differences
in the observabl¥V.

Now consider an RD (Panel B of Figure 5) where individualsehawrecise control ovet. BothW and
U may be systematically related Xq perhaps due to the actions taken by units to increase ttabapility
of receiving treatment. Whatever the shape of the relatsnpng as individuals have imprecise control
over X, the relationship will be continuous. And therefore, as waneineY near theX = c cutoff, we can
be assured that like an experiment, treatment varies (tecbtumn) while other factors are kept constant
(the second and third columns). And, like an experiment, aretest this prediction by assessing whether
observables truly are continuous with respecX ttihe second columr:

We now consider two other commonly-used non-experimemiataaches, referring to the model (2):

Y =DT+W4; +U
D=1[X >

X=W&+V

3.5.1 Selection on Observables: Matching/Regression Caat

The basic idea of the “selection on observables” approath &ljust for differences in thé/'s between
treated and control individuals. It is usually motivated the fact that it seems “implausible” that the
unconditional mealY for the control group represents a valid counterfactuattertreatment group. So it
is argued thatgonditional on W treatment-control contrasts may identify thgé-§pecific) treatment effect.

The underlying assumption is that conditionalWwinU andV are independent. From this it is clear that

ENYID=1W=w -E[YD=0OW=wW=1+EUW=w\V >c—w&|-EUW=wV <c—wd)]

=T

Two issues arise when implementing this approach. The firshé of functional form: how exactly to
control for theWw’s? When théN'’s take on discrete values, one possibility is to computattnent effects

for each distinct value oV, and then average these effects across the constructdd’.“c€his will not

21we thank an anonymous referee for suggesting these iltivetigraphs.
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work, however,wheW has continuous elements, in which case it is necessary tlefngmt multivariate
matching, propensity score, re-weighting procedurespaparametric regressioRs.

Regardless of the functional form issue, there is argualshoee fundamental question of whidk’s
to use in the analysis. While it is tempting to answer “all bém” and hope that mord/’s will lead
to less biased estimates, this is obviously not necesghilycase. For example, consider estimating the
economic returns to graduating high school (versus drapput). It seems natural to include variables like
parents’ socioeconomic status, family income, year, aadebf birth in the regression. Including more and
more family-leveM’s will ultimately lead to a “within-family” sibling analyis; extending it even further by
including date of birth leads to a “within-twin-pair” analg. And researchers have been critical — justifiably
so — of this source of variation in education. The same reasaunsing discomfort about the twin analyses
should also cause skepticism about “kitchen sink” multatarmatching/propensity score/regression control
analyses?

Itis also tempting to believe that if thé’s do a “good job” in predictindD, the selection on observables
approach will “work better.” But the opposite is true: in thgreme case when thWg'’s perfectly prediciX
(and hencd), it is impossibleto construct a treatment-control contrast for virtuallyadservations. For
each value oV, the individuals will either all be treated or all controh dther words, there will be literally
no overlap in the support of the propensity score for theteédband control observations. The propensity
score would take the values of either 1 or 0.

The “selection on observables” approach is illustratedand? C of Figure 5. Observabl&g can help
predict the probability of treatment (first column), butimiately one must assume that unobservable factors
U must be the same for treated and control units for every \@&l\Wé. That is, the crucial assumption is that
the two lines in the third column be on top of each other. Intguly, there is no comparable graph in the

second column because there is no way to test the designadinbeW's are used for estimation.

3.5.2 Selection on Unobservables: Instrumental Variableand “Heckit”

A less restrictive modeling assumption is to allowandV to be correlated, conditional k. But because

of the arguably “more realistic’/flexible data generatimggess, another assumption is needed to identify

225ee Hahn (1998) on including covariates directly with nguapenetric regression.

23Researchers question the twin analyses on the groundg thatdt clear why one twin ends up having more education than
the other, and that the assumption that education diffeseamong twins is purely random (as ignorability would imjpéwiewed
as far-fetched. We thank David Card for pointing out thisremtion between twin analyses and matching approaches.
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7. One such assumption is that some elemenW ¢tall themZ) enter the selection equation, but not the

outcome equation and are also uncorrelated Withn instrumental variables approach utilizes the fact that

EYW'=w"Z=2 =E[DW*=w"Z =71 +Wy+EUW =w",Z=1

—E[DW* =W, Z=ZT+Wy+E[UW" =w]

whereW has been split up intd/* andZ. Conditional onW* = w*, Y only varies withZ because of how
D varies withZ. Thus, one identifies by “dividing” the reduced form quantitf [D|W* =w*,Z =2|T
(which can be obtained by examining the expectatioty aonditional onZ for a particular valuev* of
W*) by E[D|W* =w*,Z = 2], which is also provided by the observed data. It is common ¢dehthe
latter quantity as a linear function i, in which case the IV estimator is (conditional W) the ratio of
coefficients from regressions ¥fon Z andD on Z. WhenZ is binary, this appears to be the only way to
identify T without imposing further assumptions.

WhenZ is continuous, there is an additional approach to idemiifyi. The “Heckit” approach uses the

fact that

EYW' =w"Z=2D=1=14+E[UW=w\V > —w,)]

EYW*=wZ=2D=0=E[UW=wV < —W&)]

If we further assume a functional form for the joint disttlon of U,V, conditional onW* andZ, then the
“control function” termsE [U|W =w,V > —wd,] andE[U|W =w,V < —w,| are functions of observed
variables, with the parameters then estimable from the diaisthen possible, for any value @f = w, to

identify T as

ENW =w"Z=2zD=1—-E[YW'=w"Z=2D=0])— 8)

(EUW=wV > -w&]-EUW=wV < —w&)])

Even if the joint distribution olJ,V is unknown, in principle it is still possible to identify, if it were
possible to choose two different valueszo$uch that-wd, approaches-o andoo. If S0, the last two terms

in (8) approaclE [U |W = w], and hence cancel one another. This is known as “identiicati infinity”.
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Perhaps the most important assumption that any of theseagpes require is the existence of a variable
Z that is (conditional oWw*) independent of) .2* There does not seem to be any way of testing the validity
of this assumption. Different, but equally “plausib&$ may lead to different answers, in the same way that
including different sets ofV's may lead to different answers in the selection on obséegadpproach.

Even when there is a mechanism that justifies an instruziexst “plausible,” it is often unclear which
covariatesV* to include in the analysis. Again, when different setd3\6f lead to different answers, the
guestion becomes which is more plausitdas independent df conditional onV*, or Z is independent of
U conditional on assubsefof the variables iW*? While there may be some situations where knowledge of
the mechanism dictates which variables to include, in atbatexts, it may not be obvious.

The situation is illustrated in Panel D of Figure 5. It is nexagy that the instrumerzt is related to
the treatment (as in the first column). The crucial assumgsaegarding the relation betwe&nand the
unobservabled (the third column). In order for an IV or a “Heckit” approaatwork, the function in the
third column needs to be flat. Of course, we cannot observéhehthis is true. Furthermore, in most cases,
itis unclear how to interpret the relation betw&irandZ (second column). Some might argue the observed
relation betweehV andZ should be flat iZ is truly exogenous, and thatf is highly correlated withw,
then it casts doubt oA being uncorrelated wittl. Others will argue that using the second graph as a test is
only appropriate whed is truly randomized, and that the assumption invoked isZhatuncorrelated with
U, conditional on W. In this latter case, the design seems fundamentally aitiestsince all the remaining

observable variables (tW’s) are being “used up” for identifying the treatment effect

3.5.3 RD as “Design” not “Method”

RD designs can be valid under the more general “selectiomohservables” environment, allowing an ar-
bitrary correlation among,V, andw, but at the same time not requiring an instrument. As dismiabove,
all that is needed is that conditional WU, the density ol is continuous, and the local randomization
result follows.

How is an RD design able to achieve this, given these weakeingstions? The answer lies in what is

absolutely necessary in an RD design: observability of ditenk indexX. Intuitively, given that both the

24For IV, violation of this assumption essentially means thatries withY for reasons other than its influence Bn For the
textbook “Heckit” approach, it is typically assumed thal have the same distribution for any valuezoflt is also clear that the
“identification at infinity” approach will only work iZ is uncorrelated wittJ, otherwise the last two terms in equation (8) would
not cancel. See also the framework of Heckman and Vytlabi0%2, which maintains the assumption of the independentieeof
error terms and, conditional onW*.
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“selection on observables” and “selection on unobsergdlapproaches rely heavily on modeliXgand its
components (e.g. whicW’s to include, and the properties of the unobservable &frand its relation to
other variables, such as an instrumgptactuallyknowingthe value ofX ought to help.

In contrast to the “selection on observables” and “selacto unobservables” modeling approaches,
with the RD design the researcher can avoid taking any ststemgce about whal'’s to include in the
analysis, since the desigmedictsthat theW's are irrelevant and unnecessary for identification. Hadata
onW'’s is, of course, of some use, as they allow testing of the tyidg assumption (described in Section
4.4).

For this reason, it may be more helpful to consider RD desama description of a particulaata
generating processather than a “method” or even an “approach”. In virtually @ontext with an outcome
variableY, treatment statuB, and other observable variabM§ in principle a researcher can construct a
regression-control or instrumental variables (after giesiing one of th&V variables a valid instrument)
estimator, and state that the identification assumptiordetkare satisfied.

This is not so with an RD design. Either the situation is suwt X is observed, or it is not. If not,
then the RD design simply does not applylf X is observed, then one has little choice but to attempt to
estimate the expectation ¥f conditional onX on either side of the cutoff. In this sense, the RD design
forcesthe researcher to analyze it in a particular way, and thdittlésroom for researcher discretion — at
least from an identification standpoint. The design alsdlipte that the inclusion dfV’s in the analysis
should be irrelevant. Thus it naturally leads the reseanchexamine the density of or the distribution of
W'’s, conditional onX, for discontinuities as a test for validity.

The analogy of the truly randomized experiment is againfokl@nce the researcher is faced with what
she thinks is a properly carried out randomized controlted, tthe analysis is quite straightforward. Even
before running the experiment, most researchers agreeuithvbe helpful to display the treatment-control
contrasts in th&V's to test whether the randomization was carried out prgpénen to show the simple
mean comparisons, and finally to verify the inclusion of\ttie make little difference in the analysis, even

if they might reduce sampling variability in the estimates.

250f course, sometimes it may seem at first that an RD designramespply, but a closer inspection may reveal that it does. Fo
example, see Pettersson-Lidbom (2000), which eventueltaime the RD analysis in Pettersson-Lidbom (2008).
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4 Presentation, Estimation, and Inference

In this section, we systematically discuss the nuts and lmflimplementing RD designs in practice. An
important virtue of RD designs is that they provide a vernsmarent way of graphically showing how
the treatment effect is identified. We thus begin the sedbprliscussing how to graph the data in an
informative way. We then move to arguably the most importssiie in implementing an RD design: the
choice of the regression model. We address this by preggihi@wvarious possible specifications, discussing
how to choose among them, and showing how to compute theasthedors.

Next, we discuss a number of other practical issues than afise in RD designs. Examples of ques-
tions discussed include whether we should control for otbeariates and what to do when the assignment
variable is discrete. We discuss a number of tests to agsesalidity of the RD designs, which examine
whether covariates are “balanced” on the two sides of ttestiold, and whether the density of the assign-
ment variable is continuous at the threshold. Finally, wamsarize our recommendations for implementing
the RD design.

Throughout this section, we illustrate the various coneeigtng an empirical example from Lee (2008)
who uses an RD design to estimate the causal effect of incocyghie U.S. House elections. We use a sample
of 6,558 elections over the 1946-98 period (see Lee (2008htwe detail). The assignment variable in this
setting is the fraction of votes awarded to Democrats in tlegipus election. When the fraction exceeds
50 percent, a Democrat is elected and the party becomesdinaibent party in the next election. Both the

share of votes and the probability of winning the next etectire considered as outcome variables.

4.1 Graphical Presentation

A major advantage of the RD design over competing methods tsansparency, which can be illustrated
using graphical methods. A standard way of graphing the idatadivide the assignment variable into a
number of bins, making sure there are two separate bins dnséde of the cutoff point (to avoid having
treated and untreated observations mixed together in the ba). Then, the average value of the outcome
variable can be computed for each bin and graphed againstithpoints of the bins.

More formally, for some bandwidth, and for some number of bin§ andK; to the left and right of
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the cutoff value, respectively, the idea is to construcs b, by 1], fork=1,...,K = Ko+ K3, where
by =c— (Ko—k+1)-h.
The average value of the outcome variable in the bin is
_ 1 N
Yy = N ZlYi bk < X < byi1}
k =
It is also useful to calculate the number of observationsahebin

N
Nk = Zil{bk <X < by},
i

to detect a possible discontinuity in the assignment vlgiabthe threshold, which would suggest manipu-
lation.

There are several important advantages in graphing thelldatavay before starting to run regressions
to estimate the treatment effect. First, the graph provadssnple way of visualizing what the functional
form of the regression function looks like on either sider@ tutoff point. Since the mean %fin a bin is,
for non-parametric kernel regression estimators, evadliat the bin mid-point using a rectangular kernel,
the set of bin means literally represent non-parametrimests of the regression function. Seeing what the
non-parametric regression looks like can then provideulggfidance in choosing the functional form of
the regression models.

A second advantage is that comparing the mean outcomejtist teft and right of the cutoff point
provides an indication of the magnitude of the jump in ther@sgion function at this point, i.e. of the
treatment effect. Since an RD design is “as good as a ran@dneizperiment” right around the cutoff point,
the treatment effect could be computed by comparing theageeoutcomes in “small” bins just to the left
and right of the cutoff point. If there is no visual evidendealiscontinuity in a simple graph, it is unlikely
the formal regression methods discussed below will yieldjmificant treatment effect.

A third advantage is that the graph also shows whether therareexpected comparable jumps at other
points . If such evidence is clearly visible in the graph aadnot be explained on substantive grounds, this
calls into question the interpretation of the jump at theffudoint as the causal effect of the treatment. We

discuss below several ways of testing explicitly for thesestice of jumps at points other than the cutoff .
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Note that the visual impact of the graph is typically enhanbg also plotting a relatively flexible
regression model, such as a polynomial model, which is alsimagy of smoothing the graph. The advantage
of showing both the flexible regression line and the unresii bin means is that the regression line better
illustrates the shape of the regression function and treedizhe jump at the cutoff point, and laying this
over the unrestricted means gives a sense of the underlgisg m the data.

Of course, if bins are too narrow the estimates will be highiyprecise. If they are too wide, the
estimates may be biased as they fail to account for the sholeei regression line (negligible for very
narrow bins). More importantly, wide bins make the comparsson both sides of the cutoff less credible,
as we are no longer comparing observations just to the leftight of the cutoff point.

This raises the question of how to choose the bandwidth (idéhvef the bin). In practice, this is
typically done informally by trying to pick a bandwidth thatakes the graphs look informative in the sense
that bins are wide enough to reduce the amount of noise, bidvmn@nough to compare observations “close
enough” on both sides of the cutoff point. While it is certpiadvisable to experiment with different
bandwidths and see how the corresponding graphs look, isasuseful to have some formal guidance in
the selection process.

One approach to bandwidth choice is based on the fact thdis@sssed above, the mean outcomes by
bin correspond to kernel regression estimates with a rgatankernel. Since the standard kernel regression
is a special case of a local linear regression where the dtpe is equal to zero, the cross-validation
procedure described in more detail in section 4.3.1 canlmsased here by constraining the slope term to
equal zerd® For reasons we discuss below, however, one should not gelglyn this approach to select
the bandwidth since other reasonable subjective goalddsbewconsidered when choosing how to the plot
the data.

Furthermore, a range a bandwidths often yield similar \v@bfe¢he cross-validation function in practical
applications (see below). A researcher may, thereforet t@arse some discretion in choosing a bandwidth

that provides a particularly compelling illustration obtRD design. An alternative approach is to choose

26In Section 4.3.1, we consider the cross-validation fumc@¥y (h) = & ¥N | (Yi —\?(Xi)>2 whereY (X;) is the predicted value
of Y; based on a regression using observations with a bin of widtm either the left (for observations on left of the cutoff)tbe
right (for observations on the right of the cutoff) of obsateni, but not including observationitself. In the context of the graph
discussed here, the only modification to the cross-vabddtinction is that the predicted valh?éxi) is based only on a regression
with a constant term, which meaﬁ@(i) is the average value dfamong all observations in the bin (excluding observaitjohlote
that this is slightly different from the standard crossidation procedure in kernel regressions where the lefisbgervation is in
the middle instead of the edge of the bin (see, for examplendid!l and Duncan (1998)). Our suggested procedure is lalsgua
better suited to the RD context since estimation of thetneat effect takes place at boundary points.
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a bandwidth based on a more heuristic visual inspectionefitiia, and then perform some tests to make
sure this informal choice is not clearly rejected .

We suggests two such tests. Consider the case where onedidedd® useK’ bins based on a visual
inspection of the data. The first test is a standard F-tespacdny the fit of a regression model wiki bin
dummies to one where we further divide each bin into two egizald smaller bins, i.e. increase the number
of bins to K’ (reduce the bandwidth froi to i /2). Since the model witK’ bins is nested in the one with
2K’ bins, a standard F-test wit/ degrees of freedom can used. If the null hypothesis is nettej, this
provides some evidence that we are not oversmoothing thebgaising onlyK’ bins.

Another test is based on the idea that if the bins are “narmsugh”, then there should not be a sys-
tematic relationship betweefandX , that we capture using a simple regressiory adn X, within each
bin. Otherwise, this suggests the bin is too wide and thatibanean value of over the whole bin is
not representative of the mean valueYoat the boundaries of the bin. In particular, when this happen
the two bins next to the cutoff point, a simple comparisonheftivo bin means yields a biased estimate of
the treatment effect. A simple test for this consists of agdi set of interactions between the bin dummies
andX to a base regression ®fon the set of bin dummies, and testing whether the interegtoe jointly
significant. The test statistic once again follows a F distion withK’ degrees of freedom.

Figures 6 and 7 show the graphs for the share of Democrat wdte inext election and the probability
of Demaocrats winning the next election, respectively. €hsets of graphs with different bandwidths are
reported using a bandwidth of 0.02 in Figures 6a and 7a, G.®Figures 6b and 7b, and 0.005 in Figures
6¢c and 7c. In all cases, we also show the fitted values from digquegression model estimated separately
on each side of the cutoff point. Note that the assignmenmabiar is normalized as the difference between
the share of vote to Democrats and Republicans in the pra@lagction. This means that a Democrat is the
incumbent when the assignment variable exceeds zero. \Wdimli¢ the range of the graphs to winning
margins of 50 percent or less (in absolute terms) as datanteecelatively sparse for larger winning (or
losing) margins.

All graphs show clear evidence of a discontinuity at the ffytoint. While the graphs are all quite
informative, the ones with the smallest bandwidth (0.00igufe 6¢ and 7c) are more noisy and likely
provide too many data points (200) for optimal visual impact

The results of the bandwidth selection procedures are miextén Table 1. Panel A shows the cross-

validation procedure always suggests using a bandwidthO& r more, which corresponds to similar or
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wider bins than those used in Figures 6a and 7a (those witlathest bins) . This is true irrespective of
whether we pick a separate bandwidth on each side of thef ¢fitef two rows of the panel), or pick the
bandwidth that minimizes the cross-validation functiontfte entire date range on both the left and right
sides of the cutoff. In the case where the outcome variablensing the next election, the cross-validation
procedure for the data to the right of the cutoff point andtfi@rentire range suggests using a very wide bin
(0.049) that would only yield about 10 bins on each side ofcilteff.

As it turns out, the cross-validation function for the emtttata range has two local minima at 0.021
and 0.049 that correspond to the optimal bandwidths on fhemel right hand side of the cutoff. This is
illustrated in Appendix Figure A2, which plots the crossidation function as a function of the bandwidth.
By contrast, the cross-validation function is better belaand shows a global minimum around 0.020
when the outcome variable is the vote share (Figure Al). Bt butcome variables, the value of the
cross-validation function grows quickly for bandwidthsalar than 0.02, suggesting that the graphs with
narrower bins (Figures 6b, 6¢, 7b, and 7c) are too noisy.

Panel B of Table 1 shows the results of our two suggestedfgyaitin tests. The tests based on doubling
the number of bins and running regressions within each haidyiemarkably similar results. Generally
speaking, the results indicate that only fairly wide bins @ajected. Looking at both outcome variables, the
tests systematically reject models with bandwidths of @OBore (20 bins over the -0.5 to 0.5 range). The
models are never rejected for either outcome variable orechitnbandwidths of 0.02 (50 bins) or less. In
practice, the testing procedure rules out bins that aredal@n those reported in Figures 6 and 7.

At first glance, the results in the two panels of Table 1 appeae contradictory. The cross-validation
procedure suggests bandwidths ranging from 0.02 to 0.0Be wie bin and regression tests suggests than
almost all bandwidth of less than 0.05 is acceptable. Theorefor this discrepancy is that while the cross-
validation procedure tries to balance precision and biesbin and regression tests only deal with the “bias”
part of the equation by checking whether the valu¥ & more or less constant within a given bin. Models
with small bins easily pass this kind of test, although thegymield a very noisy graph. One alternative
approach is to choose the largest possible bandwidth tisaepdhe bin and the regression test, which turns
out to be 0.033 in Table 1, a bandwidth that is within the raofg#hose suggested by the cross-validation
procedure.

From a practical point of view, it seems to be the case thabhdbprocedures, and in particular cross-

validation, suggest bandwidths that are wider than thosewmuld likely choose based on a simple visual
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examination of the data. In particular, both Figure 6b andbandwidth of 0.01) look visually acceptable
but are clearly not recommended on the basis of the crog$atiah procedure. This likely reflects the fact
that one important goal of the graph is to show how the raw ldalgq and too much smoothing would defy
the purpose of such a data illustration exercise. Furthentbe regression estimates of the treatment effect
accompanying the graphical results are a formal way of shilogtthe data to get precise estimates. This
suggests that there is probably little harm in undersmagtfiielative to what formal bandwidth selection
procedures would suggest) to better illustrate the vanain the raw data when graphically illustrating an

RD design.

4.2 Regression Methods
4.2.1 Parametric or Non-parametric Regressions?

When we introduced the RD design in Section 2, we followedsildthwaite and Campbell (1960) in as-

suming that the underlying regression model was linear@ragsignment variabl¢:

Y=a+Dt+XB+e¢.

In general, as in any other setting, there is no particulasar to believe that the true model is linear. The
consequences of using an incorrect functional form are merieus in the case of RD designs however,
since misspecification of the functional form typically geates a bias in the treatment effec’ This
explains why, starting with Hahn et al. (2001), the estioratf RD designs have generally been viewed as
a nonparametric estimation problem.

This being said, applied papers using the RD design oftdémgpsrt estimates from parametric models.
Does this mean that these estimates are incorrect? Shogkdidies use non-parametric methods instead?
As we pointed out in the introduction, we think that the distion between parametric and non-parametric
methods has sometimes been a source of confusion to praetisi Before covering in detail the practical
issues involved in the estimation of RD designs, we thusigeogome background to help clarify the

insights provided by non-parametric analysis, while abtgalaning why, in practice, RD designs can still

27By contrast, when one runs a linear regression in a modelenfier true functional form is nonlinear, the estimated model
can still be interpreted as a linear predictor that minimigpecification errors. But since specification errors ahg mmimized
globally, we can still have large specification errors at#jepoints including the cutoff point and, therefore, eglbias in RD
estimates of the treatment effect.
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be implemented using “parametric” methods.

Going beyond simple parametric linear regressions whetrtlesfunctional form is unknown is a well-
studied problem in econometrics and statistics. A numb@oofparametric methods have been suggested
to provide flexible estimates of the regression function. itAarns out, however, the RD setting poses a
particular problem because we need to estimate regressidghs cutoff point. This results in a “boundary
problem” that causes some complications for non-parametethods.

From an applied perspective, a simple way of relaxing thesglitty assumption is to include polynomial
functions ofX in the regression model. This corresponds to the serieaa&itin approach often used in non-
parametric analysis. A possible disadvantage of the apprdewever, is that it provides global estimates
of the regression function over all valuesXf while the RD design depends instead on local estimates of
the regression function at the cutoff point. The fact thdypomial regression models use data far away
from the cutoff point to predict the value &f at the cutoff point is not intuitively appealing. That said,
trying more flexible specification by adding polynomialsdras regressors is an important and useful way
of assessing the robustness of the RD estimates of the #etéfiect.

The other leading non-parametric approach is kernel regmes. Unlike series (polynomial) estimators,
the kernel regression is fundamentally a local method wuitied for estimating the regression function at a
particular point. Unfortunately, this property does nophesry much in the RD setting because the cutoff
represents a boundary point where kernel regressionsrpepoorly.

These issues are illustrated in Figure 2, which shows atiituavhere the relationship betwe¥randX
(under treatment or control) is non-linear. First, consttie point D located away from the cutoff point. The
kernel estimate of the regressionYobn X at X = Xq is simply a local mean of for values ofX close toXy.

The kernel function provides a way of computing this locarage by putting more weight on observations
with values ofX close toXy than on observations with values Xffar away fromXy . Following Imbens
and Lemieux (2008), we focus on the convenient case of thiarrgalar kernel. In this setting, computing
kernel regressions simply amounts to computing the averalge ofY in the bin illustrated in Figure 2. The
resulting local average is depicted as the horizontal lisewhich is very close to true value ¥fevaluated
atX = X4 on the regression line.

Applying this local averaging approach is problematic, beer, for the RD design. Consider estimating
the value of the regression function just on the right of teff point. Clearly, only observations on the

right of the cutoff point that receive the treatment shoutdulsed to compute mean outcomes on the right
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hand side. Similarly, only observations on the left of théoffupoint that do not receive the treatment
should be used to compute mean outcomes on the left hand3fiderwise, regression estimates would mix
observations with and without the treatment, which wouldlidate the RD approach.

In this setting, the best thing is to compute the averageevafly in the bin just to the right and just
to the left of the cutoff point. These two bins are shown inurgg2. The RD estimate based on kernel
regressions is then equal BS— A'. In this example where the regression lines are upward reiopi is
clear, however, that the estima®— A’ overstates the true treatment effect represented as tleeetite
B — A at the cutoff point. In other words, there is a systemati limakernel regression estimates of the
treatment effect. Hahn et al. (2001) provide a more formaivegon of the bias (see also Imbens and
Lemieux (2008) for a simpler exposition when the kernel itargular). In practical terms, the problem
is that in finite samples the bandwidth has to be large enoogim¢ompass enough observations to get a
reasonable amount of precision in the estimated averagewalY. Otherwise, attempts to reduce the bias
by shrinking the bandwidth will result in extremely noisytigstes of the treatment effetd.

As a solution to this problem, Hahn et al. (2001) suggestaingnlocal linear regressions to reduce the
importance of the bias. In our setup with a rectangular kethis suggestion simply amounts to running
standard linear regressions within the bins on both sidéiseo€utoff point to better predict the value of the
regression function right at the cutoff point. In this exd@phe regression lines within the bins around the
cutoff point are close to linear. It follows that the preduttvalues of the local linear regressions at the cutoff
point are very close to the true values of A and B. Intuitivéiys means that running local linear regressions
instead of just computing averages within the bins redunebias by an order of magnitude. Indeed, Hahn
et al. (2001) show that the remaining bias is of an order ofnitade lower, and is comparable to the usual
bias in kernel estimation at interior points like D (the shaifference between the horizontal line EF and
the true value of the regression line evaluated at D).

In the literature on non-parametric estimation at boungeints, local linear regressions have been
introduced as a means of reducing the bias in standard kexgedssion method$. One of the several

contributions of Hahn et al. (2001) is to show how the sams-l@aucing procedure should also be applied

28The trade-off between bias and precision is a fundamengalife of kernel regressions. A larger bandwidth yields more
precise, but potentially biased, estimates of the regyass$n an interior point like D, however, we see that the bsasfian order
of magnitude lower that at the cutoff (boundary) point. Inretechnical terms, it can be shown (see Hahn et al. (2001hbehs
and Lemieux (2008)) that the usual bias is of oridfeat interior points, but of orde at boundary point, where h is the bandwidth.
In other words, the bias dies off much more quickly wimagpes to zero when we are at interior, as opposed to boundangsp
295ee Fan and Gijbels (1996).
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to the RD design. We have shown here that, in practice, tmplgiamounts to applying the original insight
of Thistlethwaite and Campbell (1960) to a narrower winddwlmservations around the cutoff point. When
one is concerned that the regression function is not lingar the whole range oK, a highly sensible
procedure is, thus, to restrict the estimation range toegkloser to the cutoff point where the linear
approximation of the regression line is less likely to regularge biases in the RD estimates. In practice,
many applied papers present RD estimates with varying wingiolths to illustrate the robustness (or lack
thereof) of the RD estimates to specification issues. It mfoding to know that this common empirical
practice can be justified on more formal econometric grolikdshose presented by Hahn et al. (2001). The
main conclusion we draw from this discussion of non-paraimebethods is that it is essential to explore
how RD estimates are robust to the inclusion of higher orddynmmial terms (the series or polynomial
estimation approach) and to changes in the window widthratdioe cutoff point (the local linear regression

approach).

4.3 Estimating the Regression

A simple way of implementing RD designs in practice is torestie two separate regressions on each side
of the cutoff point. In terms of computations, it is convertio subtract the cutoff value from the covariate,
i.e. transformX to X — ¢, so the intercepts of the two regressions yield the valubefégression functions

at the cutoff point.

The regression model on the left hand side of the cutoff pint c) is

Y=a+fi(X-c)+¢,

while the regression model on the right hand side of the €ptmft (X > ¢) is

Y:Gr—l—fr(X—C)—l—E,

wheref (-) and f, (-) are functional forms that we discuss later. The treatmdatetan then be computed
as the difference between the two regressions intercaptnda;, on the two sides of the cutoff point. A

more direct way of estimating the treatment effect is to ryppaled regression on both sides of the cutoff
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point:

Y=a+1-D+f(X—-cC)+¢,

wheret = oy —a; and f (X—c) = fi(X—c)+D-[f, (X—c)— fi (X—c)]. One advantage of the pooled
approach is that it directly yields estimates and standemats of the treatment effeat. Note, however,
that it is recommended to let the regression function diffieroth sides of the cutoff point by including
interaction terms betweed and X. For example, in the linear case whefigX —c) = - (X —c¢) and

fr (X—c) =B - (X—c), the pooled regression would be

Y=o+T1T-D+B-(X—-¢c)+(B—B)-D-(X—c)+e.

The problem with constraining the slope of the regressioneslito be the same on both sides of the cutoff
(B = B) is best illustrated by going back to the separate regnessidove. If we were to constrain the
slope to be identical on both sides of the cutoff, this woultbant to using data on the right hand side of the
cutoff to estimatex;, and vice versa. Remember from Section 2 that in an RD desigriteatment effect is
obtained by comparing conditional expectation¥ athen approaching from the leftr( = limy;c E[Y;|X; =
x]) and from the right§, = limy|cE[Y;|X; = x]) of the cutoff. Constraining the slope to be the same would
thus be inconsistent with the spirit of the RD design, as ffata the right of the cutoff would be used to
estimatea;, which is defined as a limit when approaching from the lefthef tutoff, and vice versa.

In practice, however, estimates where the regression sippaore generally, the regression function
f (X —c) are constrained to be the same on both sides of the cutoff amroften reported. One possible
justification for doing so is that if the functional form isdeed the same on both sides of the cutoff, then
more efficient estimates of the treatment effecre obtained by imposing that constraint. Such a con-
strained specification should only be viewed, however, eadgiitional estimate to be reported for the sake

of completeness. It should not form the core basis of the etapapproach.

4.3.1 Local Linear Regressions and Bandwidth Choice

As discussed above, local linear regressions provide gpacametric way of consistently estimating the
treatment effect in an RD design (Hahn et al. (2001), Po28038)). Following Imbens and Lemieux

(2008), we focus on the case of a rectangular kernel, whiduats to estimating a standard regression over
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a window of widthh on both sides of the cutoff point. While other kernels (tgalar, Epanechnikov, etc.)
could also be used, the choice of kernel typically has litipact in practice. As a result, the convenience
of working with a rectangular kernel compensates for efficjegains that could be achieved using more
sophisticated kernef¥.

The regression model on the left hand side of the cutoff geint

Y=a+pf (X—c)+¢&wherec-h<X <c,

while the regression model on the right hand side of the Eptuft is

Y=0+p0-(X—c)+€&,wherec< X <c+h.

As before, it is also convenient to estimate the pooled ssjpa

Y=o+T1T-D+B-(X—¢c)+(B—pB) -D-(X—c)+¢e,wherec-h< X <c+h,

since the standard error of the estimated treatment eféecbe directly obtained from the regression.
While it is straightforward to estimate the linear regreasiwithin a given window of widttn around
the cutoff point, a more difficult question is how to choosis tlandwidth. In general, choosing a bandwidth
in non-parametric estimation involves finding an optimalahae between precision and bias. One the
one hand, using a larger bandwidth yields more precise atBras more observations are available to
estimate the regression. On the other hand, the linearfi&dicin is less likely to be accurate when a
larger bandwidth is used, which can bias the estimate ofrdagrhent effect. If the underlying conditional
expectation is not linear, the linear specification willyid® a close approximation over a limited range of
values ofX (small bandwidth), but an increasingly bad approximatieara larger range of values f

(larger bandwidth).

301t has been shown in the statistics literature (Fan and Gijti996)) that a triangular kernel is optimal for estimgtincal
linear regressions at the boundary. As it turns out, the diffgrence between regressions using a rectangular onaguiar
kernel is that the latter puts more weight (in a linear way)bservations closer to the cutoff point. It thus involvesneating
a weighted, as opposed to an unweighted, regression withiim @f width h. An arguably more transparent way of putting more
weight on observations close to the cutoff is simply to réreste a model with a rectangular kernel using a smaller Wwadttd. In
practice, it is therefore simpler and more transparentsbgstimate standard linear regressions (rectangulaeBenxith a variety
of bandwidths, instead of trying out different kernels esponding to particular weighted regressions that are whi€fieult to
interpret.
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As the number of observations available increases, it besgmossible to use an increasingly small
bandwidth since linear regressions can be estimatedvaiatprecisely over even a small range of values
of X. As it turns out, Hahn et al. (2001) show the optimal bandwiidt proportional toN~%/5, which
corresponds to a fairly slow rate of convergence to zero. éxample, this suggests that the bandwidth
should only be cut in half when the sample size increases lagtarfof 32 (2). For technical reasons,
however, it would be preferable to undersmooth by shrinkivegbandwidth at a faster rate requiring that
hON=%with 1/5 < & < 2/5, in order to eliminate an asymptotic bias that would rem#iend = 1/5. In
the presence of this bias, the usual formula for the variafi@estandard least square estimator would be
invalid 3t

In practice however, knowing at what rate the bandwidth khahrink in the limit does not really
help since only one actual sample with a given number of @atiens is available. The importance of
undersmoothing only has to do with a thought experiment @f hmuch the bandwidth should shrink if the
sample size were larger so that one obtains asymptoticatlect standard errors, and does not help one
choose a particular bandwidth in a particular saniple.

In the econometrics and statistics literature, two procesiare generally considered for choosing band-
widths. The first procedure consists of characterizing @teral bandwidth in terms of the unknown joint
distribution of all variables. The relevant componentshig tlistribution can then be estimated and plugged
into the optimal bandwidth functiof? In the context of local linear regressions, Fan and Gijb£296)
show this involves estimating a number of parameters inmetuthe curvature of the regression function. In
practice, this can be done in two steps. In step one, a rdlleumib (ROT) bandwidth is estimated over the

whole relevant data range. In step two, the ROT bandwidtisesl o estimate the optimal bandwidth right

31See Hahn et al. (2001) and Imbens and Lemieux (2008) for meigs!sl

32The main purpose of asymptotic theory is to use the large laprpperties of estimators to approximate the distributo
an estimator in the real sample being considered. The issuétile more delicate in a non-parametric setting wher aro has
to think about how fast the bandwidth should shrink when trae size approaches infinity. The point about undersnopib
simply that one unpleasant property of the optimal bandwiglthat it does not yield the convenient least squaresnegiéormula.
But this can be fixed by shrinking the bandwidth a little faste the sample size goes to infinity. Strictly speaking, ithisnly
a technical issue with how to perform the thought experinfahat happens when the sample size goes to infinity?) redjtore
using asymptotics to approximate the variance of the RDnestir in the actual sample. This does not say anything abbat w
bandwidth should be chosen in the actual sample availablenfdementing the RD design.

33A well known example of this procedure is the “rule-of-thuhiiandwidth selection formula in kernel density estimation
where an estimate of the dispersion in the variable (stahdeviation or the interquartile range), is plugged into the formula
0.9-G-N~1/5, silverman (1986) shows that this formula is the closed feotution for the optimal bandwidth choice problem
when both the actual density and the kernel are Gaussian.alSeémbens and Kalyanaraman (2009), who derive an optimal
bandwidth for this RD setting, and propose a data-dependettiod for choosing the bandwidth.
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at the cutoff point. For the rectangular kernel, the ROT badth is given by:

o2R 1o
hrot = 2.702- <—~ ) )
M) {f1'(x)}

wherei’(-) is the second derivative (curvature) of an estimated regmefY on X, 0 is the estimated
standard error of the regressioR,is the range of the assignment variable over which the reigneds
estimated, and the constant 2.702 is a number specific toethangular kernel. A similar formula can
be used for the optimal bandwidth, except both the regressmndard error and the average curvature of
the regression function are estimated locally around theffcpoint. For the sake of simplicity, we only
compute the ROT bandwidth in our empirical example. Folfapihe common practice in studies using
these bandwidth selection methods, we also use a quartidispton for the regression functici.

The second approach is based on a cross-validation pracddiuhe case considered here, Ludwig and
Miller (2007) and Imbens and Lemieux (2008) have proposddae one out” procedure aimed specifically
at estimating the regression function at the boundary. Hse&hdea behind this procedure is the following.
Consider an observatidn To see how well a linear regression with a bandwikdtfits the data, we run a
regression with observatianleft out and use the estimates to predict the valu¥ att X = X;. In order
to mimic the fact that RD estimates are based on regresstonates at the boundary, the regression is
estimated using only observations with values<abn the left ofX; (X; —h < X < X;) for observations on
the left of the cutoff pointX; < c). For observations on the right of the cutoff poiif & c), the regression
is estimated using only observations with valueXaifn the right ofX; (Xj < X < X; +h).

Repeating the exercise for each and every observation, ingewgkole set of predicted values ¥fthat
can be compared to the actual value¥ off he optimal bandwidth can be picked by choosing the valire of
that minimizes the mean square of the difference betweeprtdicted and actual value Wt

More formally, Iet\?(xi) represent the predicted value of Y obtained using the remgnes described

above. The cross-validation criterion is defined as

N

SVl =y 5 (%-¥0%))" ©

34See McCrary and Royer (2003) for an example where the bariigigelected using the ROT procedure (with a triangular ker
nel), and McCall and Desjardins (2008) for an example wHegesécond step optimal bandwidth is computed (for the E ramileny
kernel). Both papers use a quartic regression funatipg) = By + B1X+ ...+ B4x*, which means thatt’ (x) = 25+ 6Bax+ 12B4%2.
Note that the quartic regressions are estimated sepamatddgth sides of the cutoff.
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with the corresponding cross-validation choice for thedvadth
2 = arg minCVy ().

Imbens and Lemieux (2008) discuss this procedure in mogal @etd point out that since we are primarily
interested in what happens around the cutoff, it may be abigsto only compute CMh) for a subset

of observations with values of close enough to the cutoff point. For instance, only obgemsa with
values ofX between the median value ¥fto the left and right of the cutoff could be used to perform the
cross-validation.

The second rows of Tables 2a and 2b show the local lineargsigreestimates of the treatment effect
for the two outcome variables (share of vote and winning tiad election). We show the estimates for a
wide range of bandwidths going from the entire data rangadwath of 1 on each side of the cutoff) to
a very small bandwidth of 0.01 (winning margins of one petaanless). As expected, the precision of
the estimates declines quickly as we approach smaller aatlesrhandwidths. Notice also that estimates
based on very wide bandwidths (0.5 or 1) are systematicattyel than those for the smaller bandwidths
(in the 0.05 to 0.25 range) that are still large enough forgsiimates to be reasonably precise. A closer
examination of Figures 6 and 7 also suggests that the estinfiat very wide bandwidths are larger than
what the graphical evidence would sugg®sThis is consistent with a substantial bias for these eséimat
linked to the fact that the linear approximation does notltmler a wide data range. This is particularly
clear in the case of winning the next election where Figuredivs some clear curvature in the regression
function.

Table 3 shows the optimal bandwidth obtained using the R@Tcerss-validation procedure. Consistent
with the above discussion, the suggested bandwidth ranges(.14 to 0.28, which is large enough to get
precise estimates, but narrow enough to minimize the biago ifteresting patterns can be observed in
Table 3. First, the bandwidth chosen by cross-validationideto be a bit larger than the one based on the
rule-of-thumb. Second, the bandwidth is generally smdtiewinning the next election (second column)
than for the vote share (first column). This is particulallyac when the optimal bandwidth is constrained

to be the same on both sides of the cutoff point. This is ctersisvith the graphical evidence showing more

35n the case of the vote share, the quartic regression shofigime 6 implies a treatment effect of 0.066, which is sultiy
smaller than the local linear regression estimates withrelwaith of 0.5 (0.090) or 1 (0.118). Similarly, the quartégression
shown in Figure 7 for winning the next election implies a tneant effect of 0.375, which is again smaller than the locaddr
regression estimates with a bandwidth of 0.5 (0.566) or@3@).
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curvature for winning the next election than the vote shatgch calls for a smaller bandwidth to reduce
the estimation bias linked to the linear approximation.

Figures A3 and A4 plot the value of the cross-validation fiorc over a wide range of bandwidths.
In the case of the vote share where the linearity assumpppeaas more accurate (Figure 6), the cross-
validation function is fairly flat over a sizable range ofwes for the bandwidth (from about 0.16 to 0.29).
This range includes the optimal bandwidth suggested byserakdation (0.282) at the upper end, and the
ROT bandwidth (0.180) at the lower end. In the case of winirggnext election (Figure A4), the cross-
validation procedure yields a sharper suggestion of optraadwidth around 0.15, which is quite close to
both the optimal cross-validation bandwidth (0.172) aredlROT bandwidth (0.141).

The main difference between the two outcome variables tddiger bandwidths start getting penalized
more quickly in the case of winning the election (Figure Adan in the case of the vote share (Figure
A3). This is consistent with the graphical evidence in Feggu6 and 7. Since the regression function
looks fairly linear for the vote share, using larger bandhsddoes not get penalized as much since they
improve efficiency without generating much of a bias. Buthia tase of winning the election where the
regression function exhibits quite a bit of curvature, éarigandwidths are quickly penalized for introducing
an estimation bias. Since there is a real trade off betwestigion and bias, the cross-validation procedure
is quite informative. By contrast, there is not much of a ¢raff when the regression function is more or
less linear, which explains why the optimal bandwidth igéairin the case of the vote share.

This example also illustrates the importance of first gnaphhe data before running regressions and
trying to choose the optimal bandwidth. When the graph shewsore or less linear relationship, it is
natural to expect different bandwidths to yield similarulés and the bandwidth selection procedure not to
be terribly informative. But when the graph shows substhmtiirvature, it is natural to expect the results
to be more sensitive to the choice of bandwidth and that batibdvgelection procedures will play a more

important role in selecting an appropriate empirical Sipeation.

4.3.2 Order of Polynomial in Local Polynomial Modeling

In the case of polynomial regressions, the equivalent talwaith choice is the choice of the order of the
polynomial regressions. As in the case of local linear regjioms, it is advisable to try and report a number
of specifications to see to what extent the results are sentitthe order of the polynomial. For the same

reason mentioned earlier, it is also preferable to estimeparate regressions on the two sides of the cutoff
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point.
The simplest way of implementing polynomial regressiond esmputing standard errors is to run a

pooled regression. For example, in the case of a third orlgnpmial regression, we would have

Y=a+T7-D+B1-(X—¢) 4+ B2 - (X—c)?+B3-(X—c)®

+(B1—Bi1)-D-(X—¢)+(B2—Bi2) D-(X—¢)*+ (Brz—Bi3) - D-(X—c)> +e.

While it is important to report a number of specificationslligsirate the robustness of the results, it is often
useful to have some more formal guidance on the choice ofrifer of the polynomial. Starting with Van
der Klaauw (2002), one approach has been to use a generatizestvalidation procedure suggested in the
literature on non-parametric series estimatéfsQne special case of generalized cross-validation (used by
Black et al. (2007a), for example), which we also use in oupieoal example, is the well known Akaike

information criterion (AIC) of model selection. In a regsem context, the AIC is given by
AIC = NIn(G?) +2p,

whered? is the mean squared error of the regression, giglthe number of parameters in the regression
model (order of the polynomial plus one for the intercept).

One drawback of this approach is that it does not provide u geod sense of how a particular para-
metric model (say a cubic model) compares relative to a mereigl non-parametric alternative. In the
context of the RD design, a natural non-parametric altermés the set of unrestricted means of the out-
come variable by bin used to graphically depict the data icti&e 4.1. Since one virtue of polynomial
regressions is that they provide a smoothed version of #yghgit is natural to ask how well the polynomial
model fits the unrestricted graph. A simple way of implentagntihe test is to add the set of bin dummies
to the polynomial regression and jointly test the signifaeiof the bin dummies. For example, in a first
order polynomial model (linear regression), the test candmeputed by includindg< — 2 bin dummieB,

fork=2toK — 1, in the model

K-1
Y=a+T1-D+f1-X—=¢)+(B1—L1)-D-(X—c)+ Z @B+ €,
K=2

365ee Blundell and Duncan (1998) for a more general discussiseries estimators.
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and testing the null hypothesis thgt= @ = ... = @«_1 = 0. Note that two of the dummies are excluded
because of collinearity with the constant and the treatrdammy, D.3” In terms of specification choice
procedure, the idea is to add a higher order term to the potiadauntil the bin dummies are no longer
jointly significant.

Another major advantage of this procedure is that testingthdr the bin dummies are significant turns
out to be a test for the presence of discontinuities in thees=gon function at points other than the cutoff
point. In that sense, it provides a falsification test of th design by examining whether there are other
unexpected discontinuities in the regression functiommadomly chosen points (the bin thresholds) . To see
this, rewritey |\ ; @By as

((tq(_ %71)Bk+’

M =

K
> @Bc=q@ +
&

k=2

whereB, = zﬁ-(:k Bj is a dummy variable indicating that the observation is inkor above, i.e. that the
assignment variablX is above the bin cutofby. Testing whether all they — @1 are equal to zero is
equivalent to testing that all thgg are the same (the above test), which amounts to testingiaegiression
line does not jump at the bin thresholds

Table 2a and 2b show the estimates of the treatment effe¢héovoting example. For the sake of
completeness, a wide range of bandwidths and specificatianpresented, along with the corresponding
p-values for the goodness-of fit test discussed above (awbdiidof 0.01 is used for the bins used to
construct the test). We also indicate at the bottom of thiesethe order of the polynomial selected for each
bandwidth using the AIC. Note that the estimates of the tmeat effect for the “order zero” polynomials
are just comparisons of means on the two sides of the cutaft,pghile the estimates for the “order one”
polynomials are based on (local) linear regressions.

Broadly speaking, the goodness-of-fit tests do a very gobdijting out clearly misspecified models,
like the zero order polynomials with large bandwidths thatd/upward biased estimates of the treatment
effect. Estimates from models that pass the goodness4estitnostly fall in the 0.05-0.10 range for the vote
share (Table 2a) and 0.37-0.57 for the probability of wignifable 2b). One set of models the goodness-
of-fit test does not rule out, however, is higher order poigia models with small bandwidths that tend to

be imprecisely estimated as they “overfit” the data.

3"While excluding dummies for the two bins next to the cutoffrpagields more interpretable results femains the treatment
effect), the test is invariant to the excluded bin dummiesyided that one excluded dummy is on the left of the cutofhipand
the other one on the right (something standard regressickagas will automatically do if alk dummies are included in the
regression).
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Looking informally at both the fit of the model (goodnessfibtest) and the precision of the estimates
(standard errors) suggests the following strategy: udeshigrder polynomials for large bandwidths of 0.50
and more, lower order polynomials for bandwidths betwed®b @nd 0.50, and zero order polynomials
(comparisons of means) for bandwidths of less than 0.06eghme latter specification passes the goodness-
of-fit test for these very small bandwidths. Interestinghis informal approach more or less corresponds
to what is suggested by the AIC. In this specific example,etrs®that given a specific bandwidth, the AIC

provides reasonable suggestions on which order of the polial to use.

4.3.3 Estimation in the Fuzzy RD Design

As discussed earlier, in both the “sharp” and the “fuzzy” R&sidns, the probability of treatment jumps
discontinuously at the cutoff point. Unlike the case of tharp RD where the probability of treatment
jumps from 0 to 1 at the cutoff, in the fuzzy RD case, the prdtigumps by less than one. In other words,
treatment is not solely determined by the strict cutoff naléhe fuzzy RD design. For example, even if
eligibility for a treatment solely depends on a cutoff ruief all the eligibles may get the treatment because
of imperfect compliance. Similarly, program eligibilityay be extended in some cases even when the cutoff
rule is not satisfied. For example, while Medicare eligipils mostly determined by a cutoff rule (age 65
or older), some disabled individuals under the age of 65 lamedigible.

Since we have already discussed the interpretation of asrof the treatment effect in a fuzzy RD
design in Section 3.4.1, here we just focus on estimationimptementation issues . The key message to
remember from the earlier discussion is that, as in a stdrndaframework, the estimated treatment effect
can be interpreted as a local average treatment effectidegbynonotonicity holds.

In the fuzzy RD design, we can write the probability of treatrinas

P D=1X=x)=y+ 0T +g(x—c),

whereT = 1[X > ¢] indicates whether the assignment variable exceeds thbiktjgthresholdc.3® Note
that the sharp RD is a special case where 0, g(-) = 0, andd = 1. It is advisable to draw a graph for

the treatment dummy D as a function of the assignment variéhlsing the same procedure discussed in

38Although the probability of treatment is modeled as a lingabability model here, this does not impose any restristion
the probability model sincg(x — c) is unrestricted on both sides of the cutoffwhile T is a dummy variable. So there is no need
to write the model using a probit or logit formulation.
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Section 4.1. This provides an informal way of seeing howdalg jump in the treatment probabilifyis at
the cutoff point, and what the functional forg(-) looks like.
SinceD = Pr(D = 1|X =Xx)+ v, wherev is an error term independent ¥f the fuzzy RD design can be

described by the two equation system:

Y=a+1D+f(X—-cC)+e¢, (10)

D =y+0T +g(X—c)+v. (11)

Looking at these equations suggests estimating the treagffectt by instrumenting the treatment dummy
D with T. Note also that substituting the treatment determiningaggn into the outcome equation yields
the reduced form

wheret; = 1- 9. In this setting,T;, can be interpreted as an “intent-to-treat” effect.

Estimation in the fuzzy RD design can be performed usingeeitte local linear regression approach or
polynomial regressions. Since the model is exactly idedtjifPSLS estimates are numerically identical to
the ratio of reduced form coefficients/d, provided that the same bandwidth is used for equationsafid)
(12) in the local linear regression case, and that the sadex of polynomial is used fag(-) and f (-) in
the polynomial regression case.

In the case of the local linear regression, Imbens and Len{i&208) recommend using the same band-
width in the treatment and outcome regression. When we ase ¢ a sharp RD design, the functign) is
expected to be very flat and the optimal bandwidth to be vedgwin contrast, there is no particular reason
to expect the functiorf (-) in the outcome equation to be flat or linear, which suggegtgitimal band-
width would likely be less than the one for the treatment équnaAs a result, Imbens and Lemieux (2008)
suggest focusing on the outcome equation for selectingvldtiy, and then using the same bandwidth for
the treatment equation.

While using a wider bandwidth for the treatment equation rbayadvisable on efficiency grounds,
there are two practical reasons that suggest not doing gst, bsing different bandwidths complicates
the computation of standard errors since the outcome aatirtemt samples used for the estimation are no

longer the same, meaning the usual 2SLS standard error® doager valid. Second, since it is advisable
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to explore the sensitivity of results to changes in the badthy“trying out” separate bandwidths for each
of the two equations would lead to a large and difficult-teefpret number of specifications.

The same broad arguments can be used in the case of locabposinregressions. In principle, a
lower order of polynomial could be used for the treatmenttign (11) than for the outcome equation (12).
In practice, however, it is simpler to use the same order dfrqmonial and just run 2SLS (and use 2SLS

standard errors).

4.3.4 How to compute standard errors?

As discussed above, for inference in the sharp RD case wesesstandard least squares methods. As usual,
it is recommended to use heteroskedasticity-robust stdretaors (White, 1980) instead of standard least
squares standard errors. One additional reason for doiimgtke RD case is to ensure the standard error of
the treatment effect is the same when either a pooled regnesstwo separate regressions on each side of
the cutoff are used to compute the standard errors. As wdig@issed, itis also straightforward to compute
standard errors in the fuzzy RD case using 2SLS methodgugithrobust standard errors should also be
used in this case. Imbens and Lemieux (2008) propose amaite way of computing standard errors
in the fuzzy RD case, but nonetheless suggest using 2SL8astherrors readily available in econometric
software packages.

One small complication that arises in the non-parametise cédlocal linear regressions is that the usual
(robust) standard errors from least squares are only vedidged that 0 N—° with 1/5 < & < 2/5. As we
mentioned earlier, this is not a very important point in fica; and the usual standard errors can be used

with local linear regressions.

4.4 Implementing Empirical Tests of RD Validity and Using Covariates

In this part of the section, we describe how to implemensteéthe validity of the RD design and how to
incorporate covariates in the analysis.

4.4.1 Inspection of the Histogram of the Assignment Varials

Recall that the underlying assumption that generates tted tandom assignment result is that each indi-

vidual has imprecise control over the assignment variasdajefined in Section 3.1.1. We cannot test this
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directly (since we will only observe one observation on thsignment variable per individual at a given
point in time), but an intuitive test of this assumption iseattrer theaggregatedistribution of the assign-
ment variable is discontinuous, since a mixture of indigidlevel continuous densities is itself a continuous
density.

McCrary (2008) proposes a simple two-step procedure fdintgesvhether there is a discontinuity in
the density of the assignment variable. In the first stepasgnment variable is partitioned into equally
spaced bins and frequencies are computed within those bhes.second step treats the frequency counts
as a dependent variable in a local linear regression. Seeag(2008), who adopts the non-parametric
framework for asymptotics, for details on this procedurneifiéerence.

As McCrary (2008) points out, this test can fail to detect@ation of the RD identification condition
if for some individuals there is a “jump” up in the densityfsaft by jumps “down” for others, making the
aggregate density continuous at the threshold. McCrarggR@also notes it is possible the RD estimate
could remain unbiased, even when there is important maatipal of the assignment variable causing a
jump in the density. It should be noted, however, that in ptdeely upon the RD estimate as unbiased, one
needs to invoke other identifying assumptions and canmpugpon the mild conditions we focus on in this
article3°

One of the examples McCrary uses for his test is the votinganofiLee (2008) that we used in the
earlier empirical examples. Figure 8 shows a graph of thedengities computed over bins with a bandwidth
of 0.005 (200 bins in the graph), along with a smooth secongrgpolynomial model. Consistent with
McCrary (2008), the graph shows no evidence of discongnaitthe cutoff. McCrary also shows that a

formal test fails to reject the null hypothesis of no disaomty in the density at the cutoff.

4.4.2 Inspecting Baseline Covariates

An alternative approach for testing the validity of the RBida is to examine whether the observed baseline
covariates are “locally” balanced on either side of theshodd, which should be the case if the treatment
indicator is locally randomized.

A natural thing to do is conduct both a graphical RD analysid a formal estimation, replacing the

dependent variable with each of the observed baseline iateainW. A discontinuity would indicate a

39McCrary (2008) discusses an example where students whiy fiaite test are given extra points so that they barely p@ks.
RD estimator can remain unbiased if one assumes that thosearehgiven extra points were chosen randomly from those who
barely failed.
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violation in the underlying assumption that predicts la@addom assignment. Intuitively, if the RD design
is valid, weknowthat the treatment variable cannot influence variablegmuiéted prior to the realization of
the assignment variable and treatment assignment; if werebd does, something is wrong in the design.
If there are many covariates W, even abstracting from the possibility of misspecificatdrthe func-

tional form, some discontinuities will be statisticallygsificant by random chance. It is thus useful to
combine the multiple tests into a single test statistic ®ikthe data are consistent with no discontinuities
for any of the observed covariates. A simple way to do thisiik & Seemingly Unrelated Regression (SUR)
where each equation represents a different baseline atwaaind then perform %2 test for the discontinu-
ity gaps in all questions being zero. For example, suppasiaginderlying functional form is linear, one

would estimate the system

Wy =01+DB1+Xy1+ &

Wk = ak + DBk + Xy + &

and test the hypothesis thgt,..., Bk are jointly equal to zero, where we allow tla&s to be correlated
across the& equations. Alternatively, one can simply use the OLS edé@maffs,..., Bk obtained from a
“stacked” regression where all the equations for each ¢teaare pooled together, whilzandX are fully
interacted with a set d dummy variables (one for each covariatg). Correlation in the error terms can
then be captured by clustering the standard errors on thdiiobservations (which appear in the stacked
dataseK times). Under the null hypothesis of no discontinuitieg, Wald test statistiNB’\? *1[3 (where[?

is the vector of estimates %, ..., Bk, andV is the cluster-and-heteroskedasticity consistent egtimfathe
asymptotic variance cﬁ!) converges in distribution to a2 with K degrees of freedom.

Of course, the importance of functional form for RD analysisans a rejection of the null hypothe-
sis tells us either that the underlying assumptions for tBed@sign are invalid, or that at least some of
the equations are sufficiently misspecified and too resteicso that nonzero discontinuities are being es-
timated, even though they do not exist in the population. @meéd use the parametric specification tests
discussed earlier for each of the individual equations toiEenisspecification of the functional form is
an important problem. Alternatively, the test could be perfed only for observations within a narrower

window around the cutoff point, such as the one suggestelddlpandwidth selection procedures discussed
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in Section 4.3.1.

Figure 9 shows the RD graph for a baseline covariate, the Dgatio vote share in the election prior
to the one used for the assignment variable (four years pitite current election). Consistent with Lee
(2008), there is no indication of a discontinuity at the dutdhe actual RD estimate using a quartic model
is -0.004 with a standard error of 0.014. Very similar resate obtained using winning the election as

outcome variable instead (RD estimate of -0.003 with a stahdrror of 0.017).

4.5 Incorporating Covariates in Estimation

If the RD design is valid, the other use for the baseline dates is to reduce the sampling variability in the
RD estimates. We discuss two simple ways to do this. Firgt,cam “residualize” the dependent variable —
subtract fronmY a prediction ofY based on the baseline covariat®s- and then conduct an RD analysis on
the residuals. Intuitively, this procedure nets out thdiporof the variation inY we could have predicted
using the pre-determined characteristics, making thetqueshether the treatment variable can explain the
remaining residual variation . The important thing to keep in mind is that if the RD desigmakd, this
procedure provides a consistent estimate of the same Rihptraof interest. Indeed, any combination of
covariates can be used, and abstracting from functional fssues, the estimator will be consistent for the
same parameter, as discussed above in equation (4). Imfpgrtais two-step approach also allows one to
perform a graphical analysis of the residual.

To see this more formally in the parametric case, supposésomiling to assume that the expectation
of Y as a function ofX is a polynomial, and the expectation of each elementas also a polynomial

function of X. This implies

Y = Dr+Xy+e¢ (13)

W = Xd+u

whereX is a vector of polynomial terms iX, & andu are of conformable dimension, asdandu are by
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construction orthogonal t andX. It follows that

Y-Wrm = Dr+Xy—Wm+e¢ (14)
= Dr+X(y—o6m—un+te

= DT+ Xy—um+e

This makes clear that a regressionYof Wt on D and X will give consistent estimates afandy. This
is true no matter the value af. Furthermore, as long as the specification in Equation (&3orrect,
in computing estimated standard errors in the second stepgcan ignore the fact that the first step was
estimated?©

The second approach — which uses the same assumptionsitinmplgjuation (13) — is to simply add
W to the regression. While this may seem to impose linearityonw W affectsyY, it can be shown that the
inclusion of these regressors will not affect the consistesf the estimator for.*! The advantage of this
second approach is that under these functional form assumspnd with homoskedasticity, the estimator
for T is guaranteed to have a lower asymptotic varigifcBy contrast, the “residualizing” approach can in
some casesaise standard error§

The disadvantage of solely relying upon this second apprdamwever, is that it does not help distin-

40The two-step procedure solves the sample analogue to fle/fol) set of moment equations:

EK ?( )(Yanberff(y)} =0

EW (Y ~Wrg)] = 0

As noted above, the second-step estimatorrfar consistent for any value af. Letting 8 = ( ; ) and using the notation of

Newey and McFadden (1994), this means that the first rdiy@f (1H) = —GglG7T is arow of zeros. It follows from their Theorem
6.1, with the 1,1 element &f being the asymptotic variance of the estimator fpthat the 1,1 element &f is equal to the 1,1
element onglE [g(z) g(z)’] Ggl’, which is the asymptotic covariance matrix of the secongeststimator ignoring estimation in
the first step.

4170 see this, re-write Equation (13) ¥s= D1 + X+ Da+ Xb+Wc+ 1, wherea, b, c, andu are linear projection coefficients
and the residual from a population regressioon D, X, andW. If a= 0, then addingV will not affect the coefficient orD.
This will be true — applying the Frisch-Waugh theorem — wHem ¢ovariance betweenandD — Xd —We (whered ande are
coefficients from projecting) on X andw) is zero. This will be true whea= 0, because is by assumption orthogonal to bdkh
andX. Applying the Frisch-Waugh theorem agaéris the coefficient obtained by regressiigon W — X3 = u; by assumption
andD are uncorrelated, se= 0.

42The asymptotic variance for the least squares estimatti@wt includingw) of T is given by the rati/ (¢) /V (f)) whereD is
the residual from the population regressiorbodn X. If W is included, then the least squares estimator has asymptstance of
o’V (D —Xd fWe), wheread? is the variance of the error whéH is included, andi ande are coefficients from projecting on
X andW. g2 cannot excee¥ (), and as shown in the footnote aboee; 0, and thusD — Xd = D, implying that the denominator
in the ratio does not change whihis included.

43From Equation (14), the regression error variance willéase iV (€ —um) >V (¢) <=V (urn) — 2C(g,um) > 0, which will
hold when, for example, whenis orthogonal tai andrtis nonzero.
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guish between an inappropriate functional form, and discortties inW, as both could potentially cause the
estimates of to change significantly whew is included** On the other hand, the “residualizing” approach
allows one to examine how well the residuals fit the assumeéedraf polynomial (using, for example, the
methods described in Subsection 4.3.2). If it does not fit,wil@kn it suggests that the use of that order of
polynomial with the second approach is not justified. Ovecale sensible approach is to directly enter the
covariates, but then to use the “residualizing” approachraadditional diagnostic check on whether the
assumed order of the polynomial is justified.

As discussed earlier, an alternative approach to estigpdtadiscontinuity involves limiting the estima-
tion to a window of data around the threshold and using afisgecification within that windo#? We note
that as the neighborhood shrinks, the true expectatidff gbnditional onX will become closer to being
linear, and so Equation (13) (witk containing only the linear term) will become a better appration.

For the voting example used throughout this paper, Lee (2808ws that adding a set of covariates
essentially has no impact on the RD estimates in the modeleathe outcome variable is winning the next
election. Doing so does not have a large impact on the stdmdeors either, at least up to the third decimal.
Using the procedure based on residuals instead actualytlslincreases the second step standard errors -
a possibility mentioned above. Therefore in this particeleample, the main advantage of using baseline
covariates is to help establish the validity of the RD des@gopposed to improving the efficiency of the

estimators.

4.6 A Recommended “Checklist” for Implementation

Below is a brief summary of our recommendations for the agiglypresentation, and estimation of RD

designs.

1. To assess the possibility of manipulation of the assignmewariable, show its distribution. The
most straightforward thing to do is to present a histograrthefassignment variable, using a fixed
number of bins. The bin widths should as small as possiblthout compromising the ability to

visually see the overall shape of the distribution. For aangxle, see Figure 8. The bin-to-bin jumps

441 the true equation fow contains more polynomial terms th&nthene, as defined in the preceeding footnotes (the coefficient
obtained by regressing on the residual from projecting/ on X), will not be zero. This implies that includingy will generally
lead to inconsistent estimatesmfand may cause the asymptotic variance to increase (\ss’i(b& Xd fWe) <V (5)).

45And we have noted that one can justify this by assuming thetanspecified neighborhood, the underlying function isict f
linear, and make standard parametric inferences. Or onearaduct non-parametric inference approach by making gssoms
about the rate at which the bandwidth shrinks as the sang@egsows.
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in the frequencies can provide a sense in which any jump athiteshold is “unusual”. For this
reason, we recommeratjainstplotting a smooth function comprised of kernel densityreates. A

more formal test of a discontinuity in the density can be tbhumMcCrary (2008).

. Present the main RD graph using binned local averagesAs with the histogram, we recommend
using a fixed number of non-overlapping bins, as describeSuinsection 4.1. For examples, see
Figures 6 and 7. The non-overlapping nature of the bins ferltical averages is important; we
recommend against simply presenting a continuum of nonpetric estimates (with a single break at
the threshold), as this will naturally tend to give the ingsien of a discontinuity even if there does not
exist one in the population. We recommend reporting binvgdinplied by cross-validation, as well
as the range of widths that are not statistically rejectefdvnor of strictly less restrictive alternatives
(for an example, see Table 1). We recommend generally “snusothing”, while at the same time
avoiding “too narrow” bins that produce a scatter of datanfsifrom which it is difficult to see the
shape of the underlying function. Indeed, we recommenchagaimply plotting the raw data without

a minimal amount of local averaging.

. Graph a benchmark polynomial specification. Super-impose onto the graph the predicted values
from a low-order polynomial specification (see Figures 6 @hdOne can often informally assess
by comparing the two functions whether a simple polynomedcsfication is an adequate summary
of the data. If the local averages represent the most flekitde-parametric” representation of the
function, the polynomial represents a “best case” scematerms of the variance of the RD estimate,
since if the polynomial specification is correct, underai@rtonditions, the least squares estimator is

efficient.

. Explore the sensitivity of the results to a range of bandwidhs, and a range of orders to the
polynomial. For an example, see Table 2. The table should be supplemeitte¢hformation on
the implied rule-of-thumb bandwidth and cross-validatimmdwidths for local linear regression (as
in Table 3), as well as the AIC-implied optimal order of thdymmmial. The specification tests
that involve adding bin dummies to the polynomial speciiarat can help rule out overly-restrictive
specifications. Among all the specifications that are neictefd by the bin-dummy tests, and among
the polynomial orders recommended by the AIC, and the etsgiven by both rule of thumb and

CV bandwidths, report a “typical” point estimate and a ranfipoint estimates. A useful graphical
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device for illustrating the sensitivity of the results tanblavidths is to plot the local linear discontinuity
estimate against a continuum of bandwidths (within a rarffdggodwidths that are not ruled out by
the above specification tests). For an example of such arpeg®s, see the online appendix to Card

et al. (2009b), and Appendix Figure B1.

5. Conduct a parallel RD analysis on the baseline covariatesAs discussed earlier, if the assumption
that there is no precise manipulation or sorting of the assant variable is valid, then there should be

no discontinuities in variables that are determined padhe assignment. See Figure 9, for example.

6. Explore the sensitivity of the results to the inclusion of baeline covariates.As discussed above,
the inclusion of baseline covariates — no matter how higlolyredated they are with the outcome —
should not affect the estimated discontinuity, if the naaipalation assumption holds. If the estimates
do change in an important way, it may indicate a potentidirapof the assignment variable that may
be reflected in a discontinuity in one or more of the baselm&adates. In terms of implementation,
in Subsection 4.5, we suggest simply including the covesigirectly, after choosing a suitable order
of polynomial. Significant changes in the estimated effecinoreases in the standard errors may
be an indication of a mis-specified functional form. Anothkeck is to perform the “residualizing”
procedure suggested there, to see if that same order ofgulghprovides a good fit for the residuals,

using the specification tests from point 4.

We recognize that due to space limitations, researcherso@mayable to present every permutation of pre-
sentation (e.g. points 2-4 for every one of 20 baseline ¢aies) within a published article. Nevertheless,
we do believe that documenting the sensitivity of the restdtthese array of tests and alternative speci-
fications — even if they only appear in unpublished, onlinpesyglices — is an important component of a

thorough RD analysis.

5 Special Cases

In this section, we discuss how the RD design can be implezddnta number of specific cases beyond the

one considered up to this point (that of a single cross-@edatiith a continuous assignment variable).
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5.1 Discrete Assignment Variable and Specification Errors

Up until now, we have assumed the assignment variable wasuaoons. In practice, howeveX is often
discrete. For example, age or date of birth are often onljlala at a monthly, quarterly, or annual fre-
quency level. Studies relying on an age-based cutoff thuisdily rely on discrete values of the age variable
when implementing an RD design.

Lee and Card (2008) study this case in detail and make a nuaibarportant points. First, with a
discrete assignment variable, it is not possible to compateomes in very narrow bins just to the right and
left of the cutoff point. Consequently, one must use regoassto estimate the conditional expectation of
the outcome variable at the cutoff point by extrapolatiors déscussed in Section 4, however, in practice
we always extrapolate to some extent, even in the case oftengons assignment variable. So the fact we
must do so in the case of a discrete assignment variable db@gnoduce particular complications from an
econometric point of view, provided the discrete variabladt too coarsely distributed.

Additionally, the various estimation and graphing techieis| discussed in Section 4 can readily be used
in the case of a discrete assignment variable. For instasojth a continuous assignment variable, either
local linear regressions or polynomial regressions carsbd to estimate the jump in the regression function
at the cutoff point. Furthermore, the discreteness of tlsgament variable simplifies the problem of
bandwidth choice when graphing the data, since in most ecasesan simply compute and graph the mean
of the outcome variable for each value of the discrete assigi variable. The fact the variable is discrete
also provides a natural way of testing whether the regressdel is well specified by comparing the fitted
model to the raw dispersion in mean outcomes at each valulkeecssignment variable. Lee and Card
(2008) show that, when errors are homoskedastic, the mpdelfication can be tested using the standard

goodness-of-fit statistic
ES&—ESSR)/(J—K)

_(
C= T ESsr/N-J)

whereES& is the estimated sum of squares of the restricted model {evg.order polynomial), while
ESgris the estimated sum of squares of the unrestricted modekvatill set of dummies (for each value
of the assignment variable) are included. In this unrdstlienodel, the fitted regression corresponds to the
mean outcome in each cet follows aF (J— K,N — J) distribution where] is the number of values taken
by the assignment variables akds the number of parameters of the restricted model.

This test is similar to the test in Section 4 where we suggdesieuding a full set of bin dummies in
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the regression model and testing whether the bin dummies j@itly significant. The procedure is even
simpler here, as bin dummies are replaced by dummies for\edah of the discrete assignment variable.
In the presence of heteroskedasticity, the goodness-stitan be computed by estimating the model and
testing whether a set of dummies for each value of the ds@ssignment variable are jointly significant.
In that setting, the test statistic follows a chi-squareritistion withJ — K degrees of freedom.

In Lee and Card (2008), the difference between the true tiondl expectatiorE[Y|X = x| and the
estimated regression function forming the basis of the gesstof-fit test is interpreted as a random spec-
ification error that introduces a group structure in the ddaa errors. One way of correcting the standard
errors for group structure is to run the model on cell méénénother way is to “cluster” the standard
errors. Note that in this setting, the goodness-of-fit tastalso be interpreted as a test of whether standard
errors should be adjusted for the group structure. In gracti is nonetheless advisable to either group the
data or cluster the standard errors in micro-data mode&lspective of the results of the goodness-of-fit test.
The main purpose of the test should be to help choose a rdag@tzurate regression model.

Lee and Card (2008) also discuss a number of issues includirag to do when specification errors
under treatment and control are correlated, and how to lpgsaidjust the RD estimates in the presence of
specification errors. Since these issues are beyond the sfdipis paper, interested readers should consult

Lee and Card (2008) for more detail.

5.2 Panel Data and Fixed Effects

In some situations, the RD design will be embedded in a pamategt, whereby period by period, the
treatment variable is determined according to the redbzaif the assignment variabk. Again, it seems
natural to propose the model

Yi =D T+ f (Xi;y) +a + &t

(wherei andt denote the individuals and time, respectively), and singslymate a fixed effects regression
by including individual dummy variables to capture the tgpecific error componeng;. It is important to
note, however, that including fixed effects is unnecessarydentification in an RD design. This sharply

contrasts with a more traditional panel data setting whegestror componers; is allowed to be correlated

46\When the discrete assignment variable —and the “treatnoemtimy solely dependent on this variable— is the only vagiakd
in the regression model, standard OLS estimates will be nigally equivalent to those obtained by running a weightgtession
on the cell means, where the weights are the number of oliE@rsdor the sum of individual weights) in each cell.
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with the observed covariates, including the treatmenta&iD;;, in which case including fixed effects is
essential for consistently estimating the treatment effec

An alternative is to simply conduct the RD analysis for thérerpooled-cross-section dataset, taking
care to account for within-individual correlation of the@s over time using clustered standard errors.
The source of identification is a comparison between thastebglow and above the threshold, and can be
carried out with a single cross-section. Therefore, immpsi specific dynamic structure introduces more
restrictions without any gain in identification.

Time dummies can also be treated like any other baselineriatwa This is apparent by applying the
main RD identification result: conditional on what periodkitwe are assuming the densityXfis continu-
ous at the threshold, and hence, conditionaKothe probability of an individual observation coming from
a particular period is also continuous.

We note that it becomes a little bit more awkward to use thefigetion proposed in Sub-section 4.5
for directly including dummies for individuals and time s on the right hand side of the regression.
This is because the assumption would have to be that the lglitp#hat an observation belonged to each
individual (or the probability that an observation belodde each time period) is a polynomial function in
X, and strictly speaking, nontrivial polynomials are not bded between 0 and 1.

A more practical concern is that inclusion of individual dumvariables may lead to dncreasein the
variance of the RD estimator for another reason. If thengts twithin-unit” variability in treatment status,
then the variation in the main variable of interest (treathadter partialling out the individual heterogeneity)
may be quite small. Indeed, seeing standard errors rise imhkrmling fixed effects may be an indication of
a mis-specified functional forr.

Overall, since the RD design is still valid ignoring indivi or time effects, then the only rationale
for including them is to reduce sampling variance. But treme other ways to reduce sampling variance
by exploiting the structure of panel data. For instance, areteeat the lagged dependent varialje; as
simply another baseline covariate in pertodin cases wher#; is highly persistent over timéf;_; may
well be a very good predictor and has a very good chance otimeglthe sampling error. As we have also
discussed earlier, looking at possible discontinuitiglsaseline covariates is an important test of the validity
of the RD design. In this particular case, sitvgecan be highly correlated with;_1, finding a discontinuity

in' Yy but not inY;;_; would be a strong piece of evidence supporting the validithe RD design.

47See discussion in Section 4.5.
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In summary, one can utilize the panel nature of the data bgwting an RD analysis on the entire
dataset, using lagged variables as baseline covariatéadosion as described in Subsection 4.5. The
primary caution in doing this is to ensure that for each mkribe included covariates are the variables

determinedprior to the present period’s realization X .

6 Applications of RD Designs in Economics

In what areas has the RD design been applied in economicrceSesVhere do discontinuous rules come
from and where might we expect to find them? In this sectionprexide some answers to these ques-
tions by providing a survey of the areas of applied economsearch that have employed the RD design.
Furthermore, we highlight some examples from the liteeatbat illustrate what we believe to be the most

important elements of a compelling, “state-of-the-artplementation of RD.

6.1 Areas of Research Using RD

As we suggested in the introduction, the notion that the Régtehas limited applicability to a few specific
topics is inconsistent with our reading of existing appliedearch in economics. Table 4 summarizes our
survey of empirical studies on economic topics that havezed the RD design. In compiling this list, we
searched economics journals as well as listings of workmygeps from economists, and chose any study
that recognized the potential use of an RD design in thegrgaetting. We also included some papers from
non-economists when the research was closely related tmpio work.

Even with our undoubtedly incomplete compilation of oves@@dies, Table 4 illustrates that RD designs
have been applied in many different contexts. Table 4 sumesthe context of the study, the outcome
variable, the treatment of interest, and the assignmerdblaremployed.

While the categorization of the various studies into broeghs is rough and somewhat arbitrary, it
does appear that a large share come from the area of edycatiere the outcome of interest is often an
achievement test score and the assignment variable is dksi acore, either at the individual or group
(school) level. The second clearly identifiable group ateliss that deal with labor market issues and
outcomes. This probably reflects that, within economiocs,RD design has so far primarily been used by
labor economists, and that the use of quasi-experimentpmagiam evaluation methods in documenting

causal relationships is more prevalent in labor econonaissarch.
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There is, of course, nothing in the structure of the RD desygmy it specifically to labor economics
applications. Indeed, as the rest of the table shows, thainémy half of the studies are in the areas of

political economy, health, crime, environment, and othiens.
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Table 4: Regression Discontinuity Applications in Econceni

Context Outcome(s) Treatment(s) Assignment variable(s)
Study
Education
Angrist and Lavy (1999) Public Schools (Grades Test scores Class size Student Enrollment
3-5), Israel
Asadullah (2005) Secondary Examination Pass Rate Class size Student Enrollment

Schools,Bangladesh

Bayer et al. (2007)

Valuation of schools and
neighborhoods, Northern

California

Housing prices, school test
scores, demographic

characteristics

Inclusion in school

attendance region

Geographic location

Black (1999)

Valuation of school quality,

Massachusetts

Housing prices

Inclusion in school

attendance region

Geographic location

Canton and Blom (2004)

Higher Education, Mexico

University enrollment,
GPA, Part-time

Employment, Career choice

Student Loan Receipt

Economic need index

Cascio and Lewis (2006)

Teenagers, United States

AFQT test scores

Age at school entry

Birthdate

Chay et al. (2005)

Elementary Schools, Chile

Test scores

Improved infrastructure,

more resources

School averages of test

scores

Chiang (2009)

School accountability,

Florida

Test scores, education

quality

Threat of sanctions

School’'s assessment score

Ding and Lehrer (2007)

Secondary school students

China

Academic achievement

(Test scores)

School assignment

Entrance examination

scores

Figlio and Kenny (2009)

Elementary and middle

schools, Florida

Private donations to school

D or F grade in school

performance measure

Grading points

Goodman (2008)

College enrollment,

Massachusetts

School choice

Scholarship offer

Test scores
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Goolsbee and Guryan

(2006)

Public schools, California

Internet access in

classrooms, test scores

E-Rate subsidy amount

Proportion of students

eligible for lunch program

Guryan (2001)

State-level equalization:
Elementary, Middle

Schools, Massachusetts

Spending on schools, test

scores

State education aid

Relative average property

values

Hoxby (2000)

Elementary Schools,

Connecticut

Test scores

Class size

Student Enrollment

Kane (2003)

Higher Education,

College attendance

Financial aid receipt

Income, Assets, GPA

California
Lavy (2002) Secondary Schools, Israel | Test scores, drop out rates | Performance based Frequency of school type in
incentives for teachers community
Lavy (2004) Secondary Schools, Israel | Test scores Pay-for-performance School matriculation rates
incentives
Lavy (2006) Secondary Schools, Tel Dropout rates, test scores | School choice Geographic location

Aviv

Jacob and Lefgren (2004a)

Elementary Schools,

Chicago

Test scores

Teacher training

School averages on test

scores

Jacob and Lefgren (2004)

Elementary Schools,

Chicago

Test scores

Summer school attendance

grade retention

, Standardized test scores

Leuven et al. (Forthcoming

Primary Schools,

Netherlands

Test scores

Extra funding

Percent disadvantaged

minority pupils

Matsudaira (2008) Elementary Schools, Test scores Summer school, grade Test scores
Northeastern United States promotion

Urquiola (2006) Elementary Schools, Test scores Class size Student Enrollment
Bolivia

Urquiola and Verhoogen Class size sorting- RD Test scores Class size Student Enrollment

(2009)

violations, Chile
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Van der Klaauw (2002,

1997)

College enrollment, East

Coast College

Enrollment

Financial Aid Offer

SAT scores, GPA

Van der Klaauw (2008a)

Elementary/Middle

Schools, New York City

Test scores, student

attendance

Title | federal funding

Poverty rates

Labor Market

Battistin and Rettore (2002

Job Training, Italy

Employment Rates

Training program

(computer skills)

Attitudinal test score

Behaghel et al. (2008)

Labor laws, France

Hiring among age groups

Tax exemption for hiring

firm

Age of worker

Black et al. (2003, 2007b)

Ul Claimants, Kentucky

Earnings, Benefit

receipt/duration

Mandatory reemployment
services (job search

assistance)

Profiling score (expected

benefit duration)

Card et al. (2007)

Unemployment Benefits,

Austria

Unemployment duration

Lump-sum severance pay,

extended Ul benefits

Months employed, job

tenure

Chen and van der Klaauw

(2008)

Disability Insurance

Beneficiaries, United States

Labor force participation

Disability insurance

benefits

Age at disability decision

De Giorgi (2005)

Welfare-to-work program,

United Kingdom

Re-employment probability

Job search assistance,

training, education

Age at end of

unemployment spell

DiNardo and Lee (2004) Unionization, United States| Wages, Employment, Union victory in NLRB \ote share
Output election
Dobkin and Ferreira (2009)| Individuals, California and | Educational Attainment, Age at school entry Birthdate
Texas Wages
Edmonds (2004) Child labor supply and Child labor supply, school | Pension receipt of oldest Age

school attendance, South

Africa

attendance

family member

Hahn et al. (1999)

Discrimination, United

States

Minority employment

Coverage of federal

antidiscrimination law

Number of employees at

firm
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Lalive (2008)

Unemployment Benefits,

Austria

Unemployment duration

Maximum benefit duration

Age at start of
unemployment spell,

geographic location

Lalive (2007)

Unemployment, Austria

Unemployment duration,
duration of job search,
quality of

post-unemployment jobs

Benefits duration

Age at start of

unemployment spell

Lalive et al. (2006)

Unemployment, Austria

Unemployment duration

Benefit replacement rate,

potential benefit duration

Pre-unemployment income

age

Leuven and Oosterbeek

Employers, Netherlands

Training, Wages

Business tax deduction,

Age of employee

(2004) training

Lemieux and Milligan Welfare, Canada Employment, marital status| Cash benefit Age
(2008) living arrangements

Oreopoulos (2006) Returns to Education, UK | Earnings Coverage of compulsory Birth year

schooling law

Political Economy

Albouy (2009) Congress, United States Federal Expenditures Party control of seat \ote share in election

Albouy (2008) Senate, United States Roll call votes Incumbency Initial vote share

Ferreira and Gyourko Mayoral Elections, United | Local Expenditures Incumbency Initial vote share

(2009) States

Lee (2008, 2001) Congressional elections, \ote share in next election | Incumbency Initial vote share
United States

Lee et al. (2004) House of Representatives, | Roll call votes Incumbency Initial vote share

United States

McCrary (2008) House of Representatives, | N/A Passing of resolution Share of roll call vote
United States “Yeay”
Pettersson-Lidbom (2006) | Local Governments, Expenditures, Tax Number of council seats Population

Sweden and Finland

Revenues
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Pettersson-Lidbom (2008)

Local Governments,

Expenditures, Tax

Left-, right-wing bloc

Left-wing parties’ share

Sweden Revenues

Health

Card and Shore-Sheppard | Medicaid, United States Overall insurance coverage| Medicaid Eligibility Birthdate
(2004)

Card et al. (2009a) Medicare, United States Health care utilization Coverage under Medicare | Age
Card et al. (2009b) Medicare, California Insurance coverage, Health Medicare coverage Age

services, Mortality
Carpenter and Dobkin Alcohol and Mortality, Mortality Attaining Minimum Legal Age

(2009)

United States

Drinking Age

Ludwig and Miller (2007)

Head Start, United States

Child mortality, educational

Head Start funding

County poverty rates

attainment
McCrary and Royer (2003) | Maternal Education, United| Infant health, fertility Age of school entry Birthdate
States, California and Texas timing
Snyder and Evans (2006) | Social Security recipients, | Mortality Social security payments Birthdate

United States

®)

Crime

Berk and DeLeeuw (1999)

Prisoner behavior in

California

Inmate misconduct

Prison security levels

Classification score

Berk and Rauma (1983)

Ex-prisoners recidivism,

California

Arrest, parole violation

Unemployment insurance

benefit

Reported hours of work

Chen and Shapiro (2004)

Ex-prisoners recidivism,

United States

Arrest rates

Prison security levels

Classification score

Lee and McCrary (2005)

Criminal Offenders, Florida

Arrest rates

Severity of Sanctions

Age at arrest

Hjalmarsson (2009)

Juvenile Offenders,

Washington State

Recidivism

Sentence length

Criminal history score

Environment
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Chay and Greenstone

(2003)

Health Effects of Pollution,

United States

Infant Mortality

Regulatory status

Pollution levels

Chay and Greenstone

(2005)

Valuation of Air Quality,

United States

Housing prices

Regulatory status

Pollution levels

Davis (2008)

Restricted driving policy,

Mexico

Hourly air pollutant

measures

Restricted automobile use

Time

Greenstone and Gallagher

(2008)

Hazardous Waste, United

States

Housing prices

Superfund clean-up status

Ranking of level of hazard

Other

Battistin and Rettore (2008

Mexican anti-poverty

program (PROGRESA)

School Attendance

Cash grants

Pre-assigned probability of

being poor

Baum-Snow and Marion

(2009)

Housing subsidies, United

States

Residents’ characteristics,

new housing construction

Increased subsidies

Percentage of eligible

households in area

Buddelmeyer and Skoufias

(2004)

Mexican anti-poverty

program (PROGRESA)

Child Labor and School

Attendance

Cash grants

Pre-assigned probability of

being poor

Buettner (2006)

Fiscal Equalization across

municipalities, Germany

Business tax rate

Implicit marginal tax rate

on grants to localities

Tax base

Card et al. (2008)

Racial segregation, United

Changes in census tract

Minority share exceeding

Initial minority share

States racial composition “tipping” point
Cole (2009) Bank nationalization, India | Share of credit granted by | Nationalization of private Size of bank
public banks banks
Edmonds et al. (2005) Household structure, Southl Household composition Pension receipt of oldest Age
Africa family member
Ferreira (2007) Residential Mobility, Household mobility Coverage of tax benefit Age

California

Pence (2006)

Mortgage credit, United

States

Size of Loan

State mortgage credit laws

Geographical location
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Pitt and Khandker (1998) Poor Households, Labor supply, children Group-based credit program Acreage of land

Bangladesh school enroliment
Pitt et al. (1999) Poor Households, Contraceptive Use, Group-based credit program
Bangladesh Childbirth Acreage of land

6.2 Sources of Discontinuous Rules

Where do discontinuous rules come from, and in what sitoatisould we expect to encounter them? As
Table 4 shows, there is a wide variety of contexts where digmoous rules determine treatments of interest.
There are, nevertheless, some patterns that emerge. Wezardgiae various discontinuous rules below.

Before doing so, we emphasize that a good RD analysis — asanithother approach to program
evaluation — is careful in clearly spelling out exactly wkia¢ treatment is, and whether it is of any real
salience, independent of whatever effect it might have erotitcome. For example, when a pre-test score
is the assignment variable, we could always define a “tremthas being “having passed the exam” (with a
test score of 50 percent or higher), but this is not a veryésting “treatment” to examine, since it seems
nothing more than an arbitrary label. On the other handjlihfathe exam meant not being able to advance
to the next grade in school, the actual experience of treatedcontrol individuals is observably different,
no matter how large or small the impact on the outcome.

As another example, in the U.S. Congress, a Democrat obgathe most votes in an election means
something real — the Demaocratic candidate becomes a repatige in Congress; otherwise, the Democrat
has no official role in the government. But in a three-way teled race, the treatment of the Democrat
receiving thesecond-moshumber of votes (versus receiving the lowest number) isikelyl a treatment
of interest: only the first-place candidate is given anydigive authority. In principle, stories could be
concocted about the psychological effect of placing secwattier than third in an election, but this would
be an example where the salience of the treatment is moralagiee than when treatment is a concrete and

observable event (e.g. a candidate becoming the sole ezpadise of a constituency).
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6.2.1 Necessary Discretization

Many discontinuous rules come about because resourcestcémmall practical purposes, be provided in a
continuous manner. For example, a school can only have sewhwhber of classes per grade. For a fixed
level of enrollment, the moment a school adds a single cthssaverage class size drops. As long as the
number of classes is an increasing function of enroliméete will be discontinuities at enrollments where
a teacher is added. If there is a mandated maximum for themstidd teacher ratio, this means that these
discontinuities will be expected at enrollments that acérnultiples of the maximum. This is the essence
of the discontinuous rules used in the analyses of Angrigtany (1999), Asadullah (2005), Hoxby (2000),
Urquiola (2006), and Urguiola and Verhoogen (2007).

Another example of necessary discretization arises whigaireh begin their schooling years. Although
there are certainly exceptions, school districts typycfdllow a guideline that aims to group children to-
gether by age, leading to a grouping of children born in yeag-intervals, determined by a single calendar
date (e.g. Sept. 1). This means children who are essentiathe same age (e.g. those born on Aug. 31
and Sept. 1), start school one year apart. This allocatiatuafents to grade cohorts is used in Cascio and
Lewis (2006), Dobkin and Ferreira (2009), and McCrary angdr@¢2003).

Choosing a single representative by way of an election isiyether example. When the law or consti-
tution calls for a single representative of some constityeand there are many competing candidates, the
choice can be made via a “first-past-the-post” or “winn&etall” election. This is the typical system for
electing government officials at the local, state, and faldevel in the United States. The resulting discon-
tinuous relationship between win/loss status and the Jmeess used in the context of the U.S. Congress
in Lee (2001, 2008), Lee et al. (2004), Albouy (2009), Albd@908), and in the context of mayoral elec-
tions in Ferreira and Gyourko (2009). The same idea is usegamining the impacts of union recognition,

which is also decided by a secret ballot election (DiNardd lage, 2004).

6.2.2 Intentional Discretization

Sometimes resources could potentially be allocated on #incmus scale, but in practice are instead done
in discrete levels. Among the studies we surveyed, we ifledtthree broad motivations behind the use of
these discontinuous rules.

First, a number of rules seem driven by a compensatory orligingamotive. For example, in Chay
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et al. (2005), Leuven et al. (Forthcoming), and Van der Kia&2008a), extra resources for schools were
allocated to the neediest communities, either on the b&sishmol-average test scores, disadvantaged mi-
nority proportions, or poverty rates. Similarly, Ludwigdaililler (2007), Battistin and Rettore (2008), and
Buddelmeyer and Skoufias (2004) study programs designeelpggpbbor communities, where the eligibility
of a community is based on poverty rates. In each of thesescage could imagine providing the most
resources to the neediest and gradually phasing them ohieased index declines, but in practice this is
not done, perhaps because it was impractical to provide sreafl levels of the treatment, given the fixed
costs in administering the program.

A second motivation for having a discontinuous rule is t@@dke treatments on the basis of some
measure of merit. This was the motivation behind the meréravirom the analysis of Thistlethwaite and
Campbell (1960), as well as recent studies of the effect ahfifal aid awards on college enroliment, where
the assignment variable is some measure of student acleewemntest score, as in Kane (2003) and Van
der Klaauw (2002).

Finally, we have observed that a number of discontinuoussrake motivated by the need to most
effectively target the treatment. For example, environaleregulations or clean-up efforts naturally will
focus on the most polluted areas, as in Chay and Greenst®8)(2Chay and Greenstone (2005), and
Greenstone and Gallagher (2008). In the context of crimirddavior, prison security levels are often
assigned based on an underlying score that quantifies @btsaturity risks, and such rules were used in

Berk and DeLeeuw (1999) and Chen and Shapiro (2004).

6.3 Non-randomized Discontinuity Designs

Throughout this article, we have focused on regressiorodiswity designs that follow a certain structure
and timing in the assignment of treatment. First, individuar communities — potentially in anticipation
of the assignment of treatment — make decisions and acttiadte altering their probability of receiving
treatment. Second, there is a stochastic shock due to &jatreflecting that the units have incomplete
control over the assignment variable. And finally, the treaxt (or the intention to treat) is assigned on the
basis of the assignment variable.

We have focused on this structure because in practice mosarRlyses can be viewed along these
lines, and also because of the similarity to the structura @ndomized experiment. That is, subjects of

a randomized experiment may or may not make decisions inipation to participating in a randomized
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controlled trial (although their actions will ultimatelyate no influence on the probability of receiving
treatment). Then the stochastic shock is realized (theoraightion). Finally, the treatment is administered
to one of the groups.

A number of the studies we surveyed though, did not seem thdispirit or essence of a randomized
experiment. Since it is difficult to think of the treatmenttesng locally randomized in these cases, we will

refer to the two research designs we identified in this cayjeg® “non-randomized” discontinuity designs.

6.3.1 Discontinuities in Age with Inevitable Treatment

Sometimes program status is turned on when an individuehesaa certain age. Receipt of pension benefits
is typically tied to reaching a particular age (see Edmog084); Edmonds et al. (2005)), and in the United
States eligibility for the Medicare program begins at agésg®e Card et al. (2009a)), and young adults reach
the legal drinking age at 21 (see Carpenter and Dobkin (308&nilarly, one is subject to the less punitive
juvenile justice system until the age of majority (typigakighteen) (see Lee and McCrary (2005)).

These cases stand apart from the typical RD designs distabsse because here assignment to treat-
ment is essentially inevitable, as all subjects will evafiyuage into the program (or, conversely, age out of
the program). One cannot, therefore, draw any parallels avitandomized experiment, which necessarily
involves some ex ante uncertainty about whether a unit ateityg receives treatment (or the intent to treat).

Another important difference is that the tests of smoothriedaseline characteristics will generally
be uninformative. Indeed, if one follows a single cohortrotme, all characteristics determined prior to
reaching the relevant age threshold lbyeconstructioridentical just before and after the cut6fNote that
in this casetimeis the assignment variable, and therefore cannot be matégulil

This design and the standard RD share the necessity of iateng the discontinuity as the combined
effect ofall factors that switch on at the threshold. In the example offléthwaite and Campbell (1960), if
passing a scholarship exam provides the symbolic honors#ipg the exanas well asa monetary award,
the true treatment is a package of the two components, andaomet attribute any effect to only one of the
two. Similarly, when considering an age-activated treatimene must consider the possibility that the age

of interest is causing eligibility for potentially many @hprograms, which could affect the outcome.

48There are exceptions to this. There could be attrition avee tso that in principle, the number of observations coigd d
continuously drop at the threshold, changing the compmsitif the remaining observations. Alternatively, when eixeéng a
cross-section of different birth cohorts at a given poirtirime, it is possible to have sharp changes in the charatitsris individ-
uals with respect to birthdate.
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There are at least two new issues that are irrelevant fotdinelard RD, but are important for the analysis
of age discontinuities. First, even if there is truly an effen the outcome, if the effect is not immediate,
it generally will not generate a discontinuity in the oute@ntor example, suppose the receipt of Social
Security benefits has no immediate impact, but does havegarionimpact on labor force participation.
Examining the labor force behavior as a function of age will yield a discontinuity at age 67 (the full
retirement age for those born after 1960), even though timerg be a long-run effect. It is infeasible to
estimate long-run effects because by the time we examimemds five years after receiving the treatment,
for example, those individuals who were initially just b&l@and just above age 67 will be exposed to
essentially the same length of time of treatment (e.qg. fiaes)é®

The second important issue is that because treatment igablevwith the passage of time, individu-
als may fully anticipate the change in the regime, and tloeeethey may behave in certain ways prior to
the time when treatment is turned on. Optimizing behaviaarticipation of a sharp regime change may
either accentuate or mute observed effects. For exampiglssiife-cycle theories, assuming no liquidity
constraints, suggest that the path of consumption willldkimio discontinuity at age 67, when Social Se-
curity benefits commence payment. On the other hand, someah@docedures are too expensive for an
under-65-year-old, but would be covered under Medicaretpming 65. In this case, individuals’ greater
awareness of such a predicament will tenéhtireasethe size of the discontinuity in utilization of medical
procedures with respect to age (e.g. see Card et al. (2009a))

At this time we are unable to provide any more specific guigdifor analyzing these age/time disconti-
nuities, since it seems that how one models expectatioftsniation, and behavior in anticipation of sharp
changes in regimes will be highly context-dependent. Bdibés seem important to recognize these designs
as being distinct from the standard RD design.

We conclude by emphasizing that when distinguishing beatveeg-triggered treatments and a standard
RD design, the involvement of age as an assignment varialrletias important as whether the receipt of
treatment — or analogously, entering the control stateneidgtable. For example, on the surface, the analysis
of the Medicaid expansions in Card and Shore-Sheppard J2Qikars to be an age-based discontinuity,
since effective July 1991, U.S. law requires states to colvidren born after September 30, 1983, implying

a discontinuous relationship between coverage and agegevite discontinuity in July 1991 was around

49By contrast, there is no such limitation with the standardd@Bign. One can examine outcomes defined at an arbitranidy lo
time period after the assignment to treatment.
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8 years of age. This design, however, actually fits quitelyeasio the standard RD framework we have
discussed throughout this paper.

First, note that treatment receiptristinevitable for those individuals born near the Septembefi 883
threshold. Those born strictly after that date were covémaa July 1991 until their 18th birthday, while
those born on or before the date received no such coveragen&ehe data generating process does follow
the structure discussed above. Parents do have some irluegerding when their children are born, but
with only imprecise control over the exact date (and at atg; laseems implausible that parents would have
anticipated that such a Medicaid expansion would have oed8 years in the future, with the particular
birthdate cutoff chosen). Thus the treatment is assigneédban the assignment variable, which is the
birthdate in this context.

Examples of other age-based discontinuities where neitiestireatment nor control state is guaranteed
with the passage of time that can also be viewed within thedstal RD framework include studies by

Cascio and Lewis (2006), McCrary and Royer (2003), Dobkith Berreira (2009), and Oreopoulos (2006).

6.3.2 Discontinuities in Geography

Another “non-randomized” RD design is one involving thedtion of residences, where the discontinuity
threshold is a boundary that demarcates regions. BlaclkOj1&9d Bayer et al. (2007) examine housing
prices on either side of school attendance boundariesitoastthe implicit valuation of different schools.
Lavy (2006) examines adjacent neighborhoods in differ@ms; and therefore subject to different rules
regarding student busing. Lalive (2008) compares unemptoy duration in regions in Austria receiving
extended benefits to adjacent control regions. Pence (20@8hines census tracts along state borders to
examine the impact of more borrower-friendly laws on maytghoan sizes.

In each of these cases, it is awkward to view either housearoiliés as locally randomly assigned.
Indeed this is a case where economic agents have quiteg@uagitrol over where to place a house or where
to live. The location of houses will be planned in responsgetographic features (rivers, lakes, hills) and in
conjunction with the planning of streets, parks, commégaelopment, etc. In order for this to resemble
a more standard RD design, one would have to imagine theargldoundaries being set in a “random”
way, so that it would be simply luck determining whether aseanded up on either side of the boundary.
The concern over the endogeneity of boundaries is cleatlygrized by Black (1999), who “...[b]ecause

of concerns about neighborhood differences on opposits siflan attendance district boundary, .... was
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careful to omit boundaries from [her] sample if the two atlemce districts were divided in ways that seemed
to clearly divide neighborhoods; attendance district&deid by large rivers, parks, golf courses, or any large
stretch of land were excluded.” As one could imagine, thedign of which boundaries to include could
quickly turn into more of an art than a science.

We have no uniform advice on how to analyze geographic disugities, because it seems that the best
approach would be particularly context-specific. It doesydver, seem prudent for the analyst, in assessing
the internal validity of the research design, to carefultmsider three sets of questions. First, what is the
process that led to the location of the boundaries? Whichedast: the houses or the boundaries? Were
the boundaries a response to some pre-existing geograghipalitical constraint? Second, how might
sorting of families or the endogenous location of housescafthe analysis? And third, what are all the
things differing between the two regionsher than the treatment of interes#®n exemplary analysis and

discussion of these latter two issues in the context of dadittendance zones is found in Bayer et al. (2007).

7 Concluding Remarks on RD Designs in Economics: Progress diProspects

Our reading of the existing and active literature is that terabeing largely ignored by economists for
almost 40 years — there have been significant inroads madedierstanding the properties, limitations,
interpretability, and perhaps most importantly, in thefulsapplication of RD designs to a wide variety of
empirical questions in economics. These developmentsfbatiee most part occurred within a short period
of time, beginning in the late 1990s.

Here we highlight what we believe are the most significanemécontributions of the economics lit-
erature to the understanding and application of RD desi§fis. believe these are helpful developments
in guiding applied researchers who seek to implement RDgdssiand we also illustrate them with a few

examples from the literature.

e Sorting and Manipulation of the Assignment Variable: Economists consider how self-interested
individuals or optimizing organizations may behave in mese to rules that allocate resources. lItis
therefore unsurprising that the discussion of how endagesorting around the discontinuity thresh-
old can invalidatethe RD design has been found (to our knowledge, exclusiielyhe economics
literature. By contrast, textbook treatments outside endos on RD do not discuss this sorting or

manipulation, and give the impression that the knowledgid@assignment rule is sufficient for the
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validity of the RD>0

We believe a “state-of-the-art” RD analysis today will cioles carefully the possibility of endoge-
nous sorting. A recent analysis that illustrates this stahds that of Urquiola and Verhoogen (2007),
who examine the class size cap RD design pioneered by Aragristavy (1999) in the context of
Chile’s highly liberalized market for primary schools. Incartain segment of the private market,
schools receive a fixed payment per student from the governméowever, each school faces a very
high marginal cost (hiring one extra teacher) for crossingudtiple of the class size cap. Perhaps
unsurprisingly, they find striking discontinuities in thistogramof the assignment variable (total en-
rollment in the grade), with an undeniable “stacking” of@als at the relevant class size cap cutoffs.
They also provide evidence that those families in schoaistfuthe left and right of the thresholds are
systematically different in family income, suggesting sodegree of sorting. For this reason, they
conclude that an RD analysis in this particular context istiikely inappropriat&!

This study, as well as the analysis of Bayer et al. (2007) aefla heightened awareness of a sorting
issue recognized since the beginning of the recent wave ofRflications in economic®. From

a practitioner’s perspective, an important recent devakaqt is the notion that we can empirically

examine the degree of sorting, and one way of doing so is stegjé McCrary (2008).

e RD Designs as Locally Randomized ExperimentsEconomists are hesitant to apply methods that
have not been rigorously formalized within an econometaofework, and where crucial identifying
assumptions have not been clearly specified. This is perba@of the reasons why RD designs
were under-utilized by economists for so long, since it iy oalatively recently that the underlying

assumptions needed for the RD were formalizeth the recent literature, RD designs were initially

50For example, Trochim (1984) characterizes the three dexgsamptions of the RD design as: 1) perfect adherence tuth#
rule, 2) having the correct functional form, and 3) no otlaetdrs (other than the program of interest) cause the discigty. More
recently, Shadish et al. (2002) claim on page 243 that thefbthe unbiasedness of RD primarily follows from the fauatt
treatment is known perfectly once the assignment variablemown. They go on to argue that this deterministic rule iegol
omitted variables will not pose a problem. But Hahn et al0@0make it clear that the existence of a deterministic ratetlie
assignment of treatment it sufficient for unbiasedness, and it is necessagstumehe influence of all other factors (omitted
variables) are the same on either side of the discontinkigshold (i.e. their continuity assumption).

51yrquiola and Verhoogen (2007) emphasize the sorting issumswell be specific to the liberalized nature of the Chilean
primary school market, and that they may or may not be présaiher countries.

525ee, for example, footnote 23 in Van der Klaauw (1997) ane 5@ in Angrist and Lavy (1999)

53An example of how economists’/econometricians’ notion gfraof differs from that in other disciplines is found in Cook
(2008), who views the discussion in Goldberger (1972a) aoldiierger (1972b) as the first “proof of the basic design’gtong
the following passage in Goldberger (1972a) (brackets f@muok (2008)): “The explanation for this serendipitous tegw bias
when selection is on an observed pretest score] is not haatabe. Recall that [a binary variable representing the treatment
contrast at the cutoff] is completely determined by presesirex [an obtained ability score]. It cannot contain any inforibat
aboutx* [true ability] that is not contained withir. Consequently, when we control aras in the multiple regressiomhas no
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viewed as a special case of matching (Heckman et al., 1999lternatively as a special case of
IV (Angrist and Krueger, 1999), and these perspectives nmae Iprovided empirical researchers
a familiar econometric framework within which identifyirgssumptions could be more carefully
discussed.

Today, RD is increasingly recognized in applied researcndistinct design that is a close relative to
a randomized experiment. Formally shown in (Lee, 2008)naevieen individuals have some control
over the assignment variable, as long as this control isagipe — that is, the ex ante density of the
assignment variable is continuous — the consequence wiitida¢ randomization of the treatment. So
in a number of non-experimental contexts where resoureealrcated based on a sharp cutoff rule,
there may indeed be a hidden randomized experiment toautind furthermore, as in a randomized
experiment, this implies that all observable baseline kates will locally have the same distribution
on either side of the discontinuity threshold — an empilyctstable proposition.

We view the testing of the continuity of the baseline couagaas an important part of assessing the
validity of any RD design — particularly in light of the ind@res that can potentially generate sorting
— and as something that truly sets RD apart from other evatuatrategies. Examples of this kind
of testing of the RD design include, Matsudaira (2008), Gardl. (2007), DiNardo and Lee (2004),
Lee et al. (2004), McCrary and Royer (2003), Greenstone aathgher (2008), and Urquiola and
Verhoogen (2007).

Graphical Analysis and Presentation: The graphical presentation of an RD analysis is not a contri-
bution of economist8} but it is safe to say that the body of work produced by econtsntias led to

a kind of “industry standard” that the transparent iderdifimn strategy of the RD be accompanied by
an equally transparent graph showing the empirical reidietween the outcome and the assignment
variable. Graphical presentations of RD are so prevaleapplied research, it is tempting to guess

that studies not including the graphical evidence are orntesravthe graphs are not compelling or

explanatory power with respectydthe outcome measured with error]. More formally, the @dxtorrelation ofy andz controlling
onx vanishes although the simple correlatiory@ndz is nonzero”.

After reading the article, an econometrician will recognthe discussion above not as a proof of the validity of the RD,
rather as a re-statement of the consequencebefing an indicator variable determined by an observed bigrdg in a specific
parametrized example. Today we know the existence of sualeasmot sufficienfor a valid RD design, and a crucial necessary
assumption is the continuity of the influence of all othetdas, as shown in Hahn et al. (2001). In Goldberger (1972a&)rdle of
the continuity of omitted factors was not mentioned (altjfoit is implicitly assumed in the stylized model of test &involving
normally distributed and independent errors). Indeedaspnily Goldberger himself later clarified that he did natose to propose
the RD design, and was instead interested in the issuesddtatselection on observables and unobservables (Coo8).200

54ndeed the original article of Thistlethwaite and Campk®l60) included a graphical analysis of the data.
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well-behaved.

In an RD analysis, the graph is indispensable because ititsamarize a great deal of information
in one picture. It can give a rough sense of the range of thie th& assignment variable and the
outcome variable, as well as the overall shape of the relstiip between the two, thus indicating
what functional forms are likely to make sense. It can alsot&he researcher to potential outliers in
both the assignment and outcome variables. A graph of thew@ans — in non-overlapping intervals,
as discussed in Section 4.1 — also gives a rough sense dk¢hedampling variability of the RD gap
estimate itself, since one can compare the size of the jurtig atiscontinuity to natural “bumpiness”
in the graph away from the discontinuity.

Our reading of the literature is that the most informativapdrs are ones that simultaneously allow
the raw data “to speak for themselves” in revealing a disoaity if there is one, yet at the same time
treat data near the threshold the same as data away fromrédshohd®®> There are many examples
that follow this general principle; recent ones include 8fakaira (2008), Card et al. (2007), Card et
al. (2009a), McCrary and Royer (2003), Lee (2008), and ereend Gyourko (2009).

e Applicability: Soon after the introduction of RD, in a chapter in a book oraesh methods, Camp-
bell and Stanley (1963) wrote that the RD design was “verjtdichin range of possible applications”.
The emerging body of research produced by economists intrgears has proven quite the opposite.
Our survey of the literature suggests that there are margdskir discontinuous rules that can help
answer important questions in economics and related atadeed, one may go so far as to guess
that whenever a scarce resource is rationed for individotties, if the political climate demands a
transparent way of distributing that resource, it is a goetdiere is an RD design lurking in the back-
ground. In addition, it seems that the approach of using gésun laws that disqualify older birth
cohorts based on their date of birth (as in Card and Shorpgainé (2004) or Oreopoulos (2006))
may well have much wider applicability.

One way to understand both the applicability and limitationthe RD design is to recognize its re-
lation to a standard econometric policy evaluation frantéywahere the main variable of interest is a
potentially endogenous binary treatment variable (asidered in Heckman (1978), or more recently

discussed in Heckman and Vytlacil (2005)). This selectiartlet applies to a great deal of economic

55For example, graphing a smooth conditional expectationtfan everywher@xcepit the discontinuity threshold violates this
principle.
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problems. As we pointed out in Section 3, the RD design dessra situation where you are able
to observethe latent variable that determines treatment. As long egénsity of that variable is
continuous for each individual, the benefit of observinglttent index is that one neither needs to
make exclusion restrictions nor assume any variable (nanstrument) is independent of errors in
the outcome equation.

From this perspective, for the class of problems that fitihéostandard treatment evaluation problem,
RD designs can be seen as a subset since there is an institutiulex-based rule playing a role in
determining treatment. Among this subset, the binding traim of RD lies in obtaining the neces-
sary data: readily available public-use household sunag,dor example, will often only contain
variables that are correlated with the true assignmenabtri(e.g. reported income in a survey, as
opposed to the income used for allocation of benefits), omm@sured too coarsely (e.g. years rather
than months or weeks) to detect a discontinuity in the pieseh a regression function with signif-
icant curvature. This is where there can be a significant foayanvesting in securing high quality

data, which is evident in most of the studies listed in Table 4

7.1 Extensions

We conclude by discussing two natural directions in whiehRID approach can be extended. First, we have
discussed the “fuzzy” RD design as an important departora fhe “classic” RD design where treatment is
a deterministic function of the assignment variable, bateéhare other departures that could be practically
relevant but not as well understood. For example, even ikthleperfect compliance of the discontinuous
rule, it may be that the researcher does not directly obgberassignment variable, but instead possesses
and a slightly noisy measure of the variable. Understanttiegeffects of this kind of measurement error
could further expand the applicability of RD. In additiohgete may be situations where the researcher both
suspects and statistically detects some degree of premisiegsaround the threshold, but that the sorting
may appear to be relatively minor, even if statisticallyndigant (based on observing discontinuities in
baseline characteristics). The challenge, then, is tafypeeder what conditions one can correct for small
amounts of this kind of contamination.

Second, so far we have discussed the sorting or manipulsole as a potential problem or nuisance
to the general program evaluation problem. But there ishamowvay of viewing this sorting issue. The

observed sorting may well be evidence of economic agent®neking to incentives, and may help identify
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economically interesting phenomena. That is, economieddehmay be what is driving discontinuities in
the frequency distribution of grade enrollment (as in Uodpiand Verhoogen (2007)), or in the distribution
of roll call votes (as in McCrary (2008)), or in the distriut of age at offense (as in Lee and McCrary
(2005)), and those behavioral responses may be of interest.

These cases, as well as the age/time and boundary disdtatmliscussed above, do not fit into the
“standard” RD framework, but nevertheless can tell us sbhimgtimportant about behavior, and further
expand the kinds of questions that can be addressed by &xgldiscontinuous rules to identify meaningful

economic parameters of interest.
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Table 1: Choice of Bandwidth in Graph for Voting Example

A. Optimal bandwidth selected by cross-validation

Side of cutoff Share of vote Win next election
Left 0.021 0.049
Right 0.026 0.021
Both 0.021 0.049

B. P-values of tests for the numbers of bins in RD graph

Share of vote Win next election
No. of bins  Bandwidth Bin test Regr. test Bin test Regr. test

10 0.100 0.000 0.000 0.001 0.000
20 0.050 0.000 0.000 0.026 0.049
30 0.033 0.163 0.390 0.670 0.129
40 0.025 0.157 0.296 0.024 0.020
50 0.020 0.957 0.721 0.477 0.552
60 0.017 0.159 0.367 0.247 0.131
70 0.014 0.596 0.130 0.630 0.743
80 0.013 0.526 0.740 0.516 0.222
90 0.011 0.815 0.503 0.806 0.803
100 0.010 0.787 0.976 0.752 0.883

Notes: Estimated over the range of the forcing variable (Democrat to
Republican difference in the share of vote in the previous election)
ranging between -0.5 and 0.5. The "bin test" is computed by comparing
the fit of a model with the number of bins indicated in the table to an
alternative where each bin is split in 2. The "regression test" is a joint
test of significance of bin-specific regression estimates of the outcome
variable on the share of vote in the previous election.
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Table 3: Optimal Bandwidth for Local Linear Regressions, Voting Example

Share of vote Win next election
A. Rule-of-thumb bandwidth
Left 0.162 0.164
Right 0.208 0.130
Both 0.180 0.141

B. Optimal bandwidth selected by cross-validation

Left 0.192 0.247
Right 0.282 0.141
Both 0.282 0.172

Notes: Estimated over the range of the forcing variable (Democrat to
Republican difference in the share of vote in the previous election)
ranging between -0.5 and 0.5. See the text for a description of the
rule-of-thumb and cross-validation procedures for choosing the
optimal bandwidth.
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Density

Figure 4: Density of Forcing Variable Conditional on W=w, U=u
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Figure 5. Treatment, Observables, and Unobservables in four research designs.

A. Randomized Experiment
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B. Regression Discontinuity Design
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