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1 Introduction

A basic principle in economics is that a particular location may specialize in a particular

activity for two broadly-defined reasons. First, the location might have some underlying

characteristic that gives it a natural advantage in the activity. Second, some type of scale

economy may be attained by concentrating (or agglomerating) production at the location.

When we observe specialization, we can ask about the roles these two factors play. For

example, Chicago became a major city because of its specialization as a transportation

hub. How much credit is due to its natural advantage (through its access to Lake Michigan

and the Chicago River), and how much is due to agglomeration benefits? (See Cronon

(1991) on this issue.) Los Angeles specializes in making movies. How much of this is

due to locational advantages (the weather, quick access to mountains and beaches, the large

number of beautiful people who live in the area), and how much to agglomeration benefits?

We tackle the question of why a location specializes in a setting where the geographic

scale is extremely narrow and the issues are illustrated in stark terms. We look at crop

choice on 160-acre square parcels of farmland called quarter sections. We observe that the

various fields within a quarter section tend to be planted the same way and ask: How much

of this specialization is due to natural advantage and how much is due to scale economies?

Obviously, natural conditions like soil quality and topography play key roles in deter-

mining what is planted. Indeed, agriculture is the textbook case for the role that natural

factors can play in the location of economic activity. Adjacent fields will tend to be similar

in attributes like soil quality and topography and for this reason it is no surprise to see

adjacent fields planted similarly.

Perhaps more subtly, scale economies also can also lead nearby fields to be planted

similarly. When a farmer is out in a field and has just run a particular piece of equipment,

the farmer can economize on setup costs by continuing on to the next field, treating it the

same way. Potential efficiencies extend beyond day-to-day field operations and include

economies involving specialized equipment, like a sugar beet harvester. When a farmer

acquires expensive equipment like this, the farmer needs to use the equipment on many

acres to justify its expense and ensure it gets sufficient utilization. So if the farmer includes

sugar beets in the crop rotation for one field, the farmer will have an incentive to include

sugar beets in the rotation of the neighboring fields. (We have more to say about crop

rotation in Section 2.) The issue of indivisibility applies to the farmer as well. Farmers can

have specialized knowledge that is crop specific. If a field is planted with a certain crop that

benefits from a particular kind of farmer knowledge, it will be advantageous for neighboring

fields to be planted the same way to fully utilize the farmer’s particular knowledge.



In standard concepts of scale economies there is no notion of geography; cost savings

are achieved by increasing scale at a particular point. With the scale economies considered

here, there is a notion of geography. Expanding a particular activity at one point (i.e.,

the planting of a particular crop on a particular field) makes it advantageous to expand the

activity at neighboring points (the neighboring fields). We use the term density economies

to distinguish this type of scale economies from the standard kind. We follow the literature

in using this terminology, as we explain below.

We are drawn to study the factors underlying agglomeration in agriculture because the

features of this industry allow for a particularly clean analysis. Agriculture is a unique

industry in terms of the extent to which it is possible to get a handle on the natural land

characteristics that determine natural advantage, such as the soil type, the slope of the land,

and moisture. Moreover, agriculture is a unique industry in terms of the extent to which

the crucial location characteristics can be taken as exogenous, since it is mainly dependent

on natural factors. The movie industry in Los Angeles benefits from its large supply of

beautiful people, but this characteristic depends upon the decisions of people to move there.

Our analysis will rely heavily on comparing the characteristics of neighboring fields. In most

related contexts, we would need to worry about a selection process for neighbors, with the

underlying units of analysis choosing who their neighbors are. But a field cannot pick itself

up and move around to select its neighbors.1 Glacial activity determined the characteristics

of a field’s neighbors long ago.

Before discussing results, we say a little more about our data. We focus on the long-run

average planting decisions in the Red River Valley region of North Dakota. We picked a

narrow geographic area because of computational considerations. The fertile Red River

Valley is ideal for our purposes because many years of crop data are available for this area

and because a wide variety of crops are planted in the area, making the analysis of which crop

to plant interesting. Detailed maps of land characteristics make it possible to determine

how characteristics vary throughout a quarter section (again, a 160-acre square parcel). We

combine this data with newly available maps of crop choice. Analogous to the data in

Burchfield et al. (2006), our data are based on pictures from the sky (satellite imagery), and

no confidentiality restrictions impede us from determining how a farmer is planting individual

quarter sections. In short, with the choice of this setting, we cleanly measure both the crucial

location characteristics and the activity choices at high geographic resolution.

We now provide some background about quarter sections. A quarter section is the

land unit that was distributed for free through the 1862 Homestead Act to individuals who

1See Evans, Oates, and Schwab (1992) for an example of a paper in the social interactions literature that

has to confront a situation in which neighbors are endogenous.
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promised to settle and farm the land. It is one-half mile on each side, so the area is a quarter

square mile. A virtually perfect grid of squares over North Dakota (and many other states)

was laid out in the early 1800s. A quarter section can be subdivided into quarter quarters

of forty acres each, which we call fields. The reader may be familiar with the terms “back

forty” and “front forty,” which refer to these units. We aggregate our data to the level of

these forty-acre fields and study the joint planting decisions of the four fields of a quarter

section.

We turn now to our results. In the reduced form of the structural model, if density

economies matter, the planting decision on a field depends not only on the soil characteristics

of the given field, but also on the soil characteristics of neighboring fields. We find strong

evidence of this link between neighbors. We estimate that for most crops, the weight placed

on a field’s neighbors is on the order of one-third, compared to two-thirds on the field’s

own characteristics. With the structural parameter estimates in hand, we can determine

what would happen to plantings if we were to shut down density economies across fields for

a particular crop. We estimate that long-run planting levels of the particular crop would

typically fall on the order of 40 percent.

Using our estimates we can also quantify the factors leading to crop specialization by

quarter sections within counties. That is, why we might see all four fields of one quarter

section planted with wheat, and in another quarter section within the same county, all

four fields planted with corn. Ellison and Glaeser (1997) have shown that any analysis

of geographic concentration with “small numbers” needs to take into account that some

concentration can emerge from “dartboard reasons.” In our analysis of specialization of

quarter sections, we have a small numbers issue because there are only four fields. Consider

the following extreme model of crop planting within a county. Suppose there are no density

economies and that the crop suitability of particular fields is independently and identically

distributed (i.i.d.) across the county, analogous to randomly throwing darts labeled “corn”

and darts labeled “wheat” at a county map. By chance, this process will result in some

quarter sections with all four fields that are wheat and other quarter sections with all four

fields that are corn. We are interested in concentration emerges beyond that occuring by

chance.

We expect that land is not i.i.d. across a county; rather, there is likely to be geographic

autocorrelation, since a natural event such as a glacial river or lake extends over a wider

area than a single field. Because of such a process, fields that are near each other–in

particular, those in the same quarter sections–will tend to specialize in the same crops

because they will have similar soils. Further, there is specialization in the same crop by the

four fields in a quarter section because of density economies. In Ellison and Glaeser (1997),
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concentration beyond the dartboard level through natural advantage and increasing returns

is formally equivalent. But here–with our structural estimates of the density economy

technology parameters and our estimates of the soil quality of each field–natural advantage

and increasing returns can be distinguished. We take the dartboard level of concentration

as a benchmark and decompose the contribution of natural advantage and density economies

in determining the degree to which specialization of quarter sections within counties extends

beyond the dartboard level. We estimate that natural advantage goes about two-thirds of

the way. Given our priors of a high degree of geographic autocorrelation in soils, it is not

surprising that the natural advantage contribution is big. We find it interesting that the

share accounted for by density economies, about one-third, is as big as it is.

We also address the issue that our results may be driven by correlated effects (in Manski

(1993)’s terminology) lurking in the background. That is, there may not be any connection

in decision making; the adjacent fields may simply have similar unobserved characteristics

that are not being adequately controlled for. We show that our findings cannot all be

attributed to correlated effects through a boundary analysis. We find that the link between a

field’s planting decision and its neighbor’s characteristics is attenuated when the neighboring

field is on the other side of one of several kinds of boundaries, including a quarter section

boundary and an ownership or administration boundary. We show that in terms of observed

soil characteristics, neighboring fields across such boundaries are no more different than

neighboring fields within such boundaries. Since the pattern of observed soil characteristics

does not change at a border, there is no reason to believe the pattern of unobserved soil

characteristics would change either. We conclude that the attenuation of the link between

neighbors is due to a reduction in the magnitude of density economies enjoyed across such

boundaries.

This paper is most closely related to the spatial literature on the economics of industry

location. The focus of much of this literature is determining the relative agglomerating force

of various types of scale economies (e.g., knowledge spillovers), leaving natural advantage

in the background (see Rosenthal and Strange (2004) for a survey). Ellison and Glaeser

(1999), Rosenthal and Strange (2001), and Ellison, Glaeser, and Kerr (2007) are exceptions

in that they jointly consider the forces of natural advantage and scale economies as we do.

One obvious way their work differs from ours is that they look at manufacturing in all of

the United States, whereas we look at crops in the Red River Valley. Our work also differs

substantively in approach. We take a within-industry approach and estimate a structural

economic model. Their paper takes a cross-industry nonstructural approach. By being very

narrow in our application, we are able to precisely measure natural advantage in a way that

would be impossible in an aggregate analysis of all manufacturing industries in the United
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States.

There is a long-standing interest in measuring economies of scale in farming and esti-

mating farm production functions more generally (see, for example, the survey by Battese

(1992)). For many studies, the primary interest is how average cost changes as farm oper-

ations incorporate more land. Our analysis holds fixed the land margin at the four fields

of a quarter section, and examines how costs vary when those four fields are planted more

intensively for a particular crop, i.e., at higher density. This is analogous to the way, with

respect to the airline industry, that Caves, Christensen, and Tretheway (1984) distinguish

between an airline increasing the number of routes it serves and increasing the frequency

of flights. They call cost savings from the latter economies of density, and we follow their

terminology.

Holmes (2008) provides a recent analysis of economies of density in Wal-Mart’s store

location problem. The cost saving that Wal-Mart can achieve by locating its stores close

together is conceptually similar to what a farmer can achieve by planting neighboring fields

the same way. Arzaghi and Henderson (2008) study density economies (networking benefits)

of advertising agencies by analyzing the location pattern of new advertising agencies in

Manhattan. One important way in which our study differs from typical farm productivity

analyses such as those cited in Battese (1992) is that we do not directly observe measures

directly related to productivity, such as bushels of output or labor or capital inputs. Rather,

we see soil conditions and crop choices. It is from the revealed preferences underlying these

choices that we infer density economy parameters. We finally cite the early study of Johnston

(1972) that discussed cost savings achieved when farmers operate land parcels that are close

together rather than dispersed.

2 Theory

We develop a variant of the linear-in-means social interactions model exposited in the survey

paper of Brock and Durlauf (2001b). Papers in this literature study the connection in the

behavior of neighboring decision units. For example, is a person more likely to commit a

crime if his neighbor commits a crime (an “endogenous effect,” in Manski’s terminology)?

An analogous question arises here: Is it more likely that soybeans will be planted in a field

if soybeans are planted in an adjacent field? Before getting into the details of the model, it

is useful to raise four points about the model.

First, while we motivate the existence of density economies by appealing to the existence

of indivisibilities in the use of specialized capital and gains from plowing the next row over
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the same as the previous one, we don’t explicitly model these various details about farming.

Instead, we capture these forces by writing down a reduced form profit structure where the

profitability of the planting choice on a particular field depends on the choices made on

neighboring fields. In the exercises we consider, estimates of the parameters of this profit

structure are sufficient for what we do.

Second, farmers typically pick crop rotations rather than individual crops. For example,

a farmer growing sugar beets would typically only plant beets every four years, rotating in

other crops the other years. One possibility would be sugar beets (year one), wheat (year

two), barley (year three), and wheat (year four). The basic issues that we are interested in

apply equally well when the choice variable is a rotation rather than a crop. For example, a

farmer choosing a rotation with sugar beets will need specialized equipment and knowledge

for sugar beets that a farmer choosing a two-year wheat/barley rotation will not need.

Explicitly modeling the underlying agricultural details that lead to crop rotation is beyond

the scope of this paper. Instead, we introduce in a reduced-form way an incentive to cycle

in, or out, a particular crop over time.

Third, the various economies we have in mind include those that emerge from daily

operations (e.g. from continuously operating a plow on adjacent fields) and those that

are longer term in nature (e.g. that involve utilization of long-lived equipment). In our

model, we explicitly differentiate these short run and long run considerations. However, it

is useful to alert the reader up front that in our estimation, we will be unable to separately

identify these two factors. Our identification strategy relies on relating planting decisions to

characteristics of adjacent fields like soil quality. If measurable field characteristics varied

over time, we could look at the dynamics of planting decisions to separate out short-run and

long-run considerations. But measurable field characteristics are constant over time, so we

are only able to identify the combined effect of short-run and long-run economies. For the

exercises we consider, this is sufficient.

Fourth, we simplify by modeling the planting decision of each crop in isolation. Implicitly,

when deciding how much to plant a particular crop, there is an opportunity cost in terms of

other crops that is captured in a reduced form way in the profit function for the particular

crop. In our view, the limitations of this approach are trumped by the benefits, at least for

a first cut. In particular, the approach delivers linear policy rules relating long-run average

planting levels to neighboring field characteristics. This makes the analysis quite tractable

and enables us to back out a structural interpretation from raw moments of the data.
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2.1 Details of the Model

We model the planting decisions on the four quadrants of a square piece of farmland. We

refer to the quadrants as fields and index them by  ∈ {1 2 3 4}. The fields are arranged
as illustrated in the following diagram:

1 2

3 4

Fields 2 and 3 are directly adjacent to field 1. We call directly adjacent pairs like these A

neighbors. Field 4 is diagonal to field 1 and 3 is diagonal to 2; we call such diagonal pairs

B neighbors. In our empirical work, a field corresponds to a 40-acre quarter quarter. The

four fields together make up a 160-acre quarter section.

There are  periods. For each field  and period , the farmer chooses . We interpret

this as the planting level of a particular crop, e.g., the quantity of soybeans planted on field

 in period . For each field  there is a variable  that determines the long-run suitability

of growing the particular crop. This reflects the underlying soil characteristics of field .

We will call this the permanent soil quality measure. In each period , each field  has a

transient quality measure . As this term can vary over time, it introduces a force in the

model to induce the farmer to cycle the planting of the crop, e.g. practice crop rotation.

We do not impose any restriction on how the  change over time or on the correlation of

the  across fields at a particular time. We do assume, without loss of generality, that

the  sum up to 0 over time for each field,

X


 = 0

Overall quality at a point in time is the sum  +  of the permanent and transient

components. Since the  sum to zero for each , the long-run average equality of field 

equals .

Given the vector of the  and the matrix of the , the farmer faces the problem of

picking a matrix of the  of plantings over fields and time to maximize total profit,

max


X


 (1)

where for simplicity we are ignoring discounting.
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The specification of the  is a key step. Assume that the profit on field 1 in period 

can be written as

1 = (1 + 1)1 − 1
2
21 +

1

2
1̄1 (2)

+
1

2
1 (2 + 3) +

1

2
1 (̄2 + ̄3) +

1

2
14 +

1

2
1̄4

for ̄ = (
P

 )  . The profit on the other fields is the symmetric equivalent to (2).
2

Observe first that the profit on field 1 depends upon its own field characteristic and its

own plantings: permanent soil quality 1 and transient quality 1, current planting 1,

and long run average planting ̄1. The interaction of 1 with ̄1 captures any long-run scale

economy that might arise from planting the same field the same way over time. If the

coefficient   0, then plantings on the same field in different periods are complements;

raising the planting level in one period makes it more profitable to raise planting in all

periods.

The profit also depends upon the interactions of its own planting 1 with the plantings

on the other fields. Fields 2 and 3 are the A neighbors (i.e., directly adjacent) to field

1, and the coefficients on these interactions are  and .  captures short-run density

economies between adjacent fields. If   0, then plantings on adjacent fields in the same

period are complements.  captures long-run density economies between adjacent fields. If

  0, then plantings on adjacent fields in different periods are complements. Field 4 is

the B neighbor (i.e., diagonal), and the coefficients on this interaction are  and . The

parameter  and 

 have the analogous roles for diagonal neighbors. Note the coefficients of

12 on the quadratic terms are a normalization on the units of profit that we impose without

loss of generality. We will refer to , 

 as the short run density economy parameters and

 

 as the long run density economy parameters.

Profit on field  does not directly depend upon the soil quality characteristic  of a

neighboring field . So this specification zeroes out what are variously called exogenous

or contextual effects.3 The profit on field  indirectly depends upon the soil qualities of

2Note that in the choice of 1, the farmer takes into account not only how 1 impacts its own field

profits {11 12  1}, but also how 1 impacts the profits from the other fields 2, 3, and 4. This differs

from the standard social interaction model where each unit is a separate maximizer, playing a game with

the other units (Brock and Durlauf (2001a), Bajari et al. (2006)). Here, it is not sensible to think of the

back forty as playing a game with the front forty.
3It is possible to think of stories in which exogenous effects might be present as well. For example,

perhaps the characteristics of neighboring fields affect the likelihood that there will be pests, and the pests

from the neighboring fields might spill over. As shown by Manski (1993), in linear structures such as this,

endogenous and exogenous effects cannot be separately identified. Since the latter strike us as second order,

we zero them out a priori.
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neighboring fields because these qualities influence the planting levels of the neighboring

fields, which in turn affect profitability on field . This is called an endogenous effect in the

literature (Manski (1993)).

The first-order necessary condition of problem (1) with respect to 1 (the other fields

are symmetric) yields

0 =  (1 + 1)− 1 + ̄1 +  (2 + 3) +  (̄2 + ̄3) + 4 + ̄4

Summing up the first order conditions over time we obtain

0 = 01 − ̄1 +  (̄2 + ̄3) +  ̄4 (3)

where

 ≡  + 

1− 
( = )

0 ≡ 

1− 


The parameter  combines the long-run and short-run density economies for neighbor type

. It is this parameter that we will go after in the empirical section as we are unable to

separately identify its components.

Solving equation (3) for field 1 and corresponding equations for the other fields, we obtain

the policy function that specifies the average planting on each field  as a function of the

vector of permanent field qualities (1 2 3 4). The policy function for field 1 (the other

fields are symmetric) is

̄1 = 1 + 2 + 3 + 4 (4)

where

 =
0
¡
1− 22 − 

¢
(1− 2 − )(1 + 2 − ) (1 + )

 =
0

(1− 2 − )(1 + 2 − )

 =
0
¡
22 +  − 2

¢
(1− 2 − )(1 + 2 − ) (1 + )

.
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We will refer to , , and  as the policy function parameters. The parameter  is

the coefficient on the field’s own quality, and  and  are the coefficients on neighboring

qualities. If the policy function parameters are known, we can work backward and solve for

the three structural parameters 0, , and  as follows:

0 =
( − ) (

2
 − 42 + 2 + 2)

2 − 22 + 

 =
 ( − )

2 − 22 + 

 =
−22 +  ( + )

2 − 22 + 
.

We summarize the density economies by defining the composite density parameter Θ as

Θ ≡ 2 + . (5)

We provide an interpretation of Θ by showing how the parameter summarizes the impact of a

hypothetical policy experiment shutting down density economies. Imagine a wall is erected

in a particular quarter section that separates all four fields in the quarter section, eliminating

all potential for density economies. Formally, after the wall, short-run and long-run density

economies are zero for both  and  neighbors,4 5

 =  =  =  = 0.

4In our model, there is only one crop with production level  . But implicitly when  is low, the land is

being used for something else, an outside alternative. In our experiment as we shut down density economies

for the crop in question, we are leaving matters alone for the outside good.
5For this discussion, we set Θ = 0 for one particular quarter section, holding it fixed in other quarter

sections. Otherwise, this aggregate change in technology might impact prices and ultimately the  parameter

(which can be interpreted as output price).
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Average plantings across the four fields equals

̄ ≡ ̄1 + ̄2 + ̄3 + ̄4

4
=
1

4
( + 2 + ) (1 + 2 + 3 + 4) (6)

=
0

1− 2 − 

1 + 2 + 3 + 4

4
(7)

=

µ
0

1−Θ

¶
1 + 2 + 3 + 4

4

=
0

1−Θ
̄,

where ̄ is average plantings, ̄ is average quality, and again Θ is the composite density

parameter in (5). We assume that

1−Θ  0 (8)

as otherwise the density economies are so big that there is no solution. We normalize 0

and the scaling of field quality so that

0

1−Θ
= 1. (9)

With this normalization, the policy function coefficients sum to 1 (0 + 2 +  = 1).

Suppose that the initial situation is that there is no wall. Given the normalization (9),

we see from (6) that with no wall, average field planting across the four fields equals average

field quality,

_ = ̄.

When the wall is erected it has the effect of reducing the composite density economies to

zero, Θ = 0, so average planting equals

 = 0̄ = (1−Θ) _.

Thus the composite density parameter has a structural interpretation as the fraction that

average plantings decrease on account of a wall. Note to identify the impact of this policy

experiment, we need not separately identify the short-run and long-run components of density

economies. This follows because both kinds are eliminated by a wall and only the sum

matters.

Density economies not only impact average planting across the four fields, they also

impact the dispersion of plantings across the four fields. We use the within quarter section
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variance as our dispersion measure,

 =

P4

=1 (̄ − ̄)
2

4
. (10)

It is intuitive that when density economies are substantial, it induces a farmer to plant the

four fields of a quarter section the same way. Our formal result is,

Proposition 1. Set  = 0 and vary Θ over its range [0 1] by varying . As Θ varies,

rescale  according to (9) to leave average plantings fixed. The variance measure (Θ)

strictly declines in Θ and goes to zero as Θ approaches its theoretical upper bound of 1.

Proof. See the Appendix.¥
Thus as Θ goes to its theoretical upper bound, plantings across the four fields are equalized.

2.2 The “Within” Specialization Measure

As we will see below, farmers tend to plant the four fields of a quarter section the same

way. The main task of this paper is to quantify the roles that density economies and natural

advantage play in this specialization. We first define the measure for this specialization and

show how we decompose it into a density economy share and natural advantage share. We

estimate the specialization measure and the shares in the empirical section.

Our specialization measure is based on the dispersion defined in (10) of plantings across

the four fields within a quarter section. Suppose we have a set of  quarters in an area (let’s

say a county) and let each quarter section be indexed by  = 1   . Let the county mean

within dispersion measure be

 =

P

=1 



where  is the planting dispersion of quarter section . The term “within” is included

here to emphasize that dispersion is first calculated within each quarter section and then

averaged.

The mean within dispersion measure  is closely related to specialization. When

 it is very small, fields within a quarter section tend to be planted the same way. As

a benchmark with which to compare , consider a hypothetical exercise where there

are no density economies and no natural advantages. In other words, (1) the planting of an

individual field is arbitrarily set to its field quality  =  and (2) all 4 fields in the

county are randomly reshuffled into groups of four that we call dartboard quarter sections

(as opposed to actual quarter sections). This idea of taking into account random dartboard

factors follows Ellison and Glaeser (1997). In the appendix, we show that if we were to
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calculate the county dispersion measure for this hypothetical exercise, for large  it would

approximately equal

 =
3

4

P

=4

P4

=1 ( − ̄)
2

4
.

With this benchmark in hand, we define the Within Specialization Measure by

 =
 − 


.

The Within Specialization Measure captures the specialization beyond what would happen

with a dartboard. If there are no density economies and if soils are randomly distrib-

uted across fields (with no tendency for adjacent fields to be correlated in soil types) then

 =  and the measure = 0. In this extreme case, there exists zero tendency

for fields in the same quarter section to be planted the same way (relative to the way other

fields in the county are planted). At the other extreme case, if the fields within each quarter

section are planted exactly the same way, then the within specialization measure  = 1.

We focus on the “within” measure because it is jointly determined by the two forces

highlighted in the title of the paper. First, as shown in Proposition 1 above, when density

economies are big, the four fields will tend to be planted the same way, meaning the within

measure will be big. Second, the natural advantage force will also contribute to making the

within measure big. This follows because we expect the soil qualities within a quarter to

be more highly correlated than across quarters. To decompose the relative importance of

these two factors, define an intermediate case where the natural advantage factor is taken

into account but not density economies. In particular, define

_ =

P

=1

P4

=1 ( − ̄)
2

4

where ̄ is the mean field quality of quarter  and let

_ =
 − _


.

If there are no density economies (Θ = 0), then _ will equal our overall

within measure  (since  =  in this case). If Θ  0, then density economies also
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contribute. The share of the credit that can be attributed to natural advantage is

Natural Advantage Share =
_


 (11)

while the balance of credit goes to density economies,

Density Economy Share =
 −_


. (12)

3 Econometric Issues

Rather than observe the scalar quality index , we observe a vector of characteristics 

with  elements for each field  on quarter section . As we will explain below, this vector

consists of variables such as dummy variables for soil type and local ground characteristics

such as slope. We assume the following:

 = 0 +  (13)

where the weight vector  on characteristics is unknown. Let  ≡ (1 2 3 4) be

the vector of unobserved quality components for quarter section  and analogously  ≡
(1 2 3 4). For simplicity, assume  are drawn i.i.d. across quarter sections. Make

the orthogonality restriction,

[
0
] = 0. (14)

To summarize, our assumption here is that there is a vector of soil characteristics  that we

do observe (such as soil and weather variables) and there are other things  that we miss.

And this measurement error  is unrelated to the soil characteristics that we do observe.

Inserting (13) into (4) yields

̄1 = 
0
1 + (

0
2 + 03) + 

0
4 + (1 +  (2 + 3) + 4)  (15)

Conceptually, there is no difficulty here because we can consistently estimate  and 

jointly with nonlinear least squares. In practice, this estimation approach is difficult when

the dimension of  is large, thereby complicating nonlinear optimization. A convenient

feature here is that once we fix  ≡ (  ), the equation is linear in  and we can
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use the ordinary least squares method to calculate the minimum sum of squared errors

conditional on . It is then easy to find the  giving the minimum sum of squared errors.

(See Appendix A.3 for how we calculate the standard errors of the estimates obtained with

this method.)

We emphasize that no restriction is imposed on the correlation of the error term across

fields within a quarter section. In particular, we allow

[0 ] ≥ 0

for  6= 0. Thus, we allow for correlated effects. It is likely that fields in the same quarter

section have an unobservable component of quality that will be correlated across the fields.

Because of this, even if  =  = 0, if ̄1 were regressed on its own measured soil quality 
0
1

and the other planting levels ̄2, ̄3, and ̄4...̄ , we would expect to see positive coefficients

on the neighboring planting levels. But when we regress ̄1 on its own measured soil quality

01 and the neighboring measured soil qualities 
0
2 

0
3 

0
3, the coefficients on the latter

will be zero if density economies are zero.

We note that we also get consistent estimates if we allow for measurement error in the

planting variables ̄ that is correlated across neighboring fields. Correlated measurement

error like this might show up due to clouds blocking the satellite view of neighboring fields.

4 Data

Three main data elements are used in our analysis. The first element is the boundary

information we use to define fields. The second element is data on crop choice. The third

is data on soil and other land characteristics. The analysis in Section 6 uses data on land

ownership and administration, but we defer description of this until later. Our data are

available online.6

4.1 Fields

The Public Land Survey System imposed a grid of squares upon the new lands of the young

United States. The Fifth Principal Meridian governing the origin of the grid for North

Dakota and nearby states was established in 1815 (Committee on Integrated Land Data

Mapping, 1982, p. 14). The grid consists of a hierarchy of different size squares. There are

6The link to the data can be found at http://strategy.sauder.ubc.ca/lee/research.html.
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four quarter sections (half mile a side) in a section (one mile a side). There are thirty-six

sections in a township (six miles a side). Figure 1 illustrates the section grid for Pembina

County, one of the counties in North Dakota included in our study.7 The eastern boundary

of the county is irregular, following the Red River. The northern boundary meets Canada,

so the top row is not full height. Otherwise, the section grid is a virtually perfect system of

one-by-one-mile squares.

We will analyze the farmer’s problem at the quarter section level, dividing it up into the

four quarter quarters that we call fields. A field is 40 acres or 1/16 of a square mile. Our

crop and soil data are at a higher resolution than the field level and we could, in principle,

have allowed for smaller decision making units, e.g. quarter quarter quarter sections of 10

acres. Our motivation for aggregating up to the 40 acre field level is that it makes the

analysis tractable and interpretable.

We study crop choice in the North Dakota Red River region. We define this region to

include all counties along the Red River on the eastern border of North Dakota as well as

the next layer of counties in. The twelve counties in this region are illustrated in Figure

2.8 (They are also listed as part of Table 2 below.) There are a total of 231,000 fields in the

region.9 Equivalently, there are 14 400 ≈ 231 00016 square miles, since there are 16 fields
in each square mile section.

4.2 Crops

Our crop data are from the Crop Data Layer (CDL) program of the National Agricultural

Statistics Service (NASS). The data are based on satellite images combined with survey

information on the ground. Using the survey data, the NASS estimates a model of how

satellite images correspond to crops. The map product contains the fitted values.

Compared to other states, North Dakota is special in that there exists a relatively long

panel of annual CDL data that begins in 1997. There is significant variation across states

in the availability of CDL data, since its collection depends upon the cooperation of state

agencies. For example, there currently is no analogous CDL data available for Minnesota,

which lies on the eastern side of the Red River Valley. The availability of many years of

data with which we can determine long-run average land use is an important reason why we

7The boundary files for sections are posted by the North Dakota State University Extension Geospa-

tial Education Project at http://134.129.78.3/geospatial/default.htm. We constructed the boundaries for

quarters and quarter quarters ourselves by subdividing the section boundaries.
8We excluded Barnes County, which is the second layer in from Cass County, because of concerns we had

about the data quality of our soil information for this county.
9We discard quarter quarters (QQs) that do not consist of a regular quarter mile by quarter mile square.

These nonregular QQs are negligible in land area. In footnote 10 we explain our precise criteria.
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picked North Dakota over other states.

The resolution of the crop data is at the level of 30 meter by 30 meter squares (approx-

imately four points per acre). We use the program ArcGIS to strip the crop information

from the map product offered by NASS. We take a fixed grid of points 30 meters apart and

for each year locate the point in the CDL map to determine the crop associated with this

point in each year. There are 40.8 million points in the grid for our twelve-county region.

Table 1 lists the land use classifications and the fraction of grid points in each category

averaged over our 1997—2006 sample period.10 The most common category is “Spring

wheat,” which has a .223 share. “Soybeans” is next, and then “Pasture” and “Fallow/idle

cropland.” Urban activity is negligible in this area, as can be seen from the .017 share for

“Urban.” The category “Clouds,” with a .028 percent share, is for observations where the

satellite view of the point in a given year is blocked by clouds.

Next we map each grid point from the crop data into the field that contains it. Figure 3

illustrates some fields in Pembina County and the grid points they contain. The dark lines

are the quarter section boundaries. The lighter lines are field boundaries within a quarter

section. As can be seen in Figure 3, we trim off the points near the border of each field and

use only interior points. We want to be careful not to misclassify a point near a border as

being in an adjacent field. Each field side is .25 miles (400 meters). We trim the points

that are .03 miles (48 meters) on each side of the border. Each field has approximately 100

points in the interior.11

Suppose crops are indexed by  and grid points indexed by . Let  = 1 if crop  is

planted at grid point  in year  and set it to zero otherwise. Let ̄ be the mean value of

 over the years in the sample. For example, if wheat is planted at grid point  in five of

the ten years, then ̄ = 1
2
. Farmers in the region commonly practice crop rotation, and

one such rotation is to alternate between wheat and soybeans. If this rotation is practiced

at point , then ̄ = 1
2
.

To aggregate the grid point crop information to the level of a field, we define ̄ to

be the mean of ̄ over all the grid points  in the interior of field  on quarter section .

This long-run average for each field corresponds to variable ̄ in our econometric model.
12

10The table uses the category definitions from the 2005 CDL. In 2006, the Conservation Reserve Program

was shifted from the “Pasture” category to the “Fallow/idle cropland” category, resulting in a large shift

between these categories. Over the years, there have also been a few reclassifications for some small crops

like canola. These reclassifications do not matter for any of the major crops.
11We drop fields that have more than 130 points or less than 66 points. The soil information is missing

for some points, and we also drop fields if more than 10 percent of their points have missing information.

These cases represent a negligible land area.
12The selected data and programs used in the paper are posted at http://strategy.sauder.ubc.ca/lee/

research.html.

17



Table 2 presents the summary statistics for ̄ by county and overall for the two major

crops, spring wheat and soybeans. We can see in this table that there is variation in crop

choice across counties. For example, the soybean share is relatively low in the northern

counties (.04 in Cavalier, .09 in Pembina) and high in the southern counties (.23 in Sargent,

.27 in Richland). There is also substantial variation across fields within each county.

4.3 Soil

Our soil data are taken from the Soil Survey Geographic (SSURGO) database maintained by

the U.S. Department of Agriculture. Any given county can have hundreds of different soil

types. The SSURGO data map the location of the various soils at a high level of resolution

and provide underlying soil and ground characteristics for each soil type. The soil taxonomy

is a standard soil classification system based on soil-forming processes, wetness, climatic

environment, major parent material, soil temperature, soil moisture regimes, and so on. It

has different classification levels: order—suborder—great group—subgroup—family—series, and

the SSURGO data set has the first four. With the four levels, there are 1,200 types of soils

in the system, and the areas we consider have 67 of them. The data come in the form of a

map boundary file. We take each point in our above-mentioned 30 meter by 30 meter grid

and use the SSURGO data to determine the soil and ground characteristics of that point.

As with the crop variables, we average the soil variables across points in a field to obtain

, the value of soil characteristic  on field  of quarter section . Let  be the vector

of the  characteristics. In our analysis, this vector will include 67 dummy variables

for different soil taxonomy codes, plus slope, aspect, air temperature, annual precipitation,

elevation, annual unfreezing days, soil loss tolerance factor ( factor), wind erosion index

(wei), latitude, longitude and their quadratic terms, and 12 dummy variables for counties.

Altogether, there are  = 110 characteristics.

The SSURGO soil map data are considered reliable enough to have widespread use in

practical applications. The maps can be found in real estate listings for farm property

analogous to the way in which listings of houses for sale include pictures of each room. The

detailed soil information is used in North Dakota to determine land value assessments for

property taxes.

We demonstrate the utility of the soil data for our purposes by running some preliminary

regressions. We regress the planting choice  at the field level on the field’s own soil char-

acteristics, ignoring the characteristics of the field’s neighbors. We run the regression for

each of the twelve counties for each crop separately, so all of the variation in field character-

istics is coming from within-county variation in soil variables. To interpret this regression
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in terms of our model, note that if there are no density economies,  =  = 0, then the

policy function coefficients on neighboring qualities  and  equal zero and it is possible

to consistently identify (up to a multiplicative scalar) the field attribute coefficients  in

(15) through an ordinary least squares (OLS) regression. Table 3 reports, for each crop,

the mean value of the 2 of this regression averaged over the 12 counties. It also reports

the minimum, median and maximum. Recall that the crops are sorted so that the most

important crops come first. The 2 tends to be fairly high for the more important crops.

The mean 2 across the twelve counties is .34 for spring wheat and .24 for soybeans. The

2 is less for the smaller crops, but it is still non-negligible. Some of these smaller crops,

such as sugar beets or potatoes, tend to be concentrated in particular counties, so the 2 is

naturally higher in the places where the crops are grown.

One final point about soil is that human behavior can impact soil properties–what soil

scientists call the anthropogenic impact. In the Red River Valley, the largest anthropogenic

impact was due to cooperative efforts to drain most of the land beginning in the early 1900s.

This effort resulted in a legal drain system regulated by county governments. Since these

efforts were regional in nature, they rarely led to differences in soil conditions at property

line boundaries. A producer’s management decisions can impact nutrients and stored soil

moisture conditions for next year’s crop, but these seasonal use-dependent variables are not

measured as part of routine soil surveys. Farming practices employed over a long period of

time can impact erosion and result in changes in near-surface soil properties. However, in

the Red River Valley region, farmers have tended to use similar, proven practices on this

valuable land. Most of the soils in the Red River Valley did not suffer the Dust Bowl erosion

problems in the 1930s, as areas farther west and south did. According to Mike Ulmer, the

USDA-NRCS senior regional soil scientist for the Northern Great Plains, most significant

variations in soil variables for the Red River Valley region are due to natural soil genesis

rather than human behavior.13

5 Basic Analysis

This section conducts the basic empirical analysis. The first part estimates the structural

model parameters. The second part uses the model estimates to examine the contributions

of density economies and comparative advantage to specialization.

13We are grateful to Mike Ulmer for his help with this paragraph. The USDA-NRCS is the U.S. Depart-

ment of Agriculture, Natural Resources Conservation Service.
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5.1 Parameter Estimates

The structure parameters of our model consist of density economy parameters  and 

and the field quality coefficients . (The field quality coefficients  and 0 are scaled so

that (9) holds, and 0 drops out.) We use the nonlinear least squares procedure discussed in

Section 3 to estimate the structural parameters of equation (15) for each crop.

Our baseline estimates are obtained by estimating the model on a crop-by-crop basis

jointly for all twelve counties together.14 The density parameters ,  are assumed to be

the same in each county and the soil characteristics vector  is the same, except that we

allow for county dummies in the soil vector. These estimates are reported in Table 4. The

policy function estimates as well as the structural parameter estimates are reported. (The

coefficients on soil quality are too numerous to report here but are available upon request.)

We begin our discussion with the policy parameter estimates. The robust pattern across

all the crops is that the planting rule for a given field depends heavily on the neighboring

fields. Furthermore, as one would expect, the effect is stronger with the type A neighbors

that are immediately adjacent as compared to the type B diagonal neighbor. Given the

scaling (9), the policy parameters sum to one (0 + 2 +  = 1). If there were no

density economies, then the own quality coefficient  would equal one. It is apparent in

the table that  is substantially less than one for all of the crops. Consider spring wheat,

for example. The weight on own field quality is .66. The weight  on the two adjacent

fields is .13 each, and the weight  on the diagonal is .09. Altogether, fully one-third of

the weight in the planting decision of spring wheat for a particular field depends upon the

qualities of the other fields in the quarter section.

We turn now to the structural parameters. The robust pattern across all the crops is that

the density economy parameter  for adjacent fields is significantly positive. The parameter

 is substantially smaller in each case. The last column contains Θ, the composite density

parameter (equal to 2 + ). Recall the interpretation for Θ discussed above. If density

economies are shut down for a particular crop at a particular quarter section, this is the

decline in planting of the crop, expressed as a share of the initial planting. For wheat,

the decline share would be .389. For most of the other crops, the decline is even bigger.

The estimated density economies are sufficiently big that if the farmer were precluded from

enjoying them for a particular crop, we predict there would be a substantial reduction in the

planting of the crop.

Next we discuss the robustness of our estimates under alternative specifications and data

restrictions. We focus on the robustness of our estimate of the composite Θ because this is a

14We use only those quarter sections with four complete fields.
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useful summary statistic. The baseline specification imposes that the structural parameters

are constant across all counties including the soil coefficients. Our first robustness check is

to estimate the model separately for each of the twelve counties. In Table 5 we report our

average estimate of Θ. There is little difference in the result. The average Θs are higher

than the baseline model estimates for seven crops and lower for the other five crops.

Next we consider what happens when we throw out quarter sections that contain land that

is other than prime farmland. Our soil data contain a ranking of soil quality with categories

like “prime farmland,” “farmland of local importance,” and “not prime farmland.” For our

baseline, we leave in all of the categories because the issues we are interested in very much

apply here. A farmer might be more willing to plant wheat on a field that is not prime

farmland if it is next to a field that is. Still, it is interesting to see what happens when we

condition on all of the land being prime farmland so that all variation in soils is then within

the prime farmland category. When we restrict attention to quarter sections where all four

fields are 100 percent prime farmland, we eliminate 46 percent of the observations. Table

5 shows the results. The composite density parameter Θ actually tends to increase when

the model is estimated on the prime farmland subsample, going from .389 to .578 for wheat,

.422 to .598 for soybeans, and .672 to .825 for corn.

5.2 What Determines Specialization?

In the theory section, we defined the within specialization measure and decomposed it into

natural advantage share and density economy share. We do not directly observe actual soil

qualities. But with our parameter estimates, we can compute fitted values. We take the

fitted values of soil quality and the fitted values of crop choice and plug these into our formulas

for the specialization measure and shares. We evaluate means at the level of a county. For

example, we calculate _ for a particular crop by differencing out the mean in

each county. Then we average over the county-level variances. So the specialization we

examine compares quarter sections within the same county. Table 6 reports the results.

Recall that the within specialization measure captures specialization beyond what would

happen with a dartboard. The measure would be zero if there were no density economies

and soil quality were distributed i.i.d. within each county. The measure becomes one if all

the four fields of each quarter section were planted exactly the same way. Table 6 shows

that the measure is roughly .9 throughout various crops, which indicates a strong tendency

for specialization within quarter sections. We decompose this specialization measure into

the natural advantage share and the density economy share. Table 6 shows that roughly

two thirds of the specialization is due to natural advantage and one third is due to density
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economies.

6 Further Analysis

The key empirical finding of the previous section is that planting in a land parcel depends

on neighboring soil characteristics in addition to those of the parcel itself. From this exhib-

ited behavior, we recover structural parameters in which density economies are significant.

A natural concern in interpreting any result like this is that there are some unobservable

characteristics of the given land parcel that are somehow being captured by the measured

soil characteristics of the neighbors. The most plausible candidate here is some kind of mea-

surement error in soil classification. Perhaps a soil scientist made a mistake in classifying

one field but got things correct on an adjacent field. For example, suppose type  soil is

good for corn and type  is good for wheat. Actual soil types of nearby fields tend to be

correlated, and it may be that all of the fields of a quarter section are type  . If one field

is mistakenly classified as –and we see wheat planted on this field–we might mistakenly

attribute this to density economies flowing from the adjacent wheat fields.

Here we explore the issue by examining what happens across the borders of quarter

sections, taking an approach in the spirit of Holmes (1998). The idea is that if all of our

results are entirely due to soil measurement error issues and the like, then we should get

similar results when we look at fields that cross quarter section boundaries and ownership

boundaries. But if our results are arising from density economies, then we would expect

the results to be attenuated at such boundaries, because such boundaries are relatively

more likely to be boundaries between farm operations. We expect the potential for density

economies to be less when adjacent fields are managed by different operations.

The first part of this section introduces additional data on farm operations. The second

part presents simple descriptive evidence to make our point. In the last part, we reestimate

our model with some of the additional data brought in.

6.1 Ownership Data

Here we introduce additional data related to ownership. The data make the point that quar-

ter section boundaries are closely connected to ownership and administration boundaries.

Recall we earlier defined the  neighbors of a field to be the two directly adjacent neigh-

boring fields in the same quarter section. As illustrated in Figure 4a, a field has two

additional adjacent neighbors in different quarter sections. Call these the  neighbors of a
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field.

For one of the counties of our study, Cass County, we have obtained a file containing

all the land parcels in the county and the name of the owner of each parcel.15 We take

each point in our above-mentioned 30 meter by 30 meter grid and map it to our parcel

information. We then aggregate up to the field level.16

In Table 7, we examine differences in ownership at field boundaries. For this analysis, we

exclude fields categorized as urban from the soil file information (approximately 2 percent

of the observations) and fields where one of the owner names is blank at the field boundaries

(slightly more than 1 percent of observations). We classify boundaries of adjacent fields

as to whether the fields are  neighbors or  neighbors. We see from Table 7 that for

 neighbors, in a fraction .87 of the time, the two fields are part of the same legal land

parcel. In contrast, if the fields are  neighbors–again, meaning that they are separated

by a quarter section boundary–in only .01 of the time are the fields part of the same legal

parcel. Table 7 makes clear that in this county, legally defined land ownership parcels are

essentially quarter sections.

Even when adjacent fields are contained in different legal parcels, it still may be the case

that the two parcels are held by the same owner. The table also shows the fraction of cases

where owner name is identical for the adjacent fields.17 At  borders, the match rate goes

from .87 for parcels to .92 for owner name. At  borders, the match rate goes from .01 to

.29. So we see that ownership commonly crosses quarter section boundaries. Nevertheless,

in well more than half of the cases, adjacent fields that cross quarter section boundaries are

held by owners with different names.

Even when ownership names differ across quarter section boundaries, the fields may be

operated as part of the same operation. Fields held within the same family can be listed

under different names (e.g., a wife’s or grandmother’s maiden name). And farmers can

operate land that they lease. The Department of Agriculture maintains a database of

farm operation boundaries but does not publicly release this information. However, before

2008, it released a data product that we can use to draw inferences about farm operation

boundaries. (The 2008 Farm Act bans release of the data from this point forward, so we are

lucky to get the data when we did.) The data are geospatial information on “Common Land

Units” (CLUs). These are the reporting units for government subsidy programs. CLUs are

15This GIS shapefile is posted by the Cass County government at http://www.casscountynd.gov/

departments/gis/Download.htm/. We used the file that was current as of 2007/07/30.
16In the rare cases where there are different owner names within the same field, we assign ownership to

the modal name.
17Identical owner name is defined as a match on the first five characters. Last name is listed first, so this

permits matches on different first names. It does not make much difference if we require a match on all the

characters.
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typically quarter sections, though there is much variation. The public release of the CLU

data did not disclose the individual operators. Nevertheless, it was published in such a way

that we were able to manipulate it to determine which county office administers the federal

farm programs for each field.18 Typically, a field is administered by the office in the same

county as the field. But there are cases where farm operations cross county boundaries, and

in such cases it is typically convenient for the farmer to work with a single administrative

office. In such a case, a field can be administered by an office in a different county from

where the field is located.

The bottom part of Table 7 shows our results for the county administrator variable in

Cass County. Adjacent fields being administered by different counties is relatively rare. Out

of about 54,000 adjacent field pairs, this happens only 1,002 times. When this does happen,

it is 10 times as likely to occur when the pair crosses quarter section boundaries (type )

than not (type )–1,002 instances versus 110. For these type  borders, the fraction of

cases with the same ownership name falls from .30 if the administrator is the same to only

.06 if the administrator is different. We take this as solid evidence that a difference in county

administrator across field boundaries is a good signal of a difference in farm operations across

field boundaries. This is useful because we have the county administrator variable for all our

counties but have the legal parcel information just for Cass County. Below, we use both

variables.

6.2 Evidence of Planting Discontinuities at Quarter Section

Boundaries

This part makes the point that soil quality does not change discontinuously at quarter section

boundaries, but planting does. We begin with a graphical illustration. Figure 5a provides

a map of soil boundaries for a particular area in our sample and an overlay of the quarter

section boundaries. It illustrates there is heterogeneity in soils within a field. Given the

arbitrary way in which quarter section boundaries were drawn back in the early 1800s, we

expect to see no connection with soil boundaries and no connection is evident here.

Figure 5b provides a crop map over the same area. The connection between crop borders

and quarter section borders is readily evident. So we see that crops change at quarter

section boundaries but soil does not.

We now make the same point in a table. In column 1 of Table 8, we report the mean

within quarter section deviation of soil quality for each crop, normalized by the mean plant-

18The county-level CLU data happen to contain (1) all the CLUs in the county plus (2) CLUs outside the

county that are administered by the county.
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ings for the crop.19 The statistic reported is like a coefficient of variation. Note that the

variation of soil quality within quarter sections is significant, the statistic ranging from about

.12 to .24 throughout the various crops. The existence of this within quarter section soil

heterogeneity is a key part of our identification strategy.

To explain the second column, we introduce the concept of a fake quarter section. As

illustrated in Figure 4b, we imagine the quarter section boundaries were drawn one-quarter

mile to the west and one-quarter mile to the north, compared to the way they were actually

drawn. As before, there are four fields in a fake quarter section. But now we see that each

field is actually in a different true quarter section. Now field boundaries are actually quarter

section boundaries.

In column 2, we do the same calculation as for column 1, except we calculate the standard

deviation of soils within each fake quarter section. The two columns are virtually the same.

Just as in Figure 5a, soil changes are unrelated to quarter section boundaries.

The last two columns report the standard deviation within each quarter section in actual

average plantings, again normalized by the mean levels. The variation is much greater

across boundaries in the fake quarters than within boundaries for the actual quarters. This

is consistent with the sharp delineation in crop boundaries illustrated in Figure 5b.

6.3 Extended Model Estimates

We reestimate our earlier model in three different ways and show how taking into account

boundary considerations impacts the results. The results are in Table 9. For the sake of

comparison with our earlier work, we repeat in the first column of Table 9 our baseline

estimate of the Θ from Table 4.20

The first exercise reestimates the model exactly as we did in Table 4, except we use the

fake quarters rather than the actual quarters. Recall that the distribution of soils for the

fake quarters is the same as for the actual quarters. We get very different results with

the fake quarters. The estimate of Θ is attenuated for all of the crops. For example, for

wheat, the coefficient falls from .39 to .32, soybeans .42 to .37, corn .67 to .56. Now we are

not surprised that we are still getting estimates of significant density economies even in the

fake quarters, because we expect density economies are larger and extend beyond quarter

sections, an issue we raise in the conclusion. Our main point is that a measurement error

19For each quarter section  we compute the standard deviation across the four fields and then take the

mean over all quarter sections over all 12 counties. We divide by mean plantings for each crop, which

approximately equals the means in Table 1. (The slight difference arises because a few incomplete quarter

sections are thrown out here.)
20We get a slightly different number of observations because we use only the fields that have all three

neighbors in the same fake squares.
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story for why we are getting positive estimates for Θ cannot account for why these estimates

would be attenuated at quarter section boundaries.

The second exercise estimates the model with actual quarters, as in our original approach.

But now we use information about county administration. We estimate a specification of

the reduced form policy function so that plantings in neighboring given fields are weighted

by  and  as before if they are administered by the same county. But if a different county

(and then likely a different operation), we assume the weights are  and . So the

parameter  is like a discount factor. In the estimates, there is clear pattern of substantial

discounting. We focus our discussion on the major crops. For spring wheat, soybeans, and

corn, the discount factors are .59, .70, .51. These are substantially below one.

The third exercise is analogous to the second exercise. But now we discount when the

name is different rather than when the county administrator is different. We use data from

Cass County because that is all that is available. For all but the negligible crops at the

bottom of the list where there is little data, there is a clear pattern of discounting. For

example, for spring wheat, soybeans, and corn the estimated discount factors are .78, .67,

and .81. Again, these are well less than one, but not zero. We do not expect these to come

out to zero, because farm operation boundaries clearly can cross ownership name boundaries

through rental markets and through different names in the same family. Again, the point

here is that alternative explanations for our positive estimates of  and  based on some

kind of measurement error that is averaged out across field boundaries cannot account for

why the estimates are significantly attenuated at name change boundaries. Our density

economy explanation can account for this pattern.

One last thing to note is that planting patterns can change at ownership boundaries

because different farmers may have different skills for different crops. We do not regard

this point as an alternative explanation of the phenomenon we have identified but rather

an instance of what we are emphasizing. If a crop is to be planted on a particular field,

it is good to have a farmer to work the field whose skill set is a good match for the crop.

But given the indivisibilities involved with farm labor, it will be desirable to have that same

farmer work adjacent fields.

7 Conclusion

For the quarter sections in North Dakota’s Red River Valley, we estimate the determinants

of crop specialization. We quantify the relative contributions of Ellison-Glaeser dartboard

effects, natural advantage (land characteristics), and scale economies (density economies
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here). These kinds of decompositions are difficult to provide in most settings. We are able

to get somewhere in this setting because (1) the natural advantage factor in agriculture is

overwhelming, (2) we are able to get extremely detailed data at a narrow geographic level

on land characteristics and choice, and (3) in the early 1800s, the United States government

drew an arbitrary square grid of quarter sections in the landscape, and we make heavy use

of this grid.

We believe the major limitation of this paper is that it does not take into account density

economies that extend beyond the quarter section level. The average farm size in North

Dakota from recent Census figures is eight quarter sections.21 Of course, planting decisions

at the individual farm operation level will extend more broadly over a farm’s operations

and not just a single quarter section. Moreover, we expect that scale economies extend

beyond individual farm operations because the fixed costs of infrastructure such as grain

elevators, sugar beet processing plants, and research in location-specific seeds are spread

over many farms, and as neighboring farmers share knowledge. Once we start expanding

the geographic scope to be big enough to cross individual farm operations, we need to bring

in various game-theoretic coordination issues and externality issues. As a first step, we

picked a land unit–a quarter section–small enough that we could be confident it was all

under the same management, but large enough so that it is possible to conduct an interesting

geographic analysis. The next step in this research line is to broaden the geographic reach

and confront externality issues.

We expect that our approach of combining micro soil data with the satellite crop data will

have other applications. Indeed, having such detailed information about what is happening

at such a narrow geographic level is rare in any industry. In particular, these data could

be used to look at the impacts of government policies, perhaps including policies related

to ethanol. The corn-soybean rotation mentioned in the introduction has actually been

discontinued recently by some farmers wishing to take advantage of ethanol-induced high

prices for corn and planting corn every year instead. The detailed data permit us to

determine exactly where the switches are taking place.

21In the 2002 Census, the average farm size in North Dakota is reported to be 1,238 acres or 8.01=1,238/160

quarter sections. If we were to weight farms by acreage, the mean would be substantially higher.
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A Appendix

A.1 Proof of Proposition 1

Setting  =  and  = 0 in the equations for , , and  in the text and imposing the

normalization (1− 2) = 1 yields

 =

¡
1− 22¢
(1 + 2)

 =


(1 + 2)

 =
22

(1 + 2)


So we can write 1 − ̄ as (noting ̄ = ̄)

̄1 − ̄ =
1− 22
1 + 2
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=
1
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for 1 and ∆ defined by

1 ≡ 1 − ̄− 22 (1 − 4) +


2
∆

∆ ≡ 2 + 3 − 1 − 4.
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From symmetry we have

2 ≡ 2 − ̄− 22 (2 − 3)− 

2
∆

3 ≡ 3 − ̄− 22 (3 − 2)− 

2
∆

4 ≡ 4 − ̄− 22 (4 − 1) +


2
∆.

We need to show that
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4X
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1

4

∙
1
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¸2
2


decreases in . Clearly, the effect of  on the middle term is decreasing. So it is sufficient

to show that
4X

=1

2
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1
1


=

∙
1 − ̄− 22 (1 − 4) +



2
∆

¸ ∙
−4 (1 − 4) +

1

2
∆

¸
2

2


=

∙
2 − ̄− 22 (2 − 3)− 

2
∆

¸ ∙
−4 (2 − 3)− 1

2
∆

¸
3

3


=

∙
3 − ̄− 22 (3 − 2)− 

2
∆

¸ ∙
−4 (3 − 2)− 1

2
∆

¸
4

4


=

∙
4 − ̄− 22 (4 − 1) +



2
∆

¸ ∙
−4 (4 − 1) +

1

2
∆

¸


Observe that the ̄ term will cancel out when we add these up, so set it to zero. If we add

the first and fourth lines, we get

[1 + 4 + ∆]
1

2
∆+

£
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By symmetry, when we add the second and third lines, we get
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Adding these together yields

[1 + 4 − (2 + 3) + 2∆]
1

2
∆− 4 £1− 42¤ (1 − 4)

2

= − [1− 2] 1
2
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2 − 4 £1− 42¤ (2 − 3)
2


This is negative as long as 1− 2  0 and 1− 42  0, which is true for   1
2
, as claimed.

Q.E.D.

A.2 Calculation of the Dartboard Dispersion Measure

In the case where field quality is i.i.d., the population mean for large  of the within-quarter

section variance is
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where we use independence of the draws of 1, 2, 3, 4, for the equalities in lines 3 and 4.

A.3 How to Calculate Standard Errors of the Nonlinear Least

Square Estimates Obtained with the Two-Stage Method

This section shows an easy way to calculate the standard errors (and covariance matrix) of

the estimates (γβ) using any statistical package. (See Davidson and MacKinnon (2004) for

a more detailed explanation.) We express the estimation equation (15) as the following:

̄1 = x (γβ) + 

where x (γβ) = 
0
1 + (

0
2 + 03) + 

0
4 and  = 1 +  (2 + 3) + 4
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Let
³
γ̂ β̂

´
be the nonlinear least squares estimates and let X (γβ) = [x (γβ) γ

x (γβ) β]. The consistent estimator of the covariance matrix of the nonlinear estimator

(γβ) is d  ³̂ ̂´ = 2
³
X̂0X̂

´−1
 (16)

where X̂ = X
³
̂ ̂

´
and

2 ≡ 1

− 

X
̂2 =

1

− 

X³
1 − x

³
̂ ̂

´´2
 (17)

An easy way to calculate the covariance matrix (16) is to regress ȳ1−x
³
̂ ̂

´
on X̂ ≡X

³
̂ ̂

´
and use the resulting covariance matrix.

ȳ1−x
³
̂ ̂

´
= X̂b+

This is called the Gauss-Newton regression (GNR) and the covariance matrix for the

OLS parameter estimates b̂ is

 
³
b̂
´
= (0)2

³
X̂0X̂

´−1
 (18)

where

(0)2 =
1

− 

X
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y− x

³
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´
− X̂b

´2


Since the regressor does not have any explanatory power (b = 0), (0)2 is equal to 2 in

equation (17). Therefore, it holds that

d  ³̂ ̂´ =  
³
b̂
´


We can regress ȳ1−x
³
̂ ̂

´
on X

³
̂ ̂

´
in any statistical package and easily calculate

 
³
b̂
´
and thus d  ³̂ ̂´.
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Figure 1. Section Boundaries, 
Pembina County, ND



 
 

 
 

Figure 2. Counties Used in Our Analysis 
(North Dakota Red River Region)

North Dakota Minnesota 

South Dakota 

Polk 

Beltrami 

Cass Cass 

Otter Tail 

Stutsman 

Wells 

Clay 
Kidder 

Roseau 

Marshall 

Barnes 

Walsh 
McHenry 

Becker 

Todd 

Burleigh 

Ward 

McLean 

Morton 

Benson 

Cavalier Bottineau 

Traill 

Emmons 

Sioux Dickey 

Pierce 

Richland 

Corson 

Logan 

Kittson 

Ramsey 

Towner 

Nelson 

Rolette 

LaMoure 

Eddy 

Pembina 

Brown 

Wilkin 

Grand Forks 

Sheridan 

Sargent 

Steele 
Norman Griggs 

McIntosh 

Ransom 

Grant 

Marshall 

Oliver 

Douglas 

StearnsRoberts 

Grant 

PopeStevens 

Hubbard 

Foster Clearwater 

McPherson 

Lake of the Woods 

Campbell 

Koochiching 

Wadena 

Traverse 

Itasca 

Pennington 

Mahnomen 

Red Lake 

Renville 

Mercer 

Benton 

R
ed

R
iver of the

N
orth 

Mississippi 



Figure 3. Example Fields and Grid Points 
from Pembina County



 
 

   

 

 
 

 
 

   

 

 
 

Figure 4a. Extended Neighborhoods 
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Figure 4b. Fake Quarter Neighborhoods 
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Note: Dotted lines indicate fake quarter section boundaries. Note that in a fake 
quarter section, each field belongs to a different true quarter section. 



Figure 5a. Example Soil Map in a Quarter Section

Figure 5b. Example Crop Map in a Quarter Section



 
 
 
 

Table 1 
Land Use in North Dakota Red River Region 

Averages over 1997-2006 Period 
 
 

Crop Share 

Spring Wheat .223 

Soybeans .158 

Pasture/Range/Conservation Reserve Program/Farmstead .154 

Fallow/Idle Cropland .098 

Corn .049 

Dry Edible Beans .037 

Water .037 

Sunflowers .036 

Barley .034 

Clouds .028 

Durum Wheat .026 

Other Small Grains & Hay (Oats, Millet, Rye & Winter 
Wheat, Alfalfa & Other Hay) 

.020 

Canola .019 

Urban .017 

Beets .015 

Other Crops (Canola, Flaxseed, Safflower and Very Small 
Acreage Crops) 

.012 

Woods, Woodland Pasture .010 

Potatoes .009 

Miscellaneous (15 Residual Categories) .018 

 
          Source: Authors calculations with Cropland Data Layer North Dakota 1997 - 2006



Table 2 
Summary Statistics of Crop Planting Share at the Field Level 

Two Major Crops in North Dakota Red River Region 
 
 

  Spring Wheat Soybean 

County 
Number 
of Fields 

Mean Std Dev Min Max Mean Std Dev Min Max 

All Counties 231,595 .23 .16 .00 .86 .17 .15 .00 .98 

 
By County 

         

Cass 28,750 .25 .14 .00 .70 .34 .15 .00 .98 

Cavalier 24,576 .30 .15 .00 .79 .04 .04 .00 .33 

Grand Forks 23,426 .25 .15 .00 .72 .16 .11 .00 .65 

Nelson 16,128 .20 .16 .00 .70 .08 .09 .00 .57 

Pembina 18,599 .31 .16 .00 .86 .09 .08 .00 .54 

Ramsey 21,102 .18 .13 .00 .65 .06 .07 .00 .41 

Ransom 13,824 .14 .15 .00 .75 .17 .15 .00 .68 

Richland 24,013 .15 .14 .00 .67 .27 .15 .00 .84 

Sargent 14,324 .14 .13 .00 .62 .23 .16 .00 .72 

Steele 11,520 .27 .13 .00 .72 .23 .13 .00 .78 

Traill 14,327 .25 .13 .00 .69 .27 .13 .00 .75 

Walsh 21,006 .27 .16 .00 .74 .09 .08 .00 .54 

 
        Source: Authors calculations with Cropland Data Layer North Dakota 1997 - 2006 



 
 
 
 
 

Table 3 
Goodness of Fit of Planting Regression on Soil Characteristics 

(Summary Statistics of R2s of Individual Regressions for Each of Twelve Counties) 
 

 

Crop Mean Min Median Max 

Spring Wheat .335 .210 .322 .562 

Soybeans .237 .084 .246 .384 

Corn .182 .057 .196 .393 

Dry Beans .156 .057 .154 .337 

Sunflowers .108 .047 .108 .222 

Barley .115 .032 .110 .239 

Durum Wheat .102 .027 .054 .257 

Other Small Grains .179 .055 .168 .333 

Canola .078 .021 .044 .250 

Beets .152 .028 .129 .360 

Other Selected Crops .067 .020 .048 .165 

Potatoes .119 .041 .088 .318 

 
 

*Note: For each regression, the planting choice of a field is regressed on its own field 
characteristics, ignoring the characteristics of the neighboring fields.



 
Table 4 

Baseline model estimates 
(N =  208,220) 

 

   
Policy 

Parameters     
Structural 
Parameters   

 Crop γO γA γB θA θB Θ =2θA + θB

Spring Wheat .658 .128 .087 .160 .070 .389 

  
(.006) (.004) (.006) (.008) (.012) (.008) 

Soybeans .632 .137 .094 .174 .074 .422 

  
(.007) (.005) (.007) (.011) (.017) (.010) 

Corn .459 .199 .144 .316 .040 .672 

  
(.007) (.005) (.007) (.027) (.044) (.014) 

Dry Beans .530 .181 .109 .278 .016 .573 

  
(.010) (.006) (.009) (.026) (.039) (.017) 

Sunflowers .613 .147 .093 .197 .056 .451 

  
(.012) (.008) (.011) (.020) (.030) (.017) 

Barley .757 .095 .053 .113 .041 .267 

  
(.011) (.007) (.010) (.011) (.017) (.014) 

Durum Wheat .721 .115 .048 .147 .019 .313 

  
(.011) (.007) (.010) (.014) (.020) (.015) 

Other Small Grains .519 .183 .114 .284 .020 .588 

  
(.008) (.005) (.008) (.023) (.035) (.015) 

Canola .602 .143 .112 .180 .100 .460 

  
(.013) (.009) (.013) (.021) (.033) (.019) 

Beets .366 .225 .184 .408 .002 .818 

  
(.012) (.008) (.012) (.088) (.152) (.028) 

Other Selected Crops .706 .112 .070 .136 .056 .329 

  
(.015) (.009) (.014) (.018) (.027) (.020) 

Potatoes .325 .234 .207 .441 0 .882 

  
(.010) (.002) (.005) (.008) (0) (.0015) 

 



Table 5 
Robustness Check 

 

 Baseline Model By County 
Only on Prime 

Farm Land 

Crop Θ Average Θ Θ 

Spring Wheat .389 .447 .578 

 (.008) (.117)* (.022) 

Soybeans .422 .433 .598 

 (.010) (.147)* (.026) 

Corn .672 .527 .825 

 (.014) (.248)* (.028) 

Dry Beans .573 .567 .503 

 (.017) (.237)* (.032) 

Sunflowers .451 .551 .702 

 (.017) (.121)* (.045) 

Barley .267 .536 .624 

 (.014) (.244)* (.062) 

Durum Wheat .313 .543 .818 

 (.015) (.250)* (.057) 

Other Small Grains .588 .574 .470 

 (.015) (.229)* (.032) 

Canola .460 .664 .870 

 (.019) (.243)* (.035) 

Beets .818 .759 .739 

 (.028) (.178)* (.026) 

Other Selected Crops .329 .588 .804 

 (.020) (.266)* (.066) 

Potatoes .882 .730 .867 

 (.0015) (.148)* (.024) 

N 208,220  111,596 

 
 * Standard error calculated from county level Θ estimates 



Table 6. Natural Advantage vs. Density Economies Decomposition 
 
 
 

Crop 
Within Specialization 

Measure 
Natural Advantage 

Share 
Density Economy 

Share 

Spring Wheat .880 .690 .310 

Soybeans .891 .670 .330 

Corn .970 .674 .326 

Dry Beans .943 .669 .331 

Sunflowers .869 .544 .456 

Barley .762 .646 .354 

Durum Wheat .855 .761 .239 

Other Small Grains .942 .634 .366 

Canola .945 .802 .198 

Beets .995 .862 .138 

Other Selected Crops .895 .808 .192 

Potatoes .996 .689 .311 



 
 

Table 7 
Ownership Statistics for Cass County 

Mean Match Rates for Adjacent Fields 
 
 

Border Type 
Same County 
Administrator? 

Adjacent 
Fields Part of 
Same Legal 

Parcel 

Adjacent 
Fields Have 
Owners with 
Same Name 

Number of 
Adjacent 

Field Pairs 

     

A   .87 .92 27,271 

C   .01 .29 26,946 

     

A  Yes .87 .93 27,161 

A  No .34 .41 110 

     
 
C  Yes .01 .30 25,944 

C  No .00 .06 1,002 

 
Source: Cass county property parcel map, county level common land unit maps 



 
 

Table 8 
Variation in Soil and Crop Plantings 

Across Actual Quarters and Fake Quarters 
 
 
 

  x variation y variation 

 Crop Actual Fake Actual Fake 

Spring Wheat .136 .137 .230 .379 

Soybeans .120 .121 .257 .417 

Corn .249 .253 .391 .713 

Dry Beans .185 .188 .477 .724 

Sunflowers .125 .127 .481 .765 

Barley .132 .133 .471 .698 

Durum Wheat .132 .134 .506 .677 

Other Small Grains .244 .248 .621 .837 

Canola .166 .166 .469 .763 

Beets .249 .251 .450 .840 

Other Selected Crops .168 .169 .537 .857 

Potatoes .284 .287 .616 .866 

  



 
Table 9. Further Analysis Estimates 

 

 

Baseline 
Model 
(from 

Table 4) 

Same as 
Baseline 
but Fake 
Quarters 

Policy Function Estimates 
With Discounting if Different 

County Administrator 

Policy Function Estimates 
With Discounting if Different 

Ownership Name 
(Cass County Only) 

Crop Θ Θ γA γB δ γA γB δ 

Spring Wheat .389 .318 .129 .085 .592 .192 .089 .836 
  (.008) (.008) (.004) (.006) (.041) (.016) (.024) (.028) 

Soybeans .422 .368 .137 .094 .703 .157 .053 .773 
  (.010) (.011) (.005) (.007) (.048) (.014) (.021) (.034) 

Corn .672 .558 .199 .144 .509 .197 .147 .606 
  (.014) (.014) (.005) (.007) (.066) (.016) (.023) (.065) 

Dry Beans .573 .472 .182 .108 .711 .246 .160 .933 
  (.017) (.016) (.006) (.009) (.052) (.026) (.038) (.056) 

Sunflowers .451 .311 .148 .093 .761 .234 .132 .782 
  (.017) (.018) (.008) (.011) (.074) (.023) (.035) (.067) 

Barley .267 .188 .097 .050 .354 .241 .266 .824 
  (.014) (.014) (.007) (.010) (.101) (.034) (.052) (.045) 

Durum Wheat .313 .244 .118 .045 .000 .184 .255 .919 
  (.015) (.015) (.007) (.010) (.091) (.034) (.050) (.056) 

Other Small Grains .588 .449 .183 .114 1.326 .145 .013 1.642 
  (.015) (.013) (.005) (.008) (.064) (.013) (.019) (.184) 

Canola .460 .375 .155 .152 .000 .241 .152 .992 
  (.019) (.019) (.008) (.012) (.061) (.039) (.058) (.081) 

Beets .818 .759 .228 .181 .781 .229 .182 .874 
  (.028) (.026) (.008) (.012) (.043) (.024) (.035) (.060) 

Other Selected Crops .329 .283 .122 .088 .000 .261 .171 1.014 
  (.020) (.020) (.009) (.013) (.101) (.038) (.058) (.157) 

Potatoes .888 .862 .235 .205 1.091 .225 .096 1.164 
  (.032) (.015) (.008) (.011) (.045) (.045) (.065) (.146) 

N 208,220 201,596  208,220   25,124  
 
 


