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1 Introduction

Empirical studies of asset pricing have uncovered a rich set of properties of the time series of

aggregate stock market returns, of the term structure of interest rates and of the cross-section

of stock returns. Average returns on the aggregate stock market are high relative to short-term

interest rates. Relative to dividends, aggregate stock returns are highly volatile. They are also

predictable; the return on the aggregate market in excess of the short-term interest rate is pre-

dictably high when the price-dividend ratio is low and predictably low when the price-dividend

ratio is high. The term structure of interest rates on U.S. government bonds is upward sloping,

and excess bond returns are predictable by yield spreads and by linear combinations of forward

rates. In the cross-section, stocks with low ratios of price to fundamentals (value stocks) have

higher returns than stocks with high ratios of price to fundamentals (growth stocks), despite the

fact that they have lower covariance with aggregate stock returns. These facts together are in-

consistent with popular benchmark models and therefore represent an important challenge for

theoretical modeling of asset prices.1

One approach to explaining these properties of asset prices is to propose a fully specified model

of investor preferences, endowments and cash flows on the assets of interest. Under this approach,

the returns investors demand for bearing risks (the prices of risk) are endogenously determined by

the form of preferences and the process for aggregate consumption. These prices of risk in turn

determine risk premia, volatility, and covariances on the assets in equilibrium. Models that follow

this approach typically have a small number of free parameters and generate tight implications

for asset prices. We refer to this as the equilibrium approach.

A second approach is to directly specify the stochastic discount factor (SDF) for the economy.

Foundational work by Harrison and Kreps (1979) demonstrates that, in the absence of arbitrage,

there exists a process (known as a stochastic discount factor) that determines current prices on the

basis of future cash flows. Given that such a process exists, this second approach specifies the SDF

process directly, without reference to preferences or endowments. The exogenously specified SDF

implies processes for the prices of risk which determine asset pricing properties. Models based on

the SDF typically have a large number of degrees of freedom and therefore allow for substantial

1See Campbell (2003) and Cochrane (1999) for recent surveys of the empirical literature and discussion of these

benchmark models.
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flexibility in matching asset prices. Indeed, the parameters of the SDF and of cash flows are often

backed out from asset prices. We refer to this as the SDF approach.

In this paper, we seek to explain the aggregate market, cross-sectional, and term structure

facts within a single model. To do so, we combine elements of both approaches described above.

We assume that only risk arising from aggregate cash flows is priced directly, thus maintaining

the strict discipline about the number and nature of priced factors imposed by the equilibrium

approach. We determine the parameters of the cash flow processes based on data from the cash

flows themselves. This modeling approach maintains the parsimony that is typical of equilibrium

models. However, rather than specifying underlying preferences, we directly specify the stochastic

discount factor as in the SDF approach. Our goal is to introduce a small but crucial amount of

flexibility in order to explain the facts listed in the first paragraph.

Our model’s ability to match the data stems in part from properties of the time-varying price of

risk, which results in time-varying risk premia on stocks and bonds. As in Brennan, Wang, and Xia

(2004) and Lettau and Wachter (2007), we assume first-order autoregressive (AR(1)) processes for

both the price of risk and the real interest rate. To model the nominal term structure of interest

rates, we introduce an exogenous process for the price level (Cox, Ingersoll, and Ross (1985),

Boudoukh (1993)) such that expected inflation follows an AR(1). Realized inflation can therefore

be characterized as an ARMA(1,1). Following Bansal and Yaron (2004) and Campbell (2003), we

assume an AR(1) process for the expected growth rate of aggregate cash flows.

We calibrate the dividend, inflation, and riskfree rate processes to their counterparts in U.S

data. The price of risk is then calibrated to match aggregate asset pricing properties. Several

properties of these processes key to the model’s ability to fit the data. First, a volatile price

of risk is necessary to capture the empirically demonstrated property that risk premia on stocks

and bonds are time-varying. This time-varying price of risk also allows the model to match the

volatility of stock and bond returns given low volatility of dividends, real interest rates, and

inflation. Second, the real riskfree rate is negatively correlated with fundamentals. This implies

a slightly upward-sloping real yield curve. Expected inflation is also negatively correlated with

fundamentals, implying a yield curve for nominal bonds that is more upward-sloping than the real

yield curve.

Our model illustrates a tension between the upward slope of the yield curve and the value
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premium. The value premium implies that value stocks, which are short-horizon equity (because

their cash flows are weighted more toward the present), have greater expected returns than growth

stocks, which are long-horizon equity (because their cash flows are weighted more toward the

future). Therefore the “term structure of equities” slopes downward, not upward. However,

the very mechanism that implies an upward-sloping term structure of interest rates, namely a

negative correlation between shocks to fundamentals and shocks to the real interest rate, also

implies a growth premium. We show that correlation properties of shocks to the price of risk are

key to resolving this tension. Namely, when the price of risk is independent of fundamentals, the

model can simultaneously account for the downward-sloping term structure of equities and the

upward-sloping term structure of interest rates.

To summarize, our model generates quantitatively accurate means and volatilities for the

aggregate market and for Treasury bonds, while allowing for low volatilities in fundamentals. The

model can replicate the predictability in excess returns on the aggregate market, the negative

coefficients in Campbell and Shiller (1991) bond yield regressions and the tent-shaped coefficients

on forward rates found by Cochrane and Piazzesi (2005). Finally, besides capturing the relative

means of value and growth portfolios, our model also captures the striking fact that value stocks

have relatively low risk according to conventional measures like standard deviation and covariance

with the market. Therefore our model replicates the well-known outperformance of value, and

underperformance of growth relative to the capital asset pricing model.

Our paper builds on studies that examining the implications of the term structure of inter-

est rates for the stochastic discount factor. Dai and Singleton (2002, 2003) and Duffee (2002))

demonstrate the importance of a time-varying price of risk for explaining the predictability of

excess bond returns. Like these papers, we also construct a latent factor model in which bond

yields are linear. Ang and Piazzesi (2003), Bikbov and Chernov (2008) and Duffee (2006) intro-

duce macroeconomic time series into the SDF as factors; in our work macroeconomic time series

also are used to determine the SDF. Unlike our work, these papers focus exclusively on the term

structure.

We also build on a literature that seeks to simultaneously explain prices in bond and the

aggregate stock market (see Bakshi and Chen (1996), Bansal and Shaliastovich (2007), Bekaert,

Engstrom, and Grenadier (2006), Buraschi and Jiltsov (2007), Gabaix (2008), Lustig, Van Nieuwer-
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burgh and Verdelhan (2008) and Wachter (2006)). We extend these studies by exploring the con-

sequences of our pricing kernel for a cross-section of equities defined by cash flows. In particular,

we show that the model can reproduce the high premium on value stocks relative to growth stocks

and the fact that value stocks have a low variance and low covariance with the aggregate market.

Our paper also builds on work that seeks to simultaneously explain the aggregate market and

returns on value and growth stocks. Several studies link observed returns on value and growth

stocks to new sources of risk (Campbell and Vuolteenaho (2004), Campbell, Polk, and Vuolteenaho

(2009), Lustig and Van Nieuwerburgh (2005), Piazzesi, Schneider, and Tuzel (2007), Santos and

Veronesi (2006b) and Yogo (2006)). Others more closely relate to the present study in that they

model value and growth stocks based on their underlying cash flows (Berk, Green, and Naik

(1999), Carlson, Fisher, and Giammarino (2004), Gomes, Kogan, and Zhang (2003), Hansen,

Heaton, and Li (2008), Kiku (2006), Lettau and Wachter (2007), Santos and Veronesi (2006a)

and Zhang (2005)). Unlike these studies, our study also seeks to explain the upward slope of the

nominal yield curve and time-variation in bond risk premia. As we show, jointly considering the

term structure of interest rates and behavior of value and growth portfolios has strong implications

for the stochastic discount factor.

2 The model

In this section we introduce a model in which prices are driven by four state variables: expected

dividend growth, expected inflation, the short-term real interest rate and the price of risk. Ap-

pendix A solves a more general model in which prices are driven by an arbitrary number of

(potentially latent) factors.

2.1 Dividend growth, inflation, and the stochastic discount factor

The model specified in this section has six shocks, namely, a shock to dividend growth, to inflation,

to expected dividend growth, to expected inflation, to the real riskfree rate and to the price of

risk. Let εt+1 denote a 6× 1 vector of independent standard normal shocks that are independent

of variables observed at or before time t. We use bold font to denote matrices and vectors.

Let Dt denote the level of the aggregate real dividend at time t and dt = logDt. We assume
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that the log growth rate of the aggregate dividend is conditionally normally distributed with a

time-varying mean zt that follows a first-order autoregressive process:

∆dt+1 = zt + σdεt+1 (1)

zt+1 = (1− φz)g + φzzt + σzεt+1, (2)

where σd and σz are 1× 6 vectors of loadings on the shocks ε, and φz is the autocorrelation. The

conditional standard deviation of dividend growth is σd =
√
σdσ′d. In what follows we will use the

notation σi =
√
σiσ′i to refer to the conditional standard deviation of i and σij = σiσ

′
j to refer

to the covariance between shocks to i and to j. For the purpose of discussion, we assume that

the autocorrelation of z and of the remaining three state variables are between 0 and 1; thus each

variable is stationary and positively autocorrelated.2 The parameter g can therefore be interpreted

as the unconditional mean of dividend growth.

Because we are interested in pricing nominal bonds, we also specify a process for inflation. Let

Πt denote the price level and πt = log Πt. Inflation follows the process

∆πt+1 = qt + σπεt+1, (3)

qt+1 = (1− φq)q̄ + φqqt + σqεt+1, (4)

where σπ and σq are 6 × 1 vectors of loadings on the shocks, q̄ is the unconditional mean of

inflation and φq is the autocorrelation. In what follows, all quantities will be expressed in real

terms unless it is stated otherwise; multiplying by Πt converts a quantity from real to nominal

terms.

Discount rates are determined by the real riskfree rate and by the price of risk. Let rft+1 denote

the continuously-compounded riskfree return between times t and t+ 1. Note that rft+1 is known

at time t. We assume that

rft+1 = (1− φr)r̄f + φrr
f
t + σrεt, (5)

where σr is a 6× 1 vector of loadings on the shocks, r̄f is the unconditional mean of rft and φr is

the autocorrelation. The variable that determines the price of risk, and therefore risk premia in

this homoscedastic model, is denoted xt. We assume

xt+1 = (1− φx)x̄+ φxxt + σxεt+1, (6)

2However, realized dividend growth may be (and in fact will be) negatively autocorrelated.
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where σx is a 6× 1 vector of loadings on the shocks, x̄ is the unconditional mean of xt and φx is

the autocorrelation.

To maintain a parsimonious model, we assume that only fundamental dividend risk is priced

directly. This assumption implies that the price of risk is proportional to the vector σd (the

formulas in Appendix A allow for a more general price of risk). Other risks are priced insofar

as they covary with aggregate cash flows. Besides reducing the degrees of freedom in the model,

this specification allows for easier comparison to models based on preferences, such as those of

Campbell and Cochrane (1999) and Menzly, Santos, and Veronesi (2004). The stochastic discount

factor (SDF) is thus given by

Mt+1 = exp

{
−rft+1 −

1

2
σ2
dx

2
t − xtσdεt+1

}
.

Because the SDF is a quadratic function of xt, the model is in the essentially affine class (Dai and

Singleton (2002), Duffee (2002)). Asset prices are determined by the Euler equation

Et [Mt+1Rt+1] = 1, (7)

where Rt+1 denotes the real return on a traded asset. Given the lognormal specification the

maximal Sharpe ratio is given by

SRt = max
EtRt+1 −Rf

t+1

(Vart[Rt+1 −Rf
t+1])

1/2
=

(Vart[Mt+1])
1/2

Et[Mt+1]
=
√
ex

2
tσ

2
d − 1 ≈ |xt|σd.

(see Campbell and Cochrane (1999), Lettau and Uhlig (2002), Lettau and Wachter (2007)).

2.2 Prices and returns on bonds and equities

Real bonds

Let P r
nt denote the price of an n-period real bond at time t. That is, P r

nt denotes the time-t price

of an asset with a fixed payoff of 1 at time t+ n. Because this asset has no intermediate payoffs,

its return between t and t+ 1 equals

Rr
n,t+1 =

P r
n−1,t+1

P r
nt

. (8)

The prices of real bonds can be determined recursively from the Euler equation (7). Substituting

in (8) for the return implies that

Et
[
Mt+1P

r
n−1,t+1

]
= P r

nt, (9)
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while the fact that the bond pays a single unit at maturity implies that P r
0t = 1. Appendix C

verifies that (9) is satisfied by

P r
nt = exp{Arn +Br

rn(rft+1 − r̄f ) +Br
xn(xt − x̄)}. (10)

The coefficient on the riskfree rate is given by

Br
rn = −1− φnr

1− φr
. (11)

The coefficient on the price of risk is given by the recursion

Br
xn = Br

x,n−1φx −Br
r,n−1σdr −Br

x,n−1σdx, (12)

with boundary condition Br
x0 = 0. The constant term Arn is defined by (A.19). The yield to

maturity on a real bond is defined as

yrnt = − 1

n
logP r

nt = − 1

n

(
Arn +Br

rn(rft+1 − r̄f ) +Br
xn(xt − x̄)

)
(13)

and is linear in the state variables.

Equation (10) shows that prices of real bonds are driven by the riskfree rate and by the price

of risk. Expected dividend growth and expected inflation do not directly influence the prices of

real bonds (though they might influence these prices indirectly through correlations with rft+1 and

with xt). As (11) shows, an increase in the riskfree rate lowers the bond price. Moreover, the

magnitude of the price response to a change in rft+1 is increasing in maturity. This is the duration

effect, and it is driven by the persistence φr. Because the riskfree rate is persistent, a higher value

today suggests that future values will also be high. Because of compounding, the further out the

cash flow, the larger the effect a change in the riskfree rate has on the price. As (12) shows, the

sign of the effect of the price of risk variable depends on the correlations σdr and σdx. The sign

and magnitude of the effect of an increase in the price of risk is best understood by examining the

formula for risk premia, as we now explain.

Let rrnt = logRr
nt be the continuously compounded return on the real zero-coupon bond of

maturity n. Because real bond prices are lognormally distributed, rrnt is conditionally normally

distributed. We derive risk premia by taking the logs of both sides of the Euler equation (7) and

use the properties of the lognormal distribution to evaluate the expectation. It follows that the
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risk premia on real zero-coupon bonds satisfy

Et[r
r
n,t+1 − r

f
t+1] +

1

2
Vart(r

r
n,t+1) = Covt(r

r
n,t+1,∆dt+1)xt. (14)

Note that the second term on the left hand side of (14) is an adjustment for Jensen’s inequality.

Equations (10) and (11) imply that

Covt(r
r
n,t+1,∆dt+1) = Br

r,n−1σdr +Br
x,n−1σdx. (15)

Risk premia on real bonds are time-varying and proportional to xt. Given a value for xt, the level

of risk premia is determined by the correlations σdr and σdx. Comparing (12) and (15), it is clear

that the same variables that drive risk premia influence the coefficients Br
xn with a negative sign.

This is not surprising, as Br
xn represents the effects of the price of risk variable on the price of the

real bond. When bonds carry positive risk premia, Br
xn < 0, which implies that an increase in xt

lowers the price of real bonds. Moreover, if risk premia are increasing in maturity, the greater the

maturity, the greater the effect of an increase in xt on the price.

Equity

Let P d
nt denote the time-t price of the asset that pays the aggregate dividend at time t + n. We

will refer to this asset as zero-coupon equity. In solving for the price, it is convenient to scale P d
nt

by the aggregate dividend at time t to eliminate the need to consider Dt as a state variable. The

return on this zero-coupon equity claim is equal to

Rd
n,t+1 =

P d
n−1,t+1

P d
nt

=
P d
n−1,t+1/Dt+1

P d
nt/Dt

Dt+1

Dt

. (16)

Let rdn,t = logRd
n,t denote the continuously compounded return. Substituting (16) into the Euler

equation (7) implies that P d
nt satisfies the recursion

Et

[
Mt+1

Dt+1

Dt

P d
n−1,t+1

Dt+1

]
=
P d
nt

Dt

, (17)

with boundary condition P d
0t/Dt = 1. Appendix C verifies that (17) is solved by a function of the

form
P d
nt

Dt

= exp{Adn +Bd
zn(zt − g) +Bd

rn(rft+1 − r̄f ) +Bd
xn(xt − x̄)}. (18)
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The coefficients on expected dividend growth and the riskfree rate are given by

Bd
zn =

1− φnz
1− φz

Bd
rn = −1− φnr

1− φr
. (19)

The coefficient on the price of risk satisfies the recursion

Bd
xn = Bd

x,n−1φx − σ2
d −Bd

z,n−1σdz −Bd
r,n−1σdr −Bd

x,n−1σdx, (20)

with boundary condition Bd
x0 = 0. The constant term Adn is defined by (A.25). Following logic

similar to that used to compute risk premia on zero-coupon bonds, we find that risk premia on

zero-coupon equity claims are given by

Et[r
d
n,t+1 − r

f
t+1] +

1

2
Vart(r

d
n,t+1) = Covt(r

d
n,t+1,∆dt+1)xt, (21)

where (18) and (19) imply that

Covt(r
d
n,t+1,∆dt+1) = σ2

d +Bd
z,n−1σdz +Bd

r,n−1σdr +Bd
x,n−1σdx. (22)

Equation (18) shows that price-dividend ratios are driven by expected dividend growth, by the

real interest rate and by the price of risk. Expected inflation does not directly influence equity

valuations. As (19) shows, an increase in expected dividend growth increases prices. Because

expected dividend growth is persistent, and because Dt+n cumulates shocks between t and t+ n,

the greater is the maturity n, the greater is the effect of changes in zt on the price. An increase in

the real interest rate lowers the equity price, and this effect is greater, the greater is the maturity.

The intuition is the same as that for real bonds.

As in the case of real bonds, the effect of a change in the price of risk on equities is more

subtle and depends on risk premia. Comparing (20) and (22) indicates that the variables that

influence risk premia on equities also govern the evolution of Bd
xn. Risk premia on zero-coupon

equity are determined by the variance of cash flows, and the covariance of cash flows with shocks

to expected dividend growth, to the riskfree rate and to the price of risk. For the model to account

for the value premium, risk premia on equities will need to be decreasing in maturity rather than

increasing. For this reason, Bd
xn will be a non-monotonic function of n. We will discuss risk premia

on zero-coupon equities more fully later in the paper.
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In our model, the aggregate market portfolio is the claim to all future dividends. Therefore its

price-dividend ratio is given by

Pm
t

Dt

=
∞∑
n=1

P d
nt

Dt

=
∞∑
n=1

exp
{
Adn +Bd

zn(zt − g) +Bd
rn(rft+1 − r̄f ) +Bd

xn(xt − x̄)
}
. (23)

Appendix B describes sufficient conditions on the parameters such that (23) converges for all

values of the state variables. The return on the aggregate market equals

Rm
t+1 =

Pm
t+1 +Dt

Pm
t

=
(Pm

t+1/Dt+1) + 1

Pm
t /Dt

Dt+1

Dt

. (24)

Note that the price-dividend ratio is not an affine function of the state variables.

Nominal bonds

Let P π
nt denote the real price of a zero-coupon nominal bond maturing in n periods. The real

return on this bond equals

Rπ
n,t+1 =

P π
n−1,t+1

P π
nt

=
P π
n−1,t+1Πt+1

P π
ntΠt

Πt

Πt+1

. (25)

Let rπn,t+1 = logRπ
n,t denote the continuously compounded return on this bond. This asset is

directly analogous to the dividend claim above: the “dividend” is the reciprocal of the price level,

and the “price-dividend ratio” on this asset is its nominal price P π
ntΠt.

The Euler equation holds for the real return on this bond; therefore the price satisfies

Et

[
Mt+1

Πt

Πt+1

P π
n−1,t+1Πt+1

]
= P π

ntΠt, (26)

with boundary condition P π
0tΠt = 1. Appendix C shows that the recursion (26) can be solved by

a function of the form

P π
ntΠt = exp{Aπn +Bπ

qn(qt − q̄) +Bπ
rn(rft+1 − r̄f ) +Bπ

xn(xt − x̄)}. (27)

The coefficients on expected inflation and the riskfree rate are given by

Bπ
qn = −

1− φnq
1− φq

Bπ
rn = −1− φnr

1− φr
. (28)

The coefficient on the price of risk satisfies the recursion

Bπ
xn = Bπ

x,n−1φx + σdπ −Bπ
q,n−1σdq −Bπ

r,n−1σdr −Bπ
x,n−1σdx, (29)
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with boundary condition Bπ
x0 = 0. The constant term Aπn is defined by (A.31). Following logic

similar to that used to compute risk premia on real bonds, risk premia on nominal bonds are equal

to

Et[r
π
n,t+1 − r

f
t+1] +

1

2
Vart(r

π
n,t+1) = Covt(r

π
n,t+1,∆dt+1)xt, (30)

where

Covt(r
π
n,t+1,∆dt+1) = −σdπ +Bπ

q,n−1σdq +Bπ
r,n−1σdr +Bπ

x,n−1σdx.

Real risk premia on nominal bonds are determined by the loadings on expected inflation, the real

riskfree rate and the price of risk, along with the covariance of each of these sources of risk with

shocks to fundamentals. In addition, risk premia are determined by the covariance of unexpected

inflation with fundamentals.

Equation (27) shows that nominal bond prices are driven by expected inflation, the real interest

rate and the price of risk. Expected dividend growth does not directly influence nominal bond

prices. As (28) shows, an increase in expected inflation lowers bond nominal bond prices at all

maturities. This effect is greater, the greater the maturity, because Πt+n cumulates shocks between

t and t + n. An increase in the real interest rates lowers nominal bond prices at all maturities;

the greater the maturity the greater is this effect because of duration. The same variables that

determine risk premia govern the evolution of Bπ
xn. Because nominal bonds will have risk premia

that are positive and increasing in maturity, Bπ
xn will be negative and decreasing in maturity. That

is, an increase in the price of risk will lower prices of nominal bonds, and will have a greater effect

on long-term bonds than short-term bonds.

It is also of interest to consider the nominal return on the nominal bond, and the nominal yield.

Following Campbell and Viceira (2001), we use the superscript $ to denote nominal quantities for

the nominal bond. The nominal (continuously-compounded) yield to maturity on this bond is

equal to

y$
nt = − 1

n
log (P π

ntΠt) = − 1

n

(
Aπn +Bπ

qn(qt − q̄) +Bπ
rn(rft+1 − r̄f ) +Bπ

xn(xt − x̄)
)

(31)

and, like the yield on the real bond, is linear in the state variables. Finally, we use the notation

R$
n,t+1 to denote the nominal return on the nominal n-period bond:

R$
n,t+1 =

P π
n−1,t+1Πt+1

PntΠt

.
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It is also of interest to compute risk premia on nominal bonds relative to the one-period nominal

bond (as opposed to the real bond, as in (30)). It follows from the equation for nominal prices

(27) that

Et
[
r$
n,t+1 − y$

1t

]
+

1

2
Vart(r

$
n,t+1) = Covt(r

$
n,t+1,∆dt+1)xt, (32)

where

Covt(r
$
n,t+1,∆dt+1) = Bπ

q,n−1σdq +Bπ
r,n−1σdr +Bπ

x,n−1σdx.

This section has shown that risk premia on all zero-coupon assets are proportional to xt. While

there is some conditional heteroscedasticity in the aggregate market that arises from time-varying

weights on zero-coupon equity, this effect is small. A natural way to drive a wedge between

time-variation in bond and stock premia is to allow for time-varying correlations as in Campbell,

Sunderam, and Viceira (2009). For simplicity and to maintain our focus on the slope of the term

structures of equity and interest rates, we do not pursue this route here.

2.3 Unconditional term structures of equity and interest rates

Prior to describing the full calibration of the model and results from simulated data, we use the

results developed above to describe the model’s qualitative implications for risk premia on bonds

and stocks. We illustrate the issues by comparing bonds and equity maturing in two periods with

those maturing in one period. It follows from (14) and (15) that the unconditional risk premium

of the real bond maturing in two periods equals3

E[rr2,t+1 − r
f
t+1] +

1

2
Var(rr2,t+1) = −σdrx̄.

The risk premium on the one-period real bond is, by definition, equal to zero. The term σdr

represents the covariance of shocks to the real interest rate with shocks to dividend growth: a

negative covariance leads to a positive risk premium on the two-period bond because it implies

that bonds pay off in good times (bond prices move in the opposite direction from the riskfree rate).

The same term appears in the average spread between the yields of the one and the two-period

bond:

E[yr2 − yr1] = −1

2
σdr −

1

4
σ2
r , (33)

3Because rr
n,t+1 is normal and shocks are homoskedastic, Vart(rr

n,t+1) is constant and equal to Var(rr
n,t+1). This

reasoning also holds for zero-coupon nominal bonds and zero-coupon equity.
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(see (13) and (A.19)). The second term represents an adjustment for Jensen’s inequality and is

relatively small.

The unconditional risk premia on one and two-period equity claims are equal to

E[rd1,t+1 − r
f
t+1] +

1

2
Var(rd1,t+1) = σ2

dx̄ (34)

E[rd2,t+1 − r
f
t+1] +

1

2
Var(rd2,t+1) =

(
σ2
d − σdr + σdz − σ2

dσdx
)
x̄. (35)

While the one-period equity claim is only exposed to unexpected changes in dividends, the two-

period equity claim is also exposed to unexpected changes in the interest rate, expected dividend

and the price of risk. These risk factors are represented by the covariance terms σdz, σdr and σdx.

If these processes are correlated with the priced fundamental dividend factor, the risk premium of

the two-period equity claim will be different from the one-period premium. Note that the extent

to which two-period equity is driven by xt depends on the one-period premium. This explains why

σ2
d multiplies σdx in (35).

The positive premium of value (short horizon) stocks over growth (long horizon) stocks in the

data suggests that the equity term structure is downward sloping. Thus the premium on two-

period equity should be less than that on one-period equity. Comparing (33) to (34) and (35)

suggests that an upward sloping term structure of interest rates requires interest rate shocks to

be negatively correlated with dividend shocks (σdr < 0). Ceteris paribus, this effect leads also to

an upward sloping term structure of equity, which implies a growth premium rather than a value

premium.

As shown in Lettau and Wachter (2007), a key parameter for the slope of the equity term

structure is the correlation of fundamental dividend risk with shocks to the price of risk process xt.

To understand the role of this correlation, consider the special case of σdx = 1 and σdr = σdz = 0.

In this case the two-period equity claim is riskless, as (35) shows. Recall that returns of zero-

coupon equity depend on dividend growth and the change in the price-dividend ratio (see (16)). If

σdx = 1, positive dividend shocks are associated with positive price of risk shocks. In this special

case, the effect on the price-dividend ratio cancels out the effect on the dividend growth rate,

creating a perfectly hedged one-period return. This example illustrates a general property of the

model. If dividend shocks are associated with positive price of risk shocks (σdx > 0), long-term

equity tends to be less risky than short-term equity. On the other hand, if σdx < 0, the equity
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term structure tends to be upward sloping, which is inconsistent with the large value premium in

the data.

While the correlation σdx does not enter the formulas for the risk premium and the yield of the

two-period bond, it does for bonds of maturities greater than two periods. A negative correlation

between interest rates and fundamentals implies that long-term bonds have positive risk premia.

Because bond prices are determined by risk premia, it follows that changes in risk premia are

another source of risk for these bonds. Holding all else equal, σdx < 0 leads to a term structure

that is more upward sloping than otherwise. However, as explained above, σdx < 0 also leads to

higher expected returns on long-term equities relative to short-term equities, the opposite of what

cross-sectional asset pricing data suggest. The root of the problem is that duration operates for

both bonds and equities; when shocks to discount rates are priced, risk premia on all long-term

instruments are driven up relative to short-term instruments.

In the calibration that follows, we show that it is indeed possible to match both the upward

slope of the term structure of interest rates and the downward slope of the term structure of

equities in a model where the riskfree rate and the risk premium vary. Part of the answer lies in

the role of expected dividend growth which appears in the equations for equities above and part

of the answer lies in the role of expected inflation which influences risk premia on nominal bonds.

3 Implications for returns on stocks and bonds

To study our model’s implications for returns on the aggregate market, on real and nominal

bonds, and for portfolios sorted on scaled-price ratios, we simulate 100,000 quarters from the

model. Given simulated data on shocks εt, and on expected dividend growth zt, expected inflation

qt, the real riskfree rate rft , and the price-of-risk variable xt, we compute real prices of real bonds

given (10), ratios of prices to the aggregate dividend for zero-coupon equity (18), and nominal

prices of nominal bonds (27). We also compute a series for realized dividend growth (1) and

realized inflation (3).
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3.1 Calibration

The model specifies processes for dividends, inflation, the real riskfree rate and the price of risk. We

calibrate the inflation parameters to data on inflation, dividend parameters to data on dividends

and riskfree rate parameters to data on interest rates. The process for the price of risk and

correlations between the price of risk process and the other variables is then determined jointly by

the term structure of interest rates and equity prices. Tables 1, 2 and 3 give the calibrated values

for the means and autocorrelations, the cross-correlations and the standard deviations respectively.

To calibrate the process for inflation, we use the maximum likelihood estimates of Wachter

(2006). As Wachter shows, the likelihood function implied by (3) and (4) is the same as that for an

ARMA(1,1) process. This is estimated on quarterly data from the second quarter of 1952 to the

second quarter of 2004. The mean of expected inflation is 3.68% per annum, and expected inflation

is found to have an annual autocorrelation of 0.78 (equivalent to a quarterly autocorrelation of

0.94). The volatility of expected inflation is 0.35% per annum, while the volatility of unexpected

inflation is 1.18% per annum. The correlation between shocks to expected and unexpected inflation

cannot be identified from inflation data alone. As in Wachter (2006), we set this correlation equal

to 1. This has the benefit of reducing the parameter space (because it reduces the number of

shocks by one, and therefore eliminates 5 correlations), and it does not appear to reduce the

model’s ability to fit the data.

Following Lettau and Wachter (2007), dividend growth is calibrated based on an annual data set

of Campbell (2003) that begins in 1890; we update it to 2004 using data from CRSP. The instability

of many moments of the aggregate market in recent years makes a long data set especially desirable.

Average log dividend growth is set to 1.29%, the average for real growth in log dividends over

that period. We assume the volatility of realized dividend growth is equal to 10% a value that

falls between estimates in the long data (∼ 14%), and in the post-war sample (∼ 6%). Finally,

the standard deviation of zt is set to be 0.32% per annum. The lack of predictability in dividend

growth suggests a standard deviation for zt that is small relative to the standard deviation of

realized dividend growth. As discussed further below, this value implies a reasonable amount

of dividend growth predictability (see Table 6). The autocorrelation for zt and the correlation

between shocks to zt and shocks to dividends is calibrated in the same way as in Lettau and

Wachter (2007); namely the consumption-dividend ratio is used as an empirical proxy for zt. Lettau
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and Ludvigson (2005) show that if consumption follows a random walk and if the consumption-

dividend ratio is stationary, the consumption-dividend ratio captures the predictable component

of dividend growth. The consumption-dividend ratio can therefore be identified with zt up to

an additive and multiplicative constant. We therefore take the autocorrelation of zt to be 0.90,

the autocorrelation of the consumption-dividend ratio over the 1890–2004 period. We take the

correlation between shocks to zt and shocks to ∆dt to be -0.83, equal to the correlation between

these shocks over the 1890–2004 period.

Data on nominal interest rates are taken from CRSP. The yield on the 90-day Treasury bill

represents the short-term nominal yield. Yields of maturities from 1 to 5 years are taken from

Fama–Bliss data, which begin in 1952. We choose the mean of the real riskfree rate in order to

match the sample mean of the short-term nominal yield over the 1952–2004 period. Our procedure

is as follows. From (31) and (A.31) it follows that the mean of the one-period nominal yield is

given by

Ey$
1t = r̄f + q̄ − 1

2
σ2
π − σdπx̄.

Namely, the expected short-term nominal yield is the sum of the real riskfree rate, expected

inflation, the negative of one-half times the volatility of realized inflation (a Jensen’s inequality

adjustment), and an inflation risk premium. The sample mean on the 3-month bill is 1.31% (5.23%

per annum). The terms q̄ and 1
2
σ2
π are known from the inflation calibration; subtracting the former

and adding the latter to 1.31% implies a (quarterly) value of 0.39%. Based on this value for r̄f , we

then calibrate σdπ and x̄ as described below, and adjust r̄f for the inflation risk premium (which

turns out to equal 0.15% per quarter). Because the moments of the aggregate market are relatively

insensitive to the precise value of r̄f , it is not necessary to repeat this process more than once to

obtain the correct value of the nominal yield.4

Choosing the autocorrelation and the volatility of the riskfree rate is less straightforward than

choosing the level because these parameters are less tightly linked to their counterparts in nominal

interest rate data (for example, the volatility of nominal interest rates in the model depends, in a

nonlinear way, on the volatilities and autocorrelations of the real riskfree rate, the price of risk and

expected and realized inflation). We first choose a set of values to give reasonable implications

for the autocorrelation and volatility of nominal interest rates, given a process for xt. We then

4The difference between the simulated value of 5.15% and the mean of 5.23% is due to simulation noise.
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re-calibrate the process for xt based on the new values for rft , and repeat as necessary. Given that

the autocorrelation of inflation is 0.78 (in annual terms), the autocorrelation of the real riskfree

rate must be higher in order to match the autocorrelations of nominal yields, which are above this

value. The autocorrelations and volatilities in the model and in the data are shown in Table 7.

An autocorrelation of 0.92 for the riskfree rate results in an autocorrelation for the three-month

bond that is somewhat higher than in the data , but that matches the autocorrelations for longer

term bonds exactly. Choosing the volatility of the riskfree rate to be 0.19% per annum results in

a good fit to volatilities across the maturity spectrum. The volatility of the three-month yield is

2.89% in the model versus 2.93% in the data, while the volatility of the 5-year yield is 2.67% in

the model versus 2.72% in the data. The model is therefore able to capture the fact that interest

rate volatilities decrease in the maturity of the bond.

The parameters of the process for xt are chosen to fit moments of stock returns. Like the

volatility and persistence of the real riskfree rate, these values are chosen numerically; there is no

analytical formula that links these parameters to population moments implies by the model. The

average price of risk, x̄σd is chosen to be 0.85; this generates an average maximal quarter Sharpe

ratio of
√

exp(0.852)− 1 = 1.03. As shown in Table 10, a high value of x̄ allows us to come close

to the high Sharpe ratio of the extreme value portfolio (0.58 in the model versus 0.63 in the data).

As shown in Table 4, the Sharpe ratio on the market is slightly higher than in the long annual data

set (0.40 in the model versus 0.36 in the data). Note that while the extreme value portfolio has

the highest Sharpe ratio of the ten portfolios in our cross-sectional calibration, it does not achieve

the maximal Sharpe ratio. In order to achieve the maximal Sharpe ratio, its return would need

to be perfectly correlated with the dividend shock. However, because some of its payoffs occur

in future periods, its return depends, to some degree, on expected dividend growth, real interest

rates and the price of risk.5

5In Lettau and Wachter (2007), we choose a lower value for x̄σd, 0.625. Resetting x̄ to this value in the present

model implies lower Sharpe ratios and risk premia. Specifically, the Sharpe ratio for the market portfolio is 0.25

and the Sharpe ratio for the extreme value portfolio is 0.35. The term structure has a flatter slope (the difference

between the average 5-year and 3-month yield is 1.36%). Because discount rates are lower, the average price-

dividend ratio is higher and equal to 35.3. The qualitative implications of the model are unchanged. These results

differ from those of Lettau and Wachter (2007) in large part because of the presence of a time-varying real interest

rate. This introduces a source of risk which is priced to a lesser extent than dividend risk.
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To match the high volatility and predictability of stock returns given the low volatility of

fundamentals as described above, the volatility of the price of risk variable must be high. We

choose the volatility of shocks to σdxt to be 40, implying a volatility of the price-dividend ratio of

0.36 (see Table 4), close to its value of 0.40 in the data. We choose the persistence of xt to equal

0.85; this implies a persistence of 0.86 for the price-dividend ratio, close to its value of 0.87 in the

data. As Table 5 shows, long-horizon stock returns are slightly more predictable than in the data:

the regression of the stock returns on the price-dividend ratio has an R2 of 45% at the one-year

horizon, compared with 25% in the 1890-2004 sample and 38% in the 1890-1994 sample. Raising

the volatility or the persistence of xt to match the data counterparts exactly would increase the

amount of predictability.

Risk premia in the model are determined by correlations with realized dividends dt. The

correlation between expected inflation qt and realized dividend growth determines the premium

for nominal over real bonds. A value of -0.30 implies that nominal bonds will carry a premium

over real bonds, and moreover, that this premium increases in maturity. (because realized inflation

and expected inflation are perfectly correlated, realized inflation also must have a correlation of

-0.30 with dt). The correlation between the real riskfree rate and expected dividend growth is also

-0.30. This implies an upward sloping real term structure. As explained in detail in Section 3.4,

these values represent a compromise between fitting the upward slope of the yield curve and the

deviations from the expectations hypothesis. The more negative these correlations are, the greater

the slope of the yield curve, and the greater the deviation from the expectations hypothesis. The

correlation with expected inflation mainly effects the behavior of short-term yields, while the

correlation with the real interest rate mainly effects the behavior of long-term yields. Finally, as

in Lettau and Wachter (2007), the correlation between xt and dividend growth is set to be zero.

The implication of this parameter choice is discussed further in Section 3.5.

For simplicity, we assume that most remaining correlations are equal to zero.6 Exceptions are

the correlation between realized and expected inflation (as discussed above) and between expected

dividend growth and the price of risk. We allow this latter correlation to be positive based on direct

evidence in Lettau and Ludvigson (2005) that expected dividend growth is positively correlated

6Correlations between variables not including dt do not directly impact risk premia and thus have modest

implications for the return moments that are the focus of this paper.
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with the risk premium on stocks. Indeed, Table 6 shows that at long horizons, the price-dividend

ratio predicts dividend growth with a negative sign (though the effect is insignificant). This

counter-intuitive result supports the notion that expected dividend growth and discount rates move

in the same direction, and that the discount rate effect is stronger than the cash-flow effect. We

set the correlation between xt and z to be 0.35; this reduces the predictability of dividend growth

to nearly zero at long horizons despite the persistence of expected dividend growth. Raising the

correlation further results in a variance-covariance matrix for which the Cholesky decomposition

fails to exist.7

In this calibration we have set a number of interaction terms equal to zero. Richer models that

are used to estimate the term structure allow arbitrary cross-correlations of shocks and interactions

through conditional means. Results from term structure studies (e.g. Dai and Singleton (2003) and

Duffee (2002)) suggest that such interactions may be important for fully capturing the dynamics

of the term structure of interest rates. Appendix A calculates prices under a more general model

that allows for such interactions. Empirically, however, it is not clear how to cleanly identify these

parameters with our macro-based approach. Moreover, our simpler model has the advantage that

it is easier to interpret. While our model may miss some of the term structure properties captured

by the more complex models, it nonetheless seems appropriate for our current purpose.

3.2 Prices and returns as functions of the state variables

Figure 1 shows the factor loadings on each state variable for prices of real bonds, nominal bonds

and equity as functions of maturity. As discussed in Section 2, and shown in this figure, the factor

loadings on the riskfree rate are negative. An increase in the real riskfree rate decreases prices

of all assets. The factor loading on expected inflation is negative for nominal bonds and zero

otherwise: An increase in expected inflation decreases nominal bond prices, while leaving other

prices unchanged. The factor loading on expected dividend growth is positive for equities and zero

otherwise: An increase in expected dividend growth increases stock prices, while leaving other

prices unchanged. The magnitude of all of these effects increase in maturity, and the assumption

7Intuitively, zt and dt are highly negatively correlated. This implies a relation between correlations of variables

with zt and correlations with variables and dt. As explained below, dt and xt have a zero correlation, so the

correlation between zt and xt cannot be too far from zero.
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of AR(1) processes implies that the rate of increase declines exponentially.

Figure 1 also shows that the dynamic effects of changes in the price of risk are subtle and differ

qualitatively from the effects of the other processes. For real bonds, Br
xn is negative and decreasing

in magnitude, like the coefficient on the riskfree rate. However, in contrast to that of Br
rn, the rate

of decrease of Br
xn does not die out exponentially. The reason for this is the interaction between

duration and increasing risk premia. At short maturities, the price of risk has little impact (as

compared to the riskfree rate) because these assets have very small risk premia. At long maturities

the price of risk has large impact (as compared to the riskfree rate) because these assets have large

risk premia. Therefore, shocks to xt have a greater effect at longer maturities than would be

suggested by the size of the persistence φx. Similar comparisons hold for Bπ
xn, the effect of the

price of risk on nominal bonds.

For equities, the factor loading on xt is not even monotonic. Over a range of zero to ten years,

Bd
xn decreases in maturity. This is the duration effect: the longer the maturity the more sensitive

the price is to changes in the risk premium. After ten years Bd
xn increases, and then asymptotes

to a level that is lower than Bd
x0.

8 This increase is somewhat surprising because it appears to

contradict the notion of duration: long-maturity equity should be more sensitive to changes in the

risk premium than short-maturity equity. However, because shocks to expected dividend growth

are negatively correlated with shocks to realized dividend growth, long-maturity equity acts as a

hedge. This effect generates risk premia on long-maturity equity that are relatively low. Because

long-maturity equity has lower risk premia, it is less sensitive to changes in xt.

Figures 2 and 3 show zero-coupon yields as functions of maturities for real and nominal bonds

respectively. The figures show yields at their long-run averages, and when the state variables are

2 standard deviations above or below their long-run averages. An increase in either the riskfree

rate and the price of risk increases yields at all maturities. The riskfree rate and (in the case

of nominal bonds) expected inflation have the greatest effect for short-term yields. In contrast,

xt has very little effect on short-term yields, and much greater effect on medium and long-term

yields.

Figure 4 displays ratios of zero-coupon equity prices to aggregate dividends as a function of

8On the figure, Bd
xn has the appearance of asymptoting to the same level as Br

xn; however Bd
xn remains lower

than Br
xn even in the limit.
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maturity. The figure shows the ratios when state variables are at their long-run averages and when

they are two standard deviations above or below these averages. When state variables are equal

to their average values, the ratio of price to dividends is decreasing in maturity; longer-maturity

equity is worth less, on average, than shorter-maturity equity because the effect of the discount

rate dominates the effect of dividend growth.9 Prices are increasing functions of expected dividend

growth zt, decreasing functions of the real interest rate rft and decreasing functions of xt. This

figure shows that, under our calibration, most of the variation of prices at all maturities comes

from variations in risk premia as represented by xt.

3.3 The aggregate market

Table 4 shows statistics for the aggregate market in simulated and in historical data. In simulated

data, we calculate quarterly returns and compound to an annual frequency. We create an annual

price-dividend ratio in simulated data by dividing the price by the sum of dividends paid over the

previous year.

As Table 4 shows, the volatility and the autocorrelation of the price-dividend ratio are close to

those found in the data. This is not a surprise as model parameters were chosen in part to produce

reasonable values for these moments. The model implies an average price-dividend ratio of 18.2,

while the mean in the data is 25.9. Matching this statistic is a common difficulty for models of this

type: Campbell and Cochrane (1999), for example, find an average price-dividend ratio of 18.2.

As they explain, this statistic is poorly measured due to the persistence of the price-dividend ratio.

The present model fits the volatility of equity returns (20.0% in the model versus 19.4% in the

data), though it produces an equity premium that is slightly higher than that in the data (8.1%

in the model versus 6.5% in the data). Like the mean of the price-dividend ratio, this number

is estimated with substantial noise. The annual autocorrelation of returns is near zero for both

model and data.

Table 5 reports results of long-horizon regressions of continuously-compounded excess returns

on the log price-dividend ratio. Horizons range from 1 to 10 years. Panel A reports results from

simulated data, Panel B reports results from the full data set (1890–2004) and Panel C reports

9Any calibration for which the market portfolio is well-defined must have this effect operating for sufficiently

high maturities.
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results from the 1890–1994 subsample. As found in many previous studies (e.g. Campbell and

Shiller (1988), Cochrane (1992), Fama and French (1989) and Keim and Stambaugh (1986)), the

price-dividend ratio predicts returns with a negative sign, and this predictability is significant

across all horizons at the 5% level. Because so much of the variance in returns is driven by the

price of risk xt, the model generates substantial return predictability. In fact, the R2 are higher,

and the coefficients more negative for the model as compared with the full sample. The model

results more closely resemble the 1890–1994 subsample.

Table 6 reports the results of long-horizon regressions of dividend growth on the price-dividend

ratio. Evidence indicates that asset prices have little ability to predict dividend growth (Ang and

Bekaert (2007), Cochrane (2008), Lettau and Ludvigson (2005) and Lettau and Van Nieuwerburgh

(2008)). We replicate this result in our sample as shown in Panel B. In the model, the price-

dividend ratio also fails to predict dividend growth; R2 values from long-horizon regressions do

not exceed 2%. This is both because the variation in expected dividend growth is relatively low,

and because expected dividend growth is positively correlated with the price of risk. Thus risk

premia and expected dividend growth are negatively correlated, leading to less dividend growth

predictability than what one would expect given the present-value nature of this model.

3.4 The term structure of interest rates

Means and volatilities of yields

Table 7 shows the implications of the model for means, standard deviations, and annual auto-

correlations of nominal and real bond yields. Data moments for bond yields using the CRSP

Fama-Bliss data set are provided for comparison. These data are available starting in June of

1952, and are monthly. For the three-month yield, we use the bid yield on the 90-day Treasury

bond, also available from CRSP.

Panel A shows that the real yield curve is upward sloping. This occurs because of the negative

correlation between the real riskfree rate and fundamentals. Because bond prices fall when the

real riskfree rate rises, bond prices fall when growth in fundamentals are low. Therefore long-term

real bonds carry a risk premium over short-term real bonds, a risk premium that is reflected in

the yield spread.
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The negative correlation between the real riskfree rate and fundamentals also drives the nominal

term spread. In the case of nominal bonds, there is an additional effect arising from the negative

correlation between fundamentals and expected inflation. This negative correlation implies that

nominal bond prices fall when fundamentals are low, leading to a positive inflation risk premium

(this effect also operates in the models of Piazzesi and Schneider (2006), Wachter (2006)). The

model’s implications are consistent with empirical evidence that yields on indexed Treasury bonds

are increasing in maturity, but that this slope is less than for nominal bonds (Roll (2004)).

The model implies volatilities for nominal bonds that are close to those in the data across

all maturities. Volatilities are decreasing in maturity, as in the data. This decrease follows from

the stationary autoregressive nature of the underlying processes. The table also shows annual

autocorrelations (in the data, these are calibrated based on overlapping monthly observations).

The autocorrelations are also similar, though the pattern is flatter in the model (0.85 at the short

end, 0.87 at the long end) than in the data (0.80 at the short end and 0.87 at the long end).

Campbell and Shiller (1991) regressions

Table 8 shows the outcome of regressions

yrn−h,t+h − yrnt = αn + βn
1

n− h
(yrnt − yr1t) + ert+h,

for real bonds and

y$
n−h,t+h − y$

nt = αn + βn
1

n− h
(
y$
nt − y$

1t

)
+ eπt+h

for nominal bonds in simulated and historical data. To compute the values in the table, we take

h = 4, corresponding to an annual frequency. These “long-rate” regressions are performed by

Campbell and Shiller (1991) to test the hypothesis of constant risk premia on bonds.

The relation between risk premia and these regressions can be uncovered using the definition

of yields and returns. To simplify the algebra, assume the horizon h = 1. For real bonds:

rrn,t+1 = yrnt − (n− 1)
(
yrn−1,t+1 − yrnt

)
.

Rearranging and taking expectations implies:

Et
[
yrn−1,t+1 − yrnt

]
=

1

n− 1
(yrnt − yr1t)−

1

n− 1
Et
[
rrn,t+1 − yr1t

]
. (36)

23



For nominal bonds, the analogous equation is

Et
[
y$
n−1,t+1 − y$

nt

]
=

1

n− 1

(
y$
nt − y$

1t

)
− 1

n− 1
Et
[
r$
n,t+1 − y$

1t

]
. (37)

Thus the coefficient of a regression of changes in yields on the scaled yield spread produces a

coefficient of one only if risk premia on bonds are constant. As found by Campbell and Shiller,

the data coefficients are not only less than one, they are negative, indicating risk premia on bonds

that strongly vary over time.

As Table 8 shows, the model also implies a significant departure from the expectations hy-

pothesis. Coefficients βn are negative for all maturities. However, the failure of the expectations

hypothesis is not as extreme in the model as in the data. This reflects a general limitation of

models driven by a single homoscedastic factor. Indeed, Dai and Singleton (2002) find, within the

affine class, only a model with three factors driving the price of risk is capable of fully matching

the failure of the expectations hypothesis.10

Using the model, it is possible to write the coefficients βn in terms of more fundamental

quantities. This sheds light on the aspects of the model that lead to the failure of the expectations

hypothesis, as well as tensions inherent in the model. For real bonds, by definition

βn =
Cov(yrn−1,t+1 − yrn, yrnt − yr1t)

Var(yrn−1,t+1 − yr1t)
(n− 1).

Substituting in for changes in yields from (36), and noting that time-(t + 1) shocks have zero

correlation with time-t yields, we have

βn =
Cov(yrnt − yr1t − Et

[
rrn,t+1 − yr1t

]
, yrnt − yr1t)

Var(yrn−1,t+1 − yr1t)

= 1− Cov(rrn,t+1,∆dt+1)
Cov(xt, y

r
nt − yr1t)

Var(yrn−1,t+1 − yr1t)
, (38)

where the second line follows from (14). If xt were constant, then the covariance term in this ex-

pression would be zero and βn = 1, its value implied by the expectations hypothesis. The deviation

from the expectations hypothesis depends on two quantities. The first is Cov(rrn,t+1,∆dt+1), the

covariance between bond returns and fundamentals. This determines the average risk premium

10In contrast, a single-factor model that allows for significant heteroscedasticity in the state variable can success-

fully match these data (Wachter (2006)). It is also possible that part of the deviation in the data is reflective of a

peso problem (Bekaert, Hodrick, and Marshall (2001)) that is not captured by the model.

24



on the bond as indicated by (14). The greater are risk premia on bonds, the greater the deviation

from the expectations hypothesis. The second term is the coefficient from a regression of xt on

the yield spread. The more risk premia covary with yield spreads, then, the greater the deviation

from the expectations hypothesis. Similar reasoning leads to the formula for nominal bonds:

βn = 1− Covt(r
$
n,t+1,∆dt+1)

Cov(xt, y
$
nt − y$

1t)

Var(y$
n−1,t+1 − y$

1t)
. (39)

Figure 5 displays Covt(rn,t+1,∆dt+1), Cov(xt, ynt − y1t)/Var(yn−1,t+1 − y1t), and βn for real

and nominal bonds.11 As Panel A shows, Covt(rn,t+1,∆dt+1) increases in maturity, reflecting the

fact that risk premia increase in maturity and that the term spread is upward-sloping. Risk

premia are greater for nominal bonds then for real bonds, and increase faster in the maturity.

Despite this, as shown in Panel C, the model implies a greater deviation from the expectations

hypothesis for real bonds than for nominal bonds. Moreover, the model predicts coefficients that

are roughly constant in maturity over the range of zero to 5 years, while risk premia are upward

sloping. The reason is that the upward slope for risk premia is canceled out by a downward

slope in Cov(xt, ynt− y1t)/Var(yn−1,t+1− y1t), which results from the mean-reverting nature of xt.

Moreover, nominal bonds, whose yields are driven by expected inflation as well as by discount

rates, have lower values of Cov(xt, ynt − y1t)/Var(yn−1,t+1 − y1t). This explains why the model

produces a less dramatic failure of the expectations hypothesis for nominal bonds, despite their

higher risk premia.

Cochrane and Piazzesi (2005) regressions

Finally, we ask whether the model can explain the findings of Cochrane and Piazzesi (2005).

Cochrane and Piazzesi regress annual excess bond returns on a linear combination of forward

rates, where the forward rate for loans between periods t + n and t + n + h is defined as the

difference between the log price of the nominal bond maturing in n − h periods and the the log

price of the nominal bond maturing in n periods:

f $
nt = log(P π

n−h,tΠt)− log(P π
ntΠt) = logP π

n−h,t − logP π
nt.

11While (36) and (37) can be interpreted at any frequency and are run at an annual frequency in the data and

the model for Table 8, (38) and (39) require that the frequency be the same as the frequency at which the model

is simulated, namely, quarterly. The implied differences for the coefficients βn are very slight.
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In what follows, we take h = 4 so that the forward rate is annual. We refer to n as the forward

rate maturity. Cochrane and Piazzesi show that the regression coefficients on the forward rates

form a tent-shape pattern as a function of maturity (see also Stambaugh (1988)). Moreover, they

show that a single linear combination of forward rates has substantial predictive power for bond

returns across maturities.

These results offer support for our model’s assumptions in that they imply that a single pre-

dictive factor drives much of the predictability in bond returns. In our model, that factor is

represented by the latent variable xt. Forward rates, like bond prices, are linear combinations of

factors; therefore some linear combination of forward rates will uncover xt. The model therefore

predicts that some linear combination of forward rates will be the best predictor of bond returns,

and that the regression coefficients for bonds of various maturities should be the same up to a

constant of proportionality (because the true premia are all proportional to xt).

We replicate the Cochrane and Piazzesi (2005) analysis in our simulated data. We report

results for forward rates with n = 1, 3 and 5 years but the results are robust to alternative choices.

Figure 6 shows the regression coefficients as a function of the forward rate maturity. As this

figure shows, the model reproduces the tent shape in regression coefficients.12 Table 9 reports

R2-statistics in the model and in the data. From monthly Fama–Bliss data (beginning in 1952

and ending in 2004), we construct overlapping annual observations. The R2-statistics in the model

are smaller than those in the data (16% versus 24% for the 5-year bond), but still economically

significant.13

Given the 3-factor affine structure of the model, it is straightforward to solve for the linear

combination of any three forward rates that is proportional to the price of risk xt. Appendix D

gives an analytical formula for these regressions coefficients, and shows that they must either form

a tent or a “V”-shape. For example, if we use the 1, 3 and 5-quarter forward rates, and assume

that the horizon for forward rates is one quarter, the linear combination

−φ2
qφ

2
rf1t + (φ2

q + φ2
r)f3t − f5t (40)

12The regression coefficients are larger in magnitude than those shown in Cochrane and Piazzesi (2005); this

occurs because the correlation between bond returns in our model is greater than that in the data.
13The differences between these R2-statistics and those reported in Cochrane and Piazzesi (2005) are due to a

difference in sample period; their sample begins in 1964 whereas ours begins in 1952. In Section 3.6, we report

results for both periods.
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equals xt up to a constant of proportionality. The shape arises in part from the fact that forward

rates are highly correlated. The coefficient on the first and the third forward rates must be the

opposite sign of that on the middle forward rate in order to undo the effects of expected inflation

qt and the riskfree rate rft . Because qt and rft enter into the equation for forward rates with the

same sign at all maturities, undoing their effects requires that the coefficients reverse in sign.

Whether the shape is a tent or a “V” depends on the pattern of forward rate sensitivities to

xt. Simulation results suggest that a tent shape occurs as long as xt is not extremely persistent

(i.e. not more persistent than both rft and qt). The derivation in Appendix D give some insight

into why this might be true. Intuitively, if xt is extremely persistent, then the forward rate with

the greatest maturity among the three regressors will also be relatively sensitive to xt. In this

case, a “V” shape results because the linear combination that exactly replicates xt loads positively

on the forward rate of greatest maturity. However, if the persistence of xt lies between that of rft

and qt, the middle forward rate will be relatively sensitive to xt. In this case, a tent shape results

because the linear combination that exactly replicates xt loads positively on the middle forward

rate. The preceding results in this section suggest that this is the most empirically relevant case

because it is the case that also allows the model to capture facts about equity returns. Perhaps

surprisingly, the model implies a tent-shape even if the persistence of xt is below that of rft and

qt. As discussed in Section 3.2, the response of the yield curve to a change in xt depends on the

pattern of bond risk premia, which in turn depend on the persistences of rft and qt. Therefore a

change in xt can have a large effect on intermediate-maturity bonds even if xt is not very persistent

itself. For this reason, the tent shape is typical of the model (in the sense that it holds for a variety

of realistic calibrations), while the “V”-shape is the exception.

3.5 The cross-section of equities

This section shows the implications of the model for portfolios formed by sorting on price ratios.

Following Lynch (2003) and Menzly, Santos, and Veronesi (2004), we exogenously specify a share

process for cash flows on long-lived assets. For each year of simulated data, we sort these assets

into deciles based on their price-dividend ratios and form portfolios of the assets within each decile.

We then calculate returns over the following year. This follows the procedure used in empirical

studies of the cross section (e.g. Fama and French (1992)). We then perform statistical analysis

27



on the portfolio returns.

We specify our share process so that assets pay a nonzero dividend at each time (implying

that the price-dividend ratio is well-defined), so that the total dividends sum up to the aggregate

dividend of the market (so that the model is internally consistent), and so that the cross-sectional

distribution of dividends, returns, and price ratios is stationary. The continuous-time framework of

Menzly, Santos, and Veronesi (2004) allows the authors to specify the share process as stochastic,

and yet keep shares between zero and one. This is more difficult in discrete time, and for this

reason we adopt the simplifying assumption that the share process is deterministic. We assume

the same process as in Lettau and Wachter (2007): shares grow at a constant rate of 5% per

quarter for 100 quarters, and then shrink at the same rate for the next 100 quarters. Lettau and

Wachter show that these parameters imply a cross-sectional distribution of dividend and earnings

growth similar to that in the data.

More precisely, consider N sequences of dividend shares sit, for i = 1, . . . , N . For convenience,

we refer to each of these N sequences as a firm, though they are best thought of as portfolios

of firms in the same stage of the life cycle. As our ultimate goal is to aggregate these firms into

portfolios based on price-dividend ratios, this simplification does not affect our results. Firm i

pays sit of the aggregate dividend at time t, si,t+1 of the aggregate dividend at time t + 1, etc.

Shares are such that sit ≥ 0 and
∑N

i=1 sit = 1 for all t (so that the firms add up to the market).

Because firm i pays a dividend sequence si,t+1Dt+1, si,t+2Dt+2, . . ., no-arbitrage implies that the

ex-dividend price of firm i equals

P F
it =

∞∑
n=1

si,t+nP
d
nt.

Let s be the lowest share of a firm in the economy, and assume without loss of generality that firm

1 starts at s, namely s11 = s. We assume that the share grows at a constant rate gs until reaching

s1,N/2+1 = (1 + gs)
N/2s and then shrinks at the rate gs until reaching s1,N+1 = s again. At this

point the cycle repeats. All firms are ex-ante identical, but are “out of phase” with one another:

As firms move through the life-cycle, they slowly shift (on average) from the growth category to

the value category, and then revert back to the growth category. Firm 1 starts out at s, Firm 2 at

s21 = (1 + gs)s, Firm N/2 at sN/2,1 = (1 + gs)
N/2−1s, and Firm N at sN1 = (1 + gs)s. The variable

s is such that the shares sum to one for all t.14 We set the number of firms to 200, implying a

14That is,
∑N

i=1 sit = s+ (1 + gs)N/2s+ 2
∑N/2−1

i=1 (1 + gs)is = 1.
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200-quarter, or equivalently, 50-year life cycle for a firm. These share processes fully define the

firms in the economy.

Panel A of Table 10 shows moments implied by the model. We compute the expected excess

return, the volatility of the excess return and the Sharpe ratio. We also compute the abnormal

return relative to the CAPM (αi), and the coefficient on the market portfolio (βi) from a time series

regression of expected excess portfolio returns on expected excess market returns. Panel B shows

counterparts from the data when portfolios are formed on the book-to-market ratio. Monthly data

from 1952–2004 are from Ken French’s website. Lettau and Wachter (2007) show that very similar

results occur when portfolios are formed on earnings-to-price or cash-flow-to-price ratios.

Comparing the first line of Panel A with that of Panel B shows that the model matches most

of the spread between expected returns on value and growth stocks. In both the model and the

data, the expected excess return is about 6% per annum for the extreme growth portfolio. In the

model, the extreme value portfolio has an expected excess return of 10%, compared with 11% in

the data. Comparing the second line of Panel A with that of Panel B shows that, in the model, the

risk of value stocks is lower than that of growth stocks, just as in the data. Sharpe ratios increase

from about 0.3 for the extreme growth portfolio to about 0.6 for the extreme value portfolio.

More importantly, the model is able to match the value puzzle. Even though the model predicts

that value stocks have high expected returns, value stocks in the model have lower CAPM βs than

growth stocks. The CAPM α in the model is -2.5% per annum for the extreme growth portfolio

and rises to 3.3% per annum for the extreme value portfolio. The corresponding numbers in the

data are -1.7% per annum and 4.7% per annum.

These results for value and growth stocks may at first seem counter-intuitive, especially given

the implications of the model for the term structure of interest rates. The term structure results

in the previous section show that long-run assets require higher expected returns than short-run

assets. The results in this section show that the opposite is true for equities. For equities, it is

the short-run assets that require high expected returns.

The model resolves this tension between the downward sloping term structure of equities and

the upward-sloping term structure of interest rates by the dividend process, the inflation process,

and the price-of-risk process xt. As implied by the data, expected dividend growth is negatively

correlated with realized dividend growth. This makes growth stocks a hedge and reduces their risk
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premium relative to what would be the case if, say, expected inflation were constant. Moreover,

expected inflation is negatively correlated with realized dividend growth. This makes long-term

nominal bonds riskier than short-term nominal bonds and riskier than real bonds.

The prices of inflation and dividend risks are important for accounting for the combined be-

havior of equities and bonds. However, they are not sufficient. As the discussion in Section 2.3

indicates, characteristics of the price-of-risk process xt are also crucial. Because equities carry a

higher risk premium than bonds, they are more sensitive to changes in xt in the sense that a greater

proportion of their variance comes from xt than from rft as compared to both real and nominal

bonds. In our specification, variation in the price of risk is itself unpriced. This implies variability

in returns on growth stocks (on account of duration), but, at the same time, low expected returns

because this variability comes in the form of risk that the representative investor does not mind

bearing.

3.6 Interactions

We now examine the model’s implications for interactions between the aggregate market, the term

structure of interest rates and the cross-section of equities. We consider four state variables in

the data and in the model: the price-dividend ratio, the yield spread, the linear combination of

forward rates that best predicts bond returns and the value spread. We also consider three excess

returns: the return on the market portfolio over the short-term bond, the return on the 5-year

nominal bond over the short-term bond and the return on the value portfolio over the growth

portfolio. We calculate cross-correlations of the four state variables, cross-correlations of the three

excess returns, and predictive regressions of each excess return on each state variable.

Prior to discussing the details of our results, we briefly summarize our findings. While the

model largely succeeds at capturing the ability of equity state variables to predict equity returns

and bond state variables to predict bond returns, the model implies correlations between these

two markets that are higher than what the data imply. This occurs no doubt because of the large

role played by the price of risk xt: xt is an important driver of both bonds and equities in the

model because of the substantial predictability present in both markets. Because the same price

of risk determines risk premia for both bonds and equities (see Section 2), these assets are highly

correlated in the model. The lack of correlation in the data presents a puzzle, at least from the
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point of view of a model in which risk premia are driven by a single state variable.

We construct the prices and return series using monthly data from 1952–2004 (because Fama–

Bliss data on bond yields begin in June of 1952, this is the earliest starting point we consider

for all of the series in this section). We also consider results for the 1964–2004 subperiod.15 The

price-dividend ratio in the data is constructed by dividing the price of the value-weighted CRSP

index by the dividends paid over the previous year. The yield spread is the 5-year yield (from

Fama-Bliss data) minus the 3-month yield (equal to the bid yield on the 90-day Treasury bond).

Both yields are nominal and continuously-compounded. We create a forward-rate factor following

the approach of Cochrane and Piazzesi (2005), namely, we compute the average excess holding

period return on bonds of maturities ranging from 2 to 5 years and regress it on annual forward

rates with maturities ranging from 1 to 5 years. The value spread is defined as in Cohen, Polk,

and Vuolteenaho (2003). That is, we start with the six portfolios formed by first sorting firms into

two portfolios by size and then into three portfolios by the book-to-market ratio (see Fama and

French (1993)). The value portfolio then consists of the portfolio that equally weights the portfolio

of large stocks with high book-to-market ratios and the portfolio of small stocks with high book-

to-market ratios. The growth portfolio is likewise formed from the portfolio of large stocks with

low book-to-market ratios and the portfolio of small stocks with low book-to-market ratios. The

value spread is the difference between the log book-to-market ratio of the value portfolio and the

log book-to-market ratio of the growth portfolio. Data on these portfolios are from Ken French’s

website.

The return on the value-weighted CRSP index represents the market return. We construct the

return on the 5-year nominal bond using yields on the 4 and 5-year bonds from Fama-Bliss data.

To form excess returns, we subtract the return on the 90-day Treasury bill. We construct the

value minus growth return using returns on the value portfolio and the growth portfolio as defined

in the previous paragraph. All returns are continuously compounded, and we form overlapping

annual (and five-year) observations from the monthly data.

We construct the price-dividend ratio and yield spread in the model as described in previous

sections. We construct the linear combination of forward rates as in the data, except that (to

15Cochrane and Piazzesi (2005) emphasize the 1964-2004 sample because of concerns about the quality of data

on bond yields prior to 1964.
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avoid co-linearity) we use the 1, 3 and 5-year forward rates rather than all five forwards. The

value spread is the dividend-price ratio on the extreme value portfolio minus the dividend-price

ratio on the extreme growth portfolio. The market return and bond return were defined previously;

we subtract from these returns the real return on the one-quarter nominal bond. The value minus

growth return is formed using the return on the extreme value portfolio and the return on the

extreme growth portfolio. All returns are real and continuously compounded. The model is

simulated at a quarterly frequency. From these quarterly observations, we create an annual time

series of state variables and annual returns.

Table 11 shows the cross-correlations between the state variables in the model and in data from

1952–2004 and from 1964–2004. The table shows that the price-dividend ratio and the yield spread

are negatively correlated in the model (because increases in xt positively impact the price-dividend

ratio but negatively impact the yield spread), but slightly positively correlated in the data. The

price-dividend ratio is also negatively correlated with the linear combination of forward rates (not

surprisingly, because the linear combination of forward rates is perfectly correlated with xt). This

correlation is close to zero in the 1952–2004 sample and negative in the 1964–2004 sample (though

not as negative as predicted by the model). The model correctly accounts for the strong positive

correlation between the price-dividend ratio and the value spread. This positive correlation results

from the fact that the market and the value spread both respond negatively to increases in xt and

rft and positively to increases in zt (note that growth firms are more sensitive than value firms

to changes in these variables). The correlation between the value spread and the yield spread is

small and negative in the model and small and positive in the data. The correlation between the

value spread and the linear combination of forwards is negative in both the model and the data,

though the model correlation is larger in magnitude (-0.32 versus -0.17 in the 1964–2004 sample).

This correlation is driven by the fact that the value spread is negatively correlated with xt.

Table 12 shows the cross-correlations between the three returns in the model and in data

from 1952–2004 and 1964–2004. The excess return on the market and on bonds are positively

correlated in the model and in the data, though the model correlation is higher than in the data

(0.83 versus 0.23 in the 1964–2004 sample). This positive correlation occurs because both bond

and stock returns are driven to a large extent by xt. Likewise, the model predicts a negative

correlation between bond returns and the value-minus-growth portfolio. However, the model
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correctly captures the moderately negative correlation between the value minus growth return

and the market return (-0.44 in the model and -0.47 in the data). It may at first seem surprising

that the model can match this negative correlation: after all, both the equity premium and the

value premium depend on xt with a positive sign. However, this correlation is determined to a large

degree by unexpected, rather than expected returns. Positive shocks to xt and rft lead to negative

market return shocks, while positive shocks to zt lead to positive market return shocks. These

factors also influence the value-minus-growth return, but with the opposite sign because they affect

growth firms more than value firms. The correlation is not perfectly negative because of the role

of shocks to realized dividends, which influence the market portfolio and the value-minus-growth

portfolio in the same direction.

Tables 13–16 show the outcomes from predictive regressions of each state variable on the three

returns. We consider return horizons of 1 and 5 years. Table 13 reports regressions of the three

returns on the lagged price-dividend ratio. As discussed above, the price-dividend ratio predicts

excess returns on the market in both the data and the model. However, the model implies that

the price-dividend ratio should predict excess returns on bonds, a fact that does not hold up in

the data. Finally, the price-dividend ratio predicts returns on the value-minus-growth strategy

with a negative sign in the model, but fails to predict this return in the data.

Table 14 repeats the exercise for the yield spread. The model’s predictions are in line with

the data in that the yield spread is capable of predicting both market and bond excess returns in

the model and in the data with the correct sign (however, the effect for bonds is insignificant at

longer horizons). The model produces the correct sign for the value minus growth portfolio at the

1-year horizon, though the R2-statistic is greater in the model than in the data. In the data (but

not in the model), the sign of the relation reverses at the 5-year horizon. However, the effect is

insignificant when the full sample is used and marginally significant for the 1964–2004 subsample.

Table 15 reports results for the linear combination of forward rates. The results in this table are

similar to those for the yield spread.16

Table 16 reports regressions of the returns on the value spread. The model correctly captures

the sign and degree to which the value spread predicts the aggregate market return in the data.

16The size of the predictive coefficients are larger in the model than in the data because the linear combination

of forward rates is smoother.
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In both model and data, the value spread has little ability to predict bond returns. In the model,

the value spread predicts the return on the value minus growth portfolio with a negative sign,

though the effect is economically small (the R2 is 7% at a five-year horizon). In the data however,

the value spread predicts the value-minus-growth return with a positive sign.

How should we think about the wedge between model and data when it comes to the value

spread’s ability to predict the value-minus-growth return? One reason for the discrepancy may

arise from the construction of the value spread in the data, a construction which favors small

stocks. Other methods of constructing the value spread that weight large stocks more heavily do

not have a statistically significant ability to predict the value minus growth return. Given that

our results may be best interpreted as a theory for large stocks (given that even the value stocks

in the model are large and well-diversified), it may be that this deviation in predictive ability is

not a significant failing.

A closer look at the model also indicates that the sign of the relation may not be an intrinsic

property of the model, but may rather depend on the precise definition of value and growth. The

value spread is negatively correlated with xt in our calibration because the growth portfolio is

more sensitive to changes in xt than is the value portfolio. This is why the value spread predicts

the value-minus-growth return with a negative sign. However, one could construct a value spread

in the model that is positively related to xt. As shown in Figure 1, the effect of xt on the

price-dividend ratio reverses for long-maturity equity: medium-maturity equity loads more on xt

than does short-maturity, but long-maturity equity loads less on xt than does medium-maturity

equity. Our current construction of firms implies that the extreme growth firm consists primarily

of medium-maturity equity, since long-maturity equity has a low value and receives little weight.

A construction that put more weight on long-maturity equity could produce a different result.

To summarize, the model generates strong predictions for the cross-correlations of price-based

variables and excess returns. In general, the model predicts greater positive and lower negative

correlations than are found in the data because of the assumption that a single process drives risk

premia. Some of the model’s predictions are born out. In particular, the model correctly predicts

the sign of the correlation between the price-dividend ratio and the value spread, and the excess

return on the market and the value-minus-growth return. The model also correctly predicts that

term structure variables (such as the yield spread and a linear combination of forward rates) can
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predict excess returns on both bonds and stocks. Other predictions of the model, such as the fact

that the value spread predicts the value-minus-growth return with a negative sign are not in line

with the data and point towards directions for future research.

4 Conclusion

This paper has shown that properties of the cross-section of returns, the aggregate market and the

term structure of interest rates can all be understood within a single framework. We introduced

a parsimonious model for the pricing kernel capable of accounting for the behavior of value and

growth stocks, nominal bonds, and the aggregate market. At the root of the model are dividend,

inflation, and interest rate processes calibrated to match their counterparts in the data. Time-

varying preferences for risk, modeled using a first-order autoregressive process for the price of

risk, capture the observed volatility in equity returns and bond yields, as well as time-varying risk

premia in the equity and the bond market.

Our model highlights a challenge for any model that attempts to explain both bonds and the

cross-section of equities. The upward-sloping yield curve for bonds indicates that investors require

compensation in the form of a positive risk premium for holding high-duration assets. However,

data on value and growth stocks imply the opposite: investors require compensation for holding

value stocks, which are short-horizon equity. Our model addresses this tension by specifying a

real riskfree rate that is negatively correlated with fundamentals and a price of risk shock that

has zero correlation with fundamentals. We hope that future work will suggest microeconomic

foundations for these specifications.
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Appendix

A General model

Let Ht be an m×1 vector of state variables at time t and let εt+1 be an (m+2)×1 vector of independent
standard normal shocks. We assume that the state variables evolve according to the vector autoregression

Ht+1 = Θ0 + ΘHt + σHεt+1, (A.1)

where Θ0 is m × 1, Θ is m × m, and σH is m × (m + 2). Assume that the aggregate dividend Dt+1

follows the process (1) and that the price level Πt+1 follows the process (3). However, expected dividend
growth, expected inflation, the riskfree rate and the price of risk will be general affine functions of the
underlying state vector:

zt = δ0 + δ′Ht

qt = η0 + η′Ht

rft+1 = α0 +α′Ht

xt = ξ0 + ξ′Ht,

where δ0, η0, α0 and ξ0 are scalars and δ, η, α and ξ are m× 1 vectors. Assume that the intertemporal
marginal rate of substitution takes the form

Mt+1 = exp
{
−rft+1 −

1
2
||λ||2x2

t − xtλ′εt+1

}
. (A.2)

The price of risk is therefore xtλ. In the main text, we impose the restriction λ = σ′d.
We describe the solution method for the case of zero-coupon equity. Consider the recursion (17), and

conjecture that the solution takes the form

P dnt
Dt

= exp{Adn +Bd
nHt}, (A.3)

where Adn is a scalar and Bd
n is 1 ×m. Substituting (A.3) into (17) and expanding out the expectation

implies

Et

[
exp

{
−α0 −α′Ht −

1
2

(ξ0 + ξ′Ht)2||λ||2 − (ξ0 + ξ′Ht)λ′εt+1 + δ0 + δ′Ht + σdεt+1 +

Adn−1 +Bd
n−1 (Θ0 + ΘHt + σHεt+1)

}]
= exp

{
Adn +Bd

nHt

}
.

It follows from properties of the lognormal distribution that

exp
{
−α0 −α′Ht −

1
2

(ξ0 + ξ′Ht)2||λ||2 + δ0 + δ′Ht +Adn−1 +Bd
n−1 (Θ0 + ΘHt) +

1
2

(
σd − (ξ0 + ξ′Ht)λ′ +Bd

n−1σH

)(
σd − (ξ0 + ξ′Ht)λ′ +Bd

n−1σH

)′}
=

exp
{
Adn +Bd

nHt

}
.
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Matching coefficients implies:17

Bd
n = −α′ + δ′ +Bd

n−1Θ− (σd +Bd
n−1σH)λξ′ (A.4)

Adn = −α0 + δ0 +Adn−1 +Bd
n−1Θ0 − (σd +Bd

n−1σH)λξ0 +
1
2
σdσ

′
d +Bd

n−1σHσ
′
d +

1
2
Bd
n−1σHσ

′
HB

d ′
n−1, (A.5)

with Bd
0 = 01×m and Ad0 = 0. Note that the terms that are quadratic in Ht cancel.

Note that the recursion for real bonds (9) takes the same form as the recursion for equities (17),
except that there is no dividend growth term. We can therefore apply (A.4) and (A.5), provided that we
replace δ0 with 0, δ1 with 0m×1 and σd with 01×(m+2). Therefore, real bond prices satisfy

P rnt = exp{Arn +Br
nHt}, (A.6)

where Arn is a scalar and Br
n is a 1×m vector satisfying

Br
n = −α′ +Br

n−1Θ−Br
n−1σHλξ

′ (A.7)

Arn = −α0 +Arn−1 +Br
n−1Θ0 −Br

n−1σHλξ0 +
1
2
Br
n−1σHσ

′
HB

r ′
n−1, (A.8)

with Br
0 = 01×m and Ar0 = 0.

To price nominal bonds, note that the recursion (26) takes the same form as the equity recursion
(17), except that growth in dividends is replaced by the inverse of inflation. Therefore, we can again
apply (A.4) and (A.5), provided that we replace δ0 with −η0, δ with −η and σd with −σπ. Therefore,
the nominal price of the nominal bond satisfies

P πntΠt = exp{Aπn +Bπ
nHt}, (A.9)

where Aπn is a scalar and Bπ
n is a 1×m vector satisfying

Bπ
n = −α′ − η′ +Bπ

n−1Θ− (−σπ +Bπ
n−1σH)λξ′ (A.10)

Aπn = −α0 − η0 +Aπn−1 +Bπ
n−1Θ0 − (−σπ +Bπ

n−1σH)λξ0 +
1
2
σπσ

′
π −Bπ

n−1σHσ
′
π +

1
2
Bπ
n−1σHσ

′
HB

π ′
n−1, (A.11)

and Bπ
0 = 01×m and Aπ0 = 0.

B Convergence of the market price-dividend ratio in the general model

This Appendix derives conditions that guarantee the convergence of the price-dividend ratio, assuming
the general model in Appendix A. The results can be specialized to the model in Section 2 using the

17Because ξ′Ht and λ′(σd +Bd
n−1σH)′ are each scalars,

ξ′Htλ
′(σd +Bd

n−1σH)′ = λ′(σd +Bd
n−1σH)′ξ′Ht

= (σd +Bd
n−1σH)λξ′Ht.
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definitions in Appendix C. Let K1 = Θ − σHλξ′ and K2 = −α′ + δ′ − σdλξ′. Then (A.4) can be
rewritten as

Bd
n = Bd

n−1K1 +K2.

The limit of Bd
n as n goes to infinity is the fixed point of this equation. As long as the eigenvalues of

K1 have absolute value less than 1, a fixed point exists (see Hamilton (1994, Chapter 10)). In this case
Im −K1 is invertible, and the fixed point is

B = K2(Im −K1)−1.

Now assume that the eigenvalues of K1 have absolute value less than one. In the general case, the
price-dividend ratio is given by (23), where P dnt/Dt takes the general form (A.3). Define

Ā = −α0 + δ0 +BΘ0 − (σd +BσH)λξ0 +
1
2
σdσ

′
d +BσHσ′d +

1
2
BσHσ

′
HB

′
,

It follows from (A.5) that for sufficiently large N ,

Adn ≈ Ān+ constant for n ≥ N,

where the constant does not depend on n. Therefore

L∑
n=N

exp
{
Adn +Bd

nHt

}
≈ exp

{
constant +BHt

} L∑
n=N

exp
{
Ān
}
.

As long as Ā < 0, the right hand side approaches a finite limit for L→∞.

C Solution to the model in Section 2

The model in Section 2 can either be solved directly, or by applying the formulas in Appendix A under
appropriate restrictions. The general model in Appendix A reduces to the model in Section 2 if

δ =


1
0
0
0

 , η =


0
1
0
0

 , α =


0
0
1
0

 , ξ =


0
0
0
1

 , (A.12)

and if

Θ =


φz

φq

φr

φx

 , σH =


σz

σq

σr

σx

 , (A.13)

where Θ is a diagonal matrix. Further, set Θ0 = 04×1 so that g = δ0, q̄ = η0, r̄f = α0 and x̄ = ξ0. Label
the elements of the vectors Br

n, Bd
n and Bπ

n as follows:

Br
n = [Br

zn, B
r
qn, B

r
rn, B

r
xn]

Bd
n = [Bd

zn, B
d
qn, B

d
rn, B

d
xn] (A.14)

Bπ
n = [Bπ

zn, B
π
qn, B

π
rn, B

π
xn].
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We continue to assume that the price of risk is given by the general form (A.2); the formulas in Section 2
can be obtained by setting λ = σ′d.

For real bonds, (A.7) and (A.8) imply that

Br
zn = Br

z,n−1φz (A.15)

Br
qn = Br

q,n−1φq (A.16)

Br
rn = −1 +Br

r,n−1φr (A.17)

Br
xn = Br

x,n−1φx − σr(n)λ (A.18)

Arn = −r̄f +Arn−1 − σr(n)λx̄+
1
2
||σr(n)||

2, (A.19)

where
σr(n) = Br

r,n−1σr +Br
q,n−1σq +Br

z,n−1σz +Br
x,n−1σx

is the vector of loadings on the shocks for the return on the n-period real bond. The boundary conditions
are Br

z0 = Br
q0 = Br

r0 = Br
x0 = Ar0 = 0. Equations (A.15) and (A.16) together with the boundary

conditions imply that Br
zn = Br

qn = 0 for all n. The solution to (A.17) is given in the main text. The
solution to (A.18) is

Br
xn =

σrλ

1− φr
1− φnλ
1− φλ

− σrλ

1− φr
φnr − φnλ
φr − φλ

, (A.20)

where φλ = φx − σxλ.
In the case of equities, (A.4) and (A.5) imply that

Bd
zn = 1 +Bd

z,n−1φz (A.21)

Bd
qn = Bd

q,n−1φq (A.22)

Bd
rn = −1 +Bd

r,n−1φr (A.23)

Bd
xn = Bd

x,n−1φx − σd(n)λ (A.24)

Adn = −r̄f + g +Adn−1 − σd(n)λx̄+
1
2
||σd(n)||

2, (A.25)

where
σd(n) = σd +Bd

r,n−1σr +Bd
q,n−1σq +Bd

z,n−1σz +Bd
x,n−1σx

is the vector of loadings on the shocks for the return on n-period zero-coupon equity. The boundary
conditions are Bd

z0 = Bd
q0 = Bd

r0 = Bd
x0 = Ad0 = 0. Equation (A.22) together with the boundary condition

implies that Bd
qn = 0 for all n. The solutions to (A.21) and (A.23) are given in the main text. The

solution to (A.24) is

Bd
xn =

(
−σdλ+

σrλ

1− φr
− σzλ

1− φz

)
1− φnλ
1− φλ

− σrλ

1− φr
φnr − φnλ
φr − φλ

+
σzλ

1− φz
φnz − φnλ
φz − φλ

. (A.26)
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In the case of nominal bonds, (A.10) and (A.11) imply that

Bπ
zn = Bπ

z,n−1φz (A.27)

Bπ
qn = −1 +Bπ

q,n−1φq (A.28)

Bπ
rn = −1 +Bπ

r,n−1φr (A.29)

Bπ
xn = Bπ

x,n−1φx − σπ(n)λ (A.30)

Aπn = −r̄f − q̄ +Aπn−1 − σπ(n)λx̄+
1
2
||σπ(n)||

2, (A.31)

where
σπ(n) = −σπ +Bπ

r,n−1σr +Bπ
q,n−1σq +Bπ

x,n−1σx

is the vector of loadings on the shocks for the return on the n-period nominal bond. The boundary
conditions are Bπ

z0 = Bπ
q0 = Bπ

r0 = Bπ
x0 = Aπ0 = 0. Equation (A.27) together with the boundary condition

implies that Bπ
zn = 0 for all n. The solutions to (A.28) and (A.29) are given in the main text. The

solution to (A.30) is

Bπ
xn =

(
σπλ+

σrλ

1− φr
+

σqλ

1− φq

)
1− φnλ
1− φλ

− σrλ

1− φr
φnr − φnλ
φr − φλ

− σqλ

1− φq
φnq − φnλ
φq − φλ

. (A.32)

D Cochrane-Piazzesi regressions

The forward rate for loans between periods t+ n and t+ n+ h is given by the difference in log nominal
prices of nominal bonds

f$
nt = logP πn−h,tΠt − logP πntΠt.

Let
Cqn = Bπ

q,n−h −Bπ
qn

and likewise for Crn and Cxn. It follows from the formula for nominal bond prices (27), that

f$
nt = Cqnqt + Crnr

f
t+1 + Cxnxt. (A.33)

It follows from (28) that

Cqn = φn−hq

1− φhq
1− φq

, Crn = φn−hr

1− φhr
1− φr

. (A.34)

The formula for Cxn is more complicated, but can be calculated from (A.32). Equation A.33 can be
written in matrix form as

C

 qt

rft+1

xt

 = ft (A.35)

where

C =

 Cqn1 Crn1 Cxn1

Cqn2 Crn2 Cxn2

Cqn3 Crn3 Cxn3

 , ft =

 f$
n1t

f$
n2t

f$
n3t

 ,
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for three forward rate maturities n3 > n2 > n1.
We now solve for the linear combination of forward rates that is proportional to xt. Accordingly, let

θ be a 3× 1 vector such that θ′ft = xt. It follows from (A.35) that

θ = [0 0 1]C−1

=
1
|C|

[Cqn2Crn3 − Cqn3Crn2 , Crn1Cqn3 − Crn3Cqn1 , Cqn1Crn2 − Cqn2Crn1 ],

=
1
|C|

φ−hq φ−hr (1− φhq )(1− φhr )
(1− φq)(1− φr)

[φn2
q φ

n3
r − φn3

q φ
n2
r , φ

n3
q φ

n1
r − φn1

q φ
n3
r , φ

n1
q φ

n2
r − φn2

q φ
n1
r ] (A.36)

where |C| denotes the determinant of C. Assume φq 6= φr. Because n3 > n2 > n1, it follows that the
first and third element of θ must take the opposite sign from the second element of θ. Therefore, θ must
either have a tent or “V”-shape.

Whether θ takes the form of a tent or a “V” depends on the sign of the determinant |C|. The formula
for the determinant of a 3× 3 matrix implies that |C| is equal to a positive constant times

Cxn1(φn2
q φ

n3
r − φn3

q φ
n2
r ) + Cxn2(φn3

q φ
n1
r − φn1

q φ
n3
r ) + Cxn3(φn1

q φ
n2
r − φn2

q φ
n1
r )

Consider the case of φr > φq (which holds in our calibration). It follows from (A.36) that θ has a tent
shape if and only if |C| is negative. This will occur when Cxn2 is large relative to Cxn1 and Cxn3 , namely
when the effect of xt is largest at intermediate maturities. Simulation results show that this tends to
occur when φx is less than φr. Long-maturity forward rates are then driven more by φr. Even if φx is
less than φq, it turns out that short-maturity forward rates are driven more by φq, because the effect
of a change in xt tends to be determined by a combination of φx and the autocorrelation of the most
persistent source of risk that is correlated with fundamentals.
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Table 1: State variable means and autocorrelations

State variable Unconditional mean Autocorrelation

Expected dividend growth zt 1.29% 0.90

Expected inflation qt 3.68% 0.78

Real riskfree rate rft 0.96% 0.92

Price of risk σdxt 0.85 0.85

Notes: Means of expected dividend growth, expected inflation and the riskfree rate are in annual

terms (i.e. multiplied by 4). Autocorrelations for all state variables are in annual terms (i.e. raised

to the 4th power). The model is simulated at a quarterly frequency.

Table 2: Conditional cross-correlations of shocks

Variable ∆πt zt qt rft+1 xt

∆dt -0.30 -0.83 -0.30 -0.30 0

∆πt 0 1.00 0 0

zt 0 0 0.35

qt 0 0

rft+1 0

Notes: The table reports conditional cross-correlations of shocks to dividend growth ∆dt, inflation

∆πt, expected dividend growth zt, expected inflation qt, the riskfree rate rft+1 and the price-of-risk

variable xt. The model is simulated at a quarterly frequency.
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Table 3: Conditional standard deviations of shocks

Variable ∆dt ∆πt zt qt rft σdxt

Conditional standard deviation 10.00 1.18 0.32 0.35 0.19 40.00

Notes: The table reports conditional standard deviations of shocks in annual percentage terms

(i.e. multiplied by 200) for dividend growth ∆dt, inflation ∆πt, expected dividend growth zt,

expected inflation qt, the riskfree rate rft and the scaled price-of-risk variable σdxt. The model is

simulated at a quarterly frequency.

Table 4: Aggregate price and return moments

Model Data

E(Pm/D) 18.16 25.95

σ(pm − d) 0.36 0.40

AC of pm − d 0.86 0.87

E[Rm −Rπ
1 ] 8.09% 6.51%

σ(Rm −Rπ
1 ) 20.02% 19.42%

AC of Rm −Rπ
1 -0.05 0.01

Sharpe ratio of market 0.40 0.33

Notes: Pm/D refers to the price-dividend ratio of the aggregate market, where the aggregate

dividend D equals the sum of dividends paid over the previous year. pm− d refers to log(Pm/D).

Rm − Rπ
1 refers to the annual return on the market portfolio in excess of the annual return on

the short-term nominal bond, where both returns are measured in real terms. σ(·) refers to the

standard deviation. AC refers to the annual autocorrelation. Data are annual from 1890–2004.
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Table 5: Long-horizon regressions: Excess stock returns

Horizon in years

1 2 4 6 8 10

Panel A: Model

β1 -0.19 -0.34 -0.60 -0.80 -0.92 -1.01

R2 [0.11] [0.19] [0.32] [0.41] [0.43] [0.45]

Panel B: Data from 1890–2004

β1 -0.10 -0.21 -0.35 -0.51 -0.72 -0.91

t-stat (-2.17) (-2.70) (-2.35) (-2.24) (-2.66) (-2.97)

R2 [0.04] [0.08] [0.11] [0.14] [0.21] [0.25]

Panel C: Data from 1890–1994

β1 -0.19 -0.36 -0.55 -0.79 -1.02 -1.19

t-stat (-3.44) (-3.93) (-3.10) (-3.92) (-5.37) (-5.44)

R2 [0.07] [0.13] [0.17] [0.26] [0.35] [0.38]

Notes: Continuously-compounded excess returns on the market portfolio are regressed on the

lagged log price-dividend ratio. Returns are measured over horizons ranging from 1 to 10 years

and are in excess of the return on the short-term nominal bond, where both returns are measured

in real terms. For each data regression, the table reports OLS estimates of the regressors, Newey-

West (1987) corrected t-statistics (in parentheses), and R2-statistics (in brackets). For each model

regression, the table reports OLS estimates of the regressors and R2-statistics. Data are annual.
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Table 6: Long-horizon regressions: Aggregate dividend growth

Horizon in years

1 2 4 6 8 10

Panel A: Model

β1 0.02 0.03 0.05 0.06 0.08 0.10

R2 [0.00] [0.00] [0.01] [0.01] [0.01] [0.02]

Panel B: Data from 1890–2004

β1 0.02 0.04 -0.02 -0.02 -0.12 -0.24

t-stat (0.43) (0.57) (-0.22) (-0.11) (-0.71) (-1.23)

R2 [0.00] [0.01] [0.00] [0.00] [0.01] [0.04]

Panel C: Data from 1890–1994

β1 0.07 0.15 0.09 0.04 -0.13 -0.28

t-stat (1.18) (1.51) (0.70) (0.19) (-0.64) (-1.31)

R2 [0.02] [0.04] [0.01] [0.00] [0.01] [0.04]

Notes: Log growth rates of the aggregate dividend are regressed on the lagged log price-dividend

ratio. Dividend growth is measured over horizons ranging from 1 to 10 years. For each data

regression, the table reports OLS estimates of the regressors, Newey-West (1987) corrected t-

statistics (in parentheses), and R2-statistics (in brackets). For each model regression, the table

reports OLS estimates of the regressors and R2-statistics. Data are annual.
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Table 7: Moments of zero-coupon bond yields

Maturity (years) 0.25 1 2 3 4 5

Panel A: Real bonds

Mean 0.91 1.05 1.23 1.40 1.56 1.71

Standard deviation 1.95 1.89 1.83 1.79 1.75 1.71

AC(1) 0.92 0.92 0.92 0.92 0.92 0.91

Panel B: Nominal bonds

Mean 5.15 5.53 5.98 6.38 6.73 7.04

Standard deviation 2.89 2.80 2.73 2.70 2.68 2.67

AC(1) 0.85 0.85 0.86 0.86 0.86 0.87

Panel C: Data

Mean 5.23 5.59 5.80 5.98 6.11 6.19

Standard deviation 2.93 2.93 2.87 2.80 2.76 2.72

AC(1) 0.80 0.82 0.84 0.85 0.86 0.87

Notes: Each panel displays means, standard deviations, and 1-year autocorrelations of bond yields.

Yields are in annual percentage terms. Panel A displays moments of real yields in the model, Panel

B displays moments of nominal yields in the model and the Panel C displays moments of nominal

yields in monthly data from 1952–2004.
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Table 8: Long-rate regressions on bond yields

Maturity (years) 2 3 4 5

Panel A: Real bonds

βn -0.64 -0.67 -0.68 -0.70

R2 [0.02] [0.02] [0.02] [0.02]

Panel B: Nominal bonds

βn -0.60 -0.59 -0.59 -0.59

R2 [0.02] [0.02] [0.02] [0.01]

Panel C: Data

βn -0.76 -1.11 -1.50 -1.48

t-stat (-1.66) (-2.02) (-2.42) (-2.13)

R2 [0.03] [0.04] [0.06] [0.05]

Notes: The table reports annual regressions of changes in yields on the scaled yield spread for real

bonds in the model:

yrn−4,t+4 − yrnt = αn + βn
1

n− 4
(yrnt − yr1t) + error,

and for nominal bonds in the model and in the data:

y$
n−4,t+4 − y$

nt = αn + βn
1

n− 4

(
y$
nt − y$

1t

)
+ error.

yrnt denotes the annual real yield on the n-quarter real bond and y$
nt denotes in the annual nominal

yield on the n-quarter nominal bond. For each data regression, the table reports OLS estimates

of the regressors, Newey-West (1987) corrected t-statistics (in parentheses), and R2-statistics (in

brackets). For each model regression, the table reports OLS estimates of the regressors and R2-

statistics. The maturities of the bonds range from 2 to 5 years. Data are monthly from 1952–2004.
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Table 9: R2-statistics from forward rate regressions

Maturity in years

2 3 4 5

Real bonds 0.14 0.14 0.13 0.12

Nominal Bonds 0.22 0.20 0.18 0.16

Data 0.22 0.23 0.27 0.24

Notes: Annual continuously-compounded excess returns on zero-coupon bonds of maturities rang-

ing from 2 to 5 years are regressed on 3 forward rates in the model and 5 forward rates in the

data. Bond returns are in excess of the return on the 1-year bond. In the model, the forward rate

maturities are 1, 3 and 5 years. In the data, forward rate maturities are 1, 2, 3, 4 and 5 years.

The table reports the resulting R2-statistics for real bonds in the model, nominal bonds in the

model and nominal bonds in the data. Data are monthly and from 1952–2004.
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Table 10: Moments of equity portfolio returns

G Growth to Value V V-G

Portfolio 1 2 3 4 5 6 7 8 9 10 10-1

Panel A: Model

ERi −Rπ
1 5.72 5.90 6.18 6.57 7.09 7.69 8.33 8.92 9.45 10.35 4.63

σ(Ri −Rπ
1 ) 20.72 20.90 21.03 21.05 20.84 20.30 19.45 18.50 17.85 17.86 8.17

Sharpe Ratio 0.28 0.28 0.29 0.31 0.34 0.38 0.43 0.48 0.53 0.58 0.57

αi -2.52 -2.44 -2.24 -1.87 -1.30 -0.51 0.47 1.49 2.35 3.33 5.85

βi 1.02 1.03 1.04 1.04 1.04 1.01 0.97 0.92 0.88 0.87 -0.15

Panel B: Data

ERi −Rπ
1 5.91 6.74 7.38 7.29 8.35 8.62 8.56 10.30 10.32 11.64 5.73

σ(Ri −Rπ
1 ) 17.60 15.87 15.79 15.45 14.64 14.74 14.71 15.09 15.81 18.37 14.93

Sharpe Ratio 0.34 0.43 0.47 0.47 0.57 0.58 0.58 0.68 0.65 0.63 0.38

αi -1.72 -0.30 0.40 0.65 2.19 2.35 2.58 4.20 4.02 4.70 6.41

βi 1.10 1.02 1.01 0.96 0.89 0.91 0.87 0.88 0.91 1.01 -0.10

Notes: In Panel A, firms in simulated data are sorted into deciles based on their dividend-price

ratios in each simulation year. Returns are calculated over the subsequent year (portfolio 1 consists

of firms with the lowest dividend-price ratios, portfolio 10 with the highest). In Panel B, firms in

historical data are sorted into deciles based on their book-to-market ratio. Returns are calculated

on a monthly basis and annualized (multiplied by 12 in the case of means and intercepts and
√

12

in the case of standard deviations). Data are monthly from 1952 to 2004. In both panels, Ri−Rπ
1

refers to the return on the ith portfolio in excess of the return on the short-term nominal bond,

where both returns are measured in real terms. Intercepts (αi) and slope coefficients (βi) are

from OLS time-series regressions of excess portfolio returns on the excess market return. Means,

intercepts, and standard deviations are reported in percentage terms.
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Table 11: Cross-correlation of state variables

Yield spread CP factor Value spread

Panel A: Model

Price-dividend ratio -0.47 -0.73 0.86

Yield spread 0.80 -0.10

CP factor -0.32

Panel B: Data from 1952–2004

Price-dividend ratio 0.17 0.03 0.70

Yield spread 0.69 0.03

CP factor -0.14

Panel C: Data from 1964–2004

Price-dividend ratio 0.18 -0.14 0.78

Yield spread 0.65 0.03

CP factor -0.17

Notes: The table reports correlations between the log price-dividend ratio on the market portfolio,

the spread between the 5-year yield and the 3-month yield on nominal bonds (the yield spread),

the linear combination of forward rates constructed to best predict average holding period returns

on bonds (the CP factor), and the value spread. In the model, the value spread is defined as the

log dividend-price ratio of the value portfolio minus the log dividend-price ratio of the growth

portfolio. In the data, the value spread is defined as the log book-to-market ratio of the value

portfolio minus the log book-to-market ratio of the growth portfolio. Data are monthly.

54



Table 12: Cross-correlation of excess returns

Bond return V–G return

Panel A: Model

Market return 0.83 -0.44

Bond return -0.28

Panel B: Data from 1952–2004

Market return 0.15 -0.33

Bond return 0.15

Panel C: Data from 1964–2004

Market return 0.23 -0.47

Bond return 0.20

Notes: The table reports correlations between three continuously compounded annual excess re-

turns: the return on the market portfolio in excess of the return on the short-term nominal bond,

the return on the nominal five-year zero-coupon bond in excess of the short-term nominal bond,

and the return on the value portfolio in excess of the return on the growth portfolio. Data are

monthly.
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Table 13: Long-horizon regressions of returns on the price-dividend ratio

Market return Bond return V–G return

Horizon 1 5 1 5 1 5

Panel A: Model

β1 -0.14 -0.50 -0.06 -0.20 -0.08 -0.31

R2 [0.07] [0.23] [0.09] [0.22] [0.15] [0.19]

Panel B: Data from 1952-2004

β1 -0.11 -0.40 0.02 0.06 0.02 0.01

t-stat (-1.99) (-3.37) (0.89) (1.02) (0.40) (0.18)

R2 [0.07] [0.17] [0.01] [0.02] [0.01] [0.00]

Panel C: Data from 1964-2004

β1 -0.08 -0.28 0.02 0.05 0.02 -0.05

t-stat (-1.30) (-2.42) (0.73) (0.69) (0.32) (-0.52)

R2 [0.04] [0.09] [0.01] [0.01] [0.00] [0.01]

Notes: The table reports regressions

H∑
i=1

ret+i = β0 + β1(p
m
t − dt) + error,

where ret+1 is either the excess return on the market portfolio, the excess return on the 5-year

nominal zero-coupon bond, or the return on the strategy that is long the value portfolio and short

the growth portfolio. Returns are measured over horizons of one year and five years. The right

hand side variable is the lagged price-dividend ratio on the market. For each model regression,

the table reports OLS estimates of the regressors and R2-statistics (in brackets). For each data

regression, the table reports OLS estimates of the regressors, Newey-West (1987) corrected t-

statistics (in parentheses), and R2-statistics (in brackets). Data are monthly.
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Table 14: Long-horizon regressions of returns on the yield spread

Market return Bond return V–G return

Horizon 1 5 1 5 1 5

Panel A: Model

β1 3.15 12.00 1.42 5.35 1.87 7.01

R2 [0.07] [0.25] [0.11] [0.30] [0.14] [0.18]

Panel B: Data from 1952-2004

β1 4.15 12.68 2.48 1.66 2.30 -4.82

t-stat (1.78) (3.04) (3.56) (0.72) (1.33) (-1.76)

R2 [0.04] [0.10] [0.13] [0.01] [0.02] [0.04]

Panel C: Data from 1964-2004

β1 3.79 13.21 2.71 1.90 1.85 -5.52

t-stat (1.60) (2.93) (3.91) (0.82) (1.02) (-2.04)

R2 [0.04] [0.14] [0.16] [0.01] [0.02] [0.06]

Notes: The table reports regressions

H∑
i=1

ret+i = β0 + β1(y
$
5t − y$

1t) + error

where ret+1 is either the excess return on the market portfolio, the excess return on the 5-year

nominal zero-coupon bond, or the return on the strategy that is long the value portfolio and short

the growth portfolio. Returns are measured over horizons of one year and five years. The right

hand side variable is the lagged spread between the yield on the five-year nominal zero-coupon

bond and the yield on the three-month zero-coupon bond. For each model regression, the table

reports OLS estimates of the regressors and R2-statistics (in brackets). For each data regression,

the table reports OLS estimates of the regressors, Newey-West (1987) corrected t-statistics (in

parentheses), and R2-statistics (in brackets). Data are monthly.
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Table 15: Long-horizon regressions of returns on the linear combination of forward rates

Market return Bond return V–G return

Horizon 1 5 1 5 1 5

Panel A: Model

β1 3.80 14.07 1.67 6.18 2.26 8.67

R2 [0.11] [0.37] [0.17] [0.43] [0.23] [0.30]

Panel B: Data from 1952-2004

β1 1.11 2.80 1.46 2.58 0.94 -0.24

t-stat (1.15) (1.44) (4.79) (3.70) (1.66) (-0.21)

R2 [0.02] [0.03] [0.24] [0.14] [0.02] [0.00]

Panel C: Data from 1964-2004

β1 1.53 4.91 1.47 2.31 0.67 -0.85

t-stat (1.91) (4.55) (7.70) (4.68) (1.25) (-0.94)

R2 [0.05] [0.15] [0.34] [0.16] [0.02] [0.01]

Notes: The table reports regressions

H∑
i=1

ret+i = β0 + β1θ
′ft + error

where ret+1 is either the excess return on the market portfolio, the excess return on the 5-year

nominal zero-coupon bond, or the return on the strategy that is long the value portfolio and short

the growth portfolio. Returns are measured over horizons of one year and five years. The right

hand side variable is a lagged linear combination of forward rates on nominal bonds, constructed

as in Cochrane and Piazzesi (2005). For each model regression, the table reports OLS estimates

of the regressors and R2-statistics (in brackets). For each data regression, the table reports OLS

estimates of the regressors, Newey-West (1987) corrected t-statistics (in parentheses), and R2-

statistics (in brackets). Data are monthly.
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Table 16: Long-horizon regressions of returns on the value spread

Market return Bond return V–G return

Horizon 1 5 1 5 1 5

Panel A: Model

β1 -0.20 -0.75 -0.07 -0.24 -0.12 -0.46

R2 [0.02] [0.06] [0.02] [0.04] [0.04] [0.05]

Panel B: Data from 1952-2004

β1 -0.25 -0.63 0.05 0.14 0.23 0.62

t-stat (-2.07) (-2.15) (1.04) (0.74) (2.05) (3.61)

R2 [0.05] [0.07] [0.02] [0.02] [0.09] [0.17]

Panel C: Data from 1964-2004

β1 -0.27 -0.86 0.06 0.22 0.22 0.59

t-stat (-2.45) (-2.95) (1.18) (1.19) (1.77) (3.16)

R2 [0.08] [0.14] [0.02] [0.05] [0.09] [0.15]

Notes: The table reports regressions

H∑
i=1

ret+i = β0 + β1 (value spread)t + error

where ret+1 is either the excess return on the market portfolio, the excess return on the 5-year

nominal zero-coupon bond, or the return on the strategy that is long the value portfolio and

short the growth portfolio. Returns are measured over horizons of one year and five years. The

right hand side variable is the value spread, constructed as the log dividend-price ratio of the

value portfolio minus the log dividend-price ratio of the growth portfolio in the model and as in

Cohen, Polk, and Vuolteenaho (2003) in the data. For each model regression, the table reports

OLS estimates of the regressors and R2-statistics (in brackets). For each data regression, the table

reports OLS estimates of the regressors, Newey-West (1987) corrected t-statistics (in parentheses),

and R2-statistics (in brackets). Data are monthly.
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Figure 1: Model Solution
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Notes: Solutions to Brn, the sensitivity of prices to the real riskfree rate (top left); to Bqn, the

sensitivity of prices to expected inflation (top right); to Bzn, the sensitivity of prices to expected

dividend growth (bottom left); and to Bxn, the sensitivity of prices to the price of risk variable.

Dotted lines denote the solutions for zero-coupon equity prices expressed in real terms, dashed-

dotted lines denote the solutions for real bond prices expressed in real terms, dashed lines denote

the solutions for nominal bond prices expressed in nominal terms. The solutions are scaled by

the persistence φ of the variables. The solution for Br is identical for all three asset classes. The

solution for Bq is identical for equities and real bonds and equal to zero. The solution for Bz is

identical for real and nominal bonds and equal to zero.
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Figure 2: Yields on Zero-Coupon Real Bonds
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Notes: Panel A shows quarterly yields on real bonds as a function of maturity when the state

variables are equal to their long-run mean (solid line), and when expected inflation qt is equal to

the long-run mean plus (dashed-dotted line) or minus (dotted line) two unconditional quarterly

standard deviations. All other state variables are kept at their long-run mean. Panel B shows

analogous results when the real riskfree rate rft is varied by plus or minus two unconditional

quarterly standard deviations. Panel C shows analogous results when the price-of-risk variable xt

is varied by plus or minus two unconditional quarterly standard deviations.
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Figure 3: Yields on Zero-Coupon Nominal Bonds
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Notes: Panel A shows quarterly nominal yields on nominal bonds as a function of maturity when

the state variables are equal to their long-run mean (solid line), and when expected inflation qt

is equal to the long-run mean plus (dashed-dotted line) or minus (dotted line) two unconditional

quarterly standard deviations. All other state variables are kept at their long-run mean. Panel B

shows analogous results when the real riskfree rate rft is varied by plus or minus two unconditional

quarterly standard deviations. Panel C shows analogous results when the price-of-risk variable xt

is varied by plus or minus two unconditional quarterly standard deviations.
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Figure 4: Ratios of Prices to Aggregate Dividends for Zero-Coupon Equity
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Notes: Panel A shows the log of ratios of zero-coupon equity prices to the aggregate dividend

as a function of maturity when the state variables are equal to their long-run mean (solid line),

and when expected dividend growth zt is equal to the long-run mean plus (dashed-dotted line)

or minus (dotted line) two unconditional quarterly standard deviations. All other state variables

are kept at their long-run mean. Panel B shows analogous results when the real riskfree rate

rft is varied by plus or minus two unconditional quarterly standard deviations. Panel C shows

analogous results when the price-of-risk variable xt is varied by plus or minus two unconditional

quarterly standard deviations.
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Figure 5: Decomposition of Coefficients from Long-Rate Regressions
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Notes: Panel A shows the covariance between the return on an n-period bond and fundamentals as

a function of maturity. Panel B shows the coefficient from a regression of the price-of-risk variable

xt on the yield spread as a function of the yield maturity. Panel C shows the coefficient βn from

the regression

yn−1,t+1 − ynt = αn + βn
1

n− 1
(ynt − y1t) + error,

as a function of maturity. Results are shown for real bonds (solid lines) and nominal bonds (dotted

lines). The covariance between returns and fundamentals, the coefficient from a regression of xt

on the yield spread and βn are related by the equation

βn = 1− Cov(rn,t+1,∆dt+1)
Cov(xt, ynt − y1t)

Var(yn−1,t+1 − y1t)
.

The results are from data simulated from the model at a quarterly frequency.
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Figure 6: Regressions of Excess Bond Returns on Forward Rates
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Notes: Annual returns on 2, 3, 4 and 5-year nominal bonds, in excess of the return on the 1-year

bond, are regressed on the 1, 3 and 5-year forward rates in data simulated from the model. The

figure shows the resulting regression coefficients as a function of the forward rate maturity.
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