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Abstract

This paper extends the static analysis of oligopoly structure into an infinite-horizon setting with
sunk costs and demand uncertainty. The observation that exit rates decline with firm age motivates the
assumption of last-in first-out dynamics: An entrant expects to produce no longer than any incumbent.
This selects an essentially unique Markov-perfect equilibrium. With mild restrictions on the demand
shocks, sequences of thresholds describe firms’ equilibrium entry and survival decisions. Bresnahan and
Reiss’s (1993) empirical analysis of oligopolists’ entry and exit assumes that such thresholds govern
the evolution of the number of competitors. Our analysis provides an infinite-horizon game-theoretic
foundation for that structure.
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1 Introduction

This paper develops and presents a simple and tractable model of oligopoly dynamics based on the static
entry game used by Bresnahan and Reiss (1990). A random number of consumers demands the industry’s
services, and this state evolves stochastically. Entry possibly requires paying a sunk cost, and continued
operation incurs fixed costs. Incumbents who wish to avoid these per-period fixed costs in markets that
are no longer profitable exit. Bresnahan and Reiss’s (1993) empirical analysis of oligopolists’ entry and exit
assumes that thresholds govern the evolution of the number of competitors. That is, entry occurs whenever
demand passes above one in a sequence of entry thresholds, and exit occurs if it subsequently passes below a
corresponding exit threshold. A monopolist uses a threshold-based rule for entry and exit if raising current
demand stochastically increases tomorrow’s demand. We show that this condition alone does not guarantee
that oligopolists use threshold rules, because a larger current market might make future entry more likely
and consequently reduce an oligopolist’s value. Nevertheless, we provide mild conditions on the demand
process that guarantee that thresholds govern all firms’ equilibrium entry and exit choices. In this way, our
analysis provides an infinite-horizon game-theoretic foundation for Bresnahan and Reiss’s (1993) empirical
framework, which can be applied to extend their earlier structural estimation of static oligopoly models to
a fully dynamic setting. The model makes a unique equilibrium prediction, which can be calculated very
quickly. Thus, it can be used for policy experiments. This paper’s companion (Abbring and Campbell, 2007)
exemplifies this with an examination of how raising a barrier to entry for a second firm changes duopoly
dynamics.

Bresnahan and Reiss (1991a) noted that the static oligopoly entry game can have multiple equilibria,
which obviously complicates prediction. To select a unique equilibrium, both Bresnahan and Reiss (1990)
and Berry (1992) assume that firms move sequentially. We take a similar approach by allowing older firms to
∗We are grateful to Eugene Amromin, Gadi Barlevy, Allan Collard-Wexler, Meredith Crowley, and Richard Rosen, for their
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commit to continuation before their younger counterparts. We also restrict attention to equilibria in which
firms correctly believe that no firm will produce after an older rival exits. That is, the equilibria have a
last-in first-out (LIFO) structure. Three considerations motivate this focus. First, it is consistent with the
widespread observation that young firms exit more frequently than their older counterparts. Second, the
equilibrium approximates the “natural” Markov-perfect equilibrium in an extension of the model in which
firms’ costs decrease with age and the most efficient firms survive. Third and perhaps most importantly, this
restriction vastly simplifies the equilibrium analysis. We prove that, irrespectively of whether the conditions
for threshold rules are imposed or not, there always exists such an equilibrium and that it is (essentially)
unique. This simplicity comes at one substantial cost: All shocks occur at the market level, so there is no
reason for simultaneous entry and exit.

The model’s theoretical simplicity makes it well-suited for exploring how parameter changes impact
equilibrium dynamics and long-run market structure. To show this, we calculate the effects of increasing
demand uncertainty on firms’ equilibrium entry and exit thresholds. Nonstrategic analysis of the firm life
cycle suggests that additional uncertainty should raise the value of the option to exit and thereby substantially
lower both entry and exit thresholds. The oligopolistic exit thresholds do indeed fall with uncertainty, but
the entry thresholds do not. Their relative invariance reflects an offsetting effect that a monopolist does not
face: Increasing demand uncertainty raises the probability of further entry and thereby reduces a new firm’s
value. We also calculate the population “estimates” of oligopoly profit margins using the static ordered
Probit procedure of Bresnahan and Reiss (1990) and data generated from the model’s ergodic distribution.
We find that the delay in exit arising from uncertainty (familiar from Dixit and Pindyck, 1994) biases
these entry threshold estimates downwards, and this biases the estimated effect of additional competition on
profits downward. That is, a long-run procedure that abstracts from relevant dynamic considerations can
find “evidence” that profit margins decline with entry when in fact they are constant.

The sequential nature of firms’ entry and exit decisions and the assumption that firms rationally expect
LIFO dynamics substantially structures our analysis. In some previous work, the assumption that firms move
sequentially commits early movers to their actions. Examples are Dixit’s (1980) two-period Stackelberg
investment game and Maskin and Tirole’s (1988) infinite-horizon alternating-moves quantity game. In a
finite-horizon game, ordering players’ moves usually selects a unique subgame-perfect Nash equilibrium.
Such sequencing need not select a single Markov-perfect equilibrium in an infinite-horizon setting like ours,
so researchers sometimes structure expectations with assumptions— such as LIFO— to select a “natural”
equilibrium. For example, Cabral (1993) assumes that younger firms that have not yet exploited the learning
curve and therefore have high costs exit before their older low-cost counterparts. Modifying our model to
make fixed costs decline deterministically with a firm’s age is straightforward, and we obtain the LIFO
equilibrium as a limit of the sequence of “natural” (in Cabral’s sense) equilibria to our model as we send
the learning curve’s slope to zero. Thus, the LIFO equilibrium analysis seems useful for industries where
incumbents enjoy small technological advantages over entrants.

Jovanovic (1982) and Hopenhayn (1992) provide analytic results for industry dynamics with many firms,
but we know few similarly useful results for oligopolies. This apparent intractability has led researchers to
approach questions of oligopoly dynamics computationally within Ericson and Pakes’s (1995) framework for
the empirical analysis of Markov-perfect oligopoly dynamics. Pakes and McGuire’s (1994) algorithm for its
equilibrium calculation iterates on a Bellman-like operator for the firms’ value functions. It is well known that
Bellman iteration converges slowly for conventional dynamic programming problems with high-dimensional
states, so it should be no surprise that applying it to the oligopoly problem is computationally expensive.

The proofs of equilibrium existence and uniqueness for our model proceed constructively, beginning with
the survival decision for the youngest firm when no further entry can be profitable even at the highest possible
demand realization. Because no incumbents exit during its lifetime, this survival decision corresponds to a
standard dynamic programming problem with only the current demand as a state variable. With this in
hand, we can determine the entry choice for any firm that would occupy this “final” position. Given these
entry and survival decisions, the survival problem for a firm expecting at most one more entrant corresponds
to a dynamic programming problem with two state variables, current demand and the presence or absence
of a younger competitor. Proceeding recursively in this way yields the unique Markov-perfect equilibrium
decision rules and firm values with a LIFO structure. In this paper’s companion (Abbring and Campbell,
2007), we have used this construction to analytically characterize the effects of raising late entrants’ sunk costs
and to calculate equilibria for hundreds of parameter values. Because the involved dynamic programming
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problems have a small state space, these calculations together take only a few minutes.
The remainder of this paper proceeds as follows. The next section presents the model’s primitives and

demonstrates the uniqueness of a Markov-perfect equilibrium with a LIFO structure. To clarify how the
model’s moving parts fit together, that section closes with an examination of a particular specification for
the demand shocks that yields a pencil-and-paper solution. Section 3 gives sufficient conditions for firms
to use threshold rules for their equilibrium entry and exit decisions, and Section 4 illustrates the model’s
application with the investigations of the dependence of oligopolists’ entry and exit thresholds on demand
uncertainty and of Bresnahan and Reiss’s (1990) static estimation procedure.

2 The Model

The model consists of a single oligopolistic market in discrete time t. There is a countably infinite number
of firms that are potentially active in the market. We index these firms by j ∈ N, and below we refer to j
as the firm’s name. At time 0, N0 = 0 firms are active. Entry and subsequent exit determine the number
of active firms in each later period, Nt. The number of consumers in the market, Ct, evolves exogenously
according to a first-order Markov process bounded between Ĉ ≥ 0 and Č < ∞. We denote the conditional
distribution of Ct with Q(c|Ct−1) ≡ Pr[Ct ≤ c|Ct−1].

Figure 1 illustrates the sequence of events and actions within a period using a portion of the game tree.
It begins with the inherited values of Ct−1 and Nt and with the name of the first potential entrant, Jt.1 All
participants observe the realization of Ct, and all active firms receive profits equal to (Ct/Nt)× π(Nt)− κ.
Here, each firm serves Ct/Nt consumers, and π(Nt) is the producer surplus earned from each one.2 Increasing
Nt weakly decreases π(Nt). The term κ > 0 represents fixed costs of production.

After serving the market, active firms decide whether they will remain so. Exit is irreversible but otherwise
costless. It allows the firm to avoid future periods’ fixed production costs. If firm j is active in this period,
denote the rank of its name in the set of all active firms’ names with Rjt . This equals one for the firm with the
lowest name, and it equals Nt for the firm with the highest name. The active firms’ continuation decisions
proceed sequentially in increasing order of this rank. Firms can use mixed strategies, so we describe their
choices with the survival probability a. These strategies’ pure realizations also occur sequentially, so a firm
later in the sequence conditions on its rivals’ realized (binary) continuation choices.

After active firms’ continuation decisions, those firms that have not yet had an opportunity to enter
make entry decisions in the order of their names, starting with Jt. These continue until one potential
entrant remains out of the industry. The first potential entrant for the next period, Jt+1, has this firm’s
name plus one. Because entry decisions proceed sequentially in increasing order of the firms’ names, any
entrant j will have a rank Rjt+1 greater than that of any surviving incumbent. Its cost of entry is ϕ(Rjt+1).
We assume that ϕ(Rjt+1) ≥ 0 and is weakly increasing in Rjt+1. This allows for, but does not require, later
entrants to face a “barrier to entry” in the form of elevated sunk costs.3 The payoff to staying out of the
industry is always zero, because a firm with an entry opportunity cannot delay its choice. Both active firms’
and potential entrants’ decisions maximize their expected stream of profits discounted with a factor β < 1.

Before proceeding, we wish to highlight how the environment gives older firms priority in committing to
continuation. Entry decisions proceed sequentially in increasing order of the firms’ names; so active firms’
values of Rjt rank their ages as well as their names if they entered in distinct periods. In this case, the
ordering of continuation decisions by Rjt puts the oldest firm first and the youngest firm last. We employ
the convention of assigning Rjt based on firms’ names to break any ties that occur when two or more firms
enter the market in the same period.

2.1 Markov-Perfect Equilibrium

We choose as our equilibrium concept symmetric Markov-perfect equilibrium. When firm j decides whether
to stay or exit, Nt − Rjt (the number of active firms following it in the sequence), Ct, and Rjt+1 (its rank

1We initialize this with J0 = 0.
2This section’s analysis extends directly to a model in which a vector-valued Markov process Ct influences total producer

surplus in a general way. In particular, if we replace Ctπ(Nt) for scalar Ct with π(Ct, Nt) for vector-valued Ct, this section’s
equilibrium existence and uniqueness results continue to hold without change.

3This feature of the model is the focus of the companion paper, Abbring and Campbell (2007).
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Figure 1: The game tree within a period.

All firms have names j ∈ N. The rank Rjt orders active firms in increasing order of their names, and Jt
gives the name of the first firm with an entry opportunity in period t. All firms discount future payoffs with
β < 1. All firms use mixed strategies (prescribing actions denoted with a ∈ [0, 1]), and the tree’s branches
follow their pure outcomes. See the text for further details.
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in the next period’s sequence of active firms) are available and payoff-relevant. Collect these into Hjt ≡
(Nt − Rjt , Ct, R

j
t+1). Similarly, the payoff-relevant state to a potential entrant is Hjt ≡ (Ct, R

j
t+1). Note

that Hjt takes its values in HS ≡ Z+ ×
[
Ĉ, Č

]
× N for firms active in period t and in HE ≡

[
Ĉ, Č

]
× N for

potential entrants. Here and below, we use S and E to denote potential survivors and entrants.
A Markov strategy for firm j is a pair of functions AjS : HS → [0, 1] and AjE : HE → [0, 1]. These

represent the probabilities of being active in the next period given that the firm is currently active (AjS) and
given that the firm has an entry opportunity (AjE). We say that AjS and AjE are pure if they are {0, 1}-valued.
A symmetric Markov-perfect equilibrium is a subgame-perfect equilibrium in which all firms follow the same
Markov strategy.

When firms use Markov strategies, the payoff-relevant state variables determine an active firm’s expected
discounted profits, which we denote with v(HS). In a Markov-perfect equilibrium, these satisfy the Bellman
equation

v(HS) = max
a∈[0,1]

aβE
[
C ′

N ′
π(N ′)− κ+ v(H ′S) HS

]
. (1)

Here and throughout, we adopt conventional notation and denote the variable corresponding to X in the next
period with X ′. In Equation (1), the expectation of N ′ is calculated using all firms’ strategies conditional
on the particular firm of interest choosing to be active.

It is well known that multiple Markov-perfect equilibria can exist in similar models.4 To overcome this
standard difficulty, we restrict attention to equilibria in which firms’ entry and exit policies arise from a
last-in first-out (LIFO) strategy.

Definition 1. A LIFO strategy is a strategy (AS , AE) such that AS is pure, with AS(N −R,C,R′) weakly
decreasing in R.

If all firms adopt a common LIFO strategy (AS , AE), then an active firm with rank R ≥ 2 never stays if the
predecessor in the sequence of active firms exits, because

AS(N −R,C,R′) = 0 =⇒ AS(N −R− 1, C,R′) = 0.

As a consequence, if firms adopt a common LIFO strategy, they exit in the reverse order of their entry.
Conversely, if firms use a common strategy and always exit in the reverse order of their entry, then the
common strategy is a LIFO strategy.

Empirical studies of industry dynamics consistently find that young firms exit more frequently than their
older rivals. For example, Dunne, Roberts, and Samuelson (1988) examined the survival of firms that entered
manufacturing between the 1963 and 1967 Economic Censuses and lived to be sampled in 1967. Sixty four
percent of these exited between 1967 and 1972. Their exit rate for the next five years was still substantial
but considerably lower, 42 percent. This cohort’s exit rate for the five years after that equalled 40 percent.
Jarmin, Klimek, and Miranda (2003) calculated analogous five-year exit rates for firms that entered retail
trade between 1977 and 1982 and lived until 1982. Of these, 60 percent exited by 1987. Their exit rates
for 1987–1992 and 1992–1997 were 50 percent and 40 percent, so the decline of exit rates occurred more
gradually for that cohort. The restriction to LIFO strategies mimics these declining exit rates in an extreme
way, because the youngest firm always exits first. We do not doubt that firms sometimes outlast their older
competitors, but the pervasive finding that exit rates decline with an entry cohort’s age leads us to believe
that the restriction to LIFO strategies provides a useful point of departure for examining dynamic oligopolies.

The payoff from restricting attention to LIFO strategies begins with the following proposition.

Proposition 1. There exists a symmetric Markov-perfect equilibrium in a LIFO strategy (AS , AE) such
that AS(N−R,C,R′) is pure, constant in N−R, and weakly decreasing in R′; AE(C,R′) is pure and weakly
decreasing in R′; and

AS(N −R,C,R′) ≥ AE(C,R′).

4See Doraszelski and Satterthwaite (2007).
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The equilibrium survival and entry probabilities in Proposition 1 weakly decrease with the firm’s rank in
the next period. Moreover, the survival probability is constant in the number of firms with unresolved
continuation decisions, and weakly larger than the entry probability of a firm with the same prospective
rank in the same demand state.

This paper’s appendix contains the proposition’s constructive proof, which has two critical steps. First,
we note that the upper bound on C implies that the number of firms that ever produce in a Markov-perfect
equilibrium cannot exceed some bound, which we call Ň . Because a firm with rank Ň expects none of
its older competitors to cease production before it does, this firm’s optimal exit rule corresponds to that
from a simple dynamic programming problem. Second, we solve exit decision problems for firms with ranks
Ň − 1, Ň − 2, . . . , 1 that embody the assumption that other firms follow a LIFO strategy. A firm with
rank R forms its expectations about the behavior of firms with higher ranks using the solutions of those
firms’ decision problems. With the solutions to these standard dynamic programming problems in hand, we
construct a candidate LIFO strategy and then verify that it satisfies the proposition’s conditions and forms
a Markov-perfect equilibrium.5

The existence proof strongly suggests that the Markov-perfect equilibrium in a LIFO strategy is unique,
because the decision problems used in its construction have Bellman equations with unique solutions. How-
ever, we might be able to construct multiple LIFO equilibria by varying a firm’s actions in states of indif-
ference between activity and inactivity. We sidestep this difficulty by concentrating on equilibria in which a
firm defaults to inactivity.

Definition 2. A symmetric Markov-perfect equilibrium strategy (AS , AE) defaults to inactivity if AS(HS) =
0 whenever v(HS) = 0 and AE(C,R′) = 0 whenever v(0, C,R′) = ϕ(R′).

Proposition 2. There exists a unique symmetric Markov-perfect equilibrium in a LIFO strategy that defaults
to inactivity. This equilibrium’s survival rule AS and entry rule AE are such that AS(N − R,C,R′) is
pure, constant in N − R, and weakly decreasing in R′; AE(C,R′) is pure and weakly decreasing in R′; and
AS(N −R,C,R′) ≥ AE(C,R′).

Note that the proposition’s requirement that the equilibrium strategy defaults to inactivity ensures that it
is pure.6

Other symmetric Markov-perfect equilibria that default to inactivity might exist, but in them the appar-
ent advantage of early entrants to commit to continuation does not always translate into longevity. Hence-
forth, we constrain our attention to the unique symmetric Markov-perfect equilibrium in a LIFO strategy
that defaults to inactivity.7

2.2 A Pencil-and-Paper Example

If we assume that Ct = Ct−1 with probability 1 − λ and that it equals a draw from a uniform distribution
on [Ĉ, Č] with the complementary probability, then we can calculate the model’s equilibrium value functions
and decision rules with pencil and paper. Before proceeding, we examine this special case to illustrate the
model’s moving parts. For further simplification, suppose that π(N) = 0 for N ≥ 3, so at most two firms
serve the industry. To ensure that the equilibrium dynamics are not trivial, we also assume that no firm

5Amir and Lambson (2003) prove existence of a subgame-perfect equilibrium in an infinite-horizon model that is similar to
ours, but in which firms move simultaneously in each stage game. They do so by constructing an equilibrium that is the limit
of a sequence of LIFO equilibria in the finite-horizon versions of their model as the horizon grows to infinity. This suggests
an alternative interpretation of our LIFO equilibrium as the limit of the sequence of equilibria from our model’s finite-horizon
analogues.

6Relaxing the assumption that ϕ is weakly increasing might be of some interest. After removing the conclusion that
AE(C,R′) weakly decreases in R′ from Propositions 1 and 2, both propositions continue to hold good when ϕ(R′) may decrease
with R′.

7In the model, π(N) and κ depend neither on the firm’s name nor on its history. The previous literature on industry dynamics
suggests three ways of relaxing this. The profitability of firms could be heterogeneous ex ante, drawn from some distribution
upon entry, or improve with experience in the market. We can extend the model in these directions if the modifications
never make a younger firm more profitable than any older rival. For example, we can incorporate irreproducible firm-specific
capabilities by assigning higher fixed costs to firms with higher names. Drawing, upon entry, a firm’s fixed cost from a two-
point distribution with a very large higher value would also leave the model’s LIFO structure intact. Such shocks can create
simultaneous entry and exit as potential entrants sequentially try to draw a low fixed cost. The learning curve mentioned in
this paper’s introduction exemplifies firm-specific changes in profits after entry.
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will serve the industry if demand is low enough and that two firms will serve the industry if it is sufficiently
high.8

To begin, consider an incumbent firm with rank 2. In an equilibrium in a LIFO strategy, its profit equals
(C/2)π(2)− κ. It will earn this until the next time that Ct changes, at which point the new demand value
will be statistically independent of its current value. It is straightforward to use these facts to show that
this firm’s value function is the following piecewise linear function of C:

v(0, C, 2) =

{
0 if C ≤ C2,

β
(1−λ)( C

2 π(2)−κ)+λṽ(0,2)

1−β(1−λ) if C > C2,

where

ṽ(0, 2) =
1
2

(
Ĉ + Č

2

)
π(2)− κ+

∫ Č

Ĉ

v(0, C ′, 2)
(Č − Ĉ)

dC ′.

Here, ṽ(0, 2) is the firm’s expected value following a new draw of Ct and C2 is the largest value of C that
satisfies v(0, C, 2) = 0. Optimality requires the firm to exit if C < C2. This value function is monotonic in
C, so there is a unique entry threshold C2 that equates the continuation value with the entry cost. Thus, a
second duopolist enters whenever Ct exceeds C2 and exits if it subsequently falls at or below C2.

Next, consider the problem of an incumbent with rank 1. If this firm is currently a monopolist, it expects
to remain so until Ct > C2; and if it is currently a duopolist, it expects to become a monopolist when Ct
falls below C2. This firm’s value function is also piecewise linear. If the firm begins the period as the sole
incumbent, it is

v(0, C, 1) =


0 if C ≤ C1,

β (1−λ)(Cπ(1)−κ)+λṽ(0,1)
1−β(1−λ) if C1 < C ≤ C2,

β
(1−λ)( C

2 π(2)−κ)+λṽ(1,1)

1−β(1−λ) if C > C2;

and if it begins as one of two incumbents it equals

v(1, C, 1) =


0 if C ≤ C1,

β (1−λ)(Cπ(1)−κ)+λṽ(0,1)
1−β(1−λ) if C1 < C ≤ C2,

β
(1−λ)( C

2 π(2)−κ)+λṽ(1,1)

1−β(1−λ) if C > C2.

The exit threshold C1 is the greatest value of C such that v(0, C, 1) = 0, and the expected values following
a change in Ct for a monopolist and a duopolist are

ṽ(0, 1) =

(
Ĉ + Č

2

)
π(1)− κ+

∫ Č

Ĉ

v(0, C ′, 1)
(Č − Ĉ)

dC ′,

ṽ(1, 1) =
1
2

(
Ĉ + Č

2

)
π(2)− κ+

∫ Č

Ĉ

v(1, C ′, 1)
(Č − Ĉ)

dC ′.

The value function of a firm with rank 1 does not always increase with C, because slightly raising C from
C2 induces entry by the second firm and causes both current profits and the continuation value to discretely
drop. Nevertheless we know that they drop to a value above ϕ(1), because at this point the second firm
chooses to enter. Hence, it is still possible to find a unique entry threshold C1 that equates the value of
entering with rank 1 to the cost of doing so.

8Sufficient conditions for these two properties are

(1− λ)
[
Ĉπ(1)− κ

]
+ λ

Ĉ+Č
2

π(1)− κ
1− β

< 0 and β

 (1− λ)
(
Č
2
π(2)− κ

)
+ λ

1−β

(
1
2
Č+Ĉ

2
π(2)− κ

)
1− β(1− λ)

 > ϕ(2).
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0

ϕ(1)

Monopoly Branch
Duopoly Branch

First Entrant’s Value Function

Ĉ C2 C2 Č

0

ϕ(2)

Second Entrant’s Value Function

Figure 2: Equilibrium in the pencil-and-paper example.

In this example, Ct+1 = Ct with probability 1−λ and equals a draw from a uniform distribution over [Ĉ, Č]
with the complementary probability. A firm with the opportunity to become the second entrant takes it if
C > C2, and that firm subsequently exits if C ≤ C2. The value of the first firm to enter is discontinuous.
As a function of Ct, the value of such a firm starting the period without a competitor begins at the origin,
proceeds horizontally to C1, and then follows the monopoly branch until C2. It then discontinuously drops
to the duopoly branch and follows it until C reaches Č. The first entrant’s value when facing an active
competitor follows the same path except that the discontinuous fall occurs at C2 instead of C2. The grey
arrows indicate the fall in the firm’s value upon entry of a second firm and the increase in value when that
competitor exits. Please see the text for further details.
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Figure 2 visually represents the equilibrium. In each panel, C runs along the horizontal axis. The vertical
axis gives the value of a firm when entry and exit decisions are made. The top panel plots the value of a
firm with rank 1, while the bottom panel plots the value for a competitor with rank 2. The value of a
duopolist with rank 2 equals zero for C < C2, and thereafter increases linearly with C. The entry threshold
C2 equates this value with ϕ(2). The value of a firm with rank 1 has two branches. The monopoly branch
gives the value of a monopolist when C ≤ C2. If C increases above C2 and thus induces entry, the firm’s
value drops to the duopoly branch. This has the same slope as the value function in the lower panel. Its
intercept is higher, because the incumbent expects to eventually become a monopolist the first time that C
passes below C2. When this occurs, the firm’s value returns to the monopoly branch. The entry and exit
thresholds for this firm occur where the monopoly branch intersects ϕ(1) and 0.

The paper-and-pencil example provides a useful basic framework for analytically characterizing the effects
of policy interventions in a dynamic duopoly. This paper’s companion (Abbring and Campbell, 2007) uses
this to determine the effects of raising a barrier to entry in a monopoly by increasing a second entrant’s sunk
costs, and to explore the consequences of replacing the LIFO assumption with a first-in first-out (FIFO)
assumption.

3 Threshold Entry and Exit Rules

In the paper-and-pencil example, all firms follow threshold rules for their entry and continuation decisions.

Definition 3. A firm with rank R′ follows a threshold rule if there exist real numbers CR′ and CR′ such
that

AS(N −R,C,R′) = I{C > CR′} and AE(C,R′) = I{C > CR′}.

With such a rule, a potential entrant into a market with R′ − 1 incumbents actually enters if and only if
C > CR′ , and this firm exits the first time thereafter that C ≤ CR′ .

There are three reasons to care about whether or not firms follow threshold rules. First, they pervade
theoretical and empirical industrial organization. Second, they simplify the model’s analysis, as the pencil-
and-paper example illustrated. Third, as the next proposition shows, higher realizations of demand always
result in more active firms in our model if and only if all firms use threshold rules. A monotonic influence of
Ct on Nt+i, i > 0, appeals to us as “natural”.9

Proposition 3. Consider an initial condition (Nt, Ct); a sequence of subsequent demand realizations
Ct+1, . . . , Ct+i−1; and the corresponding numbers of operating firms from the equilibrium of Proposition 2;
Nt+1, . . . , Nt+i. Increasing Ct weakly increases Nt+i for positive i and any possible initial condition and
sequence of subsequent demand realizations if and only if firms of all ranks follow threshold rules.

Appendix B presents the proposition’s proof.
With stochastic monotonicity— Q(·|C) weakly decreases with C— the value function for the firm with

the highest possible rank weakly increases with C. Therefore, such a firm must follow a threshold rule.10

Hopenhayn (1992) uses this to demonstrate the existence of an optimal exit threshold for competitive firms.
The Poisson innovation process from the pencil-and-paper example displays stochastic monotonicity, but
the lower ranked firm’s value function falls when a second competitor enters. Although that firm’s value
function is not monotonic, thresholds still govern its entry and exit. Thus, one might hope that the firms in
our model use threshold rules when C displays stochastic monotonicity. We show that this is not the case
with the following numerical example.

Let us set Ň = 2 and place lnCt ∈ [−1.50, 1.50]. Suppose that the probability of lnCt remaining
unchanged is 1/2. With probability 1/4 it falls to the maximum of lnCt− 0.30 and ln Ĉ, and with the same

9A threshold rule is only well-defined if Ct is a scalar, so this section’s analysis does not apply to the generalization to
vector-valued Ct mentioned in Footnote 2.

10Later in this section, we will make an additional left-continuity assumption, Assumption 4, that ensures that this rule has
Definition 3’s strict threshold-crossing representation if it defaults to inactivity.
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probability it rises to the minimum of lnCt + 0.30 and ln Č. That is,

Q(c|C) =


0 if ln c < max{lnC − 0.30,−1.50},
1/4 if max{lnC − 0.30,−1.50} ≤ ln c < lnC,
3/4 if lnC ≤ ln c < min{lnC + 0.30, 1.50}, and
1 otherwise.

The model’s other parameters in this example are ϕ(1) = ϕ(2) = 10, π(N) = 2 × I{N ≤ 2}, κ = 1, and
β = 1.05−1. Figure 3 shows both firms value functions.11 Clearly, the equilibrium entry rule for a firm with
prospective rank 1 does not obey a threshold rule. Such a firm will enter in the disconnected sets A and B,
where the firm’s value exceeds the cost of entry.

This example fails to produce threshold rules because a continuous increase in C leads to a discontinuous
jump in the probability of future entry: Crossing the upper boundary of A raises the probability of entry
next period from 0 to 1/4. The first entrant’s value drops discretely, because the continuous increase in
current profitability does not offset the loss from this increase in expected competition. In contrast, the
probability of future entry was constant by design in the paper-and-pencil example.

Comparing the two examples suggests that firms will use threshold rules if the stochastic process limits
this negative effect of increasing Ct on expected future profits. Here, we present sufficient conditions on
Q(·|C) for this to be so.

Assumption 1 (Monotonicity). E[C ′|C] is weakly increasing in C.

Assumption 2 (Independence). The innovation error U ′ ≡ C ′ − E[C ′|C] is independent of C.

Assumption 3 (Concavity). The cumulative distribution function Q̃ of U ′ is concave on [U,∞), where
U ≡ infC {C − E [C ′|C]}.

Assumption 4 (Continuity). E[C ′|C] is continuous from the left.

Assumptions 1 and 2 together imply stochastic monotonicity. In particular, Assumption 2 is equivalent
to Q(c|C) = Q̃ (c− E [C ′|C]) for all c. With Assumption 1, this ensures that Q(·|C) weakly decreases with
C.

Assumptions 2 and 3 together require Q(·|C) to be concave on [C,∞), because c − E [C ′|C] ≥ C −
E [C ′|C] ≥ U if c ≥ C. Equivalently, Q(·|C) must have a weakly decreasing Lebesgue density to the right
of C. The three-point distribution used to create Figure 3 satisfies Assumptions 1 and 2, but violates
Assumption 3.

Assumption 4 implies that the value function in the equilibrium that defaults to inactivity is continuous
from the left in C. It carries little substance, because Assumption 1 already implies that E[C ′|C] has at
most countably many discontinuities.

With these assumptions in place, we can state this section’s central result.

Proposition 4. Let (AS , AE) be the unique symmetric Markov-perfect equilibrium in a LIFO strategy that
defaults to inactivity. If Q(·|C) satisfies Assumptions 1–4, then firms with all ranks follow threshold policies.

The proposition’s proof is given in Appendix B. Assumptions 2 and 3 ensure that the conditional distribution
of C ′ has no mass points or modes to the right of C. Thus, increasing C cannot move a “substantial”
probability mass over another firm’s entry threshold and cause a “discontinuous” increase in the probability
of future entry (as in our example of a nonmonotonic exit rule). Together with Assumption 1, this suffices
to guarantee that, for each given rank, the equilibrium value function crosses the cost of entry only once
and is weakly increasing to the left of that crossing. The corresponding equilibrium strategy prescribes that
firms enter and survive if demand exceeds rank-dependent entry and exit thresholds. Assumption 4 only
ensures that the equilibrium strategy that defaults to inactivity has Definition 3’s strict threshold-crossing
representation.

To shed further light on the content of Assumption 3, suppose that U ′ has a uniform distribution with
support [−σ/2, σ/2]. Assumption 3 requires E[C ′|C] − σ/2 ≤ C for all C. That is, the minimum possible
realization of C ′ − C cannot exceed zero. In this sense, Assumption 3 bounds the growth of demand.

11For the computation, we restricted Ct to a grid of 3000 evenly spaced points and used the algorithm described in Section
4.1.
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Enter if lnCt ∈ A ∪ B
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First Entrant’s Value Function

A B
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Figure 3: Example of LIFO equilibrium with a nonmonotonic entry rule.

In this example, lnCt+1 − lnCt equals zero with probability 1/2 and equals either min{0.30, ln Č/Ct} or
max{−0.30, lnCt/Ĉ} with probability 1/4 placed on each value. A firm with the opportunity to become the
second entrant takes it if lnCt > 0.13. The value of entry for a first entrant exceeds its cost if lnCt is slightly
less than 0.13 − 0.30 = −0.17. Increasing lnCt from such a value pushes the highest possible realization of
lnCt+1 past 0.13. This discontinuously lowers the first entrant’s value to a point below the cost of entry.
Hence, the equilibrium entry strategy is not monotonic in Ct. Please see the text for further details.
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The Poisson innovation process from the pencil-and-paper example also satisfies the assumptions of
Proposition 4. The following representation theorem demonstrates that these two examples are “typical” of
such processes and aids in the construction of others.

Proposition 5. The transition function Q(·|C) satisfies Assumptions 1–3 if and only if there exist a sequence
Q1(·|C), Q2(·|C), . . . of transition functions such that

lim
K→∞

sup
c,C

∣∣QK(c|C)−Q(c|C)
∣∣ = 0

and; for all K ∈ N;

QK(·|C) =
K∑
k=1

pKk Q
K
k (·|C), pK1 , . . . , p

K
K ≥ 0,

K∑
k=1

pKk = 1;

where; for k = 1, . . . ,K;

QKk (c|C) =

 0 if (c− µKk (C))/σKk ≤ −1/2,
(c− µKk (C) + σKk /2)/σKk if − 1/2 < (c− µKk (C))/σKk ≤ 1/2,
1 otherwise;

and

– σKk ≥ 0,

– µKk (C) weakly increases in C,

– Ĉ + σKk /2 ≤ µKk (C) ≤ Č − σKk /2, and

– µKk (C) ≤ C + σKk /2.

This proposition’s proof, in Appendix B, relies on the well-known fact that concave distributions can be
represented by mixtures of uniform distributions with common lower ends of their supports.

Proposition 5 implies that each demand process that satisfies Assumptions 1–3 can be constructed by
mixing uniform autoregressions that each satisfy monotonicity (as in Assumption 1) and the support condi-
tion used in the example. In particular, each of the mixed processes is a possibly nonlinear autoregression
with conditional mean µKk (C) and uniform innovations with standard deviation σKk /

√
12. The coefficients

pKk give the mixing probabilities. The stochastic process from the pencil-and-paper example is such a mix-
ture, with α and 1− α serving as the mixing probabilities. In this case, one of the uniform distributions is
degenerate at C. The support condition that µKk (C) ≤ C + σKk /2 ensures that the current state is always
in or above the support of each mixing distribution. With uniformity, this guarantees that Q(·|C) has a
nonincreasing Lebesgue density on (C, Č] (Assumption 3).

To construct another example process, consider a random walk reflected at Ĉ and Č. That is; set

µKk (C) =


Ĉ + σKk /2 if C ≤ Ĉ + σKk /2,
C if Ĉ + σKk /2 < C ≤ Č − σKk /2, and
Č − σKk /2 if C > Č − σKk /2;

for some 0 < σKk < Č− Ĉ. By mixing over such reflected random walks, we can approximate any symmetric
and continuous distribution for the growth rate of demand in the region away from the boundaries of [Ĉ, Č].

Proposition 5 does not cover Assumption 4. This assumption can directly be imposed by choosing µKk (C)
such that limK→∞

∑K
k=1 p

K
k µ

K
k (C) is continuous from the left. In both the pencil-and-paper and the reflected

random walk examples, this limit is continuous, and Assumption 4 is satisfied.
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4 Entry and Exit with Uncertainty

This section applies our analysis to two related questions: How does adding uncertainty impact oligopolists’
entry and exit thresholds? How do estimates of oligopolists’ producer surplus per consumer based on static
models of the “long-run” without uncertainty or without sunk costs differ from their actual values?

Dixit and Pindyck (1994) review a large literature that characterizes competitive firms’ entry and exit
decisions with sunk costs and uncertain profits. Such a firm’s value equals its fundamental value, the expected
discounted profits from perpetual operation, plus the value of an option to sell this stream of (potentially
negative) profits at a strike price of zero. This literature’s key insight is that uncertainty about future profits
raises the value of this put option and thereby decreases the frequency of exit. Abbring and Campbell
(2006) estimated that this option value accounted for the majority of firm value in a particular competitive
service industry. Our model allows us to investigate how the insights from this well-studied decision-theoretic
problem apply to oligopolistic dynamics.

Our analysis of the second question follows a large literature based on static free-entry models of oligopoly
structure, exemplified by Bresnahan and Reiss (1990, 1991b) and Berry (1992). They determined empirically
how changing market size influenced the number of competitors using observations from cross-sections of
local retail (Bresnahan and Reiss) and airline (Berry) markets. The models they used to structure their
analysis can be viewed as versions of ours in which either demand remains unchanged over time or firms
incur no sunk costs. These papers point to current demand as the key determinant of the number of firms:
A market will attain N firms if N entrants can recover their fixed costs, but N + 1 entrants cannot. These
authors emphasize that the observed relationship between C and N depends on the rate at which π(N)
decreases (which Sutton, 1991, labeled the toughness of competition) and the rate at which ϕ(N) increases
(which McAfee, Mialon, and Williams, 2004, define to be an economic barrier to entry). If both of these
functions are constant, then the number of active firms is roughly proportional to demand, Ci = i × C1.
However, if either π(N) decreases or ϕ(N) increases, then N/C declines with C. In this sense, increasing
the toughness of competition or imposing an economic barrier to entry increases concentration.

Our approach to answering these questions is computational. Accordingly, we begin this section with an
explicit presentation of the algorithm for equilibrium calculation. We then show how demand uncertainty
impacts equilibrium entry and exit thresholds for a particular model parameterization. The section concludes
with a presentation of the entry thresholds and the producer surplus per consumer calculated from feeding
data generated by our model’s ergodic distribution through a static Probit model of long-run equilibrium
like that of Bresnahan and Reiss (1990, 1991b).

4.1 Equilibrium Computation

The proof of Proposition 1 outlines a simple algorithm for computing the Markov-perfect equilibrium of
interest:

– Given values for the model’s primitives, we choose an evenly spaced grid of values for C in the interval
[Ĉ, Č] and a Markov chain over this grid to approximate Q(·|C).

– We set Ň equal to the largest value of N such that

Č

N
π(N)− κ ≥ 0.

– We consider the decision problem of a firm with rank Ň . This firm rationally expects no further entry
and sets N ′ equal to N ′

Ň
(X,C) ≡ Ň in all states (X,C). Here, X is the number of active firms

with unresolved continuation decisions: X = 0 for a potential entrant and X = N − R for an active
firm deciding on continuation. Under this supposition, we can solve the firm’s dynamic programming
problem by beginning with a trial value for its value function v(0, ·, Ň) and iterating on the Bellman
operator in Equation (1) for N = R = R′ = Ň . This gives the firm’s expected discounted profits
v(0, C, Ň) for all C on the chosen grid. In practice, this takes very, very little computer time. From
v(0, ·, Ň), we can calculate the sets of demand states C in which the firm chooses to enter and survive.
We refer to these as the entry and survival sets

EŇ ≡ {C|v(0, C, Ň) > ϕ(Ň)} and SŇ ≡ {C|v(0, C, Ň) > 0}.
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– The rest of the computation proceeds recursively for R′ = Ň−1, . . . , 1. Suppose that we have computed
entry sets ER′+1, . . . , EŇ and survival sets SR′+1, . . . ,SŇ . A firm with (prospective) rank R′ rationally
expects that these sets govern younger firms’ entry and survival decisions, and that no firm will enter
with rank larger than Ň . That is,

N ′R′(X,C) ≡ R′ +
Ň−R′∑
i=1

[
I {i ≤ X,C ∈ SR′+i}+ I {i > X,C ∈ ER′+i}

]

governs the evolution of the number of firms; X = 0, 1, . . . , Ň − R′. With this specification for N ′ in
place, we can solve this firm’s dynamic programming problem by iterating on the Bellman operator
in Equation (1) for given R′, starting with e.g. the value function for a firm with rank R′ + 1. This
produces the expected discounted profits v(X, ·, R′), and the entry and survival sets

ER′ ≡ {C|v(0, C,R′) > ϕ(R′)} and SR′ ≡ {C|v(0, C,R′) > 0},

for a firm with rank R′.

With the equilibrium entry and survival sets for all Ň possible ranks in place, calculating observable
aspects of industry dynamics (such as the ergodic distribution of Nt) is straightforward. Matlab programs
and documentation are available in this article’s replication file.

4.2 Equilibrium Entry and Exit Thresholds

With this algorithm, we have calculated the equilibrium entry and exit thresholds for a particular specification
of the model that satisfies the sufficient conditions for firms to use threshold-based entry and exit policies.
We set one model period to equal one year and chose β to replicate a 5% annual rate of interest. We set
κ = 1.75 and ϕ(R′) = 0.25β/(1− β), so the fixed costs of a continuing establishment equal seven times sunk
costs’ rental equivalent value. We also set π(N) = 4 for all N . With these parameter values and no demand
uncertainty, the entry thresholds are 8/7 of the corresponding exit thresholds and the entry threshold for a
second firm equals one. We set Ĉ = e−1.5, Č = e1.5, and Q(·|C) to equal a mixture over 51 reflected random
walks in the logarithm of C with uniformly distributed innovations. The mixture approximates a normally
distributed innovation. We denote the standard deviation of the normal distribution we seek to approximate
with σ. Proposition 4 can be easily extended to the case where Assumptions 1–4 apply to a monotonic
transformation of Ct, so the logarithmic specification for demand has no direct theoretical consequences. We
choose it because population and income measures typically require a logarithmic transformation to display
homoskedasticity across time.

The first two panels of Table 1 report the equilibrium entry and exit thresholds for this specification
for four values of σ: 0, 0.05, 0.10, and 0.15. Given the support of Ct, up to eight firms could populate
the industry if σ = 0. Because Ct is reflected off of Č, demand displays mean reversion. Thus, such high
states of demand are somewhat temporary if σ > 0, and the maximum number of firms observed in the
ergodic distribution accordingly decreases with σ. The two panels’ cells for those missing firms’ entry and
exit thresholds are blank.12

Consider first the impact of increasing σ on the entry thresholds. At least one firm enters an empty
market with no demand uncertainty if Ct > 0.50. This threshold hardly changes as σ increases. Likewise,
the entry threshold for a second firm remains very close to 1.00 as σ rises. The thresholds for higher-ranked
entrants all rise with σ with one exception (to be discussed further below). Apparently, increasing demand
uncertainty makes entry into an oligopoly less likely for a given value of Ct. Demand uncertainty has exactly
the opposite impact on the entry of a potential monopolist. For such a firm, increasing uncertainty increases
the value of the put option associated with exit, thereby raising profitability and lowering the firm’s entry
threshold.

12One way of gauging how much uncertainty these experiments embody is to calculate their entry and exit rates. When
σ = 0, the probability of a firm randomly drawn from the ergodic distribution exiting equals zero. This probability equals 0.5
percent, 1.1 percent, and 1.7 percent for the other three values of σ. These are annual exit rates, because we set β so that one
period equals one year.
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This difference between oligopolists’ and monopolists’ entry decisions arises from the threat of potential
entry. A monopolist captures all of the increased profit from a favorable demand shock. For an oligopolist,
further entry chops this right tail off of the profit distribution and thereby reduces the firm’s option value.
This explanation squares with the single exception to the rule that increasing σ increases the entry threshold.
Increasing σ from 0.10 to 0.15 simultaneously eliminates the possibility that a sixth firm enters and reduces
C5 from 2.70 to 2.59.13 The third panel of Table 1 further illustrates this effect. It reports the equilibrium
entry thresholds for the case where π(N) = 4× I{N < 5}, so that no more than four firms will populate the
market. The entry thresholds for the first, second, and third firms are nearly identical to their values in the
first panel. However, the entry thresholds for the fourth firm (facing no further entry) decline with σ.

Next examine the exit thresholds in the table’s second panel. Without demand uncertainty, these form
a line out of the origin with a slope approximately equal to 0.44. As expected, raising σ decreases all
of the exit thresholds. This mimics the well-known effect of increased uncertainty on monopolists’ exit
decisions: Uncertainty raises the value of the firm’s put option, and exit requires this option’s exercise. For
completeness, Table 1 reports the equilibrium exit thresholds when π(N) = 4 × I{N < 5}. As expected,
this change has almost no impact on the exit thresholds for firms with ranks less than four. For the fourth
firm, eliminating the possibility of further entry makes survival more attractive and thereby lowers the exit
threshold even further.

To summarize, adding uncertainty either leaves the equilibrium entry thresholds unchanged or raises
them somewhat. This result embodies two offsetting effects: Increasing uncertainty alone would make entry
more attractive, but the accompanying increase in the probability of future entry reduces expected future
profits. Changing the probability of future entry has comparatively little impact on the equilibrium exit
thresholds, so adding uncertainty substantially reduces them.

4.3 Static Analysis of Market Size and Entry

We now characterize how a static “long-run” analysis of market size and entry interprets data generated
by our dynamic model. For this, we modify our model to obtain a framework observationally equivalent
to that estimated by Bresnahan and Reiss (1990, 1991b). We begin by eliminating all but trivial dynamic
considerations with the assumption that Ct = Ct−1 always. All markets begin with zero competitors, so
removing demand uncertainty from the model eliminates exit. It also removes any meaningful distinction
between fixed and sunk costs, so we set the latter to zero. This version of the model is econometrically
degenerate because Ct−1 determines Nt nonstochastically. We follow Bresnahan and Reiss and solve this
problem by adding a random component to firms’ fixed costs. Specifically, the fixed costs of any firm serving
the market are eεκ, where ε is a normally distributed across markets with mean 0 and variance ς2.

Free entry requires that all active firms earn a positive profit and that an additional firm would earn a
nonpositive profit.14 That is

C

N
× π(N) > eεκ and

C

N + 1
× π(N + 1) ≤ eεκ.

For eachN = 1, . . . , Ň ; define the deterministic entry threshold C?N to be the unique solution to (C/N)π(N)−
κ = 0. Exactly N firms will serve the industry if lnC > lnC?N + ε and lnC ≤ lnC?N+1 + ε. The probability
that this occurs is

Φ
(

ln(C/C?N )
ς

)
− Φ

(
ln(C/C?N+1)

ς

)
.

In this expression, we set lnC?0 = −∞ and lnC?
Ň+1

=∞.15

13Entry by an eighth firm does not occur when there is demand uncertainty, so this discussion begs the question of why
increasing σ from 0 to 0.05 raises C7 from 3.49 to 3.61. This change reflects the mean reversion noted above. The same
principle explains the rise of C6 from 3.13 to 3.21 when σ goes from 0.05 to 0.10.

14The free entry conditions equal those from a model without dynamic considerations, because we have set sunk costs to
zero. If we had assumed instead that the per period fixed costs equal zero and that the sunk costs equal eεϕ, then the free
entry conditions would be identical with ϕ(1− β)/β replacing κ everywhere.

15Note that more than Ň firms will enter in the static model if π
(
Ň + 1

)
> 0 and the realization of ε is sufficiently small.

However, we will apply the static model to data generated from the dynamic model, which never have more than Ň active
firms. For the purpose of this application, we can therefore ignore the possibility entry beyond Ň firms.
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Table 1: Equilibrium Entry and Exit Thresholdsa

π(N) = 4

Entry Thresholds
σ C1 C2 C3 C4 C5 C6 C7 C8

0.00 0.50 1.00 1.50 1.99 2.50 2.99 3.49 3.99
0.05 0.48 0.99 1.51 2.04 2.57 3.13 3.61
0.10 0.46 1.00 1.56 2.14 2.70 3.21
0.15 0.46 1.02 1.62 2.19 2.59

Exit Thresholds
σ C1 C2 C3 C4 C5 C6 C7 C8

0.00 0.44 0.87 1.31 1.74 2.18 2.62 3.05 3.49
0.05 0.38 0.76 1.15 1.54 1.93 2.32 2.70
0.10 0.33 0.69 1.05 1.41 1.77 2.12
0.15 0.28 0.64 0.97 1.30 1.60

π(N) = 4× I {N ≤ 4}

Entry Thresholds
σ C1 C2 C3 C4 C5 C6 C7 C8

0.00 0.50 1.00 1.50 1.99
0.05 0.48 0.98 1.52 1.91
0.10 0.46 1.00 1.57 1.78
0.15 0.46 1.04 1.56 1.77

Exit Thresholds
σ C1 C2 C3 C4 C5 C6 C7 C8

0.00 0.44 0.87 1.31 1.74
0.05 0.38 0.76 1.16 1.51
0.10 0.33 0.69 1.05 1.31
0.15 0.28 0.64 0.96 1.19

aNotes: The parameter values used were κ = 1.75, β = 1.05−1, ϕ(R′) = 0.25×β/(1−β),

Ĉ = e−1.5, Č = e1.5, and Q(·|C) a mixture over reflected random walks in the logarithm
of C with uniformly distributed innovations and approximate innovation variance σ2.
An empty cell indicates that the ergodic distribution of Nt puts zero probability on the
given value of N . Please see the text for further details.
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Table 2: Static Probit Analysis of Market Structurea

Implied Static Entry Thresholds
σ C?1 C?2 C?3 C?4 C?5 C?6 C?7 C?8

0.00 0.44 0.93 1.37 1.86 2.37 2.95 3.41 3.90
0.05 0.43 0.87 1.32 1.78 2.24 2.70 3.13
0.10 0.39 0.83 1.29 1.75 2.20 2.62
0.15 0.34 0.81 1.26 1.70 2.05

Implied π(N)/π(1) for N =
σ 1 2 3 4 5 6 7 8

0.00 1.00 0.95 0.97 0.95 0.93 0.90 0.91 0.91
0.05 1.00 0.98 0.97 0.96 0.95 0.95 0.95
0.10 1.00 0.94 0.92 0.90 0.89 0.90
0.15 1.00 0.85 0.82 0.81 0.83

aNotes: The table’s top panel reports population values of Probit-based entry thresholds
from the static model of Bresnahan and Reiss calculated using the ergodic distribution
of the dynamic model specification of Section 4.2 and Table 1. The bottom panel reports
the implied values of π(N) normalized by π(1). An empty cell indicates that the ergodic
distribution of Nt puts zero probability on the given value of N . Please see the text for
further details.

Given observations of C and N from a cross section of markets, ordered Probit estimation immediately
yields estimates of C?1 , . . . , C

?
Ň

; and ς. With these, Bresnahan and Reiss estimate how the producer surplus
per consumer falls with additional competitors. Specifically, the definition of C?N implies that π(N)/π(1) =
C?1 × N/C?N . If the level of demand required to support N firms equals N times the level required for a
monopolist, then the producer surplus per consumer does not fall with additional entry. On the other hand,
if demand must exceed N × C?1 to induce N firms to enter, then the surplus per consumer must decline
with N . In this way, Bresnahan and Reiss infer the toughness of competition from the relationship between
market size and the number of competitors.

For any given joint distribution of C and N , we can define the population counterparts to the estimated
thresholds by minimizing the population analogue of the ordered Probit’s log-likelihood function,

L(·) ≡ E

 Ň∑
n=0

I {N = n} ln
(

Φ
(

ln(C/C?n)
ς

)
− Φ

(
ln(C/C?n+1)

ς

)) .
Because the ordered Probit likelihood function is always concave, even if it does not represent the true
data generating process, this function is minimized at a unique set of static entry thresholds C?1 , . . . , C

?
Ň

.
Calculating these static entry thresholds using the joint distribution of Ct and Nt from the fully dynamic
model’s ergodic distribution, mimicking Bresnahan and Reiss by using these to “estimate” π(N)/π(1), and
comparing these “estimates” to the true values of π(N)/π(1) from the dynamic model indicates whether
static estimates of the toughness of competition suffer from substantial bias.

The top panel of Table 2 reports population values of the Probit-based static entry thresholds C?1 , . . . , C
?
Ň

calculated using the ergodic distribution of the dynamic model specification examined in Section 4.2. Its
bottom panel gives the implied “estimates” of π(N)/π(1). For all three of values of σ used, the static entry
thresholds almost exactly equal the average of the dynamic model’s corresponding entry and exit thresholds.
That is, the static analysis “splits the difference” between them.

Recall that the true values of π(N)/π(1) all equal one. That is, an additional competitor steals business
from incumbents but does not lower the producer surplus earned per consumer. For the case with σ =
0.05, the implied values deviate little from the truth. However, raising σ further substantially lowers these
“estimates”. When σ = 0.15, the implied value of π(2)/π(1) equals 0.85. Further increases in N change this
little.
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Apparently, the static Probit analysis can find evidence that π(N) falls with data generated from a
dynamic model in which π(N) is constant. To gain some insight into how sunk costs and uncertainty affect
the static analysis of the toughness of competition, recall that the static Probit’s thresholds are roughly
the average of the dynamic entry and exit thresholds. Hence, without uncertainty both the static and the
dynamic thresholds are evenly spaced if π(N) is constant. For example, from the static analysis we may find
that it takes 1000 consumers for one firm and 2000 consumers for two firms to be active in the market. With
uncertainty, however, option value considerations will make firms of all ranks more reluctant to exit. Because
this effect is not offset by a change in the entry thresholds (see the previous section and Table 1), the static
thresholds will decrease as well. We may now “observe” that it takes only 500 consumers for one firm and
1500 consumers for two firms to be active. The fact that the number of consumers needs to triple to entice
a second firm to join the first suggests that the producer surplus per consumer served falls substantially
when a second firm enters. However, this inference arises from uncertainty; the actual producer surplus per
consumer served is constant.16

In our analysis, the delay in exit arising from option-value considerations imparts a substantial downward
bias to each estimated threshold. This bias is large in the specification under consideration. Determining
its importance for empirical work must proceed on a case-by-case basis, but we expect option-value consid-
erations to pervade oligopolists’ exit decisions. A comparison of the results of Bresnahan and Reiss (1991b)
with the “estimates” in Table 2 supports this view. Their abstract reports:

Our empirical results suggest that competitive conduct changes quickly as the number of incum-
bents increases. In markets with five or fewer incumbents, almost all variation in competitive
conduct occurs with the entry of the second or third firm.

This is exactly the pattern displayed in Table 2.

A Proofs of Results in Section 2

Proof of Proposition 1. The proof proceeds by first constructing a candidate equilibrium strategy and then
verifying that it is a LIFO strategy that forms an equilibrium and satisfies the proposition’s requirements.

Preliminaries Define Ň as in Section 4.1. Because Č is finite, π(N) is weakly decreasing in N , and κ > 0;
Ň <∞. This is an upper bound on the number of firms that would ever produce in a LIFO equilibrium.

Next, consider the exit decision problem of a firm with (prospective) rank R′ ≤ Ň that expects the number
of firms to evolve according to the deterministic transition rule N ′R′ : Z+ × [Ĉ, Č] → {R′, R′ + 1, . . . , Ň}.
Here, N ′R′(X,C) is the number of firms that the firm with rank R′ expects to be active next period given a
decision to continue, that X younger firms are active this period, and that the number of consumers equals
C. The number of active firms next period is defined for the event that R′ + X > Ň , but it never exceeds
Ň . Define W to be the space of all functions

w : {0, . . . , Ň − 1} ×
[
Ĉ, Č

]
→
[
0,
βπ(1)Č
1− β

]
and define the Bellman operator TR′ :W →W with

TR′(w)(X,C) = max
a∈[0,1]

aβE
[
π(N ′R′(X,C))C ′

N ′R′(X,C)
− κ+ w(N ′R′(X,C)−R′, C ′)

]
. (2)

Note that TR′ depends on the specification for N ′R′ . It satisfies Blackwell’s sufficient conditions for a con-
traction mapping, andW is a complete metric space. Hence, TR′ has a unique fixed point, the value function
wR′ .

16Another logical possibility is that the fall in the implied static thresholds reflects mean reversion: Because C cannot fall
below Ĉ, a potential entrant does not expect extremely low values of C to persist. We examined whether this contributes to
our results by changing Ĉ and Č from e−1.5 and e1.5 to e−2 and e2. The results differ only minimally from those in Table 2.
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Construction of a candidate equilibrium Begin with the decision problem for a firm with rank Ň
and the transition rule N ′

Ň
(X,C) = Ň for all (X,C). This transition rule reflects the firm’s expectations

that it produces no longer than any earlier entrant, any younger active firms will exit, and no firms will
enter. The fixed point wŇ of TŇ can be uniquely extended to a value function on the entire state space
Z+ × [Ĉ, Č] by assigning wŇ (X,C) = wŇ (0, C) for all (X,C). Denote {C|wŇ (0, C) > 0} with SŇ and
{C|wŇ (0, C) > ϕ(Ň)} with EŇ . Note that SŇ ⊇ EŇ .Under the maintained hypotheses of this maximization
problem, this firm chooses to remain active if and only if C ∈ SŇ and it chooses to enter the industry if and
only if C ∈ EŇ .17

Next, iterate the following argument for R′ = Ň − 1, . . . , 1.

(i). Suppose that we have in hand value functions wR′+1, . . . , wŇ ; entry sets ER′+1, . . . , EŇ ; and survival
sets SR′+1, . . . ,SŇ ; and that

– ER′+1 ⊇ · · · ⊇ EŇ ,

– SR′+1 ⊇ · · · ⊇ SŇ ,

– SR̃ ⊇ ER̃ for all R̃ ≥ R′ + 1, and

– wR̃(X,C) = wR̃(Ň − R̃, C) if X > Ň − R̃ for all R̃ ≥ R′ + 1.

(ii). Consider the decision problem for a firm with rank R′ and transition rule

N ′R′(X,C) = R′ +
∞∑
i=1

[
I {i ≤ X,C ∈ SR′+i}+ I {i > X,C ∈ ER′+i}

]
, (3)

where ER̃ = SR̃ = ∅ for R̃ > Ň . This transition rule reflects the firm’s expectations that it produces
no longer than any earlier entrant and that ER′+i and SR′+i, i ∈ N, govern younger firms’ entry
and survival. The specification for N ′R′ implies that N ′R′(X,C) = N ′R′(Ň − R′, C) if X > Ň − R′.
Therefore, we can uniquely extend the fixed point wR′ of TR′ to a value function on the entire state
space Z+ ×

[
Ĉ, Č

]
by assigning wR′(X,C) = wR′(Ň −R′, C) for all X > Ň −R′.

(iii). Denote the complete subspace of functions w such that

– w(X + 1, C) ≥ wR′+1(X,C), X = 0, . . . , Ň − 2, and

– w(X,C) is weakly decreasing in X, for all C;

with WR′ ⊆ W. We wish to show that TR′ maps WR′ into itself. Because SR̃ ⊇ ER̃ for all R̃ ≥ R′ + 1
by supposition, Equation (3) implies that N ′R′+1(X,C) ≥ N ′R′(X + 1, C), so

π(N ′R′(X + 1, C))C ′

N ′R′(X + 1, C)
≥
π(N ′R′+1(X,C))C ′

N ′R′+1(X,C)
;

and for w ∈ WR′ ,

w(N ′R′(X + 1, C)−R′, C ′) ≥ w(N ′R′+1(X,C)− (R′ + 1) + 1, C ′)
≥ wR′+1(N ′R′+1(X,C)− (R′ + 1), C ′).

(iv). For w ∈ WR′ , applying these inequalities to the Bellman operator bounds TR′(w)(X+1, C) from below
by wR′+1(X,C) because

17This specification of SŇ and EŇ ensures that the firm defaults to inactivity in the case of indifference.
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max
a∈[0,1]

aβE
[
π(N ′R′(X + 1, C))C ′

N ′R′(X + 1, C)
− κ+ w(N ′R′(X + 1, C)−R′, C ′)

]
≥ max
a∈[0,1]

aβE
[
π(N ′R′+1(X,C))C ′

N ′R′+1(X,C)
− κ+ wR′+1(N ′R′+1(X,C)− (R′ + 1), C ′)

]
= wR′+1(X,C).

The transition rule N ′R′(X,C) weakly increases in X, so that TR′(w)(X,C) weakly decreases in X if
w ∈ WR′ . Therefore, w ∈ WR′ =⇒ TR′(w) ∈ WR′ . Since TR′ is a contraction mapping and WR′ is
complete, TR′ has a unique fixed point wR′ ∈ WR′ . These properties extend to the entire state space
Z+ ×

[
Ĉ, Č

]
; because, for X ≥ Ň −R′,

– wR′(X + 1, C) = wR′(Ň −R′, C) ≥ wR′+1(Ň −R′ − 1, C) = wR′+1(X,C) and

– wR′(X,C) = wR′(Ň −R′, C).

(v). Finish this step of the recursion by noting that wR′(0, C) ≥ wR′(1, C) ≥ wR′+1(0, C) for all C, so
ER′ ≡ {C|wR′(0, C) > ϕ(R′)} ⊇ ER′+1, SR′ ≡ {C|wR′(0, C) > 0} ⊇ SR′+1, and SR′ ⊇ ER′ .

With the recursion complete, specify the candidate equilibrium strategy as

AS(X,C,R′) =
{

1 if C ∈ SR′ and,
0 otherwise;

AE(C,R′) =
{

1 if C ∈ ER′ and,
0 otherwise.

Verification Since AS(X,C,R′) is constant in X, the candidate is a LIFO strategy. The candidate is
pure, and it weakly decreases in R′ since SR′ ⊇ SR′+1 and ER′ ⊇ ER′+1. Finally, AS(X,C,R′) ≥ AE(C,R′),
because SR′ ⊇ ER′ . Hence, the candidate equilibrium strategy satisfies the proposition’s stated requirements.

It forms a symmetric Markov-perfect equilibrium if no firm can gain by a one-shot deviation from it
(e.g. Fudenberg and Tirole, 1991, Theorem 4.2). The value to an active firm if all firms follow the strategy
is v(X,C,R′) = wR′(X,C). By construction, the strategy dictates an optimal action for entrants and for
active firms contemplating the period’s final survival decision (i.e. X = 0). To show that the strategy also
dictates an optimal action for an active firm facing X ≥ 1 active firms with higher names, note that survival
is optimal if C ∈ SR′ because either C 6∈ SR′+1, so that wR′(X,C) = wR′(0, C) > 0, or C ∈ SR′+1, so that
wR′(X,C) ≥ wR′+1(X−1, C) > 0. If instead C 6∈ SR′ , then exit is optimal because wR′(X,C) ≤ wR′(0, C) ≤
0. Therefore, no firm can profit from a one-shot deviation and the strategy forms an equilibrium.

Proof of Proposition 2. The LIFO strategy constructed in the proof of Proposition 1 defaults to inactivity.
Thus, a symmetric Markov-perfect equilibrium in a LIFO strategy that defaults to inactivity exists.

Uniqueness can be proven recursively, following the recursive construction of a candidate equilibrium
strategy in the proof of Proposition 1.

(i). In any equilibrium in a LIFO strategy that defaults to inactivity, the expected discounted profits
v(X,C,R′) equal 0 and the entry and survival sets equal ER′ = SR′ = ∅ in all states (X,C,R′) such
that R′ > Ň .

(ii). Consequently, in any such equilibrium, N ′
Ň

(X,C) gives the number of firms in the next period in
all states (X,C, Ň). Therefore, the expected discounted profits v(X,C, Ň) equal the unique solution
wŇ (X,C) to Proposition 1’s decision problem of a firm with rank Ň in all states (X,C, Ň). The
equilibrium entry set equals this decision problem’s entry set EŇ , and the equilibrium survival set
equals its survival set SŇ .
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(iii). Next, iterate the following argument for R′ = Ň−1, . . . , 1. Suppose that, in any equilibrium in a LIFO
strategy that defaults to inactivity, the expected continuation value v(X,C, R̃) equals wR̃(X,C), the
entry set equals ER̃, and the survival set equals SR̃ in all states (X,C, R̃) such that R̃ > R′. Then,
N ′R′(X,C) defined by equation (3) gives the number of firms in the next period in state (X,C,R′).
Hence, in all such equilibria, the expected continuation value v(X,C,R′) equals the solution wR′(X,C)
to Proposition 1’s decision problem of a firm with rank R′ in all states (X,C,R′). The equilibrium
entry set equals this decision problem’s entry set ER′ , and the equilibrium survival set equals its survival
set SR′ .

(iv). Recall from Proposition 1’s proof that the equilibrium survival rule AS(X,C,R′) is constant in X and
weakly decreases with R′; and the equilibrium entry rule AE(C,R′) weakly decreases with R′.

B Proofs of Results in Section 3

Proof of Proposition 3. The strategy of Proposition 2’s equilibrium can be written as AS(N − R,C,R′) =
I{C ∈ SR′} and AE(C,R′) = I{C ∈ ER′}, where the sets SR′ and ER′ are those defined in the proof
of Proposition 1. From that proof, we know that E1 ⊇ · · · ⊇ EŇ , S1 ⊇ · · · ⊇ SŇ , and SR′ ⊇ ER′ for
R′ = 1, · · · , Ň .

Threshold rules imply monotonicity Suppose that firms of all ranks follow threshold strategies, and
denote the entry and exit thresholds with C1, C2, . . . , CŇ and C1, C2, . . . , CŇ . From the above properties of
the equilibrium strategy, we know that C1 ≤ · · · ≤ CŇ , C1 ≤ · · · ≤ CŇ , and CR′ ≤ CR′ for R′ = 1, · · · , Ň .
This allows us to follow Equation (3) and write the transition rule for Nt as

Nt+1 =
∞∑
j=1

[
I
{
j ≤ Nt, C > Cj

}
+ I

{
j > Nt, C > Cj

}]
, (4)

In this, we set Ci = Č for i > Ň . This is obviously increasing in Ct, so the proposition is true for the case
with i = 1. To show that this is true for higher i, proceed inductively. Suppose that Ct weakly increases
Nt+i−1. Inspection of (4) shows that increasing Nt+i−1 weakly increases Nt+i, so increasing Ct weakly
increases Nt+i.

Monotonicity implies threshold rules Suppose that all firms’ entry and exit rules are such that in-
creasing Ct weakly increases Nt+i for positive i and any possible initial condition (Nt, Ct) and sequence of
subsequent demand realizations Ct+1, . . . , Ct+i−1. To show that this implies that all firms’ entry and exit
decisions follow threshold policies, suppose to the contrary that the survival decision of a firm with some
rank R′ does not. That is, there exist two values of Ct, CL < CH such that CL ∈ SR′ and CH 6∈ SR′ .
Suppose that Nt = R′ and increase Ct from CL to CH . Then, this change decreases Nt+1 by at least one
firm (the decrease is two or more if CL ∈ ER′+1 or CH 6∈ SR′−1). This contradicts the original supposition,
so all firms’ survival decisions must follow threshold rules.

Next, suppose that the entry of a firm with potential rank R′ does not follow a threshold rule. Again
there must exist CL < CH such that CL ∈ ER′ and CH 6∈ ER′ . Suppose that Nt = R′ − 1. Because
SR′−1 ⊇ SR′ ⊇ ER′ , all R′ − 1 incumbent firms continue if Ct = CL. Thus, increasing Ct from CL to CH
reduces Nt+1 by at least one firm (the decrease is two or more if CL ∈ ER′+1 or CH 6∈ SR′−1), which again
contradicts the original supposition. Hence threshold policies govern the survival and entry decisions of firms
of all ranks.

The proof of Proposition 4 relies on Proposition 5, so we first present a proof of the latter.

Proof of Proposition 5. The proof has two parts.
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The proposition’s mixture representation implies Assumptions 1–3

(i). Assumption 1 is satisfied, because µKk (C) is nondecreasing with C for all k,K; E [C ′|C] equals µ(C) ≡
limK→∞

∑K
k=1 p

K
k µ

K
k (C) by the bounded convergence theorem (Billingsley, 1995, Theorem 16.5); and

the set of nondecreasing functions is closed.

(ii). Define Q̃Kk (u|C) ≡ QKk (u+µKk (C)|C) and denote the distribution of U ′ given C with Q̃(u|C) ≡ Q(u+
µ(C)|C). The functions Q̃Kk (·|C); k = 1, . . . ,K; K ∈ N; do not depend on C; and the presumption that
Q(·|C) has the proposition’s mixture representation requires that Q̃(·|C) = limK→∞

∑K
k=1 p

K
k Q̃

K
k (·|C).

Therefore, Assumption 2 is satisfied.

(iii). Define Q̂Kk (u|C) ≡ QKk (u+ µ(C)|C). From the proposition’s final condition,

µKk (C)− σKk /2− µ(C) ≤ C − µ(C).

Consequently, Q̂Kk (·|C) is a uniform distribution with support[
µKk (C)− σKk /2− µ(C), µKk (C) + σKk /2− µ(C)

]
that includes or lies below C−µ(C). Now, the presumption that Q(·|C) has the proposition’s mixture
representation requires that

Q̃(·|C) = lim
K→∞

K∑
k=1

pKk Q̂
K
k (u|C).

By a result of A.I. Khintchine (Feller, 1971, p. 158), this implies that Q̃(·|C) is concave on [C−µ(C),∞).
We have already shown that Assumption 2 holds good, so that Q̃(·|C) equals Q̃(·), and is concave above
C − µ(C) for all C. Because µ(C) = E[C ′|C], this implies Assumption 3.

Assumptions 1–3 imply the proposition’s mixture representation The construction proceeds in
two steps:

(i). We write the distribution Q̃ corresponding to Q(·|C) as a mixture of uniform distributions that are
independent of C, distinguishing between its unrestricted part on (−∞, U) and its concave part on
[U,∞).

(ii). Subsequently, we write Q(·|C) as this same mixture, with E[C ′|C] added to the mean of each uniform
distribution, and verify that the construction satisfies the requirements of the proposition.

Let Gµ,σ denote a uniform cumulative distribution function on [µ−σ/2, µ+σ/2]. In particular, Gµ,0 denotes
a distribution that is degenerate at µ.

(i). Consider the construction of Q̃ as a mixture of uniform distributions.

(a) First, consider the restriction of Q̃ to (−∞, U). Fix an arbitrary δ > 0. By the Jordan decompo-
sition theorem (Feller, 1971, p. 138), Q̃ can be written as a mixture of a discrete and a continuous
distribution function. Both the discrete and the continuous part are nondecreasing and bounded
on (−∞, U). This ensures that there exist

– a finite (and possibly defective) mixture of degenerate distributions with supports in (−∞, U)
that is within a δ/2 uniform distance from the discrete part; and

– a piecewise-linear (and possibly defective) cumulative distribution function with support on
a closed subset of (−∞, U) that uniformly approximates the continuous part up to a δ/2
distance.
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Because the latter can be written as a finite mixture of uniform distributions with supports in
(−∞, U), it follows from the triangle inequality that Q̃ on (−∞, U) can be approximated up
to a δ uniform distance by a finite mixture of, possibly degenerate, uniform distributions Gµ,σ.
Because δ > 0 was arbitrary, this implies that there exist pKk ≥ 0, σKk ≥ 0, and νKk < U − σKk /2;
k = 1, . . . ,K/2; such that

∑K/2
k=1 p

K
k = Q̃(U−) ≡ limu↑U Q̃(u), and

lim
K→∞

sup
u<U

∣∣∣Q̃(u)−
K/2∑
k=1

pKk GνK
k ,σ

K
k

(u)
∣∣∣ = 0, (5)

for even K ∈ N.

(b) Because Q̃ is concave on [U,∞) (Assumption 3), by a result of A.I. Khintchine (Feller, 1971,
p. 158), there exist pKk ≥ 0, σKk ≥ 0, and νKk ≡ U + σKk /2; k = K/2 + 1, . . . ,K; such that∑K
k=K/2+1 p

K
k = 1− Q̃(U−), and

lim
K→∞

sup
u≥U

∣∣∣Q̃(u)− Q̃(U−)−
K∑

k=K/2+1

pKk GνK
k ,σ

K
k

(u)
∣∣∣ = 0, (6)

for even K ∈ N.

(ii). From (5), (6), and the triangle inequality, it follows that

lim
K→∞

sup
u

∣∣∣Q̃(u)−
K∑
k=1

pKk GνK
k ,σ

K
k

(u)
∣∣∣ = 0, (7)

for even K ∈ N. Define µKk (C) ≡ νKk + E[C ′|C] and QKk (·|C) ≡ GµK
k (C),σK

k
(·). From (7), we have

lim
K→∞

sup
c,C

∣∣∣Q(c|C)−
K∑
k=1

pKk Q
K
k (c|C)

∣∣∣ = 0,

for even K ∈ N. Moreover, each µKk (C) is weakly increasing with C and QKk (·|C) is a uniform
distribution with the lower end of its support equal to

νKk + E[C ′|C]− σKk /2 < U + E[C ′|C]− σKk /2 ≤ C − σKk /2 ≤ C

if k ≤ K/2, and equal to U + E[C ′|C] ≤ C if k > K/2.

Proposition 5 allows us to replace Assumptions 1–3 with the representation of Q(·|C) as a mixture of
uniform autoregressions. Before we present a proof of Proposition 4 that exploits this result, we first develop
three auxiliary results.

Definition 4. A function f : [Ĉ, Č] → R is C̃-separable for some C̃ ∈ [Ĉ, Č], if (i) f(C) ≥ f(C̃) for all
C > C̃ and (ii) f(C) ≤ f(C̃) for all C < C̃.

Lemma 1. Let f : [Ĉ, Č]→ R be integrable with respect to a uniform measure over its domain, C̃-separable,
and nondecreasing on [Ĉ, C̃], for some C̃ ∈ [Ĉ, Č]. Given a conditional probability distribution Q(·|C) for
C ′ with nondecreasing expectation µ(C) that satisfies either

(i). Q(·|C) is degenerate at µ(C) ≤ C for all C ∈ [Ĉ, Č], or

(ii). Q(·|C) is uniform on [µ(C)− σ
2 , µ(C) + σ

2 ] ⊆ [Ĉ, Č] with σ > 0 and µ(C)− σ
2 ≤ C for all C ∈ [Ĉ, Č];

then g(C) ≡
∫ Č
Ĉ
f(c)dQ(c|C) is nondecreasing in C on [Ĉ, C̃].
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Proof. In Case (i) , the result follows immediately from g(C) = f(µ(C)). Now consider Case (ii). First, note
that g(C) = σ−1

∫ µ(C)+σ/2

µ(C)−σ/2 f(c)dc. Because f is nondecreasing on [Ĉ, C̃], it immediately follows that g is

nondecreasing on {C ∈ [Ĉ, C̃]|µ(C) +σ/2 ≤ C̃}. Next, for C† ≤ C ≤ C̃ such that µ(C†) +σ/2 ≥ C̃, we have
that

σ
(
g(C)− g(C†)

)
=

∫ µ(C)+σ/2

µ(C†)+σ/2

f(c)dc−
∫ µ(C)−σ/2

µ(C†)−σ/2
f(c)dc

≥
∫ µ(C)+σ/2

µ(C†)+σ/2

f(C̃)dc−
∫ µ(C)−σ/2

µ(C†)−σ/2
f(c)dc

≥
∫ µ(C)+σ/2

µ(C†)+σ/2

f(C̃)dc−
∫ µ(C)−σ/2

µ(C†)−σ/2
f(C̃)dc

= 0.

Here, the first inequality uses that the first integral is over an interval to the right of C̃ and that f is C̃-
separable. The second inequality uses that the second integral is over an interval to the left of C̃ and that
f is nondecreasing on [Ĉ, C̃]. Taken together, this implies that g is nondecreasing on [Ĉ, C̃].

Lemma 2. Let f : [Ĉ, Č]→ R and C̃ satisfy the conditions of Lemma 1. If QK(·|C) =
∑K
k=1 p

K
k Q

K
k (·|C) for

some positive pK1 , . . . , p
K
K and QK1 (·|C), . . . , QKK(·|C) that each individually satisfy the conditions of Lemma

1, then gK(C) ≡
∫ Č
Ĉ
f(c)dQK(c|C) is nondecreasing in C on [Ĉ, C̃].

Proof. Lemma 1 implies that gk(C) ≡
∫ Č
Ĉ
f(c)dQk(c|C) is nondecreasing on [Ĉ, C̃], k = 1, . . . ,K. In turn,

because gK(C) =
∑K
k=1 pkgk(C), this implies that gK(C) is nondecreasing on [Ĉ, C̃].

Lemma 3. Let f : [Ĉ, Č]→ R be bounded, C̃-separable, and nondecreasing on [Ĉ, C̃], for some C̃ ∈ (Ĉ, Č].
Let Q1, Q2, . . . be a sequence of mixture Markov transition functions satisfying the conditions of Lemma
2 such that sup |QK − Q| → 0 for some Markov transition distribution function Q as K → ∞. Then,

g(C) ≡
∫ Č
Ĉ
f(c)dQ(c|C) is nondecreasing in C on [Ĉ, C̃].

Proof. Lemma 2 implies that the function gK corresponding to each QK ; K = 1, 2, . . .; is nondecreasing
on [Ĉ, C̃]. By the bounded convergence theorem (Billingsley, 1995, Theorem 16.5), gK → g as K → ∞.
Because the set of nondecreasing functions is closed, g is nondecreasing on [Ĉ, C̃].

We are now prepared to present the proof of Proposition 4, using Proposition 5’s mixture representation
of Q(·|C).

Proof of Proposition 4. By Proposition 2, the unique equilibrium strategy is characterized by the survival
sets SR′ ≡ {C|wR′(0, C) > 0} and the entry sets ER′ ≡ {C|wR′(0, C) > ϕ(R′)}, with wR′ the unique fixed
point of the Bellman operator TR′ defined by Equation (2); for R′ = 1, . . . , Ň . We need to show that there
exist thresholds CR′ and CR′ such that SR′ = {C C > CR′} and ER′ = {C C > CR′}; R′ = 1, . . . , Ň .

Characterization of SŇ and EŇ Assumptions 1, 2, and 4; and the bounded convergence theorem
(Billingsley, 1995, Theorem 16.5); imply that the operator TŇ maps the complete subspace of functions
in W that are nondecreasing and continuous from the left in C into itself. Consequently, the value func-
tion wŇ (X,C) is nondecreasing and continuous from the left in C. It immediately follows that there exist
thresholds CŇ and CŇ such that SŇ = {C C > CŇ} and EŇ = {C C > CŇ}. Note that either of these
thresholds might equal Ĉ− or Č, where Ĉ− is an arbitrary number strictly below Ĉ representing the rule to
be active in all demand states (including Ĉ).
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Characterization of SR′ and ER′ for R′ = Ň − 1, . . . , 1 This proceeds iteratively. Suppose that; for
R̃ = R′+1, . . . , Ň ; there exist thresholds CR̃ and CR̃ such that SR̃ = {C C > CR̃} and ER̃ = {C C > CR̃}.
Moreover, suppose that wR′+1(0, C) is nondecreasing in C for all C ≤ CR′+1 and that wR′+1(X,C) is
continuous from the left in C. We will show that then there exist thresholds CR′ and CR′ such that
SR′ = {C C > CR′}, ER′ = {C C > CR′}, wR′(0, C) is nondecreasing in C for all C ≤ CR′ , and wR′(X,C)
is continuous from the left in C. There are two cases to consider.

(i). In the first, ER′+1 = ∅, so that a firm entering with rank R′ expects no further entry to occur during its
lifetime. This case is identical to the case where R′ = Ň , so there exist thresholds CR′ and CR′ such
that SR′ = {C C > CR′} and ER′ = {C C > CR′}, wR′(0, C) is nondecreasing in C, and wR′(X,C)
is continuous from the left in C.

(ii). In the second case, ER′+1 6= ∅. The supposition that all firms with ranks R′ + 1 and up use threshold
rules ensures that N ′R′(X,C) is continuous from the left in C. With Assumption 4 and the bounded
convergence theorem, this implies that the operator TR′ maps the complete subspace of functions in
W that are continuous from the left in C into itself. Consequently, wR′(X,C) is continuous from the
left in C.

To prove the remaining results, we consider two subcases.

(a) In the first, wR′(0, C) > ϕ(R′) for all C, so we can set CR′ = CR′ = Ĉ−, for any Ĉ− < Ĉ.
Trivially, wR′(0, C) is nondecreasing in C for all C ≤ CR′ .

(b) In the second subcase, wR′(0, C) ≤ ϕ(R′) for some C. The argument for this subcase requires
the construction of an auxiliary sequence of value functions by iterating on the Bellman operator
TR′ . To this end, initialize w1

R′(X,C) ≡ wR′+1(max{X − 1, 0}, C). Then; for i = 2, 3, . . .; set
wiR′ ≡ TR′(wi−1

R′ ). This sequence converges to the unique fixed point wR′ of TR′ . We first show
that, for all i ≥ 1, wi+1

R′ ≥ wiR′ and wi(X,C) is continuous from the left in C.

– From the proof of Proposition 1, recall the definition of WR′ , the space of all functions
w(X,C) ∈ W that are weakly decreasing inX for all C and satisfy w(X+1, C) ≥ wR′+1(X,C),
X = 0, . . . , Ň − 2. In that proof, we showed that TR′ maps WR′ into itself. Note that
w1
R′(X,C) is weakly decreasing in X and w1

R′(X + 1, C) = wR′+1(X,C), so that w1
R′ ∈ WR′

and w2
R′ = TR′(w1

R′) ∈ WR′ . Consequently,
– w2

R′(X,C) ≥ wR′+1(X − 1, C) = w1
R′(X,C) for all X ≥ 1, and

– w2
R′(0, C) ≥ w2

R′(1, C) ≥ wR′+1(0, C) = w1
R′(0, C).

That is, w2
R′ = TR′(w1

R′) ≥ w1
R′ . Since TR′ is monotonic, induction yields wi+1

R′ ≥ wiR′ for all
i ≥ 1.

– By supposition, w1
R′(X,C) is continuous from the left in C. Because TR′ maps the space

of functions that are continuous from the left in C into itself, this property carries over to
wiR′(X,C) for all i.

We next show with induction that wiR′ (0, C) and C
i

R′ ≡ inf{C|wiR′(0, C) > ϕ(R′)} ≤ C
i−1

R′

together satisfy the conditions for f(C) and C̃ in Lemma 3, and that wiR′(0, C) > ϕ(R′) for
all C ∈ (C

i

R′ , Č]. By supposition, w1
R′(0, C) = wR′+1(0, C) and CR′+1 together satisfy the

conditions for f(C) and C̃ in Lemma 3, and w1
R′(0, C) > ϕ(R′ + 1) for C ∈ (CR′+1, Č]. Since

wR′+1(0, C) is continuous from the left, w1
R′(0, CR′+1) ≤ ϕ(R′ + 1). Because ϕ(R′ + 1) ≥ ϕ(R′),

and w1
R′(0, C) is nondecreasing and continuous from the left for C ∈ [Ĉ, CR′+1], the conditions for

Lemma 3 continue to hold good after replacing CR′+1 with C
1

R′ ≤ CR′+1. Moreover, w1
R′(0, C) >

ϕ(R′ + 1) ≥ ϕ(R′) for C ∈ (CR′+1, Č]. To show that w1
R′(0, C) > ϕ(R′) for C ∈ (C

1

R′ , CR′+1] as
well, note that w1

R′(0, C) is nondecreasing on this interval and that, for any δ > 0, there exists a
point C† ∈ (C

1

R′ , C
1

R′ + δ) such that w1
R′(0, C

†) > ϕ(R′). Consequently, w1
R′(0, C) > ϕ(R′) for all

C ∈ (C
1

R′ , Č].

Continuing, suppose that wi−1
R′ (0, C) and C

i−1

R′ satisfy Lemma 3’s requirements for f(C) and C̃,
and that wi−1

R′ (0, C) > ϕ(R′) for all C ∈ (C
i−1

R′ , Č]. Lemma 3 then implies that E[wi−1
R′ (0, C ′)|C]
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is nondecreasing in C on [Ĉ, C
i−1

R′ ]. This and inspection of Equation (2) determine that wiR′(0, C)
is nondecreasing in C on the same interval. Because wiR′(0, C) ≥ wi−1

R′ (0, C), we have that
C
i

R′ ≤ C
i−1

R′ and that wiR′(0, C) > ϕ(R′) for C ∈ (C
i−1

R′ , Č]. To show that wiR′(0, C) > ϕ(R′) for
C ∈ (C

i

R′ , C
i−1

R′ ] as well, note that wiR′(0, C) is nondecreasing on this interval and that, for any
δ > 0, there exists a point C† ∈ (C

i

R′ , C
i

R′ + δ) such that wiR′(0, C
†) > ϕ(R′). Consequently,

the function must exceed ϕ(R′) over the entire interval. Thus, wiR′(0, C) and C
i

R′ satisfy Lemma
3’s requirements of f(C) and C̃ and wiR′(0, C) > ϕ(R′) for all C ∈ (C

i

R′ , Č]. Here, we use that
wiR′(0, C) is continuous from the left to ensure that wiR′(0, C

i

R′) ≤ ϕ(R′).

Define CR′ = limi→∞ C
i

R′ . We wish to show that

– wR′(0, C) ≤ ϕ(R′) and is nondecreasing in C for all C ∈ [Ĉ, CR′ ] and
– wR′(0, C) > ϕ(R′) for all C ∈ (CR′ , Č].

The first assertion holds trivially if CR′ = Ĉ, so focus on the case where CR′ > Ĉ. Note
that wiR′(0, C) is nondecreasing in C and weakly less than ϕ(R′) on [Ĉ, C

i

R′ ] for all i. Because
CR′ ≤ C

i

R′ ; for all C† ≤ C ≤ CR′ ,

wR′(0, C) = lim
i→∞

wiR′(0, C) ≤ ϕ(R′)

and

wR′(0, C†) = lim
i→∞

wiR′(0, C
†) ≤ lim

i→∞
wiR′(0, C) = wR′(0, C).

For the second assertion’s demonstration, recall that wiR′(0, C) > ϕ(R′) for all C ∈ (CR′ , Č]. The
definition of CR′ implies that we can find an i for any given C > CR′ such that wiR′(0, C) > ϕ(R′).
Since the sequence {wiR′(0, C)} is nondecreasing, its limit wR′(0, C) must also exceed ϕ(R′).
With this established, clearly ER′ = {C|C > CR′}. Define

CR′ ≡ sup{C|wR′(0, C) ≤ 0}

if {C|wR′(0, C) ≤ 0} 6= ∅, and CR′ ≡ Ĉ− otherwise. By construction, CR′ ≤ CR′ . Because
wR′(0, C) is nondecreasing and continuous from the left for C ∈ [Ĉ, CR′ ], we can write SR′ =
{C|C > CR′}.
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