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ABSTRACT

Data on human height can provide an index that may measure more
accurately changes in the standard of living than the more conventional real
wage index. Height data, like those on real wages, are relatively abundant
and extend back to the seventeenth century. In a previous paper, we
developed and tested procedures for estimating the mean and standard
deviation of the distribution of human height when the sample is distorted
to an unknown extent by missing observations at lower heights. The purpose
of this analysis is to extend our techniques so that the covariates of
height can be estimated. Such an extension is necessary when trying to draw
inferences about the causes of shifts over time in the height distribution
so that changes in sample composition can be controlled.
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In a previous paper, we developed and tested procedures for estimating

the mean and standard deviation of the distribution of human height when the

sample is distorted to an unknown extent by missing observations at lover

heights [Wachter and Trussell, 1982]. The purpose of this analysis is to

extend our techniques so that the covariates of height can be estimated.

Such an extension is important because the parent project, of which our own

research is a small part, is aimed at using data on changes in height over

time to infer changes in standard of living [Fogel, et al., 1982; Fogel,

Engerman and Trussell, 1982]. In order for such inferences to be valid, we

must ensure that observed changes are not caused simply by shifts in sample

composition. Other things being equal, for example, we would expect that

the average height of Americans would fall when large numbers of eastern

Europeans immigrated to the United States after the turn of the century.

Before we can make inferences about changes in standard of living, we must

control for the shifts in composition. An obvious way to do so is to

examine what height trend there would have been if the sample composition

had remained fixed.

The Problem

The available data are drawn primarily from military recruitment

records, though one sample from a charity called the Marine Society

consists of London children [Floud and Wachter, 1982] and another (the

only one containing women) is composed of slaves [Trussell and Steckel,

1978; Margo and Steckel, 19821. A common feature of most of the samples

is an underrepresentation of persons at the lower heights. This feature

no doubt reflects minimum height standards for entry into the military
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or charity, but comparison of observed histograms with published minimum

height standards reveals that the standards were flexibly rather than

rigidly enforced. Not all persons shorter than the standard are missing,

and the observed distributions are obviously deficient at heights above

the minimum, some nearly as large as the mean.-

Our original goal was to make inferences from a sample, which suffers

from the obvious shortfall in observations discussed above as well as from

other distortions such as heaping on preferred digits, about the true,

unknown, underlying distribution. Without further structure, this problem

would be insolvable. What makes it tractable at all is the well—documented

fact that adult heights are normally distributed. With the knowledge that

the deficient sample was drawn from an underlying normal distribution, we

were able to devise two techniques for estimating its unknown mean and

variance. One of these techniques is based on Quantile—Quantile Plots and

will not be discussed further here. The other technique is based on fairly

standard results for truncated normal distributions.

The RSMLE

Suppose that h is the height of individual i, that all observations

below height a and none above it are missing. Then the likelihood function

for this truncated normal distribution is

th(1 )L11 a
(1)
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where p and a are the unknown mean and standard deviation of the full (not

truncated) underlying normal distribution and + and $ are the density and

distribution functions, respectively, of the standard normal.

Since in our samples heights are ordinarily grouped into one—inch

intervals, the likelihood function must be modified slightly. Let n be

the number of individuals with height j inches in the sample. Then the

likelihood function becomes

L (2)

It is straightforward to maximize the log—likelihood using numerical

techniques. We ourselves have employed the algorithm DFP [Powell, 19711 in

the numerical optimization package OPT written by Goldfeld and Quandt.1

Of course, as described above, our samples are not sharply truncated;

hence the likelihood function (2) would appear to be incorrect. Our

technique, called the reduced sample maximum likelihood estimator, is based

on the following reasoning. We do not know, by observation, how much of the

lower tail of the height distribution is defective. But we can let the data

tell us. We simply progressively chop off the lower tail, an inch at a

time, until the estimates of the underlying mean and standard deviation

cease to change.

In practice, of course, this criterion is too rigid. Unless the
I

uncontaminated part of the height distribution conforms precisely to a

-
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normal, the se4uence of estimated parameters will never converge as

successive inches are lopped off. Moreover, because our observed data are

only samples (and usually small samples of about 500), the estimated

standard errors of the parameters will rise as more observations are

discarded. Hence we are faced with compromising between two evils:

accepting more of the lower tail increases the risk that estimates will be

biased (the mean upward and the standard deviation downward) because there

will be relatively too few short observations, while discarding more of the

lower tail will decrease the precision of the estimates. Since differences

in one inch in height over time or between populations are quite large, it

is reasonable to demand that an estimated change this big be significant at

the five percent level with samples of 300 to 400 heights. The rule that we

developed for determining the discard point satisfies this goal. The

discard point is successively raised by one inch until the estimated

proportion of observations below it surpasses 28 percent. Discard points on

either side are also reasonable candidates. For the purpose of stability,

we choose the discard point associated with the median of the three

estimated means.

Examples

Examples of the RSMLE are displayed in Table 1. Two data sets are

employed. The first, kindly supplied by Georgia Villaflor, is a sample of

the US Regular Army in 1850. The second, compiled by Lars Sandberg and

Richard Steckel [1980] and generously made available for our use, consists

of Swedish conscripts.
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Examination of the results shown in Table 1 reveals several important

lessons. First, the estimated means from the entire set of observations,

shown in the last column for each sample, are considerably higher (by at

least one inch) than the preferred RSMLE estimates, which are indicated by a

"+" at the head of the column. Inferences based on the sample mean can

therefore be very misleading. Second, although the threshold for the

discard rule is 28 percent, the estimated proportion of the full

distribution below the actual discard point chosen is generally higher and

sometimes much higher. In the first two samples it exceeds 50 percent.

Third, the estimated proportion of the sample missing entirely is often

large, reaching 46 percent and 44 percent for the Swedish cohorts of 1800—09

and 1880—89, respectively.

Estimating Covariates

Estimation of the covariates of height is a natural extension of the

RSMLE methodology. Once the discard point has been selected by the rule

outlined above, one can simply let the parameters p and a of the normal

depend on covariates:

p. = X.b
1 1

(3)

= Z.c1 1

In equations (3), the mean and standard deviation for an individual i

depend on his characteristics. We allow for the possibility that the vector

of characteristics Xi determining the mean may be different from the
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vector Z1 determining the standard deviation. The likelihood function

becomes

h.+l—X.b h.—X.b

( 1 1 ) — •(
!.

1 )
Z.c Z.c

L11 1 (4)
i a—X.b

i—( ')
Z.c
1

where h is the height of the ith individual and a is the discard point

chosen by the RSMLE rule. Equation (4) can be modified to let the discard

point a be different for different individuals, so long as it is

predetermined 2

The implication of the above model is that the height distribution of a

population is a mixture of normals. If = C is constant, then we have

the truncated, grouped equivalent of regression analysis. In the examples

to follow we assume that is constant, so that the connection with

regression can more easily be made.

Estimates of the covariates of height for the US Army in 1850 and

selected cohorts of Swedish conscripts are shown in Tables 2 and 3,

respectively. These are illustrative calculations in which the mean depends

on place of birth for the US sample and place of residence (and whether the

conscript was urban born) for the Swedish samples. Note that all effects

estimates are relative to the omitted category, Great Britain in the US

sample and East and rural—born in the Swedish samples. Results are shown

not only for the discard point selected by the RSMLE rule (as found in
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Table 1) but also for the untruncated sample and for the other two discard

points that enter into the RSMLE rule.

Several observations emerge from scrutiny of these results. First,and

not surprisingly, as the discard point is raised, the standard errors of the

estimated parameters rise. Second, the results of naive regression

(including a grouping correction)3 shown in the last column for each sample

are quite different from the results obtained when the RSMLE discard rule is

employed. By comparison, estimates from the three truncated samples implied

by the three discard points that enter the RSMLE rule are generally closer

to one another. Third, as likelihood ratio tests reveal, covariates add

significant explanatory power.

Substantively, being born in the South significantly and substantially

increases height among US soldiers in 1850, while being born in Germany

significantly reduces it. Among Swedish conscripts, the estimated

parameters change markedly over time. Being urban born is significant only

in the 1800—09 cohort, where it has a strong negative effect on height.

Coming from the West has a significant effect only in the 1880—89 cohort;

residence in Stockholm and the North have significant effects only in the

middle (1850—59) cohort.

Summary

In this paper we develop a method for estimating the covariates of

height from samples that may be relatively deficient in observations at

lower heights. Estimates derived from our technique are shown to differ

sharply from those that would be obtained by naive regression analysis.
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The difference between the two sets of results is of course data dependent.

Regression analysis is appropriate only when observations at lower heights

have not been selectively removed from the available sample. But this

condition will in general never be met in samples of historical heights, for

those persons with characteristics resulting in short stature will be

precisely those who will be underrepresented.
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FOOTNOTE S

1 Available from the Econometric Research Program, Department of Economics,
Princeton University, Princeton, NJ 08544.

2 For example, to achieve a large enough sample size one may wish to
combine observations for several years, whose discard points are known to
differ.

Actually, even in the last column there is some truncation, since
the discard point in a regression would be —, but the lowest discard point
in the table is the lowest observed height. Setting the bottom cutoff even
lower changes the estimates only trivially, however, in these examples, so
that the last column is indeed the grouped equivalent of regression.
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Table 1. Reduced sample maximum likelihood estimates (RSMLE)
for Swedish and U.S. data.

Bottom Truncation Point

U.S. Regular Army, 1850

67"+ 66" 65" 61"

Mean 66.55 66.34 67.28 67.86
S.D. 2.73 2.80 2.40 2.00
Prop. < bottom .57 .45 .17 .00
Prop. missing .30 .35 .13 .00
—in likelihood 2487.6 3647.7 4522.6 5058.2
# Obs. 1490 2018 2300 2398

Swedish Conscripts, 1800—1809 Cohort

LcIII • IA .1 U

Mean 65.55 65.38 66.77 67.39
S.D. 2.57 2.62 2.09 1.71
Prop. < bottom .71 .59 .20 .00
Prop. missing .46 .50 .17 .00
—in likelihood 962.9 1608.7 2157.7 2452.3
# Obs. 661 1005 1202 1246

Swedish Conscripts, 1850—1859 Cohort

67" 66"+ 65" 58"

Mean 66.89 67.00 67.81 68.15
S.D. 2.52 2.47 2.08 1.80
Prop. < bottom .52 .34 .09 .00
Prop. missing .31 .28 .09 .00
—ln likelihood 1379.9 1983.7 2329.7 2434.2
# Obs. 843 1104 1197 1204

Swedish Conscripts, 1880—1889 Cohort

67" 66"+ 65" 63"

Mean 65.04 66.39 67.50 68.01
S.D. 3.22 2.81 2.33 1.95
Prop. < bottom .73 .44 .14 .01

Prop. missing .60 .37 .13 .01
—in likelihood 606.8 870.7 1053.0 1126.6
# Obs. 365 479 533 543

+ Preferred by RSMLE rule.



Table 2. Reduced sample maximum likelihood estimates of the
covariates of height, U.S. Regular Army, 1850.

Bottom Truncation Point

67"+ 66" 65" 61"$

Ireland _•49* —.71 —.57 —.26
Northeast .23* .30* _.06* .14*

Mid—Atlantic .27* .65* —.01* .09*

South 1.51 1.79 1.31 1.06

Midwest .58* .98 49* .44

Germany —.92 _.60* _.75 _•49
Other —.84* _43* — .64* —.43
Great Britain 66.82 66.67 67.60 67.97

S.D. 2.66 2.70 2.33 1.94

—in likelihood 2472.2 3619.6 4485.7 5015.8

+ Preferred by RSMLE rule.
* Not significant at 10% level, 2—tailed test.

$ Approximates naive regression, with no truncation. See
footnote 3.



Table 3. Reduced sample maximum likelihood estimates of the
covariates of height, selected cohorts of Swedish
conscripts.

Bottom Truncation Point

Birth Cohort, 1800—1809

67"+ 66" 65" 58"$

West _•4Q* ..04* .20* .14*
North .69* .81 .47 .40
Stockholm .19* .16* —.77 —.31
Urban born —3.15 —2.85 —1.03
East 65.78 65.50 66.83 67.35
S.D. 2.53 2.55 2.05 1.69
—In likelihood 959.6 1602.4 2142.0 2440.3

Birth Cohort, 1850—1859

67" 66"+ 65" 58"$

West .62 .32* .00* .05*
North 1.01 .81 .58 .36*
Stockholm —1.54 —2.21 1.64 —1.04
Urban born 1.05* 1.12* .87 .50*
East 66.70 67.07 67.92 68.24
S.D. 2.47 2.40 2.04 1.78
—ln likelihood 1374.0 1969.5 2311.2 2419.0

Birth Cohort, 1880—1889

67" 66"+ 65" 63"$

West —.92* —1.53 —1.09 —.79
North —1.11* _.61* —.60 —.46
Stockholm _93* _1.36* —1.23 —1.31
Urban born —.15* .96* .65* 45*
East 65.64 67.18 68.06 68.44
S.D. 3.18 2.72 2.27 1.91
—In likelihood 605.7 864.9 1044.7 1118.0

+ Preferred by RSMLE rule.
* Not significant at 102 level, 2—tailed test.
$ Approximates naive regression with no truncation. See

footnote 3.




