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A robust prediction of the celebrated Black and Scholes (1973) and Merton (1973) 

(BSM) option pricing model is that the volatility implied by market prices of 

options is constant across strike prices.  Rubinstein (1994) tested this prediction on 

the S&P 500 index options (SPX), traded on the Chicago Board Options Exchange, 

an exchange that comes close to the dynamically complete and perfect market 

assumptions underlying the BSM model.  From the start of the exchange-based 

trading in April 1986 until the October 1987 stock market crash, the implied 

volatility is a moderately downward-sloping or u-shaped function of the strike price, 

a pattern referred to as the “volatility smile”, also observed in international 

markets and to a lesser extent in the prices of individual-stock options.  Following 

the crash, the volatility smile is typically more pronounced and downward sloping, 

often called a “volatility skew”.1 

An equivalent statement of the above prediction of the BSM model, that the 

volatility implied by market prices of options is constant across strike prices, is that 

the risk-neutral stock price distribution is lognormal.  Jackwerth and Rubinstein 

(1996), Ait-Sahalia and Lo (1998), Jackwerth (2000), and Ait-Sahalia and Duarte 

(2003) estimated the risk-neutral stock price distribution from the cross section of 

option prices.2  Jackwerth and Rubinstein (1996) confirmed that, prior to the 

October 1987 crash, the risk-neutral stock price distribution is close to lognormal, 

consistent with a moderate implied volatility smile.  Thereafter, the distribution is 

systematically skewed to the left, consistent with a more pronounced skew. 

These findings raise important questions.  Does the reasonable fit of the 

BSM model prior to the crash imply that options were rationally priced prior to the 

                                                 
1 The shortcomings of the BSM model are addressed in the context of no-arbitrage models that 

generalize the stock price process by including stock price jumps and stochastic volatility and also 

generalize the processes for the risk premia.  Many of these models are critically discussed in 

Jackwerth (2004), McDonald (2006), Hull (2006), and Singleton (2006). 
2 Jackwerth (2004) reviews the parametric and non-parametric methods for estimating the risk-

neutral distribution.  Ait-Sahalia and Duarte (2003) estimate the implied risk neutral distribution 

from a sample of simultaneously-expiring European index option prices while constraining the 

option pricing function to be monotonic and convex.  This approach may be extended to the 

estimation of the pricing kernel also. 
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crash?  Why does the BSM model typically fail after the crash?  Were options 

priced rationally after the crash? 

Whereas downward sloping or u-shaped implied volatility is inconsistent 

with the BSM model, it is well understood that this pattern is not necessarily 

inconsistent with economic theory.  Two fundamental assumptions of the BSM 

model are that the market is dynamically complete and frictionless.  We empirically 

investigate whether the observed cross sections of one-month S&P 500 index option 

prices over 1986-2006 are consistent with various economic models that explicitly 

allow for a dynamically incomplete market and also an imperfect market that 

recognizes trading costs and bid-ask spreads.  To our knowledge, this is the first 

large-scale empirical study that addresses mispricing in the presence of transaction 

costs and intermediate trading. 

Absence of arbitrage in a frictionless market implies the existence of a 

risk-neutral probability measure, not necessarily unique, such that the price of 

any asset equals the expectation of its payoff under the risk-neutral measure, 

discounted at the risk free rate.  If a risk-neutral measure exists, the ratio of the 

risk-neutral probability density to the real probability density, discounted at the 

risk free rate, is referred to as the pricing kernel or stochastic discount factor.  

Thus, absence of arbitrage implies the existence of a strictly positive pricing 

kernel. 

Economic theory imposes restrictions on equilibrium models beyond merely 

ruling out arbitrage.  In a frictionless representative-agent economy with von 

Neumann-Morgenstern preferences, the pricing kernel equals the representative 

agent’s intertemporal marginal rate of substitution over each trading period.  If the 

representative agent has state independent (derived) utility of wealth, then the 

concavity of the utility function implies that the pricing kernel is a decreasing 

function of wealth.  Furthermore, if the representative agent’s wealth at the end of 

each period is monotone increasing in the stock return over the period, then the 

pricing kernel is a decreasing function of the market return. 

The monotonicity restriction on the pricing kernel does not critically depend 

on the existence of a representative agent.  If there does not exist at least one 

pricing kernel that is a decreasing function of wealth over each trading period, then 
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there does not exist even one economic agent with state independent and concave 

(derived) utility of wealth and with wealth at the end of each period that is 

monotone increasing in the stock return over the period that is a marginal investor 

in the market.  Hereafter, we employ the term stochastic dominance violation to 

connote the nonexistence of even one economic agent with the above attributes that 

is marginal in the market.3  This means that, if such an economic agent exists, then 

the return on her current portfolio is stochastically dominated (in the second 

degree) by the return of another feasible portfolio. 

Under the two maintained hypotheses that the marginal investor’s (derived) 

utility of wealth is state independent and wealth is monotone increasing in the 

market index level, the pricing kernel is a decreasing function of the market index 

level.  Ait-Sahalia and Lo (2000), Jackwerth (2000), and Rosenberg and Engle 

(2002) estimated the pricing kernel implied by the observed cross section of prices 

of S&P 500 index options as a function of wealth, where wealth is proxied by the 

S&P 500 index level.  Jackwerth (2000) reported that the pricing kernel is 

everywhere decreasing during the pre-crash period 1986-1987, but widespread 

violations occur over the post-crash period 1987-1995.  Ait-Sahalia and Lo (2000) 

examined the year 1993 and reported violations; Rosenberg and Engle (2002) 

examined the period 1991-1995 and reported violations.4 

Several extant models addressed the inconsistencies with the BSM model 

and the violations of monotonicity of the pricing kernel.  While not all of these 

models explicitly addressed the monotonicity of the pricing kernel, they did address 

the problem of reconciling option prices with the time-series properties of the index 

returns.  Essentially, these models introduced additional priced state variables 

and/or explored alternative specifications of preferences.5  These models are 

                                                 
3 This line of research was initiated by Perrakis and Ryan (1984), Levy (1985), and Ritchken 

(1985).  For more recent related contributions, see Perrakis (1986, 1993), Ritchken and Kuo 

(1988), Ryan (2000, 2003), and Oancea and Perrakis (2007). 
4 Rosenberg and Engle (2002) found violations when they used an orthogonal polynomial pricing 

kernel but not when they used a power pricing kernel which, by construction, is decreasing in 

wealth. 
5 These models are critically discussed in Singleton (2006).  Bates (2006) introduced heterogeneous 

agents with utility functions that explicitly depend on the number of stock market crashes, over and 
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suggestive but stop short of endogenously generating the process of the risk premia 

associated with these state variables in the context of an equilibrium model of the 

macro economy and explaining on a month-by-month basis the cross section of S&P 

500 option prices. 

In estimating the statistical distribution of the S&P 500 index returns, we 

refrain from adopting the BSM assumption that the index price is a Brownian 

motion and, therefore, that the arithmetic returns on the S&P 500 index are 

lognormal.  We do not impose a parametric form on the distribution of the index 

returns and proceed in four different ways.  In the first approach, we estimate the 

unconditional distribution as the (smoothed) histograms extracted from two 

different historical index data samples covering the periods 1928-1986 and 1972-

1986.  In the second approach, we estimate the unconditional distribution as the 

histograms extracted from two different forward-looking samples, one that includes 

the October 1987 crash (1987-2006) and one that excludes it (1988-2006).  In the 

                                                                                                                                                 
above their dependence on the agent’s terminal wealth.  The calibrated economy exhibits the 

inconsistencies with the BSM model but fails to generate the non-monotonicity of the pricing kernel.  

Brown and Jackwerth (2004) suggested that the reported violations of the monotonicity of the 

pricing kernel may be an artifact of the maintained hypothesis that the pricing kernel is state 

independent but concluded that volatility cannot be the sole omitted state variable in the pricing 

kernel. 

Garcia, Luger and Renault (2003), Santa-Clara and Yan (2004), Brennan, Liu and Xia 

(2006), and Christoffersen, Heston, and Jacobs (2006), among others, obtained plausible parameter 

estimates in models in which the pricing kernel is state dependent, using panel data on S&P 500 

options. 

Others calibrated equilibrium models that generate a volatility smile pattern observed in 

option prices.  David and Veronesi (2002) modeled the investors’ learning about fundamentals, 

calibrated their model to earnings data, and provided a close fit to the panel of prices of S&P 500 

options.  Liu, Pan, and Wang (2005) investigated rare-event premia driven by uncertainty aversion 

in the context of a calibrated equilibrium model and demonstrated that the model generates a 

volatility smile pattern observed in option prices.  Benzoni, Collin-Dufresne, and Goldstein (2007) 

extended the above approach to show that uncertainty aversion is not a necessary ingredient of the 

model.  They also demonstrated that the model can generate the stark regime shift that occurred at 

the time of the 1987 crash. 

Alternative explanations include buying pressure, suggested by Bollen and Whaley (2004), 

and behavioral explanations based on sentiment, suggested by Han (2006) and Shefrin (2005). 
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third approach, we model the variance of the index returns as a GARCH (1, 1) 

process and scale the unconditional distribution for each month to have the above 

variance.  Finally, in the fourth approach, we scale the unconditional distribution 

for each month to have standard deviation equal to the Black-Scholes implied 

volatility (IV) of the closest ATM option or, alternatively, equal to the VIX index 

(1990-2006 only).  Clearly, we have not exhausted all possible ways of estimating 

the statistical distribution of the S&P 500 index returns.  One interpretation of our 

empirical results regarding mispricing is simply that the options market is priced 

with a different probability distribution than any of our estimated probability 

distributions. 

We test the compliance of option prices to the predictions of a model that 

allows for market incompleteness, market imperfections, and intermediate trading 

over the life of the options.  We consider a market with heterogeneous economic 

agents and investigate the restrictions on option prices imposed by a particular 

class of utility-maximizing agents that we simply refer to as traders.  We assume 

that traders maximize state-independent increasing and concave utility functions 

and that each trader’s wealth at the end of each period is monotone increasing in 

the stock return over the period.  For example, an investor who holds 100 shares of 

stock and a net short position in 200 call options violates the monotonicity 

condition, while an investor who holds 200 shares of stock and a net short position 

in 200 call options satisfies the condition.  Essentially, we assume that the traders 

have a sufficiently large investment in the stock, relative to their net short position 

in call options, such that the monotonicity condition is satisfied. 

We do not make the restrictive assumption that all economic agents belong 

to the class of utility-maximizing traders.  Thus, our results are robust and 

unaffected by the presence of agents with beliefs, endowments, preferences, trading 

restrictions, and transaction costs schedules that differ from those of the utility-

maximizing traders modeled in this paper. 

Whereas we assume that returns are i.i.d. and that traders have state-

independent preferences, we also carry out tests that relax these assumptions and 

accommodate three implications associated with state dependence.  First, each 

month we search for a pricing kernel to price the cross section of one-month options 
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without imposing restrictions on the time series properties of the pricing kernel 

month by month.  Second, we allow for intermediate trading; a trader’s wealth on 

the expiration date of the options is generally a function not only of the price of the 

market index on that date but also of the entire path of the index level, thereby 

rendering the pricing kernel state dependent.  Third, we allow the variance of the 

index return to be state dependent and employ the forecasted conditional variance. 

The paper is organized as follows.  In Section 1, we present a model for 

pricing options and state restrictions on the prices of options imposed by the 

absence of stochastic dominance violations.  One form of these restrictions is a set 

of linear inequalities on the pricing kernel that can be tested by testing the 

feasibility of a linear program.  The second form of these restrictions is a pair of 

upper and lower bounds on the prices of options.  In Section 2, we test the 

compliance of bid and ask prices of one-month index call options to these 

restrictions and discuss the results.  In the concluding Section 3, we summarize the 

empirical findings and suggest directions for future research. 

 

 

1 Restrictions on Option Prices Imposed by Stochastic Dominance 

 

1.1 The model and assumptions 

Trading occurs on a finite number of dates, = 0,1,..., , ..., 't T T .  The utility-

maximizing traders are allowed to hold and trade only two primary securities in the 

market, a bond, and a stock.  The stock has the natural interpretation as the 

market index.  The bond is risk free and pays constant interest 1R −  each period.  

The traders may buy and sell the bond without incurring transaction costs.  On 

date t, the cum dividend stock price is ( )δ+1 t tS , the cash dividend is δt tS , and the 

ex dividend stock price is tS , where tδ  is the dividend yield.  We assume that the 

rate of return on the stock, ( )1 11 /+ ++ t t tS Sδ , is identically and independently 

distributed over time. 

Stock trades incur proportional transaction costs charged to the bond 

account as follows.  On each date t, the trader pays ( )1 tk S+  out of the bond 

account to purchase one ex dividend share of stock and is credited ( )1 tk S−  in the 
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bond account to sell (or, sell short) one ex dividend share of stock.  We assume that 

the transaction costs rate satisfies the restriction0 1k≤ < . 

On date zero, the utility-maximizing traders are also allowed to buy or sell J 

European call options that mature on date T .6  On date zero, a trader can buy the 
thj  option at price j jP k+  and sell it at price j jP k− , net of transaction costs.  

Thus 2 jk  is the bid-ask spread plus the round-trip transaction costs that the trader 

incurs in trading the thj  option. 

On each date, a trader chooses the investment in the bond, stock, and call 

options to maximize the expected utility of net worth at the terminal date 'T .  We 

make the plausible assumption that utility is state independent and is increasing 

and concave in net worth.  Later on, we relax the assumption of state 

independence. 

One may formulate this problem as a dynamic program.7  As shown in 

Constantinides (1979), the value function is monotone increasing and concave in the 

dollar values in the bond and stock accounts, properties that it inherits from the 

monotonicity and concavity of the utility function.  This implies that, at any date, 

the marginal utility of wealth out of the bond account is strictly positive and 

decreasing in the dollar value of the bond account; and the marginal utility of 

wealth out of the stock account is strictly positive and decreasing in the dollar value 

of the stock account.  Furthermore, as shown in Fama (1970), the joint 

assumptions that (1) the rate of return on the stock is identically and 

independently distributed over time and (2) utility is state independent ensure that 

the state space on each date is defined solely by the stock return realizations 

without additional state variables. 

Finally, we assume that each trader’s wealth at the end of each period is 

monotone increasing in the stock return over the period.  Essentially, we assume 

                                                 
6 In this paper we empirically investigate only one-month call options.  We first investigate the 

case where trading is allowed only once per month by setting = 1T  and considering the time 

between trading dates to be of calendar length one month.  Later on, we investigate the case 

where trading is allowed N times per month by setting =T N and considering the time between 

trading dates to be of calendar length 1/N  months. 
7 A detailed description of the model is in an appendix available from the authors upon request. 
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that the traders do not write naked calls: they have sufficiently large investment in 

the stock, relative to their net short position in call options such that the 

monotonicity condition is satisfied.  The implication of the monotonicity condition 

is that a trader’s marginal utility of wealth out of the stock account is strictly 

positive and decreasing in the stock return. 

Our model assumptions are weaker than the assumptions made in the 

derivation of the capital asset pricing model.  Thus, our model implies that the 

pricing kernel is monotone decreasing in the index return but, unlike the capital 

asset pricing model, does not necessarily imply that the pricing kernel is linearly 

decreasing in the index return. 

We search for marginal utilities with the above properties that support the 

prices of the bond, stock, and derivatives at a given point in time.  If we fail to find 

such a set of marginal utilities, then any trader (as defined in this paper) can 

increase her expected utility by trading in the options, the index, and the risk free 

rate—hence equilibrium does not exist.  These strategies are termed stochastically 

dominant for the purposes of this paper, insofar as they would be adopted by all 

traders, in the same way that all risk averse investors would choose a dominant 

portfolio over a dominated one in conventional second degree stochastic dominance 

comparisons.  Stochastic dominance then implies that at least one agent, but not 

necessarily all agents, increases her expected utility by trading.  In our empirical 

investigation, we report the percentage of months for which the problem is feasible.  

These are months for which stochastic dominance violations are ruled out. 

 

1.2 Restrictions in the single-period model 

We specialize the general model by setting = 1T .  We do not rule out trading after 

the options expire; we just rule out trading over the one-month life of the options.  

In Section 1.3, we consider the more realistic case in which traders are allowed to 

trade the bond and stock at one intermediate date over the life of the options. 

As stated earlier, the joint assumptions that the rate of return on the stock 

is identically and independently distributed over time and utility is state 

independent ensure that the state space at the options’ maturity is defined solely by 
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the stock return realizations and not by additional state variables.8  Furthermore, 

the joint assumptions that utility is concave and wealth is increasing in the stock 

return (the monotonicity condition) ensure that the marginal utility of wealth out 

of the stock account is strictly positive and decreasing in the stock return. 

We specialize the general notation as follows.  The stock market index has 

price 0S  at the beginning of the period; ex dividend price 1iS  with probability π i  in 

state =, 1,...,i i I  at the end of the period; and cum dividend price ( )δ+ 11 iS  at the 

end of the period.  We order the states such that 1iS  is increasing in i . 

We define ( )0BM  as the marginal utility of wealth out of the bond account 

at the beginning of the period; ( )0SM  as the marginal utility of wealth out of the 

stock account at the beginning of the period; ( )1B
iM  as the marginal utility of 

wealth out of the bond account at the end of the period; and ( )1S
iM  as the 

marginal utility of wealth out of the stock account at the end of the period.  The 

marginal utility of wealth out of the bond and stock accounts at the beginning of 

the period is strictly positive: 

 

( )0 0BM >      (1.1) 

and 

( )0 0SM > .     (1.2) 

 

The marginal utility of wealth out of the bond account at the end of the 

period is strictly positive: 9 

 

( )1 0, 1,...,B
iM i I> = .    (1.3) 

 

The marginal utility of wealth out of the stock account at the end of the 

period is strictly positive and decreasing in the stock return: 

                                                 
8 One may replace the assumption of i.i.d. returns with the assumption that the investment 

horizon ends on date one, = =' 1T T . 
9 Since the value of the bond account at the end of the period is independent of the state i, we 

cannot impose the condition that the marginal utility of wealth out of the bond account is 

decreasing in the dollar value of the bond account. 
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( ) ( ) ( )1 21 1 ... 1 0S S S
IM M M≥ ≥ ≥ > .   (1.4) 

 

On each date, the trader may transfer funds between the bond and stock 

accounts and incurs transaction costs.  Therefore, the marginal rate of substitution 

between the bond and stock accounts differs from unity by, at most, the transaction 

costs rate: 

 

( ) ( ) ( ) ( ) ( )− ≤ ≤ +1 0 0 1 0B S Bk M M k M   (1.5) 

and 

( ) ( ) ( ) ( ) ( )− ≤ ≤ + =1 1 1 1 1 , 1,...,B S B
i i ik M M k M i I . (1.6) 

 

Marginal analysis on the bond holdings leads to the following condition on 

the marginal rate of substitution between the bond holdings at the beginning and 

end of the period: 

 

( ) ( )
1

0 1
I

B B
i i

i

M R Mπ
=

= ∑ ,    (1.7) 

 

where R  is one plus the risk free rate.  Marginal analysis on the stock holdings 

leads to the following condition on the marginal rate of substitution between the 

stock holdings at the beginning of the period and the bond and stock holdings at 

the end of the period: 

 

( ) ( ) ( )1 1

0 01

0 1 1
I

i iS S B
i i i

i

S S
M M M

S S
δ

π
=

⎡ ⎤
= +⎢ ⎥

⎢ ⎥⎣ ⎦
∑ .  (1.8) 

 

Marginal analysis on the option holdings leads to the following condition on 

the marginal rate of substitution between the option holdings at the beginning of 

the period and the option holdings ( ijX ) at the end of the period: 

 

( ) ( ) ( ) ( ) ( )
1

0 1 0 , 1,...,
I

B B B
j j i i ij j j

i

P k M M X P k M j Jπ
=

− ≤ ≤ + =∑ . (1.9) 
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Each month in our empirical analysis, we check for feasibility of conditions 

(1.1)-(1.9) by using the linear programming features of the optimization toolbox of 

MATLAB 7.0.  We report the percentage of months in which the conditions are 

feasible and, therefore, stochastic dominance is ruled out. 

 

1.3 Restrictions in the two-period model 

We relax the assumption of the single-period model that, over the one-month life of 

the options, markets for trading are open only at the beginning and end of the 

period; we allow for a third trading date in the middle of the month.  We define the 

marginal utility of wealth out of the bond account and out of the stock account at 

each one of the three trading dates and set up the linear program as a direct 

extension of the program (1.1)-(1.9) in Section 1.2.  The explicit program is given in 

Appendix A.  In our empirical analysis, we report the percentage of months in 

which the conditions are feasible and, therefore, stochastic dominance is ruled out. 

 

1.4 Restrictions in the multiperiod model 

In principle, we may allow for more than one intermediate trading dates over the 

one-month life of the options.  However, the numerical implementation becomes 

tedious as both the number of constraints and variables in the linear program 

increase exponentially in the number of intermediate trading dates. 

Constantinides and Perrakis (2002) derived testable implications of the 

absence of stochastic dominance that are invariant to the allowed frequency of 

trading the bond and stock over the life of the options.  This generality is achieved 

under the assumption that the trader’s universe of assets consists of the bond, 

stock, and a one-month call option with a certain strike price.  Specifically, 

Constantinides and Perrakis (2002) derived an upper and a lower bound to the 

price of a call option of given strike and maturity.  The bounds have the following 

interpretation.  If one can buy the option for less than the lower bound, then there 

is a stochastic dominance violation between the bond, stock, and the given option.  

Likewise, if one can write the option for more than the upper bound, then again 
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there is a stochastic dominance violation between the bond, stock, and the given 

option.10 

Below, we state without proof the bounds on call options.  At any time t 

prior to expiration, the following is a partition-independent upper bound on the 

price of a call: 

 

[ ]+(1 )
( ,  t) -

(1 )t T tT t
S

k
c S E S K S

k R −

+ ⎡ ⎤= ⎢ ⎥⎣ ⎦−
,   (1.10) 

 

where SR  is the expected return on the stock per period. 

A lower bound for a call option can also be found, but only if it is 

additionally assumed that there exists at least one trader for whom the investment 

horizon coincides with the option expiration.  In such a case, transaction costs 

become irrelevant in the put-call parity and the following is a lower bound:11 

 

( )t-T T-t
t t S ( ,  t)  1+ S - / [( ) S ]/RT t

t Tc S K R E K Sδ − += + − ,  (1.11) 

 

where R  is one plus the risk free rate per period.  We present the upper and lower 

bounds in Figures 1-4 and discuss their violations in Section 2.6. 

                                                 
10 These bounds on call prices (and the corresponding bounds on put prices) may not be the 

tightest possible bounds for any given frequency of trading.  However, they are presented here 

because of their universality in that they do not depend on the frequency of trading over the life 

of the option.  For a comprehensive discussion and derivation of these and other, possibly tighter, 

bounds that are specific to the allowed frequency of trading, see Constantinides and Perrakis 

(2002).  Constantinides and Perrakis (2007) provided bounds for American-style options and 

futures options.  These bounds were tested with data on S&P 500 futures options by 

Constantinides, Czerwonko, Jackwerth and Perrakis (2007), who identified options violating the 

bounds and derived strategies exploiting these mispricings.  For alternative approaches to option 

bounds under transaction costs see also Constantinides and Zariphopoulou (1999, 2001), Leland 

(1985) and Bensaid et al (1992). 
11 In the special case of zero transaction costs, the assumption = 'T T  is redundant because the 

put-call parity holds. 
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2 Empirical Results 

 

2.1 Data and estimation 

We use the historical daily record of the S&P 500 index and its daily dividend 

record over the period 1928-2006.  The monthly index return is based on 30 

calendar day (21 trading day) returns.  In order to avoid difficulties with the 

estimated historical mean of the returns, we demean all our samples and 

reintroduce a mean 4% annualized premium over the risk free rate.  Our results 

remain practically unchanged if we do not make this adjustment because the prices 

of one-month options are insensitive to the expected return on the stock. 

We estimate both the unconditional and the conditional distribution of the 

index.  The unconditional distribution is extracted from four alternative samples of 

thirty-day index returns: two historical returns samples over the periods 1928-1986 

and 1972-1986; a forward-looking returns sample over the period 1987-2006 that 

includes the 1987 stock market crash; and a forward-looking returns sample over 

the period 1988-2006 that excludes the stock market crash.  The annualized 

volatility is 21.0% (1928-1986), 15.8% (1972-1986), 15.2% (1987-2006), and 14.8% 

(1988-2006). 

For each sample, we use a discrete state space of 61 values from e-0.60 to e0.60, 

spaced 0.02 apart in log spacing.  Such span covers all observed returns in any of 

our samples.  We use the standard Gaussian kernel of Silverman (1986, pp. 15, 43, 

and 45).  The resulting probabilities for different states can vary greatly in scale 

and cause numerical problems in solving the resulting LPs.  We thus resort to 

eliminating states with probabilities smaller than 0.00001 and rescaling the 

remaining probabilities (typically 99.998%) to sum to one. 

We estimate the conditional distribution of the index each month over the 

period 1972-2006 in three different ways: by GARCH (1,1), as the implied volatility 

(IV), and as the revised VIX index.12  In the first way, we apply the semi-

                                                 
12 An alternative Wall Street approach of obtaining a conditional distribution is to bootstrap from 22 

day overlapping returns with a rolling window of several months where each day is the beginning of 

another 22 day return.  100 days is a common choice.  We are indebted to an anonymous referee of 

this journal for pointing out this alternative approach. 
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parametric GARCH (1,1) method of Engle and Gonzalez-Rivera (1991), a method 

that does not impose the restriction that conditional returns are normally 

distributed, as explained in Appendix C.13  In the second way, we estimate the 

conditional volatility as the Black-Scholes IV of the closest ATM 1-month option 

and scale the unconditional distribution every month to match the conditional 

volatility.  In the third way, we estimate the conditional volatility as 0.01 times the 

revised VIX index and scale the unconditional distribution every month over the 

subperiod 1990-2006 (when the VIX index is available) to match the conditional 

volatility.14 

For the S&P 500 index options we use two data sources.  For the period 

1986-1995, we use the tick-by-tick Berkeley Options Database of all quotes and 

trades.  We focus on the most liquid call options with K/S ratio (moneyness) in the 

range 0.90-1.05.  For 107 months we retain only the call option quotes for the day 

corresponding to options thirty days to expiration.15  For each day retained in the 

sample, we aggregate the quotes to the minute and pick the minute between 9:00-

11:00 AM with the most quotes as our cross section for the month.  We present 

these quotes in terms of their bid and ask implied volatilities.  Details on this 

database are provided in Appendix B, Jackwerth and Rubinstein (1996), and 

Jackwerth (2000). 

                                                 
13 The index return sample and the option price sample do not align.  We use the conditional 

volatility of the 30-day return period which starts before the option sample and covers it partly at 

the beginning.  We recalculated the results by using the conditional volatility of the 30-day return 

period which starts during the option sample and covers it partly at the end and then continues 

beyond the option sample.  The two sets of results are practically indistinguishable and thus, we 

do not report the latter results here. 
14 The scaling of the distribution by the conditional volatility does not change the skewness and 

kurtosis.  However, our numerical implementation does cause these moments to vary slightly due to 

slightly different discretizations.  For the 30-day conditional index return distribution, 1972-2006, 

based on GARCH (1,1), the average skewness is -0.415765 and kurtosis is 1.693435; based on implied 

volatilities, the average skewness is -0.393942 and kurtosis is 1.650050. 
15 We lose 9 months for which we do not have sufficient data, i.e., months with less than five 

different strike prices, months after the crash of October 1987 until June 1988, and months before 

the introduction of S&P 500 index options in April 1986. 
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We do not have options data for 1996.  For the period 1997-2006, we obtain 

call option bid and ask prices from the Option Metrics Database, described in 

Appendix B.  We calculate a hypothetical noon option cross section from the 

closing cross section and the index observed at noon and the close.  Here we assume 

that the implied volatilities do not change between noon and the close.  We start 

out with 109 raw cross sections and are left with 108 final cross sections.  The time 

to expiration is 29 days. 

Since the Berkeley Options Database provides less noisy data than the 

Option Metrics Database, we expect a higher incidence of stochastic dominance 

violations over the 1997-2006 period than over the 1986-1995 period.  Thus we are 

cautious in comparing results across these two periods. 

 

2.2 Assumptions on bid-ask spreads and trading fees 

There is no presumption that all agents in the economy face the same bid-ask 

spreads and transaction costs as the traders do.  We assume that the traders are 

subject to the following bid-ask spreads and trading fees.  For the index, we model 

the combined one-half bid-ask spread and one-way trading fee as a one-way 

proportional transaction costs rate equal to 50 bps of the index price. 

For the options, we model the combined one-half bid-ask spread and one-

way trading fee either as fixed or as proportional transaction costs.  Under the 

fixed-costs regime, we set the fixed transaction costs equal to 5, 10, or 20 bps of the 

index price.  This corresponds to about 19, 38, or 75 cents one-way fee per call, 

respectively.  Fixed transaction costs probably overstate the actual transaction 

costs on OTM calls and understate them on ITM calls. 

Under the proportional-costs regime, the proportional transaction costs for 

an ATM call are set equal to the transaction costs under the fixed-costs regime.  

However, for an OTM (or, ITM) call with price equal to fraction (or, multiple) x of 

the price of the ATM call, the proportional transaction costs are equal to fraction 

(or, multiple) x of the transaction costs of the ATM call.  Proportional transaction 

costs probably understate the actual transaction costs on OTM calls and overstate 

them on ITM calls.  In the tables, we present results under both fixed-cost and 

proportional-cost regimes. 
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2.3 Stochastic dominance violations in the single-period case 

Each month we check for the feasibility of conditions (1.1)-(1.9).  Infeasibility of 

these conditions implies stochastic dominance: any trader can improve her utility 

by trading in these assets without incurring any out-of-pocket costs.  If we rule out 

bid-ask spreads and trading fees, we find that these conditions are violated in all 

months.  Thus, we introduce bid-ask spreads and trading fees as described in 

Section 2.2. 

The time series of option prices is divided into seven periods and stochastic 

dominance violations in each period are reported in different columns, labeled as 

panels A-G in Tables 1-4.  The first period extends from May 1986 to October 16, 

1987, just prior to the crash.  The other six periods are all post-crash and span July 

1988 to March 1991, April 1991 to August 1993, September 1993 to December 1995, 

February 1997 to December 1999, February 2000 to May 2003 and June 2003 to 

May 2006.  Note that we do not have options data for 1996 from either data source.  

The average annualized implied volatility is 0.1641 and the panel averages are 

0.1753 (A), 0.179 (B), 0.1307 (C), 0.1089 (D), 0.2 (E), 0.2173 (F), and 0.1228 (G). 

In Table 1A, the one-way transaction costs rate on the index is 50 bps.  The 

transaction costs on the options are proportional.  In each row, the one-way 

transaction costs rate on the ATM calls is 5 bps of the index price (top entries), 10 

bps (bold middle entries), or 20 bps (bottom entries).  The number of calls in each 

(filtered) monthly cross section fluctuates between 5 and 23 with median 10.  The 

percentages of months without stochastic dominance violations are the entries 

displayed in bold.  The bracketed numbers in the first row are bootstrap standard 

deviations of the first-row middle entries (10 bps transaction costs), based on 200 

samples of the 1928-1986 historical returns.  The standard deviations are small and, 

therefore, comparisons of the table entries across the rows and columns can be 

made with some confidence.  We need to be careful when comparing across panels 

A-D (Berkeley Options Database) and panels E-G (Option Metrics). 

 

[TABLE 1A] 
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Most table entries are well below 100%, indicating that there are a number 

of months in which the risk free rate, the price of the index, and the prices of the 

cross section of calls are inconsistent with a market in which there is even one 

risk-averse trader who is marginal in these securities, net of generous transaction 

costs. 

In the top left cell, the middle entry of 73% refers to the index return 

distribution over the period 1928-1986 and option prices over the pre-crash period 

from May 1986 to October 16, 1987.  In 27% of these months, conditions (1.1)-

(1.9) are infeasible and the prices imply stochastic dominance violations despite 

the generous allowance for transaction costs.  The next six entries to the right, 

panels B-G, refer to call prices over the six post-crash periods.  Violations 

increase in panels C-G.  In panel D, all but 4% of the cross sections violate the 

stochastic dominance restrictions.  The option prices in panel D are drawn from 

the reliable Berkeley Options Database and the high incidence of violations 

cannot be attributed to data problems. 

We investigate the robustness of the historical estimate of the index return 

distribution over the period 1928-1986 by re-estimating the historical distribution 

of the index return over the more recent period 1972-1986.  The incidence of 

violations increases in all panels except in panels C and D where it decreases but 

remains high. 

When we use the forward-looking index sample 1987-2006 that includes 

the crash (third row) or the forward-looking index sample 1988-2006 that 

excludes it (fourth row), the pre-crash options exhibit substantially more 

violations.  Our interpretation is that, before the crash, option traders were using 

average historical volatility to price options and were not actively forecasting 

volatility changes.  This interpretation is reinforced in row five, panel A.  The 

GARCH method in forecasting volatility does worse than the first two rows and 

only marginally better than the third and fourth rows. 

In the last three rows, we use the GARCH-based, the IV-based and the 

revised VIX-based conditional index distribution, all based on index returns over 

1972-2006, as explained in Section 2.1.  Of these three methods, GARCH is the 

only one that, in the spirit of this paper, uses information exclusively from the 
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time series of index returns to impose restrictions on the prices of options.  By 

contrast, the IV-based and the revised VIX-based methods use the volatility 

implied in the option prices themselves, irrespective of whether this volatility is 

rational or not.  In particular, implied volatility tends to be higher than realized 

volatility. 

The IV-based method performs better than the revised VIX method.  This 

is surprising because the revised VIX is meant to be a theoretically-motivated 

refinement of the IV method.  The IV-based method performs well in pricing pre-

crash options.  Nevertheless, violations with the IV-based method remain 

surprisingly severe, particularly over 1997-2006. 

 

2.4 Robustness in the single-period case 

Floor traders, institutional investors and broker-assisted investors face different 

transaction costs schedules in trading options.  Are the results robust under 

different transaction costs schedules?  The pattern of violations remains 

essentially the same.  In Table 1A, the number at the top of each cell is the 

percentage of non-violations when the combined one-half bid-ask spread and one-

way trading fee on one option is based on 5 bps of the index price.  We observe a 

large percentage of violations for all index and option price periods.  The number 

at the bottom of each cell is the percentage of non-violations when the combined 

one-half bid-ask spread and one-way trading fee on one option is based on 20 bps 

of the index price.  Predictably, we observe fewer violations for all index and 

option price periods but there are still many violations. 

 

[TABLE 1B] 

 

Table 1B displays the percentage of violations but now with fixed instead 

of proportional transaction costs.  The pattern of violations is similar to the 

pattern displayed in Table 1A with proportional transaction costs.  In some cells, 

violations increase and in others decrease.  This is surprising because we would 

expect that fixed transaction costs, that imply larger transaction costs for OTM 

calls, would result in fewer violations across the board.  This begs the question 
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whether it is the OTM or the ITM calls that are responsible for the majority of 

violations. 

 

[TABLES 2A and 2B] 

 

Table 2A displays separately violations by ITM calls (top entry) and 

OTM calls (bottom entry) under the proportional transaction costs regime.  In 

almost all cases, there is a higher percentage of violations by OTM calls than by 

ITM calls.16  Table 2B displays separately the violations due to ITM calls (top 

entry) and OTM calls (bottom entry) under the fixed transaction costs regime.  

Since fixed transaction costs imply higher transaction costs for OTM calls than in 

Table 2A, the violations by OTM calls substantially decrease.  Since fixed 

transaction costs imply lower transaction costs for ITM calls than in Table 2A, 

the violations by ITM calls substantially increase.  In Table 2B, there are fewer 

violations by OTM calls than by ITM calls.  The violations persist when we 

employ the GARCH-based conditional return distribution but substantially 

decrease for both the ITM and OTM calls when we employ the IV-based 

distribution.  However, the fact remains that there are substantial violations by 

OTM calls.  This observation is novel and contradicts the common inference 

drawn from the observed implied volatility smile that the problem primarily lies 

with the left-hand tail of the index return distribution. 

We further investigate the observation made in Table 1A that, when we 

use the IV-based conditional index return distribution, violations remain severe.  

We therefore entertain the possibility that the ATM IV is a biased measure of 

the volatility of the index return distribution. 

 

[TABLE 3] 

                                                 
16 This inference is moderated by the fact that the sample of OTM calls is larger than the sample 

of ITM calls.  Other things equal, the larger the sample, the harder it is to find a monotone 

decreasing pricing kernel that prices the calls.  However, the figures (discussed later on in Section 

2.6) are not subject to this reservation and are consistent with the observation that there is 

substantial mispricing of OTM calls. 
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In Table 3, we offset the IV by -2, -1, 1, or 2%, annualized.  In the last 

row, “Best of above”, we report the maximum percentage of feasible month in 

each panel, either without IV offset or with any of the four offsets, allowing the 

offset to be different in each panel.  The one-way transaction costs rate on the 

index is 50 bps.  The one-way transaction costs on the options are proportional.  

The one-way transaction costs rate on the ATM calls is 10 bps of the index price.  

All results use the conditional implied-volatility-based index return distribution 

over the sample period 1972-2006.  In the pre-crash sample, violations disappear 

if we increase the implied volatility by 2%, consistent with received wisdom that 

sample volatility is lower than implied volatility.  In the other subperiods, 

violations persist even under the “Best of above” category.  This is surprising 

because this heavy-handed adjustment of the IV lacks theoretical justification 

and is explicitly designed to eliminate violations.  Furthermore, it is no longer 

consistently the case that sample volatility is lower than implied volatility. 

 

2.5 Stochastic dominance violations in the two-period model 

In the previous sections, we considered feasibility in the context of the single-period 

model.  We established that there are stochastic dominance violations in a 

significant percentage of the months.  Does the percentage of stochastic dominance 

violations increase or decrease as the allowed frequency of trading in the stock and 

bond over the life of the option increases?  In the special case of zero transaction 

costs, i.i.d. returns, and constant relative risk aversion, it can be theoretically 

shown that the percentage of violations should increase as the allowed frequency of 

trading increases.  However, we cannot provide a theoretical answer if we relax any 

of the above three assumptions.  Therefore, we address the question empirically. 

We compare the percentage of stochastic dominance violations in two 

models, one with one intermediate trading date over the one-month life of the calls 

and another with no intermediate trading dates over the life of the calls.  To this 

end, we partition the 30-day horizon into two 15-day intervals and approximate the 

15-day return distribution by a 61-point kernel density estimate of the 15-day 

returns.  In this instance we base our kernel method on the 15-day returns instead 
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of the 30-day returns.  The assumed transaction costs are as in the base case 

presented in Table 1A.  The one-way transaction costs rate on the index is 50 bps.  

The transaction costs on the options are proportional; for the ATM calls they are 

10 bps of the index price.  The results are presented in Table 4. 

 

[TABLE 4] 

 

We may not investigate the effect of intermediate trading by directly 

comparing the results in Tables 1A and 4 because the return generating process 

differs in the two tables since the time horizons are different.  Recall that the 

results in Table 1A are based on a state space of 61 values for 30-day returns.  By 

contrast, the results in Table 4 are based on a state space of 61 values of the 15-day 

returns.  The 30-day return then is the product of two 15-day returns treated as 

i.i.d.  With this process of the 30-day return, we calculate the percentage of months 

without stochastic dominance violations and report the results in Table 4 in 

parentheses. 

The effect of allowing for one intermediate trading date over the life of the 

one-month options is shown by the top entries in Table 4.  These entries are 

contrasted with the bracketed entries which represent the percentage of months 

without stochastic dominance violations when intermediate trading is forbidden.17  

In most cases, intermediate trading increases the incidence of violations.  We 

conclude that allowance for intermediate trading strengthens the earlier systematic 

evidence of stochastic dominance violations.  In the next section, we obtain further 

insights on the causes of infeasibility, by displaying the options that violate the 

upper and lower bounds on option prices. 

 

2.6 Stochastic dominance bounds 

The stochastic dominance violations reported this far are based on the non-

existence of a trader who is simultaneously marginal in the entire cross section of 

                                                 
17 However, we find that the middle entries in Table 1A are rather similar to the bracketed 

entries in Table 4.  This is an indication that the 30-day return used in Table 1A can be 

reasonably well approximated by convoluting two 15-day returns as in Table 4, bracketed entries. 
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call prices at the beginning of each month.  This requirement effectively rules out 

the possibility that the call options market is segmented.  We entertain the 

possibility of segmented markets by examining violations of stochastic dominance 

through violations of the stochastic dominance bounds (1.10)-(1.11) discussed in 

Section 1.4.  These bounds are derived from the perspective of a trader who is 

marginal in the index, the risk free rate, and only one call option at a time.  

Therefore, these bounds allow for the possibility that the market is segmented.  A 

second advantage of examining violations through these bounds is that the bounds 

apply irrespective of the permitted frequency of trading in the bond and stock 

accounts over the life of the option. 

 

[FIGURES 1-4] 

 

We calculate these bounds and translate them into bounds on the implied 

volatility of option prices.  In Figures 1-4, we present the upper IV bound based on 

(1.10) and the lower bound based on (1.11).  We present both the bid (circles) and 

ask (crosses) option prices, translated into IVs.  A violation occurs whenever an 

observed call bid price lies above the upper bound or an observed call ask price lies 

below the lower bound. 

In Figures 1 and 2, the 4 panels A-D are based on the Berkeley options data 

base, 1986-1995; in Figures 3 and 4, the 3 panels E-G are based on the Option 

Metrics data base, 1997-2006.  In all cases, the transaction costs rate on the index is 

50 bps. 

The bounds are based on the conditional index return distribution.  First, we 

estimate the unconditional distribution over the period 1972-2006.  Then, for each 

sub period, we calculate the average IV and rescale the volatility of the 

unconditional distribution in each panel accordingly.  Since the bounds are adjusted 

by the implied volatility, irrespective of whether this volatility is rational or not, we 

can draw inferences about the shape of the skew but not about the general level of 

option prices. 
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In Figure 1, panel A, bid prices of some OTM calls lie above the upper 

bound and ask prices of some ITM calls lie below the lower bound.18  These findings 

are consistent with the results reported in Tables 2A and 2B, panel A, that both 

OTM and ITM pre-crash calls violate stochastic dominance.  The shape of the 

upper and lower bounds in Figures 1, panel A, suggests that if call prices exhibited 

a smile before the crash, there would be fewer violations.  This is a novel finding 

because pre-crash option prices have been documented to follow the BSM model 

reasonably well and this has been interpreted as evidence that they are correctly 

priced. 

Panels B-G dispel another common misconception, namely, that the 

observed smile is too steep after the crash.  In fact, panel G illustrates that there is 

hardly a smile in the period 2003-2006.  Post-crash violations are due to both ITM 

and OTM calls; sometimes bid prices are above the upper bound and ask prices are 

below the lower bound.  These findings are consistent with the results reported in 

the tables. 

In Figure 2, panels C and D, there are very few violations, consistent with 

the results in Tables 1A and 1B, when the conditional index return distribution is 

based on IV.  The good performance does not carry over into subsequent periods.  

In Figures 3, panels E and F, several bid call prices over the period 1997-2003 lie 

way above the bounds.  This is true for both ITM and OTM calls.  This is an 

altogether different pattern of violations than in the earlier panels A-D.  In 

interpreting the high incidence of violations of option prices over the period 1997-

2003 in the tables, we were conservative because of concerns regarding the quality 

of the Option Metrics database.  The figures provide a clearer picture.  If the 

violations were the result of low quality of the data, then we would observe roughly 

as many violations of the lower bound as we do of the upper bound.  This is not the 

case.  Most of the violations are violations of the upper bound.  The decrease in 

violations over the post-crash period 1988-1995 (panels B-D) is followed by a 

substantial increase in violations over 1997-2003 (panels E and F).  This is a novel 

                                                 
18 Bids with zero implied volatility (not asks, which are always positive) imply that the price is so 

low that there does not exist a positive implied volatility solving the Black-Scholes equation.  

These bids do not violate the bounds as they do not present utility-improving opportunities. 
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finding and casts doubts on the hypothesis that the options market is becoming 

more rational over time, particularly after the crash. 

In results not reported, we estimated the bounds of Figures 1-4 with the 

unconditional distributions, both historical and forward-looking, and compared the 

bounds to the observed option prices.  The pattern is broadly similar to the one 

exhibited by the conditional distributions presented in the paper.  In particular, the 

estimated bounds exhibited a smile in the pre-crash period as in Figure 1, panel A.  

We also observed a decrease in violations over the post-crash period 1988-1995 

followed by an increase in violations over 1997-2003. 

 

 

3 Concluding Remarks 

 

We document widespread violations of stochastic dominance in the one-month S&P 

500 index options market over the period 1986-2006, before and after the October 

1987 stock market crash.  We do not impose a parametric model on the index 

return distribution but estimate it as the (smoothed) histogram of the sample 

distribution, using seven different index return samples: two samples before the 

crash, one long and one short; two forward-looking samples, one that includes the 

crash and one that excludes it; one sample adjusted for GARCH-forecasted 

conditional volatility; one adjusted for implied volatility; and one sample adjusted 

for VIX-forecasted conditional volatility.  We allow the market to be incomplete 

and also imperfect by introducing generous transaction costs in trading the index 

and the options. 

Evidence of stochastic dominance violations means that any trader can 

increase her expected utility by engaging in a zero-net-cost trade.  We consider a 

market with heterogeneous agents and investigate the restrictions on option prices 

imposed by a particular class of utility-maximizing economic agents that we simply 

refer to as traders.  We do not make the restrictive assumption that all agents 

belong to the class of the utility-maximizing traders.  Thus, our results are robust 

and unaffected by the presence of agents with beliefs, endowments, preferences, 
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trading restrictions, and transaction costs schedules that differ from those of the 

utility-maximizing traders modeled in this paper. 

Our empirical design allows for three implications associated with state 

dependence.  First, each month we search for a pricing kernel to price the cross 

section of one-month options without imposing restrictions on the time series 

properties of the pricing kernel, month by month.  Thus, we allow the pricing 

kernel to be state dependent.  Second, we allow for intermediate trading; a trader’s 

wealth on the expiration date of the options is generally a function not only of the 

price of the market index on that date but also of the entire path of the index level 

thereby rendering the pricing kernel state dependent.  Third, we allow the volatility 

of the index return to be state dependent and employ the estimated conditional 

volatility. 

Even though pre-crash option prices conform to the BSM model reasonably 

well, once the constant volatility input to the BSM formula is judiciously chosen, 

this does not speak on the rationality of option prices.  Our novel finding is that 

pre-crash options are incorrectly priced if the distribution of the index return is 

estimated from time-series data even with a variety of statistical adjustments.  Our 

derived option bounds exhibit a smile and this suggests that pre-crash option prices 

would violate these bounds less frequently if they exhibited a smile too.  Our 

interpretation of these results is that, before the crash, option traders were 

extensively using the BSM pricing model and the dictates of this model were 

imposed on the option prices even though these dictates were not necessarily 

consistent with the time-series behavior of index prices. 

There are substantial violations by OTM calls under both the fixed and 

proportional transaction costs regimes.  This observation is novel and contradicts 

the common inference drawn from the observed implied volatility smile that the 

problem primarily lies with the left-hand tail of the index return distribution.  We 

do not find evidence that the observed smile is too steep after the crash. 

If the violations by ITM and OTM calls were the result of the low quality of 

the data, then we would observe roughly as many violations of the lower bound as 

we do of the upper bound.  This is not the case.  Most of the violations are 

violations of the upper bound.  The decrease in violations over the post-crash period 
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1988-1995 is followed by a substantial increase in violations over 1997-2003.  This is 

a novel finding and casts doubts on the hypothesis that the options market is 

becoming more rational over time, particularly after the crash. 

By providing an integrated approach to the pricing of options that allows for 

incomplete and imperfect markets, we provide testable restrictions on option prices 

that include the BSM model as a special case.  We reviewed the empirical evidence 

on the prices of S&P 500 index options.  The economic restrictions are violated 

surprisingly often, suggesting that the mispricing of these options cannot be entirely 

attributed to the fact that the BSM model does not allow for market 

incompleteness and realistic transaction costs. 

In this paper, we allowed for some implications associated with non-priced 

state variables.  Several extant models addressed the inconsistencies with the BSM 

model and the violations of monotonicity of the pricing kernel by introducing priced 

state variables and/or exploring alternative specifications of preferences.  For 

example, Brennan, Liu and Xia (2006) rejected an explanation of index option 

prices based on a pricing kernel that is a nonlinear function of the market return, 

the interest rate and the Sharpe ratio.  It remains an open and challenging topic for 

future research to endogenously generate the process of the risk premia associated 

with these state variables in the context of an equilibrium model of the macro 

economy and explain on a month-by-month basis the cross section of S&P 500 

index option prices. 

Our search for a trader who is simultaneously marginal in the stock, risk free 

rate, and the entire cross-section of one-month call options does not address the 

possibility that equilibrium exists but in a segmented market.  In Figures 1-4, we 

partially allowed for the possibility that equilibrium exists but the market is 

segmented by searching for a trader that is simultaneously marginal in the stock, 

risk free rate, and just one one-month call option at a time.  Even in this case, we 

report several violations.  In practice, individual investors (our “traders”) may face 

additional restrictions imposed by their brokers in writing options, beyond the 

restrictions that we imposed through trading costs and bid-ask spreads.  It remains 

an open and challenging topic for future research to investigate the extent to which 
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more severe market segmentation or imperfections can reconcile the results 

presented in this paper. 



 28

Appendix A 

 

We allow for three trading dates, 0,1,2t = , at the beginning, middle and end of the 

month-long period ending with the expiration of the options.  We define the stock 

returns over the first sub-period as ( )δ≡ +1 1 01 /i iz S S , corresponding to the 

I states on date one, = 1,...,i I .  We assume that the returns over the two sub-

periods are independent.  Thus, the stock returns over the second sub-period, 

( )δ≡ + =2 2 11 / , 1,...,k ik iz S S k I , are independent of i .  There are 2I  states on date 

two, = =1,..., , 1,...,i I k I . 

We define the state-dependent marginal utility of wealth out of the bond 

account on each one of the three trading dates as ( )0BM , ( )1B
iM  and ( )2B

ikM .  

Likewise, we define the state-dependent marginal utility of wealth out of the stock 

account on each of the three trading dates as ( )0SM , ( )1S
iM  and ( )2S

ikM .  The 

conditions on positivity and monotonicity of the marginal utility of wealth out of 

the bond and stock accounts at = 0,1t  are given by equations (1.1)-(1.4).  The 

corresponding conditions at = 2t  are: 

 

( )2 0, , 1,...,B
ikM i k I> =     (A.1) 

and 

( ) ( ) ( ) ( )1 22 2 ... 2 ... 2 0, 1,...,S S S S
i i ik iIM M M M i I≥ ≥ ≥ ≥ > = . (A.2) 

 

On each date, the trader may transfer funds between the bond and stock 

accounts and incur transaction costs.  Conditions (1.5) and (1.6) hold.  The 

corresponding condition at = 2t  is: 

 

( ) ( ) ( ) ( ) ( )− ≤ ≤ + =1 2 2 1 2 , , 1,...,B S B
ik ik ikk M M k M i k I . (A.3) 

 

Conditions (1.7) and (1.8) on the marginal rate of substitution between 

dates zero and one hold.  The corresponding conditions between dates one and two 

are as follows: 
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( ) ( )
1

1 2 , 1,...,
I

B B
i k ik

k

M R M i Iπ
=

= =∑    (A.4) 

and 

( ) ( ) ( )[ ]2 2
1

1 2 2 , 1,...,
I

S S B
i k k ik k ik

k

M z M z M i Iπ δ
=

= + =∑ .  (A.5) 

 

Condition (1.9) is replaced by: 

 

( ) ( ) ( ) ( ) ( )
1 1

0 2 0 , 1,...,
I I

B B B
j j i k ik ikj j j

i k

P k M M X P k M j Jπ π
= =

− ≤ ≤ + =∑∑ . (A.6) 

 

The probability of state ( ),i k  is i kπ π  because, by assumption, the stock returns are 

independent over the two sub-periods. 

In our empirical analysis, we report the percentage of months in which 

conditions (1.1)-(1.8) and (A.1)-(A.6) are feasible and, therefore, stochastic 

dominance is ruled out. 
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Appendix B 

 

B.1  Berkeley options database 

The Berkeley Options Database contains all minute-by-minute quotes and trades of 

the European options and futures on the S&P 500 index from April 2, 1986 to 

December 29, 1995.  Details on this database are found in Jackwerth and 

Rubinstein (1996), Jackwerth (2000) and below. 

 

B.1.1  Index level 

Traders typically use the index futures market rather than the cash market to 

hedge their option positions.  The reason is that the cash market prices lag futures 

prices by a few minutes due to lags in reporting transactions of the constituent 

stocks in the index.  We check this claim by regressing the index on each of the 

first twenty minute lags of the futures price.  The single regression with the highest 

adjusted R2 is assumed to indicate the lag for a given day.  The median lag of the 

index over the 1542 days from 1986 to 1992 is seven minutes.  Because the index is 

stale, we compute a futures-based index for each minute from the futures market as 

( ) 1
0 1S RFδ −= + , where F is the futures price at the option expiration.  For each 

day, we use the median interest rate R implied by all futures quotes and trades and 

the index level at that time.  We approximate the dividend yield δ by assuming 

that the dividend amount and timing expected by the market were identical to the 

dividends actually paid on the S&P 500 index.  However, some limited tests 

indicate that the choice of the index does not seem to affect the results of this 

paper. 

 

B.1.2  Interest rate 

We compute implied interest rates embedded in the European put-call parity 

relation.  Armed with option quotes, we calculate separate lending and borrowing 

interest returns from put-call parity where we use the above future-based index.  

For each expiration date, we assign a single lending and borrowing rate to each 

day, which is the median of all daily observations across all strike prices.  We then 

use the average of these two interest rates as our daily spot rate for the particular 
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time to expiration.  Finally, we obtain the interpolated interest rates from the 

implied forward curve.  If there is data missing, we assume that the spot rate curve 

can be extrapolated horizontally for the shorter and longer times-to-expiration.  

Again, some limited tests indicate that the results are not affected by the exact 

choice of the interest rate. 

 

B.1.3  Option prices 

We use only bid and ask prices on call options.  For each day retained in the 

sample, we aggregate the quotes to the minute and pick the minute between 9:00-

11:00 AM with the most quotes as our cross section for the month. 

We use only call options with 30 days to expiration which occur once every 

month during our sample.  We also trim the sample to allow for moneyness levels 

between 0.90 and 1.05.  Cross sections with fewer than 5 option quotes are 

discarded.  We also eliminate the cross sections right after the crash of 1987 as the 

data is noisy and restart the sample with the cross section expiring on July 15, 

1988. 

 

B.1.4  Arbitrage violations 

In the process of setting up the database, we check for a number of errors which 

might have been contained in the original minute-by-minute transaction level data.  

We eliminate a few obvious data-entry errors as well as a few quotes with excessive 

spreads—more than 200 cents for options and 20 cents for futures.  General 

arbitrage violations are eliminated from the data set.  We also check for violations 

of vertical and butterfly spreads.  Within each minute, we keep the largest set of 

option quotes which satisfies the restriction 

(1 ) max[0, (1 ) / ]i iS C S K Rδ δ+ ≥ ≥ + − . 

Early exercise is not an issue as the S&P 500 options are European and the 

discreteness of quotes and trades only introduces a stronger upward bias in the 

midpoint implied volatilities for deep-out-of-the-money puts (moneyness less than 

0.6) which we do not use in our empirical work.  We start out with 107 raw cross 

sections and are left with 98 final cross sections. 
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B.2  Option Metrics database 

The Option Metrics Database contains indicative end-of-day European call and put 

option quotes on the S&P 500 index from January 2, 1997 to May 31, 2006.  In 

merging the Option Metrics Database with the Berkeley Options Database, we 

follow the above procedure as much as possible, given the closing bid and ask prices 

that the Option Metrics Database provides.  Therefore, only departures and 

innovations from the above procedure are noted. 

 

B.2.1  Index level 

As the closing (noon) index price, we use the price implied by the closing (noon) 

futures price. 

 

B.2.2  Interest rate 

As we cannot arrive at consistently positive interest rates implied by option prices, 

we use T-bill rates instead, obtained from Federal Reserve Bank of St. Louis 

Economic Research Database (FRED®). 

 

B.2.3  Option prices 

In the final sample, only call and put options with at least 100 traded contracts are 

included.  We calculate a hypothetical noon option cross section from the closing 

cross section and the index observed at noon and the close.  Here we assume that 

the implied volatilities do not change between noon and the close.  We start out 

with 109 raw cross sections and are left with 108 final cross sections. The time to 

expiration is 29 days. 

 

B.3.  S&P 500 information bulletin 

We obtain the historical daily record of the S&P 500 index and its daily dividend 

record over the period 1928-2006 from the S&P 500 Information Bulletin.  Before 

April 1982, dividends are estimated from monthly dividend yields. 

 

B.4  VIX index 



We use the revised CBOE Volatility Index (VIX).  The revised VIX is 100 times 

the forecast of the annualized 30-day volatility of the S&P 500 index.  It is a model-

independent forecast based on S&P 500 index options with 1-month and 2-month 

expiration and wide range of in-the-moneyness.  The index has been back-filled by 

the CBOE and is currently available from 1990 to the present.  Note that VIX is 

not available for panels A and B. 

 

Appendix C 

 

The GARCH (1,1) special case of the Engle and Gonzalez-Rivera (1991) semi 

parametric model applied to the monthly S&P 500 index return, , is described by 

equations (C.1)-(C.3): 
ty

 

ε= +ty y t      (C.1) 

 

( )ε− ∼1/2 . . . 0,1th i i d g      (C.2) 

and 

ω αε β− −= + +2
1t th 1th

)
)

,    (C.3) 

 

where is an unknown distribution with zero mean and unit variance. (0,1g

The parameters (ω α β, ,  are estimated by maximum likelihood under the 

(false) assumption that ( )1/ 2 . . . 0,1th i i d Nε− ∼ .  Then the time series { }ε−1/2
t th  is 

calculated and the true density ( )0,1g  is estimated as the histogram of all the time 

series observations.  The histogram is being smoothed by our kernel methods in the 

same way as all the other distributions in order to keep the procedures comparable. 

One may consider re-estimating the parameters ( ), ,ω α β  by maximum 

likelihood, replacing the assumption that ( )1/2 . . . 0,1th i i d Nε− ∼  with the assumption 

that , where (1/2 . . . 0,1th i i d gε− �∼ ) ( )0,1g�  is the estimated density in the last step 

above.  Engle and Gonzalez-Rivera (1991) showed by simulation that this 

additional step is unnecessary in practice. 
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Table 1A 

Percentage of months without stochastic dominance violations with proportional 

transaction costs 

The table displays the percentage of months in which stochastic dominance violations are absent in 

the cross-section of option prices.  The one-way transaction costs rate on the index is 50 bps.  The 

transaction costs on the options are proportional.  In each row, the one-way transaction costs rate on 

the ATM calls is 5 bps of the index price (top entries), 10 bps (bold, middle entries), or 20 bps 

(bottom entries).  The bracketed numbers in the first row are bootstrap standard deviations of the 

first-row entries, based on 200 runs. 

 A: 

8605-

8710 

B: 

8807-

9103 

C: 

9104-

9308 

D: 

9309-

9512 

E: 

9702-

9912 

F: 

0002-

0305 

G: 

0306- 

0605 

Number of Months  15 29 28 26 35 37 36 

Unconditional index return 

distribution, 

1928-1986 

67 

73 (5) 

80 

24 

76 (10) 

90 

21 

50 (11) 

82 

0 

4 (5) 

35 

6 

26 (9) 

60 

11  

27(6)  

49 

6  

17(4)  

39 

Unconditional index return 

distribution, 

1972-1986 

27 

53 

67 

28 

48 

76 

32 

54 

93 

0 

15 

81 

3 

9 

29 

5  

8  

19 

3  

11  

47 

Unconditional index return 

distribution, 

1987-2006 

13 

20 

33 

38 

59 

76 

43 

68 

96 

0 

35 

88 

0 

9 

14 

5  

11  

16 

3  

14  

47 

Unconditional index return 

distribution, 

1988-2006 

7 

20 

47 

38 

55 

66 

39 

71 

93 

0 

27 

81 

0 

0 

20 

5  

8  

16 

3  

11  

61 

Conditional index return 

distribution, 1972-2006, 

based on GARCH (1,1) 

13 

27 

33 

34 

59 

76 

61 

82 

86 

42 

69 

96 

0 

11 

29 

8  

27  

43 

6  

11  

47 

Conditional index return 

distribution, 1972-2006, 

based on implied vol. 

53 

87 

100 

55 

83 

93 

71 

96 

86 

42 

73 

96 

6 

29 

71 

14  

38  

84 

3  

19  

50 

Conditional index return 

distribution, 1972-2006, 

based on VIX 

N/A N/A 61  

86  

89 

23  

54  

92 

6  

17  

51 

8  

24  

86 

3  

19  

58 
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Table 1B 

Percentage of months without stochastic dominance violations with fixed 

transaction costs 

The table displays the percentage of months in which stochastic dominance violations are absent in 

the cross-section of option prices.  The one-way transaction costs rate on the index is 50 bps.  The 

transaction costs on the options are fixed.  In each row, the one-way transaction costs rate on the 

calls is 5 bps of the index price (top entries), 10 bps (bold, middle entries), or 20 bps (bottom 

entries). 

 A: 

8605-

8710 

B: 

8807-

9103 

C: 

9104-

9308 

D: 

9309-

9512 

E: 

9702-

9912 

F: 

0002-

0305 

G: 

0306- 

0605 

Number of Months  15 29 28 26 35 37 36 

Unconditional index return 

distribution, 

1928-1986 

47 

67 

87 

7 

41 

86 

0 

7 

46 

0 

0 

0 

9 

31 

74 

3  

35 

51 

0  

11 

25 

Unconditional index return 

distribution, 

1972-1986 

33 

53 

60 

21 

52 

72 

4 

32 

68 

4 

4 

15 

3 

11 

29 

8  

16  

24 

3  

14  

53 

Unconditional index return 

distribution, 

1987-2006 

13 

40 

47 

38 

55 

66 

21 

54 

82 

0 

8 

38 

6 

20 

31 

11  

11  

16 

8  

17  

58 

Unconditional index return 

distribution, 

1988-2006 

13 

33 

47 

31 

55 

69 

21 

43 

71 

0 

4 

35 

0 

11 

17 

5  

11  

11 

6  

17  

53 

Conditional index return 

distribution, 1972-2006, 

based on GARCH (1,1) 

20 

40 

40 

38 

52 

79 

36 

61 

89 

42 

85 

100 

3 

17 

34 

8  

24  

38 

6  

19  

58 

Conditional index return 

distribution, 1972-2006, 

based on implied vol. 

67 

100 

100 

48 

79 

93 

54 

89 

96 

62 

88 

96 

14 

37 

74 

19  

38  

78 

6  

28  

72 

Conditional index return 

distribution, 1972-2006, 

based on VIX 

N/A N/A 21  

75  

93 

15  

54  

96 

6  

17  

46 

3  

19  

73 

0  

28  

72 
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Table 2A 

Percentage of months without stochastic dominance violations with proportional 

transaction costs—ITM and OTM calls separately 

The table displays the percentage of months in which stochastic dominance violations are absent in 

the cross-section of ITM calls (top entry) and OTM calls (bottom entry).  The one-way transaction 

costs rate on the index is 50 bps.  The one-way transaction costs rate on the index is 50 bps.  The 

transaction costs on the options are proportional; for the ATM calls they are 10 bps of the index 

price. 

 A: 

8605-

8710 

B: 

8807-

9103 

C: 

9104-

9308 

D: 

9309-

9512 

E: 

9702-

9912 

F: 

0002-

0305 

G: 

0306- 

0605 

Number of Months  15 29 28 26 35 37 36 

Unconditional index return 

distribution, 

1928-1986 

87 

73 

90 

79 

79 

79 

38 

19 

69 

29 

46  

30 

42  

17 

Unconditional index return 

distribution, 

1972-1986 

73 

53 

52 

45 

89 

75 

77 

46 

26 

11 

16  

14 

53  

11 

Unconditional index return 

distribution, 

1987-2006 

53 

20 

66 

59 

89 

89 

88 

62 

20 

9 

16  

11 

50  

17 

Unconditional index return 

distribution, 

1988-2006 

53 

20 

62 

59 

93 

89 

77 

54 

17 

3 

14  

8 

47  

14 

Conditional index return 

distribution, 1972-2006, 

based on GARCH (1,1) 

53 

27 

69 

59 

86 

79 

100 

69 

31 

11 

38  

30 

44  

11 

Conditional index return 

distribution, 1972-2006, 

based on implied vol. 

100 

87 

97 

83 

93 

96 

100 

77 

80 

34 

81  

59 

50  

19 

Conditional index return 

distribution, 1972-2006, 

based on VIX 

N/A N/A 96  

93 

96  

69 

69  

34 

76  

49 

56  

19 
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Table 2B 

Percentage of months without stochastic dominance violations with fixed 

transaction costs—ITM and OTM calls separately 

The table displays the percentage of months in which stochastic dominance violations are absent in 

the cross-section of ITM calls (top entry) and OTM calls (bottom entry).  The one-way transaction 

costs rate on the index is 50 bps.  The one-way transaction costs rate on the index is 50 bps.  The 

transaction costs on the options are fixed as 10 bps of the index price. 

 A: 

8605-

8710 

B: 

8807-

9103 

C: 

9104-

9308 

D: 

9309-

9512 

E: 

9702-

9912 

F: 

0002-

0305 

G: 

0306- 

0605 

Number of Months  15 29 28 26 35 37 36 

Unconditional index return 

distribution, 

1928-1986 

80 

80 

55 

90 

7 

86 

0 

27 

54 

57 

43  

38 

11  

39 

Unconditional index return 

distribution, 

1972-1986 

60 

67 

59 

66 

39 

93 

4 

81 

14 

29 

16  

19 

14  

58 

Unconditional index return 

distribution, 

1987-2006 

47 

47 

62 

62 

54 

93 

15 

96 

17 

23 

14  

16 

22  

44 

Unconditional index return 

distribution, 

1988-2006 

40 

40 

59 

62 

50 

96 

15 

92 

17 

20 

11  

16 

22  

33 

Conditional index return 

distribution, 1972-2006, 

based on GARCH (1,1) 

40 

47 

59 

62 

64 

82 

88 

96 

29 

31 

30  

41 

28  

53 

Conditional index return 

distribution, 1972-2006, 

based on implied vol. 

100 

100 

93 

93 

89 

100 

88 

96 

77 

69 

65  

81 

44  

61 

Conditional index return 

distribution, 1972-2006, 

based on VIX 

N/A N/A 79  

93 

77  

96 

26  

60 

38  

76 

33  

64 
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Table 3 

Percentage of months without stochastic dominance violations using conditional 

implied-volatility-based index return distributions with ± 2% offset 

The table displays the percentage of months in which stochastic dominance violations are absent in 

the cross-section of option prices.  The one-way transaction costs rate on the index is 50 bps.  The 

one-way transaction costs on the options are proportional.  The one-way transaction costs rate on the 

ATM calls is 10 bps of the index price.  All results use the conditional implied-volatility-based index 

return distribution over the sample period 1972-2006.  Four offsets are used to change the implied 

ATM volatility by -2, -1, 1, or 2%, annualized.  The bold results “Best of above” count a monthly 

cross section as feasible if feasibility is established either without implied volatility offset or with any 

of the four offsets. 

 A: 

8605-

8710 

B: 

8807-

9103 

C: 

9104-

9308 

D: 

9309-

9512 

E: 

9702-

9912 

F: 

0002-

0305 

G: 

0306- 

0605 

Number of Months  15 29 28 26 35 37 36 

Implied Vol - 2% 13 55 71 50 0 5 0 

Implied Vol -1% 47 72 93 69 29 30 6 

Implied Vol 87 83 96 73 29 38 19 

Implied Vol + 1% 93 76 96 65 26 32 19 

Implied Vol + 2% 100 72 86 65 23 30 19 

Best of above 100 83 96 73 29 38 19 
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Table 4 

Percentage of months without stochastic dominance violations in the two-period case 

The table displays the percentage of months in which stochastic dominance violations are absent in 

the cross section of option prices when one intermediate trading date is allowed over the life of the 

one-month options.  The one-way transaction costs rate on the index is 50 bps.  The transaction 

costs on the options are proportional; for the ATM calls they are 10 bps of the index price.  In 

parentheses, the table displays the percentage of months in which stochastic dominance violations are 

absent in the case when no intermediate trading is allowed over the life of the one-month options.  

Two periods of 15 days are used. 

 A: 

8605-

8710 

B: 

8807-

9103 

C: 

9104-

9308 

D: 

9309-

9512 

E: 

9702-

9912 

F: 

0002-

0305 

G: 

0306- 

0605 

Number of Months  15 29 28 26 35 37 36 

Unconditional Index Return 

distribution, 

1928-1986 

60 

(73) 

52 

(66) 

39 

(46) 

8 

(0) 

17 

(23) 

24  

(22) 

14  

(14) 

Unconditional Index Return 

distribution, 

1972-1986 

33 

(53) 

41 

(48) 

43 

(54) 

19 

(15) 

11 

(9) 

3  

(8) 

8  

(11) 

Unconditional Index Return 

distribution, 

1987-2006 

13 

(27) 

45 

(48) 

46 

(61) 

23 

(27) 

3 

(0) 

0  

(8) 

8  

(8) 

Unconditional Index Return 

distribution, 

1988-2006 

13 

(20) 

45 

(55) 

57 

(75) 

31 

(31) 

6 

(6) 

5  

(8) 

8  

(8) 

Conditional Index Return 
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Figure 1: Bound violations over May 1986 to October 1987 and July 1988 to March 1991 

The observed bid (circles) and ask (crosses) call prices, as implied volatilities, are plotted as functions 

of the moneyness.  The upper and lower option bounds are based on the index sample distribution 

1972-2006, rescaled with the conditional volatility of the relevant panel.  The transaction costs rate 

on the index is 50 bps. 
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Figure 2: Bound violations over April 1991 to August 1993 and September 1993 to December 1995 

The observed bid (circles) and ask (crosses) call prices, as implied volatilities, are plotted as functions 

of the moneyness.  The upper and lower option bounds are based on the index sample distribution 

1972-2006, rescaled with the conditional volatility of the relevant panel.  The transaction costs rate 

on the index is 50 bps. 
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Figure 3: Bound violations over February 1997 to December 1999 and February 2000 to May 2003 

The observed bid (circles) and ask (crosses) call prices, as implied volatilities, are plotted as functions 

of the moneyness.  The upper and lower option bounds are based on the index sample distribution 

1972-2006, rescaled with the conditional volatility of the relevant panel.  The transaction costs rate 

on the index is 50 bps. 
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Figure 4: Bound violations over June 2003 to May 2006 

The observed bid (circles) and ask (crosses) call prices, as implied volatilities, are plotted as functions 

of the moneyness.  The upper and lower option bounds are based on the index sample distribution 

1972-2006, rescaled with the conditional volatility of the relevant panel.  The transaction costs rate 

on the index is 50 bps. 
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