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1 Introduction

A burgeoning literature in �nance addresses investors�attitudes towards the timing
of resolution of uncertainty of future consumption and cash �ows through the class
of preferences introduced by Epstein and Zin (1989), Kreps and Porteus (1978), and
Weil (1989). Models initiated by Bansal, Dittmar, and Lundblad (2005), Bansal and
Yaron (2004), and Hansen, Heaton, and Li (2008) have rich implications on prices and
show promise in explaining the time series and cross-sectional properties of returns of
�nancial assets. These models pay particular attention to the low frequency properties
of the time series of dividends and aggregate consumption� hence their characterization
as �long run risks�(LRR) models.1

In this paper we revisit the particular LRR model introduced by Bansal and Yaron
(2004) (hereafter B-Y) that has received wide attention in the literature. Whereas we
formally reject both this model and its co-integrated variant introduced by Bansal,
Gallant, and Tauchen (2007), our primary contribution lies in the novelty of our em-
pirical methodology which provides new insights and guides our search for promising
models of long run risks.
Our �rst methodological contribution addresses the feature of the B-Y model (and

of related models) that the LRR variable and the conditional variance of its innovation
are latent. The �ltering of these latent variables potentially introduces observation error
and decreases the power of the tests. We argue that these �latent�state variables are,
in fact, observable because both the aggregate price-dividend ratio and risk free rate are
functions of only these two state variables under the model assumptions. Speci�cally, in
the log-linearized version of the B-Y model, the aggregate log price-dividend ratio and
log risk free rate are a¢ ne functions of the two state variables, with coe¢ cients that are
known functions of the preference parameters and of the parameters of the time-series
processes. This observation allows us to invert the a¢ ne system and express the two
state variables as known a¢ ne functions of the observable aggregate log price-dividend
ratio and log risk free rate. Whereas this empirical methodology is common in the
context of the class of a¢ ne term structure models (for example, Dai and Singleton
(2000) and Du¤ee (2002)), it has not previously been employed in testing LRR models.
The second methodological contribution stems from the fact that the log-linearized

version of the B-Y model implies that the expected market return, equity premium,
dividend growth, and consumption growth are a¢ ne functions of the two state vari-
ables. Since the state variables themselves are known a¢ ne functions of the observable

1See also, Alvarez and Jerman (2005), Bansal, Dittmar, and Kiku (2009), Bansal, Gallant, and
Tauchen (2007), Bansal, Kiku, and Yaron (2007), Bansal and Shaliastovich (2010), Beeler and Camp-
bell (2009), Bekaert, Engstrom, and Xing (2009), Chen, Favilukis, and Ludvigson (2008), Colacito
and Croce (2005), Constantinides and Ghosh (2010), Croce, Lettau, and Ludvigson (2008), Ferson,
Nallareddy, and Xie, (2009), Ghosh and Constantinides (2010), Hansen and Scheinkman (2009), Let-
tau and Ludvigson (2009), Lustig, Van Nieuwerburgh, and Verdelhan (2008), Malloy, Moskowitz, and
Vissing-Jorgensen (2008), Parker and Julliard (2005), and Piazzesi and Schneider (2006).
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aggregate log price-dividend ratio and log risk free rate, it follows that the expected
market return, equity premium, dividend growth, and consumption growth are a¢ ne
functions of the observable aggregate log price-dividend ratio and log risk free rate.
Therefore, the time-series properties of the model are readily testable with in-sample
linear forecasting regressions and out-of-sample linear predictive regressions of the mar-
ket return, equity premium, dividend growth, and consumption growth on the lagged
price-dividend ratio and risk free rate. The tests on the predictability of the market
return, equity premium, and dividend growth are robust to observation error of con-
sumption �ows and the possibility of improper temporal aggregation of consumption
�ows because consumption data are not used in these tests.
Our third methodological contribution is based on the fact that the log-linearized

version of the B-Y model implies that the log pricing kernel is an a¢ ne function of
the two state variables and their lags. Since the state variables themselves are known
a¢ ne functions of the observable aggregate log price-dividend ratio and log risk free
rate, it follows that the log pricing kernel is an a¢ ne function of the aggregate log
price-dividend ratio, the log risk free rate, and their lags, in addition to consumption
growth. Thus we obtain a set of Euler equations of consumption for the cross-section
of returns.
The �nal methodological contribution lies in simultaneously testing through GMM

the Euler equations of consumption and the restrictions imposed on the model parame-
ters by the unconditional moments of the aggregate dividend and consumption growth,
thereby increasing the power of the test.
Our �rst set of tests is motivated by the implications of the B-Y model regard-

ing in-sample forecasting and out-of-sample prediction of the market return, equity
premium, dividend growth, and consumption growth through linear regressions on the
lagged price-dividend ratio and risk free rate.2 Speci�cally, we simulate the B-Y model,
calibrated at the monthly, quarterly, and annual frequencies, and demonstrate that the
model implies much higher predictability of the aggregate consumption growth rate,
market return, and equity premium than that observed in the data over 1931 ¬ 2009.
The out-of-sample predictability tests produce negative results as well. Furthermore,
the model calibrated at the annual frequency implies much higher predictability of
the 3-year and 5-year consumption growth rate compared to the historical data. The
co-integrated variant of the model by Bansal, Gallant, and Tauchen (2007), that intro-
duces as an additional state variable the consumption-dividend ratio, when calibrated
at the annual frequency implies forecastability of consumption and dividend growth

2The predictability of the market return, equity premium, dividend growth, and consumption
growth through linear regressions on the lagged price-dividend ratio and risk free rate has been the
subject of an extensive literature. Examples include Ang and Bekaert (2007), Binsbergen and Koijen
(2010), Boudoukh, Richardson, and Whitelaw (2008), Campbell and Shiller (1988), Campbell and
Thompson (2008), Cochrane (2008), Fama and French (1988), Kelly and Pruitt (2010), Lettau and
Van Nieuwerburgh (2008), and Welch and Goyal (2008)).
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consistent with the historical data. However, it implies much higher forecastability of
the market return and premium than that observed in the data. Moreover, like the B-Y
model, the cointegrated model performs poorly in predicting out-of-sample the growth
rates and returns. Overall, these results provide robust time series evidence against the
LRR model of B-Y and its co-integrated variant and suggest that either some impor-
tant state variable is missing or that the model should be generalized in a way that the
lagged price-dividend ratio and risk free enter the regressions in a non-linear fashion.
In simultaneously testing through GMM the Euler equations of consumption for the

market return and risk free rate and the restrictions imposed on the model parameters
by the unconditional moments of the aggregate dividend and consumption growth over
1931 ¬ 2009, we �nd that the pricing error for the risk free rate is 33% and that for
the market return is 19%. When we extend the asset system to include the "Value",
"Growth", "Small" capitalization, and "Large" capitalization portfolios in addition to
the market return and risk free rate, we �nd that the "Small" capitalization portfolio
has pricing error 26% and the "Growth" portfolio has pricing error ¬29%. The
co-integrated variant of the model by Bansal, Gallant, and Tauchen (2007) produces
similar results. The overidentifying restrictions test has p-value smaller than 1% for
each model speci�cation.
We address the potential problem of temporal aggregation of consumption by re-

peating our estimation and tests using quarterly data over the post-war period. The
results are very similar to those obtained using annual data over the sub-period, sug-
gesting that our �ndings are unlikely to be driven by problems associated with temporal
aggregation.
The paper is organized as follows. In Section 2, we describe the estimation and

testing methodology of the LRR model. We discuss the data in Section 3. In Section
4, we present the results of the in-sample forecasting regressions and the out-of-sample
predictive regressions. In Section 5, we present the empirical evidence on the cross-
section of returns. In Section 6, we consider an extension of the LRR model that
introduces, as a third state variable, the co-integrating residual of the logarithms of
consumption and aggregate dividend levels. In Section 7, we address the possibility of
structural breaks within the period 1931¬ 2009 by repeating our tests in the post-war
sub-period. We also address the issues related to temporal aggregation of consumption
by repeating our tests with quarterly data. Section 8 concludes. The appendix contains
derivations and details of the testing methodology.

2 The Model and Its Testable Implications

We describe the LRR model of B-Y and derive its testable implications for the pre-
dictability of the market return, equity premium, dividend growth, and consumption
growth. Then we derive its testable implications for the equity premium and the cross-
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section of returns.

2.1 Model

The Bansal and Yaron (2004) LRR model introduces the novel state variable, ,
and the variance of its innovation, �2 , that jointly drive the conditional mean of the
aggregate consumption and dividend growth rates:

+1 = � +  �+1, (1)

�2+1 = (1¬ �)�2 + ��2 + ��+1, (2)

�+1 = � +  + �+1, (3)

�+1 = � + �x + '�+1, (4)

where +1 is the logarithm of the aggregate consumption level and +1 is the logarithm
of the aggregate stock market dividends. The shocks +1, �+1, +1, and +1 are
assumed to be  (0 1) and mutually independent. The time-series speci�cation
in equations (1)-(4) introduces nine parameters: �, �, �, , �,  , �, �, and �. In
Appendix 1, we derive various unconditional moments of consumption and dividend
growth rates as functions of the time-series parameters.
The model further assumes that the consumer has the version of Kreps and Porteus

(1978) preferences adopted by Epstein and Zin (1989) and Weil (1989). These prefer-
ences allow for separation between the coe¢ cient of risk aversion and the elasticity of
intertemporal substitution. The utility function is de�ned recursively as

 =
h
(1¬ �)

1¬  
�

 + �
¬


�
 1¬ 

+1

�� 1
�

i �
1¬  

, (5)

where � denotes the subjective discount factor,   0 is the coe¢ cient of risk aversion,
  0 is the elasticity of intertemporal substitution, and � = 1¬ 

1¬ 1
 

. Note that the

sign of � depends on the relative magnitudes of  and  . The standard time-separable
power utility model is obtained as a special case when � = 1, i.e.  = 1

 
.

For this speci�cation of preferences, Epstein and Zin (1989) and Weil (1989) show
that, for any asset , the �rst-order conditions of the consumer�s utility maximization
yield the Euler equation,

 [exp(+1 + +1)] = 1, (6)

where

+1 = � log � ¬ �

 
�+1 + (� ¬ 1)+1 (7)
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is the natural logarithm of the intertemporal marginal rate of substitution; [] denotes
expectation conditional on time  information; +1 is the continuously compounded
return on asset j; and +1 is the unobservable continuously compounded return on
an asset that delivers aggregate consumption as its dividend each period.
We rely on log-linear approximations for the log return on the consumption claim,

+1, and on the market portfolio (the return on the aggregate dividend claim), +1,
as in Campbell and Shiller (1988):

+1 = �0 + �1+1 ¬  +�+1, (8)

+1 = �0 + �1+1 ¬  +�+1, (9)

where  is the log price-consumption ratio and  the log price-dividend ratio. In
equation (8), �1 = 

1+ and �0 = (1 + ) ¬ �1 are log-linearization constants,
where  denotes the long-run mean of the log price-consumption ratio. Similarly, in
equation (9), �1 = 

1+ and �0 = (1 + ) ¬ �1, where  denotes the
long-run mean of the log price-dividend ratio.
B-Y show that  and , are a¢ ne functions of the state variables,  and �2 ,

 = 0 + 1 + 2�
2
 , (10)

 = 0 + 1 + 2�
2
 . (11)

The coe¢ cients 0, 1, 2, 0, 1, and 2 depend on the parameters of the
utility function and those of the stochastic processes for consumption and dividend
growth rates (see Appendix A.2.1 for expressions for these coe¢ cients).
For this model speci�cation, the log risk free rate from period  to +1 may also be

expressed as an a¢ ne function of the state variables (see Appendix A.2.2 for expressions
for 0 , 1 , and 2),

 = ¬ log [exp(+1)] ,

= 0 + 1 + 2�
2
 . (12)

Equations (11) and (12) express the observable variables,  and , as a¢ ne
functions of the latent state variables,  and �2 . These equations may be inverted to
express the unobservable state variables,  and �2 , as a¢ ne functions of the observ-
ables,  and , (see Appendix A.2.3 for details and expressions for �0, �1, �2, �0,
�1, and �2),

 = �0 + �1 + �2, (13)

�2 = �0 + �1 + �2. (14)
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2.2 Testable Implications for Predicting Returns and Growth
Rates

Equations (9), (11), (4) and (12) imply that the expected market return is given by

[+1] = 0 + 1 + 2�
2
 , (15)

and the expected equity premium is given by

[+1 ¬ ] = 0 + 1 + 2�
2
 , (16)

both a¢ ne functions of the state variables,  and �2 . The model generates time-
varying expected market return and premium. The coe¢ cients f g2=0 are known
functions of the underlying time-series and preference parameters.
The time series speci�cation of the model implies that the expected consumption

growth rate is given by

[�+1] = �+ , (17)

and the expected dividend growth rate is given by

[�+1] = � + �x, (18)

both a¢ ne functions of the state variable .
Since the state variables,  and �2 are a¢ ne functions of the observables  and

, we may express the expected market return, equity premium, dividend growth, and
consumption growth as a¢ ne functions of the observables  and  with coe¢ cients
known functions of the model parameters.
In Section 4, we test the predictive implications of the model through in-sample lin-

ear forecasting regressions and out-of-sample linear predictive regressions of the market
return, equity premium, dividend growth, and consumption growth on the lagged price-
dividend ratio and risk free rate.

2.3 Testable Implications for the Equity Premium and the
Cross-Section of Returns

We substitute the log-a¢ ne approximation for +1 in equation (8) into the expression
for the pricing kernel (equation (7)), and noting that  is given by equation (10), we
have,

+1 = (� log � + (� ¬ 1) [�0 + (�1 ¬ 1)0]) +

�
¬ �

 
+ (� ¬ 1)

�
�+1

+(� ¬ 1)�11+1 + (� ¬ 1)�12�
2
+1 ¬ (� ¬ 1)1 ¬ (� ¬ 1)2�

2
 . (19)
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Equation (19) for the pricing kernel involves the unobservable (from the point of
view of the econometrician) state variables,  and �2 , and, hence, is not directly
testable on a cross-section of asset returns. Substituting the expressions for  and �2
from equations (13) and (14) into the pricing kernel in equation (19), we have,

+1 = 1 + 2�+1 + 3

�
+1 ¬

1

�1


�
+ 4

�
+1 ¬

1

�1


�
. (20)

The parameters  = (1 2 3 4)
0 are functions of the parameters of the time-series

processes and the preference parameters (see Appendix 24 for details). The above
expression for the pricing kernel is entirely in terms of observables. We substitute this
expression into the set of Euler equations (6) to obtain a set of moment restrictions
that are expressed entirely in terms of observables.
We �rst examine the empirical plausibility of the model when the set of assets

consists of the market portfolio and the risk free rate, thereby focusing on the equity
premium and risk free rate puzzles. To the set of their Euler equations we add moment
restrictions implied by the time-series speci�cation of the model. We estimate the
parameters with GMM and test the speci�cation of the model with the overidentifying
restrictions. We then examine the ability of the model to explain the cross-section of
returns. The set of assets consists of the "Value", "Growth", "Small" capitalization,
and "Large" capitalization stocks, in addition to the market portfolio and the risk free
rate. To the set of their Euler equations we add moment restrictions implied by the
time-series speci�cation of the model and test with GMM.

3 Data

We use annual, quarterly, and monthly data on prices and dividends from January
1929 through December 2009. We use annual consumption data from January 1929
through December 2009 and quarterly consumption data from January 1947 through
December 2009.
The proxy for the market is the Centre for Research in Security Prices (CRSP)

value-weighted index of all stocks on the NYSE, AMEX, and NASDAQ. The construc-
tion of the size and book-to-market portfolios is as in Fama and French (1993). In
particular, for the size sort, all NYSE, AMEX, and NASDAQ stocks are allocated
across 10 portfolios each year according to their market capitalization at the end of
June of the previous year. NYSE breakpoints are used in the sort. "Small" and "Large"
denote the bottom and top market capitalization deciles, respectively. For the book-
to-market equity sort, all NYSE, AMEX, and NASDAQ stocks are allocated across 10
portfolios each year according to their book equity (BE) to market equity (ME) ratio
at the end of the previous year. NYSE breakpoints are used in the sort. "Growth" and
"Value" denote the bottom and top BE/ME deciles, respectively.

8



The monthly portfolio return is the sum of the portfolio price and dividends at the
end of the month, divided by the portfolio price at the beginning of the month. The
quarterly portfolio return is the sum of the portfolio price at the end of the quarter
and uncompounded dividends over the quarter, divided by the portfolio price at the
beginning of the quarter. The annual portfolio return is the sum of the portfolio price
at the end of the year and uncompounded dividends over the year, divided by the
portfolio price at the beginning of the year.
The proxy for the monthly risk free rate is the arithmetic return on one-month

Treasury Bills from Ibbotson Associates. The proxy for the quarterly risk free rate is
the compounded arithmetic return on one-month Treasury Bills over the quarter. The
proxy for the annual risk free rate is the compounded arithmetic return on one-month
Treasury Bills over the year.
The price-dividend ratio of the market is the market price at the end of the period,

divided by the sum of dividends over the previous twelve months. The dividend growth
rate is the sum of dividends over the period, divided by the sum of dividends over the
previous period. Consumption data are obtained from the Bureau of Economic Analy-
sis. The consumption growth rate is the per capita personal consumption expenditure
on nondurable goods over the period, divided by the per capita personal consumption
expenditure on nondurable goods over the previous period.
All nominal monthly and quarterly log returns and growth rates are converted to

real by subtracting the realized log in�ation rate over the period. All nominal annual
log returns and growth rates are converted to real by subtracting the log in�ation rate
over the period forecasted using an ARMA(1; 1) model.
Table 1 provides descriptive statistics for the continuously compounded returns on

the assets, the market-wide price-dividend ratio, and the aggregate consumption and
dividend growth rates for the annual sample over the period 1931 ¬ 2009. The table
illustrates the well documented equity premium and the size and value premia. Over
the sample period, the annual equity premium over the risk free rate has mean 58%
and the volatility of the market return is 197%. The annual risk free rate has mean
08% and standard deviation 50%. The annual mean premium of small over large
stocks is 47% and of value over growth stocks is 45%. Value stocks are much more
volatile than growth stocks and small stocks are much more volatile than large stocks.
The annual log price-dividend ratio on the market has a mean of 338 and standard

error of 045 over the sample period. The average annual log dividend growth rate on
the market portfolio is 14% with volatility 119%. Finally, the annual log consumption
growth has a mean of 14% and standard deviation of 26% over the sample period.
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4 Forecasting Returns and Growth Rates

We pointed out in Section 22 that the LRRmodel of B-Y implies that the expected rate
of return of the market, equity premium, dividend growth, and consumption growth
are a¢ ne functions of the lagged price-dividend ratio and risk free rate. We test
this implication of the model with in-sample linear forecasting regressions and out-of-
sample linear predictive regressions. The in-sample forecasting tests are carried out at
the monthly, quarterly, and annual frequencies and produces negative results, thereby
ruling out the possibility that the model is rejected because it is interpreted at the
wrong frequency. The out-of-sample predictability tests are carried out at the annual
frequency and produce negative results which reinforce the in-sample results.
In Table 2, we report the results of in-sample linear forecasting regressions of the

market return and equity premium at various frequencies over the full sample period
1931 : 1 through 2009 : 12. The regression coe¢ cients are uniformly statistically
insigni�cant at the monthly, quarterly, and annual frequencies and the adjusted 2

statistics are small as reported in Panels  ¬ . In order to interpret the reported
adjusted 2 statistics, we calibrate and simulate the model. At the monthly frequency,
we calibrate the model using the parameter values suggested by Bansal, Kiku, and
Yaron (2007); at the quarterly and annual frequencies, we calibrate the model using the
parameter values estimated by GMM and reported in Tables 4 and 12, respectively. At
each frequency, we generate 10 000 histories, run the in-sample forecasting regressions,
and obtain the distributions of the adjusted 2 statistics under the null hypothesis of
the model. The distributions of the adjusted 2 statistics at the annual frequency are
displayed in Panels  and  of Figure 1. In Table 2 and below each reported adjusted
2 statistic, we report in brackets the p-values that the model is correct. The p-values
of the regressions of the market return and premium at all frequencies are lower than
2%, except for the p-value of the forecasting regression of the premium at the monthly
frequency which is 8%.3

In Table 2, Panels  and , we also report the results of in-sample linear forecast-
ing regressions of the market return and equity premium at 3- and 5-year horizons,
respectively. Consistent with earlier results, we �nd that the price-dividend ratio and
risk free rate perform well at forecasting the market return and equity premium at
lower frequencies with the adjusted 2 statistic varying from 189% to 302%. In order

3Our results in Table 2, Panel  and Figure 1 di¤er from the results reported in Beeler and
Campbell (2009). Beeler and Campbell (2009) report results on in-sample linear forecasting regressions
of the equity premium by the market-wide price-dividend ratio. They report a low 2 that is consistent
to that implied by the model as inferred from simulations. Their results seem to contradict ours in
Table 2, Panel  and Figure 1. However, a crucial distinction between their forecasting regressions and
ours is that we use both the price-dividend ratio and risk free rate as forecasting variables whereas they
use only the price-dividend ratio. We do so because our theoretical discussion in Section 2 reveals that
under the null, the expected equity return and premium are a¢ ne functions of both the price-dividend
ratio and risk free rate.
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to interpret the reported adjusted 2 statistics, we calibrate and simulate the model
using the parameter values in Table 12. The p-values of the 2 statistics are high.
In Table 3, Panels  ¬ , we report the corresponding results for the sub-period

1976 : 1 through 2009 : 12.4 The adjusted 2 statistics are low or negative, with
the exception of the regression of the market return at the annual frequency which has
adjusted 2 32%. Comparison of Table 2, Panel  and Table 3, Panel  demonstrates
the instability of the results across subperiods. For the market return, the adjusted
2 is 14% over 1931 : 1 ¬ 2009 : 12 and 32% over 1976 : 1 ¬ 2009 : 12. For the
equity premium, the adjusted 2 is 38% over 1931 : 1 ¬ 2009 : 12 and negative over
1976 : 1¬ 2009 : 12.
Additional evidence against the model comes from the out-of-sample prediction of

the market return and equity premium. We evaluate the out-of-sample performance
of these forecasts using an out-of-sample 2 statistic as in Campbell and Thompson
(2008) and Welch and Goyal (2008).5 In Table 3, Panel , we show that the mean-
square-error statistics are negative which means that the predictive regression has
higher mean-squared prediction error than the historical average return.
The strongest evidence against the model comes from the forecasting regressions

for the aggregate consumption growth rate. We report the results of in-sample linear
forecasting regressions of consumption growth for the full sample period only at the
annual, 3-year, and 5-year frequencies because quarterly consumption data is only
available since 1947 : 1 (Table 2); and at the quarterly and annual frequencies for the
sub-period 1976 : 1 through 2009 : 4 (Table 3). Over the full period, the adjusted
2 statistic of the consumption growth regression at the annual frequency is 84%
but the p-value is less than 1% (see Figure 1, Panel ) which means that the model
of B-Y implies much higher predictability of consumption growth than the observed
predictability. Likewise, the model implies much higher predictability of consumption
growth at the 3-year, and 5-year frequencies than that observed in the data.Over the
post-war sub-period, the adjusted 2 is 236% in-sample but negative out-of-sample.
Finally, we report the results of in-sample linear forecasting regressions of dividend

growth at the annual, 3-year, and 5-year frequencies for the full sample period 1931 : 1

4Our choice of the start date 1976 : 1 is motivated to coincide with the Welch and Goyal (2008)
comprehensive study on forecasting.

5We estimate the regression coe¢ cients over 1931 : 1¬ 1975 : 4 and predict the market return and
equity premium for the following year, 1976 : 1¬ 1976 : 4. We then enlarge the estimation window to
1931 : 1¬ 1976 : 4 and predict the market return and equity premium for the year 1977 : 1¬ 1977 : 4.
We repeat this procedure until 2009. We impose two restrictions suggested in Campbell and Thompson
(2008): �rst, we set the regression coe¢ cients to zero whenever they have the wrong sign (di¤erent
from the theoretically expected sign estimated over the full sample); second, we set the forecast to the
zero whenever it is negative. The out-of-sample performance of these forecasts is evaluated using an
out-of-sample 2 statistic: (2 = 1¬




), where  denotes the mean-squared prediction
error from the predictive regression implied by the model and  denotes the mean-squared
prediction error of the historical average return.
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through 2009 : 4 (Table 2); and at the annual frequency over the sub-period 1976 : 1
through 2009 : 4 (Table 3). At the annual frequency, the results are positive. Over the
full period, the adjusted 2 is 70% and the p-value of the model is 219% (see Figure
1, Panel ). Over the post-war sub-period, the adjusted 2 is 76%. In the out-
of-sample linear predictive regression at the annual frequency, however, the adjusted
2 is negative (Table 3, Panel ). Moreover, at the 3-year, and 5-year frequencies,
the model implies much higher predictability of consumption growth at the 3-year,
and 5-year frequencies than that observed in the data with p-values 31% and 35%,
respectively.
Overall the results reported in this section provide robust time series evidence

against the LRR model of B-Y in both the full period and the sub period and at
all frequencies. In the next section, we address the implications of the model on the
cross-section of returns.

5 Empirical Evidence on the Equity Premium and
the Cross-Section of Returns

5.1 Methodology

First, we estimate the time-series parameters of aggregate consumption and dividend
growth without reference to the Euler equations. We choose the nine parameters of
the time-series model (1)-(4) to match the following nine sample moments: the uncon-
ditional mean, variance, and �rst-order autocorrelation of consumption and dividend
growth rates, the correlation between consumption and dividend growth rates, and the
variance of squared consumption and dividend growth rates. These estimates are re-
ported in Section 52 and serve as a benchmark for comparison when we subsequently
re-estimate them from the joint system of time-series moment restrictions and Euler
equations.
In Sections 53 and 54, we address the equity premium and the cross-section of

returns, respectively. The system of equations consists of the Euler equations of con-
sumption on a given set of assets along with the restrictions imposed on the model
parameters by the unconditional moments of the aggregate consumption and dividend
growth which we described above. We estimate the parameters with GMM using the
e¢ cient weighting matrix and test the model with the overidentifying restrictions. We
verify the robustness of the tests by replacing the e¢ cient weighting matrix with the
identity matrix. The tests are carried out at the annual frequency. Later on, we test the
robustness of the tests by repeating them at the quarterly frequency and in subperiods.
In Section 53, the set of assets consists of the market portfolio and the risk free rate,

thereby focusing on the equity premium and the risk free rate puzzles. We introduce
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two unconditional Euler equations for the market portfolio and the risk free rate along
with four Euler equations for the market portfolio and the risk free rate conditional
on the lagged log price-dividend ratio of the market and the lagged log risk free rate.
To this set of pricing restrictions we append the nine moment restrictions implied by
the time-series speci�cation of the model which we stated earlier. Thus, we have a
total of 15 moment conditions. The total number of parameters to be estimated is 12,
consisting of nine time-series parameters and three preference parameters. In Section
54, the set of assets consists of the "Value", "Growth", "Small" capitalization, and
"Large" capitalization stocks, in addition to the market portfolio and the risk free
rate. The Euler equations for these six assets along with the nine time-series moment
restrictions give 15 moment restrictions in 12 parameters. The numerical search for a
global minimum is described in Appendix 5.

5.2 Time-Series Properties of Aggregate Consumption and
Dividend Growth

In Table 4 under the label �Data�, we display the sample averages of the nine moments
of the consumption and dividend growth rates which we aim to match. The nine para-
meters of the time-series model (1)-(4) are chosen such that the nine model-generated
moments, as displayed under the adjacent column labeled "", exactly match
their sample averages. This is feasible because the model is just identi�ed. The point
estimates of the nine model parameters, along with the associated standard errors in
parentheses, are displayed in the �rst row of the table.6 The persistence parameter
(�) of the LRR variable is 032 and is statistically signi�cantly positive at conven-
tional levels of signi�cance. This lends support to the major risk channel highlighted
in the LRR literature� a predictable component in the aggregate consumption and
dividend growth rates.

5.3 Evidence on the Equity Premium

We address the equity premium and risk free rate puzzles by introducing two uncon-
ditional Euler equations for the market portfolio and the risk free rate along with four
Euler equations conditional on the lagged log price-dividend ratio of the market and the
lagged log risk free rate. Combined with the nine time-series moment restrictions, this
system of 15 restrictions and 12 parameters (9 time-series parameters plus 3 preference
parameters) is overidenti�ed. The results are displayed in Table 4.
The GMM overidentifying restrictions test rejects this model with J-stat 177 and

6The standard errors are Newey-West corrected using two lags.
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asymptotic p-value less than 1%.7 The annual pricing error for the risk free rate is
¬33% and is economically signi�cant. The annual pricing error for the market return
is ¬19%.
The second row of Table 4 displays the point estimates of the time-series and

preference parameters when both the pricing restrictions and the time-series restrictions
are used in the estimation. The risk aversion estimate is 8 which is reasonable although
the standard error is large at 659. The point estimate of the IES is 06; however the
standard error is 133 and we cannot reject the hypothesis that the elasticity exceeds
the value of one.
The persistence parameter of the LRR variable is much higher at 070, compared

to the value of 032 estimated from the time-series model alone. This suggests that the
B-Y model requires much higher predictability of consumption growth to explain the
equity premium and risk free rate puzzles than the predictability estimated from the
time series of consumption growth alone.

5.4 Evidence on the Cross-Section of Returns

In Table 5, we report the results of tests on the cross-section of returns consisting of
the "Value", "Growth", "Small" capitalization, and "Large" capitalization stocks, in
addition to the market portfolio and the risk free rate.
The results reinforce the conclusions drawn from the 2-asset system. As in the

two-asset system, the GMM test rejects this model with J-stat 136 and asymptotic p-
value less than 1%. The annual pricing errors for the market return, �Large�portfolio,
"Value" portfolio, and risk free rate are small. The annual pricing errors for the �Small�
and �Growth�portfolios are larger at 26% and ¬29%, respectively. The estimates of
the risk aversion and the IES are remarkably similar to the corresponding estimates
in the 2-asset system. As in the 2-asset system, the B-Y model requires much higher
predictability of consumption growth to explain the cross-section of returns than the
predictability estimated from the time series of consumption growth alone.

6 A co-integrated Long Run Risks Model

Bansal, Gallant, and Tauchen (2007) consider a variant of the LRR model of B-Y
that imposes a co-integrating restriction between the logarithm of the aggregate stock
market dividends and consumption. Bansal, Dittmar, and Kiku (2007) point out that
this co-integrating relation measures long run covariance risks in dividends and is im-
portant in understanding sources of risk and explaining the equity risk premia across

7Note that the J-stat has an asymptotic chi-squared distribution with 3 degrees of freedom under
the null.
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investment horizons.8 We consider a log-linearized variant of the Bansal, Gallant, and
Tauchen (2007) model that yields closed-form expressions for asset prices. We estimate
and test the model using an extension of the methodology introduced in Section 2.

6.1 The Model and Testable Implications

The aggregate consumption growth, the LRR variable, and the variance of its inno-
vation are modeled as in equations (1)-(3). Therefore, the pricing kernel, the log
price-consumption ratio, and the risk free rate are functions of the LRR variable and
the variance of its innovation, given by equations (19), (10), and (12), respectively.
The point of departure is the imposition of a co-integrating restriction between the

logarithm of the aggregate stock market dividends and consumption,

 ¬  = � + , (21)

where the cointegrating residual, , is an (0) process with the cointegrating coe¢ cient
set at one,9

+1 = � + � +  �+1. (22)

The shocks +1, +1, �+1, and +1 are assumed to be  (0 1) and
mutually independent.
From equation (21), we have,

�+1 = �+1 +�+1 (23)

= � + (1 + �) + (� ¬ 1) + �+1 +  �+1,

where the second line follows from equations (3) and (22).
The model has three state variables, the LRR variable, the variance of its innovation,

and the co-integrating residual. Note that the B-Y model obtains as a limiting special
case when � = 1. We conjecture that the log price-dividend ratio is an a¢ ne function
of the state variables,

 = 0 + 1 + 2�
2
 + 3. (24)

In Appendix 31, we verify this conjecture and explicitly solve for the coe¢ cients.

8In a di¤erent context, Lettau and Ludvigson (2001) and Menzly, Santos, and Veronesi (2004)
apply the co-integrating residual between consumption, labor income, and aggregate stock market
dividends to explain the cross-section of returns.

9Bansal, Gallant, and Tauchen (2007) perform a heteroskedasticity-robust augmented Dickey-Fuller
test for a unit root in  ¬  and the results provide strong evidence for a cointegrating relationship
between the variables with a coe¢ cient equal to unity.
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The co-integrating residual is observable as the demeaned di¤erence between the log
aggregate dividend and consumption levels (see equation (21)). We invert equations
(12) and (24) and express the unobservable state variables,  and �2 , in terms of the
observables, , , and , (see Appendix 32 for details and expressions for �0,
�1, �2, �3, �0, �1, �2 and �3),

 = �0 + �1 + �2 + �3, (25)

�2 = �0 + �1 + �2 + �3. (26)

Equations (9), (24), (25), (26), and (12) imply that the expected market return
and equity premium are a¢ ne functions of the state variables. Furthermore, it is
straightforward to see that the expected consumption and dividend growth rates are
a¢ ne functions of the state variables. Since the state variables,  and �2 are a¢ ne
functions of the observables , , and , we may express the expected market
return, equity premium, dividend growth, and consumption growth as a¢ ne functions
of the observables , , and , with coe¢ cients known functions of the model
parameters. In the next section, we test the predictive implications of the model
through in-sample linear forecasting regressions and out-of-sample linear predictive
regressions of the market return, equity premium, dividend growth, and consumption
growth on the lagged price-dividend ratio, risk free rate, and the di¤erence between
the log dividend and consumption levels.
Finally, we derive the pricing implications of the model. Using equations (7), (8),

and (10), we write the pricing kernel as,

+1 = (� log � + (� ¬ 1) [�0 + (�1 ¬ 1)0]) +

�
¬ �

 
+ (� ¬ 1)

�
�+1

+(� ¬ 1)�11+1 + (� ¬ 1)�12�
2
+1

¬(� ¬ 1)1 ¬ (� ¬ 1)2�
2
 , (27)

Substituting the expressions for  and �2 from equations (25) and (26) into equation
(27), we express the pricing kernel entirely in terms of observables (see Appendix 32
for details),

+1 = 1+ 2�+1+ 3

�
+1 ¬

1

�1


�
+ 4

�
+1 ¬

1

�1


�
+ 5

�
+1 ¬

1

�1


�
.

(28)
In the next section, we �rst examine the empirical plausibility of the model when

the asset menu consists of the market portfolio and the risk free rate. The lagged
log price-dividend ratio of the market and the lagged log risk free rate are used as
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instruments. The Euler equations for the two assets along with the two chosen in-
struments give 6 moment restrictions. To this set of pricing restrictions, we add
moment restrictions implied by the time-series speci�cation of the model. In par-
ticular, we include the following 7 moments of consumption and dividend growth
rates: (�+1),  (�+1), (�+1�+2), (�+1�+3),  (�+1),
(�+1�+2), and (�+1�+1) (see Appendix A.4 for expressions for
these moments in terms of the time-series parameters). Thus, we have a total of 13
moment conditions. The total number of parameters to be estimated is 12, including 9
time-series parameters and 3 preference parameters. We estimate the parameters with
GMM and test the speci�cation of the model using the overidentifying restriction.
We then examine the ability of the model to explain the cross-section of returns.

In this case, the asset menu consists of the market portfolio, the risk free rate, and
portfolios of "Small" capitalization, "Large" capitalization, "Growth" and "Value"
stocks. The Euler equations for the 6 assets give 6 moment restrictions. To this set
of pricing restrictions, we add the 7 moment restrictions implied by the time-series
speci�cation of the model. This gives, once again, a total of 13 moment conditions
in 12 parameters. We estimate the parameters and test the model speci�cation with
GMM.

6.2 Empirical Evidence on the Co-integrated Model

In Table 6, we report the results of in-sample linear forecasting regressions of the market
return, equity premium, and the consumption and dividend growth rates at the annual
frequency for the full sample period 1931 through 2009. We do not report results at the
monthly and quarterly frequencies because reliable data on the co-integrating residual,
the demeaned di¤erence between the log aggregate dividend and consumption levels, is
not available at the monthly frequency and is only available for the postwar subperiod
at the quarterly frequency. In Table 7, Panels  and , we report the corresponding
results at the quarterly and annual frequencies, respectively, for the sub-period 1976 : 1
through 2009 : 4.
Tables 6 and 7 reveal that the di¤erence between the log aggregate dividend and

consumption levels, , has substantial incremental forecasting power for the aggregate
consumption and dividend growth rates over and above that contained in the log price-
dividend ratio and risk free rate at the annual and quarterly frequencies. In-sample
forecasting regressions for the consumption growth rate have adjusted-2 198% and
p-value 713% over the full period (Table 6, Row 1 and Figure 2, Panel ) and adjusted-
2 383% over the subperiod (Table 7, Panel , Row 1) at the annual frequency. The
coe¢ cient of  is statistically signi�cant in both cases. Similar results are obtained
for the aggregate dividend growth rate for which the adjusted-2 is 356% and the
p-value is 684% over the full period (Table 6, Row 2 and Figure 2, Panel ) and the
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adjusted-2 is 151% over the subperiod (Table 7, Panel , Row 2). However, Table 7,
Panel  reveals that the state variables of the co-integrated model fail to retain their
predictive power for consumption and dividend growth rates out-of-sample. The out-
of-sample 2 for the consumption growth rate is ¬517% and for the dividend growth
rate ¬237%.
The state variables do not forecast the market return and equity premium as pre-

dicted by the co-integrated model. At the annual frequency and over the full period,
the adjusted-2 for the market return is 20% (Table 6, Row 3) and for the equity
premium is 44% (Table 6, Row 4). However, the p-values of these regressions are zero,
meaning that the co-integrated model implies much higher predictability of the market
return and equity premium using the market-wide price-dividend ratio, risk free rate,
and the demeaned dividend-consumption ratio than the observed predictability (see
Figure 2, Panels  and ).
Furthermore, the observed predictability by the state variables of the co-integrated

model is unstable. At the annual frequency over the 1976 ¬ 2009 sub-period, the
adjusted-2 for the market return is 00% (Table 7, Panel , Row 3) and for the
equity premium is negative (Table 7, Panel , Row 4). Given the poor in-sample
forecasting performance of the model-implied state variables, it is not surprisingly the
out-of-sample 2 for the market return and equity premium are ¬55% and ¬50%,
respectively (Table 7, Panel , Rows 3 and 4). At the quarterly frequency over the
1976 ¬ 2009 sub-period, the adjusted-2 for the market return is negative (Table 7,
Panel , Row 3) and for the equity premium is 10% (Table 7, Panel , Row 4).
The pricing implications of the model for the 2-asset system are displayed in Table 8.

The point estimate of the auto-correlation coe¢ cient, �, of the co-integrating residual,
, is 096 and the asymptotic standard error is 076. Therefore, the data cannot
distinguish the co-integrated model from the B-Y model which obtains as a limiting
special case when � = 1. This explains why the conclusions drawn from Table 8 are
similar to our earlier conclusions from Table 4. Speci�cally, the persistence parameter
of the LRR variable is much higher at 094, compared to the value of 032 estimated
from the time-series model alone in Table 4. Therefore, the co-integrated model, as the
B-Y model, requires much higher predictability of consumption growth to explain the
equity premium and risk free rate puzzles than the predictability estimated from the
time series of consumption growth alone. The GMM overidentifying restrictions test
rejects this model with J-stat 919 and asymptotic p-value less than 1%. The point
estimates of the parameters are similar to those in Table 4. The annual pricing error
for the risk free rate is 29% and for the market return is 15%.
The pricing implications of the model for the 6-asset system are displayed in Table 9.

The point estimate of the auto-correlation of the co-integrating residual is 090 and the
asymptotic standard error is 130. As in the 2-asset system, the data cannot distinguish
the co-integrated model from the B-Y model and the conclusions drawn from Table
9 are similar to the earlier conclusions drawn from Table 5. Again, the co-integrated
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model, as the B-Y model, requires much higher predictability of consumption growth
to explain the cross-section of returns than the predictability estimated from the time
series of consumption growth alone. The GMM overidentifying restrictions test rejects
this model with J-stat 912 and asymptotic p-value less than 1%. The point estimates
of the parameters are very similar to those in Table 5. The annual pricing errors for
the �Small�portfolio (43%) and �Value�portfolio (32%) are economically large.
The co-integrated LLR model generalizes the LRR model of B-Y by introducing the

di¤erence between the log dividend and consumption levels as a third state variable.
The combined evidence from the out-of-sample predictive regressions and the pricing
tests suggest that the problems identi�ed with the model of B-Y remain to be resolved.

7 Robustness Tests

In Section 71, we address the robustness of our results to the post-war sub-period. In
Section 72, we explore the pricing implications of the B-Y model at the quarterly, as
opposed to the annual, frequency.

7.1 Robustness to the Post-War Sub-Period

Since the period prior to 1947 was one of great economic uncertainty, including the
Great Depression, World War II, and structural breaks in the equity premium, rejection
of the LRR models in the full sample may be due to their poor performance in the pre-
war period. Pastor and Stambaugh (2001) document evidence of breaks in the equity
premium in the early thirties and forties, and in the early and mid-nineties. Lettau,
Ludvigson, and Wachter (2008) �nd evidence of a break in the consumption variance
around 1992, followed by a break in the log price-dividend ratio of the market around
1995. Lettau and Van Nieuwerburgh (2008) report evidence of two breaks in the mean
of the aggregate price-dividend ratio around 1954 and 1994.
We explore the possibility that rejection of the LRR model of B-Y and its co-

integrated extension is due, in part, to failure to account for regime shifts over the
period 1931¬ 2009. In Section 4, we already provide evidence that the lack of out-of-
sample predictability of the market return, equity premium, consumption growth, and
dividend growth in linear regressions on the price-dividend ratio and risk free rate over
the period 1931 ¬ 2009 (Table 2) persists over the sub-period 1976 ¬ 2009 (Table 3).
In Section 6, we add the di¤erence between the log dividend and consumption levels
as a third predictive variable, as implied by the LRR model of Bansal, Gallant, and
Tauchen (2007), and provide evidence that the lack of out-of-sample predictability over
the period 1931¬ 2009 (Table 6) persists over the sub-period 1976¬ 2009 (Table 7).
As further evidence of the robustness of our results we present estimation and test

results of the Euler equations of consumption over the post-war sub-period 1947¬2009
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on the 2-asset system (Table 10) and the 6-asset system (Table 11). The model is still
rejected on both the 2-asset and 6-asset systems with p-values less than 1%. The point
estimates of the parameters and the pricing errors are similar in the full period and the
post-war sub-period and lend support to the robustness of the empirical methodology.

7.2 Interpretation of the Model at the Quarterly Frequency

We explore the possibility that the LRR model of B-Y applies at the quarterly, as
opposed to the annual, frequency. The lack of out-of-sample predictability of the
market return, equity premium, dividend growth, and consumption growth reported in
Section 4 cannot be attributed to the possibility that the LRR model of B-Y applies
at the quarterly, as opposed to the annual, frequency because the tests are carried out
at both the quarterly and annual frequencies.
Our rejection of the Euler equations of consumption on the 2-asset and 6-asset

systems at the annual frequency is susceptible to the criticism that the LRR model
applies at the quarterly frequency and the Euler equations stated at the annual fre-
quency improperly temporally aggregate consumption �ows. Therefore, we repeat our
estimation and tests of the Euler equations at the quarterly frequency. Since reliable
quarterly data are only available over the post-war sub-period, we perform our tests
over 1947 : 2¬ 2009 : 4. Tables 12 and 13 display the results for the 2-asset and 6-asset
systems, respectively. The annualized pricing errors are very similar to those obtained
using annual data over the post-war subperiod.
The results in this section suggest that our �ndings are unlikely to be driven by the

problems associated with temporal aggregation or by the interpetation of the model at
the wrong frequency.

8 Concluding Remarks

We present a novel methodology in testing the long-run risks model of Bansal and
Yaron (2004) based on the observation that, under the null, the potentially latent state
variables, �long-run risk� and the conditional variance of its innovation, are known
a¢ ne functions of the observable market-wide price-dividend ratio and risk free rate.
Using the methodology, we test the time-series and cross-sectional pricing impli-

cations of the model over the sample period 1931 ¬ 2009. The results are robust to
the interpretation of the model at the annual, quarterly, and monthly frequencies; to
the full time period 1931 ¬ 2009 versus the post-war sub-period; to the temporal ag-
gregation of consumption �ows; and to the co-integration or lack of co-integration of
the consumption and dividend levels. Whereas we formally reject the model, we derive
valuable insights which should prove useful in guiding future search.
Essentially, the model requires that aggregate consumption growth and returns be
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much more forecastable by the price-dividend ratio and risk free rate in linear regres-
sions than what we observe in the data. What may be needed is a richer model in which
the expected market return, equity premium, consumption growth, and pricing kernel
are nonlinear functions of the two state variables. Alternatively, what may be needed
is a model that introduces a third state variable that plays a major role in forecasting
the expected market return, equity premium, and consumption growth and also plays
a major role in explaining the cross-section of returns. The observed di¤erences in the
results between the full sample period and the post-war sub-period reinforce the view
that the economy experiences structural breaks which may be fruitfully captured by
such a state variable.

21



A Appendix

A.1 Estimation of Time-Series Parameters

The decision interval of the agent is assumed to be annual. We estimate the model at
the annual frequency, such that its annual growth rates of consumption and dividends
match salient features of observed annual consumption and dividend data. There are
9 parameters to be estimated - �, �, �, , �,  , �, �, and �.
From the speci�cation of the consumption growth process, we have

 (�+1) = � (29)

We also, have

  (�+1) =   () +   (�+1) + 2(�+1)

=   () + �2 + 0

=
 2

�
2

1¬ �2
+ �2 (30)

and,

(�+1�+2) = �

 2
�

2

1¬ �2
(31)

From the speci�cation of the dividend process, we have

 (�+1) = � (32)

  (�+1) = �2
 2

�
2

1¬ �2
+ �22 (33)

(�+1�+2) = �2�

 2
�

2

1¬ �2
(34)

Also, from the consumption and dividend growth processes,

(�+1�+1) = �
 2

�
2

1¬ �2
(35)

Finally, we have
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 
¬
(�+1)

2� = 
�
 

¬
(�+1)

2��+  
�


¬
(�+1)

2�� (36)

Now,

(�+1)
2 = �2 + 2

 + �2 +1 + 2� + 2�+1 + 2��+1 (37)

Hence,



¬
(�+1)

2� = �2 + 2
 + �2 + 2�

 
�


¬
(�+1)

2�� =  (2
 ) +  (�2 ) + 4�2 () + 4�( 

2
 )

+2(2
 �

2
 ) + 4�(�

2
 ) (38)

Now,  (�2 ) =
�2
1¬�2 , (�

2
 ) = 0, (2

 �
2
 ) =

 2
�

2
�

(1¬�2)(1¬��2)
, ( 

2
 ) =

0, and

 (2
 ) =

3 4
�

2
(1 + ��2)

(1¬ �4)(1¬ �2)(1¬ ��2)
+

1

1¬ �4

�
2�4 +

4�2 
4
�

4

(1¬ �2)

�
Substituting the above expressions into equation (38), we have

 
�


¬
(�+1)

2�� =
3 4

�
2
(1 + ��2)

(1¬ �4)(1¬ �2)(1¬ ��2)
+

1

1¬ �4

�
2�4 +

4�2 
4
�

4

(1¬ �2)

�
+

�2
1¬ �2

+ 4�2
 2

�
2

1¬ �2
+

2 2
�

2
�

(1¬ �2)(1¬ ��2)
(39)

Also, from equation (37),

 

¬
(�+1)

2� = 2�4 + 42
�

2
 + 4�2�

2
 + 8��

2


Hence,


�
 

¬
(�+1)

2�� = 2
�2

1¬ �2
+ 2�4 +

4 2
�

2
�

(1¬ �2)(1¬ ��2)
+

4 2
�

4

1¬ �2
+ 4�2�

2 (40)

Substituting equations (39) and (40) into equation (36), we have

 
¬
(�+1)

2� =
3 4

�
2
(1 + ��2)

(1¬ �4)(1¬ �2)(1¬ ��2)
+

1

1¬ �4

�
2�4 +

4�2 
4
�

4

(1¬ �2)

�
+

3�2
1¬ �2

+4�2
 2

�
2

1¬ �2
+

6 2
�

2
�

(1¬ �2)(1¬ ��2)
+

4 2
�

4

1¬ �2
+ 2�4 + 4�2�

2 (41)
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Similar calculations yield,

 
�


¬
(�+1)

2�� = �4
�

3 4
�

2
(1 + ��2)

(1¬ �4)(1¬ �2)(1¬ ��2)
+

1

1¬ �4

�
2�4 +

4�2 
4
�

4

(1¬ �2)

��
+

�2
1¬ �2

4 + 4�2
 2

�
2

1¬ �2
�2 +

2 2
�

2
�

(1¬ �2)(1¬ ��2)
�22


�
 

¬
(�+1)

2�� =

�
2

�2
1¬ �2

+ 2�4
�

4 +

�
4 2

�
2
�

(1¬ �2)(1¬ ��2)
+

4 2
�

4

1¬ �2

�
�22

+4�2
2�2

Hence, we have

 
¬
(�+1)

2� = �4
�

3 4
�

2
(1 + ��2)

(1¬ �4)(1¬ �2)(1¬ ��2)
+

1

1¬ �4

�
2�4 +

4�2 
4
�

4

(1¬ �2)

��
+

3�2
1¬ �2

4

+4�2
 2

�
2

1¬ �2
�2 +

6 2
�

2
�

(1¬ �2)(1¬ ��2)
�22 +

4 2
�

4

1¬ �2
�22

+2�44 + 4�2
2�2 (42)

Equations (29)-(35), (41), and (42) give 9 moments restrictions in the 9 time-series
parameters.

A.2 Details of Estimation Methodology

The model is given by the equations

+1 = � +  �+1,

�2+1 = (1¬ �)�2 + ��2 + ��+1,

�+1 = � +  + �+1,

�+1 = � + �x + '�+1.

The shocks +1, �+1, +1, +1 are assumed to be  (0 1) and mutually
independent.
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A.2.1 Expressions for A0, A1, A2, A0, A1, and A2

Bansal and Yaron (2004) show that  and , are a¢ ne functions of the state vari-
ables,  and �2 ,

 = 0 + 1 + 2�
2
 ,

 = 0 + 1 + 2�
2
 ,

where

1 =
1¬ 1

 

1¬ �1�

2 =

05

��
¬ �

 
+ �
�2

+ (��11 )
2

�
� (1¬ �1�)

0 =
(�) +

�
1¬ 1

 

�
� + �0 + �12�

2(1¬ �) + 05��12�
2


1¬ �1

1 =
�¬ 1

 

1¬ �1�

2 =
(1¬ �)2 (1¬ �1�) + 05

�
 2 + 2 + ((� ¬ 1)�11 + �11)

2  2


�
1¬ �1�

0 =
� log(�) +

�
¬ �

 
+ � ¬ 1

�
� + (� ¬ 1)�0 + (� ¬ 1) (�1 ¬ 1)0 + (� ¬ 1)�12�

2(1¬ �)

1¬ �1

+
�0 + � + �12�

2(1¬ �) + 05 [(� ¬ 1)�12 + �12]
2 �2

1¬ �1

A.2.2 Risk Free Rate

To derive the expression for the risk free rate, note that



�
exp

�
� log � ¬ �

 
�+1 + (� ¬ 1)+1 + 

��
= 1

Hence,
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exp (¬) = 

�
exp

�
� log � ¬ �

 
�+1 + (� ¬ 1)+1

��
= exp(� log � ¬ �

 
� ¬

�

 
 + (� ¬ 1)�0 + (� ¬ 1)�10

+(� ¬ 1)�11� + (� ¬ 1)�12(1¬ �)�2 + (� ¬ 1)�12��
2


¬(� ¬ 1)0 ¬ (� ¬ 1)1 ¬ (� ¬ 1)2�
2
 + (� ¬ 1)� + (� ¬ 1)

+05

"�
¬ �

 
+ � ¬ 1

�2

�2 + (� ¬ 1)2�21
2
1 

2
�

2
 + (� ¬ 1)2�21

2
2�

2


#
)

Therefore, the risk free rate is

 = ¬� log � ¬
�
¬ �

 
+ � ¬ 1

�
� ¬ (� ¬ 1)�0 ¬ (� ¬ 1)(�1 ¬ 1)0 ¬ (� ¬ 1)�12(1¬ �)�2

¬05(� ¬ 1)2�21
2
2�

2
 ¬

�
(¬ �

 
+ � ¬ 1) + (� ¬ 1)(�1� ¬ 1)1

�


¬

"
(� ¬ 1)(�1� ¬ 1)2 + 05

 �
¬ �

 
+ � ¬ 1

�2

+ (� ¬ 1)2�21
2
1 

2


!#
�2

= 0 + 1 + 2�
2


where

0 = ¬� log � ¬
�
¬ �

 
+ � ¬ 1

�
� ¬ (� ¬ 1)�0 ¬ (� ¬ 1)(�1 ¬ 1)0 ¬ (� ¬ 1)�12(1¬ �)�2

¬05(� ¬ 1)2�21
2
2�

2


1 = ¬
�
(¬ �

 
+ � ¬ 1) + (� ¬ 1)(�1� ¬ 1)1

�
2 = ¬

"
(� ¬ 1)(�1� ¬ 1)2 + 05

 �
¬ �

 
+ � ¬ 1

�2

+ (� ¬ 1)2�21
2
1 

2


!#

A.2.3 Latent state variables in terms of observable variables

The model implies

 = 0 + 1 + 2�
2
 ,

 = 0 + 1 + 2�
2
 .
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These equations may be inverted to express the state variables in terms of the
observables,

 = �0 + �1+1 + �2,

where

�0 =
20 ¬ 02

12 ¬ 21

,

�1 =
¬2

12 ¬ 21

,

�2 =
2

12 ¬ 21

,

and

�2 = �0 + �1+1 + �2,

where

�0 =
01 ¬ 10

12 ¬ 21

,

�1 =
1

12 ¬ 21

,

�2 =
¬1

12 ¬ 21

.

A.2.4 The pricing kernel in terms of observables

The pricing kernel is given by (19),

+1 = (� log � + (� ¬ 1) [�0 + (�1 ¬ 1)0]) +

�
¬ �

 
+ (� ¬ 1)

�
�+1

+(� ¬ 1)�11+1 + (� ¬ 1)�12�
2
+1 ¬ (� ¬ 1)1 ¬ (� ¬ 1)2�

2


Substituting the expressions for  and �2 from Section A.1.2 into the pricing kernel,
we have

+1 = 1 + 2�+1 + 3

�
+1 ¬

1

�1


�
+ 4

�
+1 ¬

1

�1


�
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where

1 = � log � + (� ¬ 1)[�0 + (�1 ¬ 1) (0 + 1�0 + 2�0)]

2 = ¬ �
 
+ (� ¬ 1)

3 = (� ¬ 1)�1[1�1 + 2�1]

4 = (� ¬ 1)�1[1�2 + 2�2]

A.3 Estimation Methodology for co-integrated Model

The model is given by the equations

�+1 = � +  + �+1,

+1 = � +  �+1,

�2+1 = �� + ���
2
 + ��+1,

 ¬  = � + ,

+1 = � + � +  �+1,

�+1 = � + (1 + �) + (� ¬ 1) + �+1 +  �+1. (43)

A.3.1 The Dividend Claim

We conjecture that the log price-dividend ratio is an a¢ ne function of the state vari-
ables, , �2 , and :

 = 0 + 1 + 2�
2
 + 3.

The coe¢ cients 0, 1, 2, and 3 are computed using the method of unde-
termined coe¢ cients as described below.
The Euler equation for the observable return on the aggregate dividend claim,

+1, is,



�
exp

�
� log � ¬ �

 
�+1 + (� ¬ 1)+1 + +1

��
= 1 (44)

Substituting the expression for +1 from equation (9) into the above Euler con-
dition, we have

28



[exp(� log � ¬
�

 
� ¬

�

 
 ¬

�

 
�+1 + (� ¬ 1)�0 + (� ¬ 1)�10

+(� ¬ 1)�11� + (� ¬ 1)�11 �+1

+(� ¬ 1)�12�� + (� ¬ 1)�12���
2
 + (� ¬ 1)�12��+1

+(� ¬ 1)�13� + (� ¬ 1)�13� + (� ¬ 1)�13 �+1

¬(� ¬ 1)0 ¬ (� ¬ 1)1 ¬ (� ¬ 1)2�
2
 ¬ (� ¬ 1)3

+(� ¬ 1)� + (� ¬ 1) + (� ¬ 1)�+1

+�0 + �10 + �11� + �11 �+1 + �12��
+�12���

2
 + �12��+1 + �13� + �13�

+�13 �+1 ¬ 0 ¬ 1 ¬ 2�
2
 ¬ 3

+� + (1 + �) + (� ¬ 1) + �+1 +  �+1)]

= 1

Using the assumed conditional log-normality of the stochastic processes, the left-
hand-side of the above expression simpli�es to

exp( � log � +

�
¬ �

 
+ �

�
� + (� ¬ 1)�0 + (� ¬ 1) (�1 ¬ 1)0 + (� ¬ 1)�12��

+�0 + (�1 ¬ 1)0 + �12��

+

��
¬ �

 
+ � ¬ 1

�
+ (� ¬ 1) (�1� ¬ 1)1 + (� ¬ 1)�13� + (�1� ¬ 1)1 + (1 + �)

�


+ [�13�] + [(� ¬ 1) (�1� ¬ 1)3 + (�1� ¬ 1)3 + � ¬ 1] 

+ [(� ¬ 1) (�1�� ¬ 1)2 + (�1�� ¬ 1)2]�
2


+05f
�
¬ �

 
+ �

�2

�2 + [(� ¬ 1)�13 + �13 + 1]2  2
�

2


+ [(� ¬ 1)�11 + �11]
2  2

�
2
 + [(� ¬ 1)�12 + �12]

2 �2g)
= 1 (45)

Since the Euler equation (45) must hold for all values of the state variables, we have

[(� ¬ 1) (�1� ¬ 1)3 + (�1� ¬ 1)3 + � ¬ 1] = 0

3 =
� ¬ 1

1¬ �1�

(46)

�
¬ �

 
+ � ¬ 1

�
+(�¬1) (�1� ¬ 1)1+(�¬1)�13�+(�1� ¬ 1)1+�13�+1+� = 0
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1 =
1¬ 1

 
+ �(1 + �13)

1¬ �1�

(47)

(� ¬ 1) (�1�� ¬ 1)2 + (�1�� ¬ 1)2 + 05f
�
¬ �

 
+ �

�2

+ [(� ¬ 1)�13 + �13 + 1]2  2
 + [(� ¬ 1)�11 + �11]

2  2
g

= 0

2 =
(� ¬ 1) (�1�� ¬ 1)2 + 

1¬ �1��
(48)

 = 05f
�
¬ �

 
+ �

�2

+ [�13 + 1]2  2


+ [(� ¬ 1)�11 + �11]
2  2

g

� log � +

�
¬ �

 
+ �

�
� + (� ¬ 1)�0 + (� ¬ 1) (�1 ¬ 1)0 + (� ¬ 1)�12��

+�0 + (�1 ¬ 1)0 + �12�� + 05 [(� ¬ 1)�12 + �12]
2 �2

= 0

0 =
� log � +

�
¬ �

 
+ �
�
� + (� ¬ 1)�0 + (� ¬ 1) (�1 ¬ 1)0

1¬ �1
(49)

+
(� ¬ 1)�12�� + �0 + �12�� + 05 [(� ¬ 1)�12 + �12]

2 �2
1¬ �1

A.3.2 Latent State Variables in terms of Observable Variables

We have

 = 0 + 1 + 2�
2
 + 3

 = 0 + 1 + 2�
2


The above equations may be inverted to express the unobservable state variables,
 and �2 , in terms of the observables, , , and .
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De�ne,

 � 12 ¬ 12

We have,

 = �0 + �1 + �2 + �3

�0 =
02 ¬ 02



�1 =
¬2



�2 =
2



�3 =
¬32



�2 = �0 + �1 + �2 + �3¬

�0 =
01 ¬ 10



�1 =
1



�2 =
¬1



�3 =
13



Now, from equations (7), (8), and (10), the pricing kernel is given by the expression

+1 = (� log � + (� ¬ 1) [�0 + (�1 ¬ 1)0]) +

�
¬ �

 
+ (� ¬ 1)

�
�+1

+(� ¬ 1)�11+1 + (� ¬ 1)�12�
2
+1

¬(� ¬ 1)1 ¬ (� ¬ 1)2�
2


Substituting the expressions for  and �2 from equations (25) and (26) into the
above expression for the pricing kernel, we have

+1 = 1 + 2�+1 + 3

�
+1 ¬

1

�1


�
+ 4

�
+1 ¬

1

�1


�
+ 5

�
+1 ¬

1

�1


�
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where

1 = � log � + (� ¬ 1)[�0 + (�1 ¬ 1) (0 + 1�0 + 2�0)]

2 = ¬ �
 
+ (� ¬ 1)

3 = (� ¬ 1)�1[1�1 + 2�1]

4 = (� ¬ 1)�1[1�2 + 2�2]

5 = (� ¬ 1)�1[1�3 + 2�3]

A.4 Estimation of Time-Series Parameters of the co-integrated
Model

In this speci�cation, there are 10 parameters to be estimated - �, �, �,  , ��, ��,
�, �, �, and  .
We have

 (�+1) = � (50)

De�ne �2 = ��
1¬��

. We then have

  (�+1) =   () +   (�+1) + 2(�+1)

=   () + �2 + 0

=
 2

�
2

1¬ �2
+ �2 (51)

and,

(�+1�+2) = �

 2
�

2

1¬ �2
(52)

(�+1�+3) = �2
 2

�
2

1¬ �2
(53)

From the speci�cation of the dividend growth process, we have

  (�+1) = (1 + �)
2   () + (� ¬ 1)2   () +¬

1 +  2


�
�2 + 2 (1 + �) (� ¬ 1)( ) (54)
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where   () =
 2

�
2

1¬�2
, ( ) =

��

1¬��
  (), and

  () =
�2  () +  2

�
2 + 2�2�� ()

1¬��

1¬ �2
Also,

(�+1�+2) = (1 + �)
2 (+1 ) + (� ¬ 1)2 (+1 )

+ (1 + �) (� ¬ 1) [(+1 ) + ( +1)]

+ (� ¬ 1)  (+1�+1) (55)

where (+1 ) = �  (), (+1 ) = �( ) + �  (),
( +1) = �  ()+�( ), (+1 ) = �( ), and(+1�+1) =
 �

2.
Finally,

(�+1�+1) = (1 + �)  () + (� ¬ 1)( ) + �2 (56)

and

( ¬ ) = � (57)

Equations (50)-(57) give 8 moment restrictions in the 8 parameters �, �, �,  ,
��, �, �,  

A.5 Optimization Algorithm

Using the initial consistent estimates of the time-series parameters, we update the
initial estimates to obtain the �nal estimates of the time-series parameters and also
estimate the preference parameters by performing a 12-dimensional grid search, over
the 9 time series parameters and 3 preference parameters, using the full set of 15
moment restrictions. For the persistence parameter of the LRR variable, �, the grid
covers the interval 010, 015, , 095. For the persistence parameter of the stochastic
variance process, ��, the grid covers the interval 010, 011, , 099. For each of the
other time series parameters, the grid consists of 5 evenly spaced points within two
standard errors of the initial consistent point estimate. The grid for the risk aversion
parameter is 2 4  14, that for the IES is 03 06 09 12 15 18 21 24, and that
for the rate of time-preference is 097 0975 ... 0995. At each of the grid points, we
compute the value of the GMM objective function and report the parameter vector
at the grid point that minimizes the criterion function. This choice of grid results
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in the point estimates of all the parameters being interior points of the grid for both
the 2-asset and the 6-asset systems, thereby ensuring that the criterion function has
attained its minimum.
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Figure 1: The �gure plots the �nite-sample distributions of the in-sample 
2
statistics

constructed from 10000 simulations from the B-Y model at the annual frequency. Panels A, B,
C, and D show results for the annual market return, equity premium, aggregate consumption
growth rate, and aggregate dividend growth rate, respectively. Each panel plots the histogram

and the kernel density estimate of the distribution along with the value of the 
2
statistic

obtained in the historical data.
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Figure 2: The �gure plots the �nite-sample distributions of the in-sample 
2
statistics

constructed from 10000 simulations from the cointegrated model at the annual frequency.
Panels A, B, C, and D show results for the annual market return, equity premium, aggregate
consumption growth rate, and aggregate dividend growth rate, respectively. Each panel plots
the histogram and the kernel density estimate of the distribution along with the value of the


2
statistic obtained in the historical data.
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Table 1: Summary Statistics, 1931-2009

   (1)
 0066 0197 ¬0056
 0008 0050 0645

 0107 0329 0074
 0060 0187 0017
 0054 0210 ¬0011
 0099 0296 ¬0124

() 3377 0450 0877
� 0014 0119 0129
� 0014 0026 0310

This table reports the descriptive statistics for the annual log returns of the market
portfolio, the risk free rate, the "Small", "Large", "Growth", and "Value" portfolios, the
market-wide log price-dividend ratio and log dividend growth rate, and the aggregate con-
sumption growth rate. The data are annual over the period 1931¬ 2009.
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Table 2: Model-Implied Forecasting Regressions, 1931-2009
Panel A: Monthly, In-Sample

  ()  -2

+1 0033
(0013)

¬0007
(0004)

¬0049
(0691)

0002
(0017)

+1 ¬  0033
(0013)

¬0007
(0004)

¬1049
(0691)

0005
(0080)

Panel B: Quarterly, In-Sample
  ()  -2

+1 0098
(0046)

¬0022
(0014)

0001
(0790)

0002
(0000)

+1 ¬  0098
(0046)

¬0022
(0014)

¬0999
(0790)

0010
(0000)

Panel C: 1-Year, In-Sample
  ()  -2

�+1 ¬0043
(0021)

0017
(0006)

¬0086
(0056)

0084
(0009)

�+1 ¬0251
(0099)

0078
(0029)

0119
(0263)

0070
(0219)

+1 0334
(0167)

¬0081
(0049)

0399
(0446)

0014
(0001)

+1 ¬  0334
(0167)

¬0081
(0049)

¬0601
(0446)

0038
(0014)

Panel D: 3-Year, In-Sample
  ()  -2

�+1 ¬0014
(0041)

0019
(0012)

¬0123
(0109)

0015
(0000)

�+1 ¬0287
(0162)

0104
(0048)

¬0321
(0434)

0036
(0031)

+1 1104
(0222)

¬0268
(0066)

1388
(0594)

0189
(0558)

+1 ¬  1121
(0219)

¬0275
(0065)

¬0460
(0585)

0191
(0780)

Panel E: 5-Year, In-Sample
  ()  -2

�+1 0063
(0045)

0005
(0013)

0071
(0117)

¬0019
(0000)

�+1 ¬0205
(0175)

0093
(0052)

0249
(0455)

0024
(0035)

+1 1617
(0272)

¬0381
(0081)

1867
(0707)

0245
(0811)

+1 ¬  1772
(0253)

¬0431
(0075)

¬0237
(0658)

0302
(0945)

The table reports results from the Bansal and Yaron (2004) model-implied forecasting
regressions for the aggregate consumption growth rate, the aggregate dividend growth rate,
the market return, and the equity premium over the period 1931-2009. Panels A, B, C, D, and
E report results at the monthly, quarterly, 1-year, 3-year, and 5-year frequencies respectively.
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Reliable consumption data is not available at the monthly frequency and is only available
for the subperiod at the quarterly frequency, and dividends have a strong seasonal pattern
at the monthly and quarterly frequencies. Therefore, we exclude these regressions from the
table. The number in parentheses below the adj-2 shows the probability of obtaining an
adj-2 at least as small as that obtained with the historical data if the data were generated
by the B-Y model. This probability is computed using 10000 simulations of the same size as
the historical data.
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Table 3: Model-Implied Forecasting Regressions, 1976-2009
Panel A: Monthly, In-Sample

  ()  -2

+1 0078
(0027)

¬0017
(0006)

¬1527
(1110)

0012

+1 ¬  0078
(0027)

¬0017
(0006)

¬2527
(1110)

0013

Panel B: Quarterly, In-Sample
  ()  -2

�+1 ¬0002
(0005)

0001
(0001)

0064
(0046)

0005

+1 0120
(0060)

¬0028
(0016)

0033
(0593)

0008

+1 ¬  0120
(0060)

¬0028
(0016)

¬0967
(0593)

0021

Panel C: Annual, In-Sample
  ()  -2

�+1 ¬0025
(0018)

0009
(0005)

0264
(0081)

0236

�+1 ¬0089
(0113)

0025
(0030)

1068
(0502)

0076

+1 0354
(0247)

¬0084
(0066)

1062
(1099)

0032

+1 ¬  0354
(0247)

¬0084
(0066)

0063
(1099)

¬0010

Panel D: Annual, Out-of-Sample
  ()  2 = 1¬ 



�+1 ¬1232
�+1 ¬0603
+1 - - - ¬0025

+1 ¬  - - - ¬0016
The table reports results from the Bansal and Yaron (2004) model-implied forecasting

regressions for the aggregate consumption growth rate, the aggregate dividend growth rate,
the market return, and the equity premium over the period 1976-2009. Panels A, B, and C
report results at the monthly, quarterly, and annual frequencies respectively. Reliable con-
sumption data is not available at the monthly frequency and dividends have a strong seasonal
pattern at the monthly and quarterly frequencies. Therefore, we exclude these regressions
from the table. Panel D reports out-of-sample predictive results for the aggregate consump-
tion growth rate, aggregate dividend growth rate, market return, and equity premium at the
annual frequency.
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