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ABSTRACT

This paper extends earlier work on the RID to patents

relationship (Pakes—Griliches 1980, and Hausman, Hall, and Griliches,

1984) to a larger but shorter panel of firms. The focus of the paper is

on solving a number of econometric problems associated with the

discreteness of the dependent variable and the shortness of the panel in

the time dimension. We compare weighted nonlinear least squares as well

as Poisson—type models as solutions to the former problem. In attempting

to estimate a lag structure on RID in the absence of a sufficient history

of the variable, we take two approaches: first, we use the conditional

version of the negative binomial model, and second, we estimate the RID

variable itself as a low order stochastic process and use this

information to control for unobserved RID. RID itself turns out to be

fairly well approximated by a random walk. Neither approach yields

strong evidence of a long lag. The available sample, though

numerically large, turns out not to be particularily informative on this

question. It does reconfirm, however, a significant effect of RID on

patenting (with most of it occuring in the first year) and the presence

of rather wide and semi—permanent differences among firms in their

patenting policies.
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Bronwyn II. Hall, Zvi Griliches, and Jerry A. Hausman

This paper analyzes the relationship between patenting and research

and development activity at the firm level by the U. S. manufacturing

sector during the 1970's. Previous work by Pakes and Griliches (1980).

which looked at a subset of the firms considered here, was the first

attempt to use the patenting and RID behavior of firms over time both to

control for individual firm effects and to try to learn something about

lags in the productivity of RID. The present study extends their sample to

1979 and covers almost all of the firms doing appreciable amounts of RID in

the manufacturing sector. In attempting to characterize the lag structure

of the patents—RiD relationship, a number of econometric problems arising

from the panel nature of the data and from the measurement of the dependent

variable have to be solved or at least considered in interpreting the

results.

The basic model underlying this analysis has been described elsewhere

(Pakes and Griliches 1980, Hausman, Hall, and Griliches 1984) and will only

be Aketched here. The annual research and development expenditures of a

firm are considered to be investments which add to a firm's stock of

knowledge This stock of knowledge is depreciating over time so that the

contribution of older RID investment becomes less valuable as time passes.

fle aim of the study is to use patent applications in any given year as an

indicator of the "value" of the underlying stock of knowledge, and to infer

from the lag distribution on past RID something about gestation lags in
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knowledge production. It is important to note at the outset that there are

difficulties with this approach: the first is that patents are not the

only output of RtD — they measure only a fraction of this output, and the

fraction may vary considerably over industry and possibly also over time.

Controlling for differences in the firms' propensity to patent (conditional

estimation) as well as including an overall effect for each year are

partial answers to this. A second and related problem with the existing

data is that most of the information on the question will, come from

relative changes in the two variables over time within the firm; if these

changes are contaminated by measurement error or they are very small, the

lag structure will be extremely difficult to discern.

A third problem has to do with the economic value of the patents

themselves. Researchers such as Mansfield (1977) and Taylor and Silberston

(1973) have suggested that the existence of the patent system may be a

relatively unimportant factor in the research and development strategy of

some firms. There is also a growing body of evidence (Grabowski 1983,

Pakes 1984, Schankerman and Pakes 1984) showing that a large fraction of

patents granted are 'worthless" or become worthless in a short period of

time. This paper has very little to say on this range of topics; we

observe the fact that firms do take out patents which are related to the

output of their research and development laboratories (and other activities

of the firm in the R*D area) and that therefore, patents can be used as an

indicator of this activity in the aggregate even though the information

conveyed by an individual patent may be very small.

In discussing an earlier version of this paper. Stoneman (1983) argued

strongly that patents are an input to the ReD process rather than an

output. That is, the patent application occurs at an early point in the

development process and most of the expenditures that would be associated
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with it occur after the application is made. With this data we are in a

position to investigate this question of timing, and find that the evidence

for it is relatively weak, at least in aggregate firm behavior. The

strongest thing one can say is that RSD and patents appear to be dominated

by a contemporaneous relationship, rather than leads or lags.

The earlier work in this area also found a strong contemporaneous

effect of RtD on patents but was inconclusive as to whether there was a

significant lagged effect. Fakes and Griliches, using the standard fixed

effects model, found evidence of a lag truncation effect in the distributed

lag of patents on ReD. That is, when they controlled for permanent

differences across firms in the propensity to patent, the estimated

coefficient on the last lag of R*D which they considered (ken expenditures

of four years prior) was significantly higher than the coefficients of more

recent RtD. Hausman, Hall, and Griliches used a different functional form

(which took the discreteness of the patent data explicitly into account)

and found similar results for the random (uncorrelated) effects model but

not in their conditional fixed effects version. When they conditioned

their estimates on the total number of patents received during the whole

period, no coefficients except for the contemporaneous RID variable were

statistically significant either in the Poisson or negative binomial

vers ion.

These previous studies both used samples of about 120 firms with seven

to eight years of patent data and twelve to thirteen years of RID data.

For the current study, although we have about fourteen years of patent data

from 1966 to 1979, we have only eight years of RID data for about 650

firms, with an additional two years (1970 and 1971) for half the firms.

This fact constrains our ability to look for very long lag effects,
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especially since we cannot distinguish easily between permanent differences

across firms in the propensity to patent and effects due to the unobserved

past RtD history. We discuss this issue at greater length in the body of

the paper.

The other problem we have to deal with is the specification of the error

term in our model. The difficulty arises from two somewhat related causes:

the presence of a large number of zeroes in our dependent variable, the

number of patents applied for by a firm in a particular year. and the large

size range of the firms in our sample. A previous paper (Bound et at 1984)

which analyzed a large cross section sample, including the firms under

consideration here, demonstrated that estimates were quite sensitive to the

specification of the distribution of the error term. Since most of the

estimators used were consistent, this can be construed as informal evidence

of misspecification of the underlying model, possibly due to nonlinearity

in the relationship of log patents to log R*D or to heteroskedasticity

which is size—related. We have taken two approaches in obtaining our

estimates in this paper: the first uses a nonlinear least squares

specification with additive errors; for these estimates we are able to

obtain robust standard errors which are correct in the presence of

arbitrary heteroskedasticity, including year—to—year correlation within

firms. For this version of the model however, we are unable to obtain

conditional estimates, due to its intrinsic nonlinearity and the shortness

of our panel. The second approach uses an explicit stochaflic

specification for the patents variable, that it follows a Poisson or

negative binomial distribution, which enables us to obtain conditional

estimates of the slope parameters, but at the price of a distributional

assumption which may not hold.

The plan of this paper is the following: first we discuss the
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derivation of our dataset and look at the properties of our independent

variable, R%D expenditures. Then we present some estimates of the basic

patents—ReD relationship, followed by a discussion of the biases which may

be present in the cross section estimation of this relationship. Finally

we present conditional estimates of our model in an attempt to control for

some of these biases and we conclude with a brief discussion of what we can

learn from these data.
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I. Data

The data we use are an extract from a larger and longer panel of firms

in U. S. manufacturing drawn from the Compustat (Standard and Poor 1980).

This dataset was assembled and combined with patent data form the Office of

Technology Assessment and Forecasting at the NBER and is described in Bound

et al (1984) and Cummins, Hall, and Laderman (1982). The original universe

from which our sample comes consisted of approximately 2700 firms in the

manufacturing sector in 1976, and included almost all of the firms which

report R%D expenditures to the Bureau of Census—NSF RtD survey.

Our sample of firms was chosen from this universe by requiring that

data on sales, gross capital, market value (value of common stock), and R t

D be available for all years from 1972 through 1979 with no large jumps

during that period. A jump is defined as an increase in capital stock or

employment of more than 100 per cent or a decrease of more than 50 per

cent. This test was not applied unless the change in employment was

greater than 500 employees or the change in capital stock was greater than

two million dollars. We also removed six fins which had abnormally small

K I D values (less than 110,000) in one of the years. The number of firms

remaining in the sample after these cuts was 642, with a size distribution

heavily tilted toward the larger fins in our original universe. Table 1

shows the selectivity of this sample with respect to size and indicates

that although we have only a quarter of our original sample of firms, most

of those lost were either smaller or were not K % D doing (and reporting)

firms. Our coverage of the larger K t D firms is almost complete, and our

sample includ!s 90 per cent of the RID dollars expended by the

manufacturing sector in 1976.

Table 2 exhibits the characteristics of our remaining sample of firms,
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both the 642 firms with R t D between 72 and 79 and a subset of firms with

a longer it * D history back to 1970. Quantiles are shown in order to give

some indication of the skewness of the data: for example, median sales for

this sample in 1976 were 182 million dollars. while mean salel were 1.06

billion dollars. The subset of firms with a longer R*D history consists of

somewhat larger firms and is more heavily tilted toward the scientific

sector. Even for this sample of relatively RtD—intensiye firms, we find

that over 20 per cent of the firms did not apply for patents in 1976 and

that more than half applied for less than five. This confirms our

impression that the patents variable in these data must be treated in a way

which correctly reflects its relative imprecision at small values.

Previous experience with estimation of the patents equation in the cross

section (Bound et al 1984) has shown us that slope coefficient estimates

may not be robust to changes in the way in which we specify the error in

the equation (and the weighting which is implied by such specification).

In the later sections of this paper we look at this question again in an

effort both to. draw some robust conclusions from the data and to understand

the reasons for the unstable coefficients. However, first we take a cloSer

look at the process generating our independent variable, R*D. since the way

it evolves has important implications for our ability to identify the true

coefficients in the presence of lag truncation and firm effects.

To study the stochastic process for R*D, we use a procedure due to

MaCurdy (1983) for computing the sample autocorrelation and partial

autocorrelation functions. Basically, this method treats each firm as an

independent draw on a time series process, so that we have 642 observations

on each autocorrelation and partial autocorrelation. Since these can be

estimated for each year, it is not necessary to impose covariance
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stationarity. This model allows each firm to have its own mean, but

assumes that the within firm variance is the same across firms, which is

not an unreasonable assumption for the logarithmic form of our data. We

can test for stationarity of the variances across time, and in our data we

find F(7,5128) = 6.3 which is significant at the conventional five per cent

level, but insignificant using the large sample critical values, due to

Learner (1978). Accordingly, we impose stationarity in order to compute the

autocorrelation and partial autocorrelation functions.

The results are shown in Table 3: the autocorrelations are all above

,c, &1 Show a VErq smcdt ckcciui.cc at Io/'yr la'js, chae tke pcLrtIc(
autocorrelations are essentially zero after the second lag., with the second

lag equal to .048(.034). This is strong evidence for a low order Alt

process; in fact, it is difficult to reject a random walk, although there

is a hint of a small positive coefficient on the second lag and a first lag

coefficient of slightly less than one. In order to check this result, we

compute the Ax regression itself and display the results in the second part

of Table 3. The standard errors shown are heteroskedastic—consistent

estimates, although they are in fact almost the same as . conventional

estimates, which is evidence that the assumption of constant within—firm

variance is nota bad one. The basic result is that the AR2 specification

can . be accepted at conventional significance levels, and that the process

is in fact very close to a random walk.

The last two columns of this table provides a partial answer to the

question of whether patents can be viewed as an input to theY RtD process in

this data. We use a simple version of a Granger causality test: with two

lags of RID used to predict the current level of R1D, we include

contemporaneous and lagged log patents in the regression to see if they

help in predicting RID in the presence of its past history. The

coefficient on contemporaneous log patents is significant (t=3.1), but
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lagged patents are of no help in predicting future R%D, even if we leave

contemporaneous patents out of the equation (last column). We tentatively

conclude that there may be simultaneous movements in patents and R*D. but

there is little evidence that past success in patenting leads to an

increase in a firm's future RtD program above and beyond that implied by
• • 1

•its R*D history. We should qualify this result by noting that there is a

considerably lower signal to noise ratio in the patents variable than in

the RtD variable, both because of the skewness in patent values mentioned

earlier and because it is intrinsically an integer variable. This has been

well documented by Pakes and Griliches (1980) and Pakes (1984). Since RtD

is highly correlated over time, it will be difficult to discern the

independent contribution of patents to the R*D program in the presence of

this noise.
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II. Basic Results

In earlier work with the 1976 cross section of these firms, Bound et al

found that estimates of the elasticity of patenting with.respect to RID at

the average RID in the sample varied from 0.35 to 2. depending on the

choice of specification: log linear. Poisson, negative binomial, or

nonlinear least squares. This difference was greatly attenuated when the

firms were divided into two groups, those with R 1 D budgets larger than

two million dollars and those with smaller R 1 0 budgets. In the present

paper, the problem is not as severe since our sample is more heavily

weighted toward the firms in the larger group (approximately 50 per cent

have R I D greater than two million, rather than 20 per cent), but it

still persists and affects our estimates of the: lag distribution.

In Table 'k we look at the differences in estimates of our basic model

which are implied by differing specifications of the error structure. The

model is

(1) E(pitIRt.R1t_i si.t)
+ +

where are the observed firm characteristics (size, as measured by the

log of gross plant in 1972, and a dummy for the scientific sector). Our

sample is the 642 firms estimated over the years 1975 to 1979 so that we

can include three lags on RID, which yields a total of 3210 observations on

the dependent variable, patents. The first column shows the nonlinear

least squares estimates of the parameters, which are obtained by assuming

an additive and homoskedastic error in equation (1). These estimates are

consistent for the underlying coefficients, provided the model is correctly

specified. The standard errors shown are robust to heteroskedasticity of

the disturbances; they are computed using the formulas due to Eicker—White—
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Chamberlain, and allow both for differing variances across firms and

arbitrary serial correlation over time within firms.

The next two columns of Table 4 give the results of estimating the

Posson and negative binomial versions of our models. The advantage of

these models is that they take into account the non—negativity and

discreteness of our data. Moreover, in the next section of this paper we

will see that the conditional versions of these models allow us to estimate

a fixed effects model, something that we cannot do easily with the

nonlinear least squares version of the model. On the other hand, these

models require us to be explicit about the exact form of the distribution

from which the disturbance is drawn, and may produce inconsistent estimates

if the distribution is not correct (Gourieroux. Montfort, and Trognon

1984).

The Poisson and negative binomial models were described in detail in our

earlier paper (Rausman, Hall, and Griliches 1984) and we shall summarize

only their main features here. The log likelihood function for the Poisson

model is given by

N T
(2) log L = [y.I — e +

i=lt=1

where y. is the observed number of patent application for a firm in a year

and the are the independent variables, RtD and firm characteristics.

Estimates obtained with this model differ from the nonlinear least squares

estimates primarily by the weighting scheme used. The NLS estimates are

unweighted, implicitly weighting the numerically larger deviations of the

larger firms more than those of the small firms. The Poisson model assumes

that the variance of the disturbances is proportional to the expected value
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,1

of the patents and weights the observations accordingly. The negative

binomial model generalizes the Poisson model by allowing for an additional

source of variance above that due to pure sampling error. The logarithm of

the likelihood for this model is

(3) log L = log f(k.+Y) — log [(X.)
i=it=1

— log 1(.+l) + X.lo(ô) — (k.+y.)log(1+8)

where =
exp(X.D) and 8 is the variance parameter (VY.t =

exp(X.ui)(l+8)/8). We estimate both of these models by standard maximum

likelihood techniques.

Finally, in the last column of Table 4, we show estimates computed using

the quasi—generalized pseudo maximum likelihood (QGPML) method of

Gourieroux, Montfort and Trognon (1984. henceforth referred to as GMT).

This estimator is based on the following idea: suppressing the t subscript

for the moment, we assume that the true model for patents is

1. = exp[X. + e.}

where exp(e.) is a multiplicative disturbance drawn from an unspecified

distribution. Jf a constant term is included as one of the X's, we can

assume E[exp(e.] = 1 and V(exp(e.)J = Then the expected number of

patent applications conditional on the X's is exp(X.) and the variance is

exp(X.) + 2exp(2X.). That is. the variance equals the mean plus a

parameter times the mean squared. We can obtain consistent estimates of

the parameters for this model using nonlinear least squares, use these to

estimate form a vector of GLS weights which are proportional to the

variance of the dependent variable:
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A /¼2A2
wi=yi +ny

and use these weights to obtain more efficient estimates of the s. The

formula for the variance of these estimates is given in GMT, and is a

special case of the Eicker—White—Chamberlain formula with known weights.

Since all of these models differ only by their distributional

assumptions and not by specification of the expected value, they should all

yield roughly the same results unless the basic specification of the

equation is wrong. In fact, it can be shown (see GMT) that both the NLS

estimates and the Poisson estimates of the parameters are consistent if we

have correctly specified the expectation in Cl) and the true conditional

distribution satisfies certain regularity conditions given in their

article. Because the estimators make different assumptions about the error

structure they do yield different estimates of the standard errors, even in

the case of similar coefficients. In this respect, the nonlinear least

squares estimates, weighted or unweighted. are the most robust, since we

have computed standard errors which allow for unknown heteroskedasticity.

It can be seen from the table that in return for making a relatively mild

assumption about the form of the variance (that it is increasing in the

mean and mean squared), we obtain a considerable increase in the precision

of our estimates (compare columns 1 and 4).

In Table 4 we see that the results of using the four different

estimators on this dataset are qualitatively the same, although there is a

substantial increase in the coefficient on contemporaneous RtD as we move

from nonlinear least squares to weighted nonlinear least squares (GMT).

Since the estimators in columns 1.2. and 4 are consistent if we have the

correct model, but are estimated with different weighting schemes.2 one

possible explanation of the differences in coefficients. particularily the
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sum, may be that the relationship between patents and RD is not stable

across the firms in our sample. An indication that this is a problem is

provided by the substantial increase in standard errors when we use robust

e s t i ma t e 5.

The dimension along which the weighting schemes vary is basically

related to the size of the firms in the sample. Therefore we partitioned

then into roughly equal groups: those with assets (book value of net

plant) less than 25 million dollars in 1972 and those with assets greater

than 25 million. We then estimated the same model as column (4) of Table 4

on the two groups separately. Although the total R%D effect was the same

for the two groups (.66). it was distributed differently across the lags:

0.31, .11, .14, .11 for the smaller firms and .32, .01, .02. .31 for the

larger firms. This suggests that the maintained hypothesis of a roughly

constant lag structure across the firms may be one reason for the apparent

instability of our results. Unfortunately it is not possible with this

dataset to construct a more detailed behavioral model which is capable of

accounting for different lag structures across firms. We can only suggest

areas for future investigation.
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III. Correlated Effects or Lag Truncation Bias?

In obtaining the results shown in Table 4, there was no attempt to

control for permanent differences in the propensity to patent across firms,

except for the firm size variable and a dummy for the scientific sector.

We expect that these differences may bias our estimate of the RID

coefficients if they are correlated with the RID variables. All of the

estimates, except possibly those for the smaller firms, exhibited evidence

of a u—shaped lag structure, with the first and last coefficients being

larger than those in the middle. The large coefficient on the last lag

could be due to the correlation of the last R1D variable with earlier left—

out RID, but it turns out that under reasonable assumptions on the RID

process itself, it could also be caused by (correlated) fixed effects.

Assume that the log deflated RID variable itself follows a first order

autoregressive process:

R = y Rt + e. e a white noise process

Then the autocorrelation coefficients for the R1D process are (1. y

) and the partial autocorrelation coefficients are (y .0 .0 ,...). We

have seen that just such a pattern is consistent with our RID data. If we

maintain the hypothesis that RID follows an AR1 process, we can compute the

bias formula for the coefficients on RID in the presence of two types of

omitted variable: 1) pre—sample RID, which is correlated with in—sample RID

in a geometrically decaying way, and 2) a permanent fixed effect which has

the same correlation with RID in all periods. In the first case, the bias

formula for = where there are k lags in the regression.

is
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If only the most recent pre—sample RD belongs in the equation, the last

coefficient is biased upward by k+1 where k+1 is the coefficient on the

RtD one period before the sample begins. In general, the bias on the last

coefficient will be equal to
flk+yt•

In our case, since is close to

unity, we expect the last coefficient to be roughly equal to the sum of the

lag coefficients for all the earlier IttD plus its own coefficient.

On the other hand, if we assume a fixed effect s. for each firm has been

omitted, we obtain the formula

1 —y2 flea
—y 1+y —y 0

(5) plim = +
2

1

2
:

a (l—y ) 0I
—y 1 oa

1

lW)'
11ou
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1

where i is the correlation of the fixed effect with RID and op2 is the

variance of the effect. The implication is that we would see a large
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positive bias in the first and last coefficient and a smaller one in the

middle coefficients. If y is close to one, as it appears to be in our

data, the bias for coefficients k—1 would be negligible.

To explore this idea further, we use a longer sample of firms which have

RtD data available back to 1970. This leaves us with 346 firms, slightly

more than half of our original sample, and somewhat more heavily weighted

towards larger firms. For this sample, we obtain estimates for a model

with five lags on ReD (shown in Table 5). For comparison, estimates of the

original model (with three lags) on this new sample are also shown, It

appears from these results that some of the effect we observed in the last

lag was indeed due to truncation (note how the coefficient on R3 in column

1 is spread between H3, H4, and R5 in column 2) if we push the idea

further by estimating with seven lags on the last three years of data (1977

through 1979), the loading on the last lag seems to have disappeared.

However, we have also pushed the data beyond the point where it will yield

meaningful results, since significant instability in the RD coefficients

for adjacent years is now evident. The tentative conclusion is that there

is unlikely to be a substantial effect of RtD more than seven years old on

the patent activity of firms in the manufacturing sector.

To examine the other alternative, a fixed effects explanation of the u—

shaped lag distribution, we hypothesize a differing propensity to patent

for each firm which is (possibly) correlated with its RtD activity. The

reasoning in this section suggests that estimates conditional on the

permanent patenting :propensity of the firm should reduce both the first and

last lag coefficient if we have correlated effects and only the last one if

the problem is lag truncation (and the lag truncation is relatively

constant from year to year). This leads us to look at models which are

conditional on the permanent R%D behavior of firms in the next section.
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IV. Conditional Estimates

We take two different approaches to obtaining conditional estimates for

our model: the first includes all observed values of MD (for a firm) in

each equation with the coefficients constrained to be equal across the

different years. This is an attempt to control for fixed effects which may

be correlated with our MD variables, since we cannot simply estimate the

effects due to the shortness of our panel and the nonlinearity of the

model. The second approach imposes a specific distribution on the error

term, namely the negative binomial, allowing us to derive an estimator

which is conditional on the total number of patents applied for by the firm

in all the observed years.

This second approach was described in our earlier paper (Hausman, Hall,

and Griliches 1984); by conditioning on the total number of patents applied

for by the firm, it essentially allows for a different intercept for each

firm. Due to the multiplicative nature of the error in this model, this

translates into a different variance for each firm, so that the conditional

model estimates an overall variance parameter, but not the individual

intercepts or variances. The log likelihood for this model is

(6) log L log f(X.+y.) — log f(X.t) — log

+ log 1( X) + log f( — log [( it
Table 6 gives the results of estimates obtained in both ways for both of

our samples of firms. The first two columns are estimates of the

conditional negative binomial model, while the last two are estimated using

weighted nonlinear least squares on equation (1), where the firm effect
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includes all the R&D variables in all years. but with coefficients 8

constrained to be the same across the years. These two methods of

estimation are both compromises of a different sort: the negative binomial

version allows for an arbitrary firm effect while making a specific

distributional assumption while the GMT version controls for a firm effect

correlated with R&D in a particular way (linear in the exponential

function) but does not impose a distribution on the error term. It is

therefore reassuring that there are not huge differences between them.

The basic result is that none of the coefficients are significant except

those on current R&D. although the total effect of the lagged R&D does seem

to add about .05 to the coefficient on the sum, It makes very little

difference whether we look at the 642 firm sample or the sample of 346

firms which has a longer R&D history. From the fact that the coefficient

on contemporaneous R&D hardly changes from the unconditional estimates,

while that on the last R&D goes to zero we conclude that most of what we

have removed by conditioning is the R&D prior to our longest lag. This

confirms the result of Table 5 where we saw a considerable smearing of the

lag coefficients when we used a longer lag in the unconditional estimates.

However, the coefficients are fairly unstable and the standard errors are

large, so the most we can say is that there appears to be a fairly strong

contemporaneous effect, even when firm effects are controlled for.

Evidence for a contribution of lagged R&D to current patenting activity is

of the order of about 0.05 in the conditional estimates and possibly larger

in the unconditional.

Using an idea in Pakes and Griliches (1984), we can try to estimate more

lags in this equation by assuming that R&D follows a low order AR process.

in this case ARt. Since this implies a correlation only between the last

included R&D and the presample R&D. the estimates of all coefficients
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except the last will be unbiased by the omission of earlier flfl.

Accordingly, we leave the last coefficient free in each year of the

equation, which allows us to estimate six lags in the 1972—1979 sample and

eight lags in the 1970—1979 sample. The precision of the estimates

declines with the length of the lag since we have fewer and fewer

observations for the longer lags (lag six in the 1972—1979 sample is

estimated only from the 1979 equation, for example). However, this

constraint allows us to use all but one of the years of data on patents for

each sample of firms, so that we have seven years in the 642 firms sample

and nine in the 346 firms sample.

We show these results in Table 7; they are essentially the same as the

conditional estimates in Table 6. We also estimated this version of the

model including firm effects correlated with lttD; these tuned out to be

insignificant (X2(7) = 3.9 for the first column and x219)=11.2 for the

second), although the model in this form is highly collinear so that it is

difficult to draw firm conclusions.

The basic message of the results in this section is that permanent

differences across firms in the propensity to patent do not appear to bias

our estimates of the distributed lag relationship between patenting and

RtD, except insofar as they are related to the presample history of RID.

The results of the previous section suggested that this bias, if it

existed, would appear of equal magnitude in the first and last lag

coefficients of RftD. This does not seem to be the case; what bias there is

seems only to affect the last lag, and is eliminated by modelling the

presample RID process itself. This does not imply that there are no

differences in the propensity to patent across firms: the size variable

and the scientific sector dummy are still significant in the final version
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of the model. Nor does it imply that all the differences are uncorrelated

with RIO. but only that the correlation which is observed can be

successfully explained by controlling for the part of the R&D history which

we do not observe.
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V. Conclusion

What do we conclude from this lengthy exploration of a basically simple

model? First, there does seem to be a rather strong contemporaneous

relationship between RftD expenditures and patenting, which does not

disappear when we control for the size of the firm, its permanent patenting

policy, or even the effects of its RtD history. The remaining elasticity

appears to be about .3 with a fairly large standard error. Second, the

contribution of the observed RiD history to the current year's patent

applications is quite small, on the order of .05. Third, the contribution

of the unobserved or presample RtD appears to be large, about .25. and is a

possible explanation of the existence of the observed differences across

the firms in the propensity to patent.

One of the most interesting results in this paper has nothing to say

about patenting, although it provides one reason why we have diffculty

measuring the relationship within firm over time: the characterization of

the pattern of MD investment within a firm as essentially a random walk

with a relatively low error variance. In other words, MD budgets over

this short horizon (8 years) are roughly constant or growing slightly (in

constant dollars) and therefore it is difficult to imagine that they are

very sensitive to patenting success or vice versa.

Finally, it is difficult to give a clear cut answer to the question this

paper was originally designed to answer: is there a significant longrun

effect of successful R*D investment for which patents can serve as an

indicator? The evidence here indicates the longrun level of RtD can be

quite important, but the result is predicated on inference about the

unobserved part of the R*D process. There is very little direct evidence

of anything but simultaneity in the year—to—year movements of patents and
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RtD. This finding suggests another way of looking at the process: in

large industrial firms the fraction of RD expenditures devoted to

development rather than basic or applied research tends to be well over

fifty per cent (NSF 1982). It seems reasonable to suppose that successful

research leads both to a patent application and to a committment of funds

for development. A detailed investigation of this timing is beyond the

scope of annual data, but the strong evidence of simultaneity in patents

and R%D in our data conforms very well to this picture.

We should not close this paper on the usual note of the failure of the

data to live up to our econometric expertise. Even though we have not been

able to elucidate the RtD to patents lag structure better, our overall

findings are quite interesting, showing a persistent significant

contemporaneous relationship of RD and patenting and rather wide and semi-

permanent differences across firms in their patenting and RID policies.

The later finding provides the challenge for further research in a

different style: trying to understand how and why firms differ in their

responses to the technological environment they find themselves in.

23



Table 1

Selection of the Sample of Firms

Number in
76 Cross Section Number in Coverage

Sales All R%D>0 Sample All RtD>0

less than tiM 73 33 1 .014 .03
I1M—1OM 548 293 17 .031 .06
IbM—lOOM 1102 579 224 .20 .39
1100M—1B 669 415 259 .39 .62
118—108 204 167 131 .64 .78
more than SlOB 12 11 10 .83 .91

Total 2608 1498 642 .25 .43

1976 R t D Expenditures
in 1976 dollars

76 Cross section Sample Coverage

less than tiM 3.0 0.9 .30
S1M—1OM 65.3 4.7 .07
I1OM—I100M 525.2 243.1 .46
I100M—iB 2354.1 1790.7 .76
tiB—S1OB 7830.6 7224.1 .92
more than SlOB 4593.2 4529.2 .99

Total 15,371.3 13,793.0 .90
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Table 2

Key Variables in 1976

642 Firms 346 Firms

Variable Mm 1st Q Median 3rd Q Max Median

Sales (SM) .6 57 182 760 49.000 263
RtD (SM) .02 .73 2.3 11.0 1.256 3.8
Patents 0 1 3 18 831 5

Fraction with
zero patents .21 .17

Fraction in
scientific sector .37 .42

Notes to Table 2

All dollars are millions of 1976 dollars.

The scientific sector is defined as firms in the drug. computer, scientific
instrument, chcmica1 and electric component industries.
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Table 3

Time Series Analysis of Log R%T)

642 Firms

Part ial
Lag Autocorrelations Autocorrelat ions

0 1.0
I .986(.056) .998(.002)
2 .976(.056) .048(.034)
3 .968(.056) —.005(.o34)
4 .963(.058) .016(.034)
S .961(.058) —.035(.031)
6 .958(.058) —.004L032)
7 .954(.058) .038(.123)

Equation (1) (2) (3) (4) (5)

Log R1 .999(.002) .934(.039) .934(.039) .920(.040) .922C040)

Log R2 .068(.039) .073(.054) .058(.040) .059(.040)

Log R3 —.OOS(.034)

Log P0 .028(.009)

Log P1 .004(.011) .017(.009)

Log P2 [—.o07(.oos) .0O4(.O09-__________).
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Table 4

Estimates of the Patent Equation

642 Firms for 1975—1979

Equation

(1) (2) (3) (4)
Nonlinear Negative

Variable least squares Poisson binomial GMT

log It0 .12(.30) .28(.03) .21(.07) .30(.1O)

log .07(.21) .03(.04) .07(.10) .04(.08)

log R2 —.08(.15) —.001(.036) .08L10) .06(.08)

log It3 .28(.24) .28(.03) .16(.07) .25(.11)

sum log It .39(.09) .58 .52 .66(.05)

log book plant .23(.07) .21(.004) .14(.013) .19(.04)
in 1972

Dummy (sci. .36(.23) .30(.01) .28(.03) .21(.11)
sector)

8 .O51(.001)

Log likelihood 280,034. 297,016.

Notes:

1. All equations have a separate intercept for each year.

2. Standard errors for NLS and GMT are Nrobustv estimates
computed by generalized Eicker—White—Chamberlajn formula.
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Table 5

Estimates of the Patent Equation

346 Firms

Equation

(1) (2) (3)

Time period 1975—1979 1975—1979 1977—1979

Log It0 .16(.16) .19(.16) .34(.23)

Log It1 —.02(.1O) —.07(.1O) —.30(.l8)

Log It2 .07(.10) .07(.1O) .09(.l9)

Log It3 .36(.18) .06(.09) .02(.13)

Log .16(.08} .24(.17)

Log It5 .17(.12) -.O1(.l6)

Log It6 .1O(.12)

Log It7 .1O(.l2)

Sum log K .57(.07) .59(.07) .57(.07)

Log book plant .22(.05) .20(.06) .22C06)
in 1972

Dummy (sci. .30(.13) .30(.13) .30(.13)

sector)

The estimation method is GRIT, with separate intercepts for each
year, and robust standard errors.
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Table 6

Estimates with Firm Effects

Conditional GMT with
Negative Binomial Correlated Effects

Number of
Firms 642 346 642 346

Log .29(.04) .32(.O7) .23(.07) .30U.O)

Log —.Ol(.O5) —.08C09) —.02(.O7) —.lO(.08)

Log .08(.06) .06(.09) .04(.06) .06(.O6)

Log .02(.04) .O1(.O1) .03(.06) .0005(.06)

Log K4 .04(.07) .06(.07)

Log K5 .Ol(.05) .04(.07)

Sum Log K .38 .33 .29(.O8) .36(.l2)

Log Likelihood —131.539. —96,362.

ALL equations contain time dummies.
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Table 7

Gfl Estimates Assuming MU for R%D

Number of Firms 642 346
Years 1972—1979 1970—1979

Log .33(.09) .26(.09)

Log .03(.06) .04(.04)

Lag R2 .O5(.06) .Ol(.04)

Log R3 —.03tM6) —.03(.O5)

Log .ll(.08) .09(.06)

Log —.O8(.10) —.04(.06)

Log R6 .OO1(.19) .05C08)

Log R7 .17(.12)

Log —.27(.14)

Sum log R .41(.24) .29(.19)

Log book plant .18(.04) .20(.05)
in 1972

Dummy (sci. .2O(.1O) .27(.J.2)
sector)
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Notes

S
This is a revised version of NBER Working Paper #1227,

prepared for the Conference on Quantative Studies of RD in
Industry. Paris, September 9—10. 1983. held under the auspices of
the Ecole Nationale de la Statistique et de l'Administration
Economique and the National Bureau of Economic Research. We are
grateful for helpful comments by the participants in that

conference, especially by our discussants. Christian
Gourieroux and Paul Stoneman, and by Mark Schankerman.
This research was supported by the National Science Foundation
(PRA 81—08635) and the National Bureau of Economic Research
Program on Productivity and Technical Change. Elizabeth S.
Laderman provided extremely able research assistance.

1. Ideally we would like to perform this test also in the
other direction using patents on lagged patents and RID, but
there are difficulties in performing a comparable test due to the
discrete nature of the dependent variable already alluded to.

2. Another way to understand what the different estimators are
doing is to examine the first order conditions (again suppressing
the t subscript and writing e. for y1—exp(X.fl) ):

NLLS: exp(X.) e. = 0

1

Poisson: 1 e. I. = 0
1 1

Negative binomial: (1+2exp(X.U)) e. X. = 0

exp(X.)
GMT:

1 e.X. 0A 2A2 1 1i yi+t y

Note that the first order condition which we show for t?e
negative2 binomial model is conditional on the choice of q
Since B is being estimated simultaneously this is not the full
set of first order conditions for the problem; we merely inlude
it for illustrative purposes. Joint estimation of i is
precisely what makes this estimator inconsistent when the

distribution is not negative binomial, although the other three
estimators remain consistent in this case since they are all
version of weighted least squares.

Displaying the first order conditions in this way reveals that
the estimators only differ in their choice of weights, although
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NLLS and GMT are minimum distance estimators, and Poisson and
negative binomial are maximum likelihood estimators. They can
be ranked by the weight which tbey give to firms with larger X's,
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