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I. Introduction

Medical expenditures in the United States are high and increasing. A key policy question is

whether the benefits of additional medical expenditures exceed their costs, yet several chal-

lenges complicate the empirical measurement of returns to medical spending. One fundamental

challenge is that we expect less healthy patients to receive more medical inputs, likely leading

to a downward bias in estimates of returns. To overcome this challenge, a variety of studies

have used cross-sectional, time-series, and panel data techniques to identify patients who are

arguably similar in terms of underlying health status but who for some reason receive different

levels of medical spending. The results of such studies are mixed. On one hand, time-series and

panel data studies that compare increases in spending and improvements in health outcomes

over time have argued that increases in costs have been less than the value of the associated

benefits, at least for some technologies.1 On the other hand, cross-sectional studies that compare

“high-spending” and “low-spending” geographic areas tend to find large differences in spending

yet remarkably similar health outcomes.2

The lack of consensus in these studies may not be surprising since these studies often estimate

returns to different types of medical spending. The return to a dollar of medical spending likely

differs across medical technologies and across populations, and the return to the first dollar of

medical spending in any given context may differ from the return to the last dollar of medical

spending. The time-series studies often estimate returns to large changes in treatments that

occur over long periods of time. The cross-sectional studies, on the other hand, estimate returns

to additional, incremental spending that occurs in some areas but not others.3 While estimates

of returns to large changes in medical spending are useful summaries of changes over time,

estimates of marginal returns are needed to inform policy decisions over whether to increase or

decrease the level of care in a given context.

The main innovation in this paper is a novel research design for more direct estimation of

the marginal costs and marginal benefits of medical spending, which we can combine to estimate

1See, for example, Cutler & McClellan (2001), Cutler et al. (1998), Cutler et al. (2006), Luce et al. (2006),
McClellan (1997), Murphy & Topel (2003), and Nordhaus (2002).

2See, for example, Baicker & Chandra (2004), Fisher et al. (1994), Fuchs (2004), Kessler & McClellan (1996),
O’Connor et al. (1999), Pilote et al. (1995), Stukel et al. (2005), and Tu et al. (1997).

3Some have interpreted the cross-sectional results as evidence that marginal returns to spending may be low
in many contexts.

2



marginal returns. Our research design is applicable in settings with an observable, continuous

measure of health risk and a diagnostic threshold (based on this risk variable) that generates

a discontinuous probability of receiving additional treatment. In such empirical settings, we

can use a regression discontinuity framework: as long as other factors are smooth across the

threshold (an assumption we investigate in several empirical tests), individuals within a small

bandwidth on either side of the threshold should differ only in their probability of receiving

additional health-related inputs and not in their underlying health. This research design allows

us to estimate marginal returns to medical spending for patients near such thresholds in the

following sense: conditional on estimating that, on average, patients on one side of the threshold

incur additional medical costs, we can estimate the associated benefits by examining average

differences in health outcomes across the threshold. Combining these cost and benefit estimates

then allows us to calculate the return to this increment of additional spending, or “average

marginal returns.”

We apply our research design to study “at risk” newborns, a population that is of interest

for several reasons. First, even relatively small reductions in mortality for newborns can be

magnified in terms of the total number of years of life saved. Second, technologies for treating

at-risk newborns have expanded tremendously in recent years, at very high cost. For example,

a 2005 Agency for Healthcare Research and Quality study finds that the top two most expen-

sive diagnoses (regardless of age) are “infant repiratory distress syndrome” (average charges

of $91,000) and “premature birth and low birthweight” (average charges of $79,300). Third,

although existing estimates suggest that the benefits associated with large changes in spending

on at risk newborns over time have been greater than their costs (Cutler & Meara, 2000), there

is a dearth of evidence on the returns to incremental spending in this context. Fourth, studying

newborns allows us to focus on a large portion of the health care system, as child birth is one

of the most common reasons for hospital admission in the US. This patient population also

provides samples large enough to detect effects of additional treatment on infant mortality.

This paper focuses on the “very low birth weight” (VLBW) classification at 1500 grams

(just under 3 pounds, 5 ounces) - a threshold commonly cited in the medical literature. We also

consider other classifications based on birth weight and alternative measures of newborn health.

From an empirical perspective, birth weight-based thresholds provide an attractive basis for a

3



regression discontinuity design for several reasons. First, they are unlikely to represent breaks in

underlying health risk. A 1985 Institute of Medicine report, for example, notes: “...designation

of very low birth weight infants as those weighing 1,500 grams or less reflected convention rather

than biologic criteria.” Second, it is generally agreed that birth weight cannot be predicted in

advance of delivery with the accuracy needed to change (via birth timing) the classification of a

newborn from being just above 1500 grams to being just below 1500 grams. Thus, although we

empirically investigate our assumption that the position of a newborn just above 1500 grams

relative to just below 1500 grams is “as good as random,” the medical literature suggests this

assumption is also intuitively plausible.

To preview our main results, using data on the census of US births in available years from

1983-2002, we find that one-year mortality increases by approximately one percentage point as

birth weight crosses the VLBW threshold from above, which is large relative to mean one-year

mortality of 5.5% just above 1500 grams. This increase in mortality is in stark contrast to the

overall decline in mortality as birth weight increases, and to the extent that heavier newborns

are healthier in unobservable ways, the increase in mortality that we observe is all the more

striking. Second, using hospital discharge records for births in five states in available years from

1991-2006, we estimate a $4,000 increase in hospital costs for infants just below the 1500 gram

threshold, relative to mean hospital costs of $40,000 just above 1500 grams. Taken together,

our estimates suggest that the cost of saving a statistical life for newborns near 1500 grams is

approximately $550,000 in 2006 dollars. The upper bound of the 95% confidence interval on

this estimate is approximately $1.2 million. As we discuss in Section IX, our estimate can be

compared to a variety of cost-effectiveness benchmarks. Compared to a time-series estimate in

the spirit of Cutler & Meara (2000), which compares changes in spending and mortality over

time for newborns within our bandwidth (described in more detail in Section IX), our estimate

of marginal returns is similar or slightly more cost-effective.

The remainder of the paper is organized as follows. Section II discusses the available evidence

on the costs and benefits of medical care for at-risk newborns, gives a brief background on the

origins of the at-risk newborn classifications we study, and discusses why these classifications

might affect the provision of medical treatment. Section III describes our data and analysis

sample, and Section IV outlines our empirical framework, estimation strategy, and bandwidth
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selection. Section V presents our main results, and Section VI presents several robustness and

specification checks. Section VII examines variation in our estimated treatment effects over time,

across hospitals, and across newborn subgroups. Section VIII discusses evidence from other

thresholds. In Section IX we combine our main estimates to calculate two-sample estimates of

marginal returns, and we conclude in Section X.

II. Background

A. Costs and benefits of medical care for at-risk newborns

Technologies for treating at-risk newborns have expanded tremendously in recent years - in-

cluding the development of improved ventilators and an expansion in the number of neonatal

intensive care units. Many of these medical advances have been very expensive. For example, in

2005 the US Agency for Healthcare Research and Quality estimated that the two most expensive

hospital diagnoses (regardless of age) were “infant respiratory distress syndrome” and “prema-

ture birth and low birth weight.”4 Russell et al. (2007) estimated that in the US in 2001, preterm

and low-birth weight diagnoses accounted for 8% of newborn admissions, but 47% of the costs for

all infant hospitalizations (at $15,100 on average).5 Despite their high and highly-concentrated

costs, use of new neonatal technologies has continued to expand. An example related to our

threshold of interest is provided by the Oxford Health Network’s 362 hospitals, where the use of

high-frequency ventilation among VLBW infants tripled between 1991 and 1999 (Horbar et al.,

2002).

These high costs naturally motivate the question of what these medical advances have been

“worth” in terms of improved health outcomes. Anspach (1993) and others discuss the paucity

of randomized controlled trials which measure the effectiveness of neonatal intensive care. In the

absence of such evidence, some have questioned the effectiveness of these increasingly intensive

treatment patterns (Enthoven, 1980; Grumbach, 2002; Goodman et al., 2002).6 On the other

4See http://www.ahrq.gov/data/hcup/factbk6/factbk6.pdf (accessed 29 October 2008).
5It is worth noting that these costs may disproportionately fall on the public sector. Russell et al. (2007) note

that of all preterm/low birth weight infant stays, 42% designated Medicaid as the expected payer, relative to
37.5% for “uncomplicated” newborns.

6Grumbach (2002), for example, argues: “Neonatal intensive care units are profit-making centers for hospi-
tals, commanding high payments from private and public insurance plans,” and that “uncontrolled growth” in
neonatology “has less to do with the true need of communities for effective clinical services than with the financial
incentives.” Going a step further, Goodman et al. (2002) ask whether “infants might be harmed by the availability
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hand, Cutler & Meara (2000) examine time-series variation in birth weight-specific treatment

costs and mortality outcomes and argue that medical advances for newborns have had large

returns.7

B. “At risk” newborn classifications

We focus on a commonly-used newborn risk classification: the “very low birth weight” (VLBW)

classification at 1500 grams (just under 3 pounds, 5 ounces). We also examine other birth

weight classifications, including the “extremely low birth weight” (ELBW) classification at 1000

grams (just over 2 pounds, 3 ounces) and the “low birth weight” (LBW) classification at 2500

grams (just over 5 pounds, 8 ounces), as well as gestational-age based measures such as the

“prematurity” classification at 37 gestational weeks - where gestational weeks are defined as

the number of weeks since the first day of the mother’s last menstrual period. This subsection

provides some background on these three classifications.8

Physicians had begun to recognize and assess the relationships among inadequate growth

(low birth weight), shortened gestation (prematurity), and mortality at least by the early 1900s.

The 2500 gram low birth weight classification, for example, has existed since at least 1930, when

a Finnish pediatrician advocated 2500 grams as the birth weight below which infants were at high

risk of adverse neonatal outcomes. This recommendation was formally adopted by the World

Health Organization (WHO) on two separate occasions, in 1948 and 1950. A 1985 Institute

of Medicine (IOM) report notes that both recommendations indicated that the use of a birth

weight marker served as a shorthand notation for a variety of interrelated physiologic processes

affecting fetal growth and the duration of gestation. The 1985 IOM report also notes that over

time, interest increased in the outcomes of subgroups of low birth weight infants, in particular

the fate of the smallest infants, and that conventionally “very low birth weight” infants were

defined as those born weighing 1500 grams or less.

of higher levels of resources.”
7Cutler and Meara’s empirical approach assumes that all within-birth weight changes in survival have been

due to improvements in medical technologies. This approach is motivated by the argument that conditional on
birth weight, the overwhelming factor influencing survival for low birth weight newborns is medical care in the
immediate postnatal period (Paneth, 1995; Williams & Chen, 1982). However, others have noted that it is possible
that underlying changes in the health status of infants within each weight group (due to, for example, improved
maternal nutrition) are responsible for neonatal mortality independent of newborn medical care (United States
Congress, Office of Technology Assessment, 1981).

8The discussion in this section draws heavily from United States Institute of Medicine (1985).
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The key to our empirical strategy is that these cutoffs appear to truly reflect convention

rather than strict biologic criteria. For example, the 1985 IOM report notes:

“Birth weight is a continuous variable and the limit at 2,500 grams does not represent

a biologic category, but simply a point on a continuous curve. The infant born at

2,499 grams does not differ significantly from one born at 2,501 grams on the basis

of birth weight alone...As with the 2,500 gram limit, designation of very low birth

weight infants as those weighing 1,500 grams or less reflected convention rather than

biologic criteria.”

The 1961 WHO Expert Committee on Maternal and Child Health issued further recommen-

dations emphasizing the importance of the 2500 gram and 37 gestational week classifications.

While gestational age is a natural consideration when determining treatment for newborns with

low birth weights, a comparison of treatments by gestational age has the added complication

that gestational age is a choice variable that is likely affected by the prematurity thresholds.

Gestational age is known to women in advance of giving birth, and women can choose to time

their birth (for example, through an induced vaginal birth or through a C-section) based on

gestational age. Thus, a priori we would expect that mothers who give birth prior to 37 ges-

tational weeks may be different from mothers who give birth after 37 gestational weeks on the

basis of factors other than gestational age. It is thought that birth weight, on the other hand,

cannot be predicted in advance of birth with the accuracy needed to change (via birth timing)

the classification of a newborn from being just above 1500 grams to being just below 1500 grams;

this assertion has been confirmed from conversations with physicians,9 as well from studies such

as Pressman et al. (2000). Gestational age is also thought to be considerably more difficult to

measure than is birth weight (see, for example, the 1985 IOM report); however, to the extent

that we as researchers observe the same measure of gestational age that women and doctors

9We use the phrase “conversations with physicians” somewhat loosely throughout the text of the paper to
reference discussions with several physicians as well as readings of the relevant medical literature and references
such as the Manual of Neonatal Care for the Joint Program in Neonatology (Harvard Medical School, Beth Israel
Deaconess Medical Center, Brigham and Women’s Hospital, Children’s Hospital Boston) (Cloherty & Stark,
1998). The medical doctors we spoke with include Dr. Christopher Almond from Children’s Hospital Boston
(Boston, MA); Dr. Burak Alsan from Harvard Brigham and Women’s/Children’s Hospital Boston (Boston, MA);
Dr. Munish Gupta from Beth Israel Deaconess Medical Center (Boston, MA); Dr. Chafen Hart from the Tufts
Medical Center (Boston, MA); and Dr. Katherine Metcalf from Saint Vincent Hospital (Worchester, MA). We
are very grateful for their time and feedback, but they are of course not responsible for any errors in our work.

7



observe, this is not “measurement error” in the traditional sense and should not be problematic

for our research design.

To define treatment of observations occurring exactly at the relevant cutoffs, we rely on

definitions listed in the International Statistical Classification of Diseases and Related Health

Problems (ICD-9) codes. According to the ICD-9 codes, very low birth weight is defined as

having birth weight strictly less than 1500 grams, and analogously (with a strict inequality) for

the other thresholds we examine.

C. Should these cutoffs matter?

Of course, birth weight and gestational age are not the only factors used to assess newborn

health. For example, respiratory rate, color, APGAR score (an index of newborn health), head

circumference, and presence of congenital anomalies could also affect physicians’ initial health

assessments of infants (Cloherty & Stark, 1998). This implies that we should expect our cutoffs

of interest to be “fuzzy” rather than “sharp” discontinuities (Trochim, 1984): that is, we do not

expect the probability of a given treatment to fall from 1 to 0 as one moves from 1499 grams

to 1501 grams, but rather expect a change in the likelihood of treatment for newborns classified

into a given risk category.

¿From an empirical perspective, the fact that we observe a first stage in terms of a discon-

tinuity in treatment provision around 1500 grams suggests that hospitals or physicians do use

these cutoffs to determine treatment either through hospital protocols or as rules of thumb.10

As one example, the 1500 gram threshold is commonly cited as a point below which diagnostic

ultrasounds should be used. Diagnostic ultrasounds (also known as cranial ultrasounds) are used

to check for bleeding or swelling of the brain as signs of intraventricular hemorrhages (IVH) -

a major concern for at-risk newborns. The neonatal care manual used by medical staff at the

Longwood Medical Area (Boston, MA) notes: “We perform routine ultrasound screens in in-

fants with birth weight <1500gm (Cloherty & Stark, 1998).” We will investigate differences in

procedure use, including diagnostic ultrasounds, below.

Hospital protocols could also potentially be informed by Current Procedural Terminology

(CPT) billing codes and ICD-9 diagnosis codes that are categorized by birth weight (ICD-9

10As we will discuss more in Section IV, we may not observe all relevant first stage inputs. That said, we do
find evidence of a first stage for summary measures of treatment, as well as for some particular procedures.
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codes V21.30-V21.35 denote birth weights of 0-500, 500-999, 1000-1499, 1500-1999, 2000-2500,

etc.). Note that if prices differ across our threshold of interest, then any discontinuous jump in

charges could in part be due to changes in prices rather than changes in quantities. In practice,

we argue that a substantial portion of our observed jump in charges is a ”quantity” effect rather

than a ”price” effect, for two reasons. First, we find evidence of discontinuities in quantities,

such as length of stay, implying that changes in prices do not explain our entire measured

discontinuities in charges. Second, the limited evidence available to us suggests that prices do not

vary discontinuously across the VLBW for many of the births in our data. We unfortunately do

not observe prices directly in any of our hospital discharge record data sets. Information on the

payment methods used to reimburse hospitals is notoriously complex and frequently incomplete,

and the most systematic information available is for hospitalizations covered by public insurers

such as Medicare and Medicaid. Medicaid is relevant for our purposes, since as noted above

the latter covers a large share of deliveries nationally. A recent study of Medicaid payment

systems (Quinn, 2008) found that although some states rely on payment systems that explicitly

incorporate birth weight categories into the reimbursement schedules, most states - including

California - rely on systems which do not explicitly utilize birth weight.11 Since we empirically

observe a first stage in California data, this (combined with the length of stay results) suggests

that a substantial portion of our observed jump in charges is a “quantity” effect rather than a

“price” effect.

Another explanation for why these cutoffs may affect treatment provision is that they may

be used as informal “rules of thumb” by physicians.12 Discussions with physicians suggest that

these potential discontinuities are well-known, salient cutoffs below which newborns may be at

increased consideration for receiving additional treatments. Clinicians (as well as researchers)

frequently collapse continuous measures of health (such as birth weight) into binary measures

such as “low birth weight” versus “normal birth weight.” Some have argued that such heuristics

11More precisely, because birth weight is thought to be the best predictor of neonatal resource use (Lichtig
et al., 1989), some newer DRG-based (that is, Diagnosis Related Group) systems explicitly incorporate birth
weight categories into the reimbursement schedules. However in an analysis of the use of various types of DRG
systems in state Medicaid programs, Quinn (2008) finds that most states rely on either a per diem system or
the CMS-DRG system, neither of which explicitly utilize birth weight. Almost half of states use the CMS-DRG
system (CO, IA, IL, KS, KY, MI, MN, MT, NC, ND, NE, NH, NJ, NM, OH, OR, PA, SC, SD, TX, UT, WI,
WV) and twelve states use a per diem system (AK, AZ, CA, FL, HI, LA, MO, MS, NV, OK, TN, VT) (Quinn,
2008).

12Medical malpractice environments could also be one force affecting adherence to either formal rules or informal
rules of thumb.
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can influence medical treatment by acting as “silent adjudicators of clinical practice” (McDonald,

1996). Others have noted that rules of thumb in medicine can be “useful and even necessary

shortcuts guiding search and choice under uncertainty and time constraint” (Andre et al., 2002).

III. Data

A. Data description

Our empirical analysis requires data with information on birth weight and some welfare-relevant

outcome, such as medical care expenditures or health outcomes. Our primary analysis uses three

data sets: first, the National Center for Health Statistics (NCHS) birth cohort linked birth/infant

death files; second, a longitudinal research database of linked birth record-death certificate-

hospital discharge data from California; and third, hospital discharge data from several states

in the Healthcare Cost and Utilization Project (HCUP) state inpatient databases.

The NCHS birth cohort linked birth/infant death files, hereafter the “nationwide data,”

include data for a complete census of births occurring each year in the US, for the years 1983-

1991 and 1995-2002 - approximately 66 million births.13 The data include information reported

on birth certificates linked to information reported on death certificates for infants who die

within one year of birth. The birth certificate data offers a rich set of covariates (for example,

mother’s age and education), and the death certificate data includes a cause of death code.

Beginning in 1989, these data include some treatment variables - namely, indicators for use of a

ventilator for less than or (separately) greater than thirty minutes after birth.

Our other two data sources offer treatment variables beyond ventilator use. The California

research database is the same data set used in Almond & Doyle (2008). These data were

created by the California Office of Statewide Health Planning and Development, and include

all live births in California from 1991-2002 - approximately 6 million births. The data include

hospital discharge records linked to birth and death certificates for infants who die within one

year of birth. The hospital discharge data include diagnoses, course of treatment, length of

hospital stay, and charges incurred during the hospitalization. The data are longitudinal in

nature and track hospital readmissions for up to one year from birth as long as the infants enter

13NCHS did not produce linked birth/infant death files from 1992-1994.
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a California hospital. This longitudinal aspect of the data allows us to examine charges and

length of stay even if the newborn is transferred to another hospital.14

The HCUP state inpatient databases allow us to analyze the universe of hospital discharge

abstracts in four other states that include the birth weight variable necessary for our analysis.15

Specifically, we use HCUP data from Arizona for 2001-2006, New Jersey for 1995-2006, Maryland

for 1995-2006, and New York for 1995-2000 - approximately 10.5 million births (see Appendix

Table A3 for the number of births by state and year within our pilot bandwidth of 3 ounces

of the VLBW cutoff).16 The HCUP data include variables similar to those available in the

California discharge data, but unlike the California data are not linked to mortality records nor

to hospital records for readmissions or transfers. Although we cannot link these discharge data

with mortality data directly, we can examine mortality outcomes for these newborns using a

sub-sample of our nationwide data, as our nationwide data and the HCUP discharge data relate

to the same births.17 In much of our analysis, we pool the California and HCUP data to create

a “five-state sample.”

B. Analysis sample

Sample selection issues are minimal. In our main specifications, we pool data from all available

years, although we do separately examine results across time periods. For the main results,

we limit the sample to those observations with non-missing, non-imputed birth weight informa-

tion.18 Fortunately, given the demands of our empirical approach, these data provide relatively

large samples: over 200,000 newborns fall within our pilot bandwidth of 3 ounces around the

14The treatment measures that include transfers described below include treatment at the hospital where the
newborn was initially transferred.

15The State Inpatient Data (SID) we analyze contain the universe of inpatient discharge records from partici-
pating states. (Other HCUP databases, such as the National Inpatient Sample, are a sub-sample of the SID data.)
At present, 39 states participate in the SID. Of these 39 states, 10 report the birth weight of newborns. We have
obtained HCUP data for four of the ten states with birth weight (with the exception of North Carolina, we have
discharge data for the top four states by number of births: New York, New Jersey, Maryland, and Arizona).

16In ongoing work, we intend to supplement our analysis with additional years of HCUP data from these four
states.

17Note that our nationwide data include births that took place outside of hospitals, whereas our California
and HCUP discharge data by construction only capture deliveries taking place in hospitals. In practice, 99.2% of
deliveries in our national sample occurred in a hospital. In some specifications we limit our nationwide data to
the sample of hospitalized births, for greater comparability.

18In practice this sample selection criteria excludes a very small number of our observations. For the full NCHS
data, for example, dropping observations with missing or imputed birth weights drops only 0.12% of the sample.
We also exclude a very small number of observations in early years of our data that lack information on the time
of death.
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1500 gram threshold in the nationwide data, and we have approximately 30,000 births in the

same interval when we consider the hospital discharge data. We discuss bandwidth selection

below.

IV. Empirical framework and estimation

A. Empirical framework

Consider the following structural equation for the effect of an input I (for example, charges for

medical treatments) on an outcome variable Y (for example, one-year mortality):

Y = f(Z, I, e), Z ∈ [Z∗
− h,Z∗ + h] (1)

where Z is the running variable (birth weight), e is unobserved heterogeneity, and h is a band-

width around Z∗. As can be seen by comparing Figure 2 and Figure 3, higher mortality is

empirically associated with higher charges, reflecting differences in underlying health. We aim

to overcome the confounding influence of underlying health with our regression discontinuity

design, which we introduce in an instrumental variables framework. The instrument Z∗ is an

indicator that divides observations according to a threshold in the running variable. In our

context, we define the instrumental variable Z∗ using the VLBW threshold at 1500 grams as

follows:

Z∗ =











1 if VLBW (birth weight < 1500 grams)

0 if not VLBW (birth weight ≥ 1500 grams)

Our first stage equation can then be written as:

I = g(Z∗, Z, v), Z ∈ [Z∗
− h,Z∗ + h] (2)

where v is unobserved heterogeneity. In order for Z∗ to be a valid instrument, the two usual

instrumental variables conditions must hold. First, there must exist a first stage relationship
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between Z∗ and I; note that this relationship will be conditional on our running variable Z.

Second, the exclusion restriction requires that the only mechanism through which the instrument

Z∗ affects our outcome variable (here, mortality), conditional on Z falling within the bandwidth,

is through its effect on the input I. If we observed and were able to measure all relevant inputs

in I, then we could argue for the validity of this exclusion restriction. However, for any given

I that we observe, it is likely that there exists some additional health-related input that we do

not observe.19 It is unclear how important such unobserved inputs are in practice, but to the

extent they are important, a first stage variable I such as medical expenditures would violate

the exclusion restriction.

On one hand, our reduced form estimate of the direct impact of our instrumental variable

Z∗ on mortality is itself interesting and policy relevant, as this estimate includes the effects of

all relevant inputs. On the other hand, our instrumental variable estimate is also of substantive

interest, and thus having a sense of the potential magnitude of the effects of unobserved inputs is

useful. To the extent that medical inputs are much more important relative to parental inputs in

the very short run after birth (say, within twenty-four hours of birth), we can test for impacts on

short run mortality measures and be somewhat assured that other unobserved parental inputs

are not likely to affect these estimates. As we will discuss in Section V, we do indeed find effects

on short run mortality measures.

We examine a number of different first stage variables, which we discuss at length below.

Broadly, we examine first stage variables in two categories: “summary treatment measures” (such

as charges and length of stay) that capture many aspects of hospital treatment, and “mechanism

variables” (such as ventilation) that could be the margins through which discontinuities in

summary treatments occur.

In Section V, we report first stage and reduced form estimates separately. In Section IX, we

combine these estimates into two-sample estimates in which the numerator is the reduced form

estimate and the denominator is the first stage estimate.20

19As an example, consider the case in which the length of time parents hold their newborns has a direct effect
on mortality, that this variable is unobserved in the hospital claims data we study, and that this variable varies
discontinuously across our cutoff (which could be the case if the 1500 gram classification is salient to parents).

20Without covariates, the two-sample estimate is equivalent to the Wald and two stage least squares estimates,
given our binary instrumental variable. Even though the first stage and reduced form estimates come from
different data sources, we can standardize the samples and covariates to produce the same estimates that we
would attain from a single data source.
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B. Estimation

To estimate the size of the discontinuity in outcomes and treatment, we follow standard methods

for regression discontinuity analysis (as in, for example, Imbens & Lemieux (2008)). First, we

estimate and report a local-linear regression. This estimate incorporates information from a

bandwidth of 3 ounces (85 grams) above and below the threshold. We describe the selection

of this bandwidth in the next subsection. We use a triangle kernel so that the weight on each

observation decays with the distance from the threshold, and we report asymptotic standard

errors (Cheng et al., 1997; Porter, 2003).21

In addition, within the bandwidth h, we estimate the following model for infant i weighing

g grams in year t:

Yi = α0+α1V LBWi+α2V LBWi∗(gi−1500)+α3(1−V LBWi)∗(gi−1500)+αt+αs+X ′
iδ+εi (3)

where Y is an outcome such as one-year mortality, and V LBW is an indicator that the newborn

was classified as very low birth weight (that is, strictly less than 1500 grams). We include

separate gram trend terms above and below the cutoff, parameterized so that a test of whether

the trend is the same above and below the threshold is simply a matter of testing whether

α2 = α3. In some specifications, we include indicators for each year of birth t, indicators for

each state of birth s, and newborn characteristics, X ′
i
. The newborn characteristics that are

available for all of the years in the nationwide data include an indicator that the mother was born

outside the state where the infant was born, as well as indicators for mother’s age, education,

father’s age, the newborn’s sex, gestational age, race, and plurality. We estimate this model

by OLS with heteroskedastic-robust standard errors. Probit results for our binary dependent

variables give very similar results, as described below.

C. Bandwidth selection

Our pilot bandwidth includes newborns with birth weights within 3 ounces (85 grams) of 1500

grams, or from 1415 grams to 1585 grams. We chose this bandwidth by a cross-validation

procedure where the relationships between the main outcomes of interest and birth weight were

21We are grateful to Doug Miller for providing code from Ludwig & Miller (2007).
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estimated with local linear regressions and compared to a 4-th order polynomial model. These

models were estimated separately above and below the 1500 gram threshold. The bandwidth

that minimized the sum of squared errors between these two estimates between 1200 and 1800

grams tended to be between 60 and 70 grams for the mortality outcomes. For the treatment

measures, the bandwidth tended to be closer to 40 grams. Given that we are estimating the

relationship at a boundary, a larger bandwidth is generally warranted. We chose to use a pilot

bandwidth of 85 grams - 3 ounces22 - for the main results. This larger bandwidth incorporates

more information that can improve precision, but of course including births further from the

threshold departs from the assumption that newborns are nearly identical on either side of the

cutoff. That said, our local linear estimates allow the weight on observations to decay with the

distance from the threshold. In addition, the results are qualitatively similar across a wide range

of bandwidths (see Table 6). To give a clearer sense of how our data look graphically, our figures

report means for a slightly wider bandwidth - namely, the 5 ounces above and below.

V. Results

A. Frequency of births by birth weight

Figure 1 reports a histogram of births between 1350 grams and 1650 grams in the nationwide

sample, which has several notable characteristics.23 First, there are pronounced reporting heaps

at the gram equivalents of ounce intervals. Although there are also reporting heaps at “round”

gram numbers (such as multiples of one hundred), these heaps are much smaller than those

observed at gram equivalents of ounce intervals. Discussions with physicians suggest that birth

weight is frequently measured in ounces, although typically also measured in grams as well for

purposes of billing and treatment recommendations. Given the nature of the variation inherent

in the reporting of our birth weight variable, our graphical results will focus on data which has

been collapsed into one-ounce bins.24

Second, we do not observe irregular reporting heaps around our 1500 gram threshold of

22As discussed in the next section, our birth weight variable has pronounced reporting heaps at gram equivalents
of ounce intervals. We specify the bandwidth in ounces to ensure that the sample sizes are comparable above and
below the discontinuity, given these trends in reporting.

23See Appendix Figure A1 for a wider set of births.
24Specifically, we construct one-ounce bins radiating out from our threshold of interest (e.g. 0-28 grams from

the threshold, 29-56 grams from the threshold, etc.).
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interest, consistent with women being unable to predict birth weight in advance of birth with

the accuracy necessary to move their newborn (via birth timing) from just above 1500 grams

to just below 1500 grams. The lack of heaping also suggests that physicians or hospitals do

not manipulate reported birth weight so that, for example, more newborns fall below the 1500g

cutoff and justify higher reimbursements. In particular, the frequency of births at 1500 grams is

very similar to the frequency of births at 1400 grams and at 1600 grams, and the ounce markers

surrounding 1500 grams have similar frequencies to other ounce markers.

It is worth noting that more complicated manipulations could in theory be consistent with

Figure 1. For example, if doctors re-label unobservably sicker newborns weighing just above 1500

grams to be labeled as being below 1500 grams (to, for example, receive additional treatments)

and symmetrically “switched” the same number of other newborns weighing just below 1500

grams to be labeled as being above 1500 grams, this could be consistent with the smooth

distribution in Figure 1. This seems unlikely, particularly given that we will later show that

other covariates (such as gestational age) are smooth across our 1500 gram cutoff - implying

that doctors would need to not only “symmetrically switch” newborns but symmetrically switch

newborns who are identical on all of the covariates we observe. The assumption that such

switching does not occur is an assumption we argue is plausible.25

More formally, McCrary (2008) suggests a direct test for possible manipulation of the running

variable - in our case, birth weight. We implement his test by collapsing our nationwide data

to the gram level - keeping a count of the number of newborns classified at each gram - and

then regressing that count as the outcome variable in the same framework as our regression

discontinuity estimates. Using this test, we find no evidence of manipulation of the running

variable around the VLBW threshold.26

25Note that to the extent that hospitals or physicians may have a larger incentive to categorize relatively costly
newborns as VLBW to justify greater charge amounts, such gaming would tend to lead to higher mortality rates
just prior to the threshold, contrary to our main findings.

26Specifically, for 1500 grams we estimate a coefficient of -2,100 (s.e.=1500, p=0.1898). This test is useful under
the assumption that the distribution of births would be smooth in the absence of the incentives created by the
VLBW cutoff. An alternative test for gaming that does not rely on this assumption is to test whether newborns
look similar on observable variables above and below the cutoff, which we examine in Figure 5.
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B. Health outcomes

Figure 2 reports mean mortality for all infants in one-ounce bins close to the VLBW threshold.

Note that the one-year mortality rate is relatively high for this at-risk population: close to 6%.

The figure shows that even within our relatively small bandwidth, there is a general reduction

in mortality as birth weight increases, reflecting the health benefits associated with higher birth

weight. The increase in mortality observed just above 1500 grams appears to be a level shift,

with the slope generally similar above and below the threshold.27 The mean mortality rate in the

ounce bin just above the threshold is 6.15%, which is 0.46 percentage points larger than mean

mortality just below the threshold of 5.69%. We see a similar .48 percentage point difference

for 28-day mortality - between 4.39% above the threshold and 3.91% below the threshold. This

suggests that most of the observed gains in 28-day mortality persist to one year.

Table 1 reports the main results. The first reported outcome is one-year mortality, and the

local-linear regression estimate is -0.0121. This implies a 22% reduction in mortality compared

to a mean mortality rate of 5.53% in the 3 ounces above the threshold (the “untreated” group

in this regression discontinuity design). OLS point estimates are slightly smaller, but still large:

-0.0095. The estimates are similar when probit models are used as well.28

For our OLS models, we report heteroskedastic-robust standard errors. To address potential

concerns about discreteness in our dependent variable, we perform the standard error correction

suggested by Card & Lee (2008). In our application, this correction amounts to clustering at

the gram-level. Doing so increases the magnitude of our standard errors, but our main results

remain statistically significant at conventional levels.29

The gram-trend terms reflect the overall downward slope in mortality. The point estimates

27Note that in this graph there is also a smaller, visible “jump” in mortality around 1600 grams, an issue we
address in several ways. First, if we construct graphs analogous to Figure 2 which focus on 1600 grams as a
potential discontinuity, there is no visible jump at 1600 grams. Exploration of this issue reveals that the slightly
different groupings which occur when one-ounce bins are radiated out from 1500 grams relative to when one-ounce
bins are radiated out from 1600 grams explain this difference, implying that small-sample variation is producing
this visible “jump” at 1600 grams in Figure 2. Reassuringly, the “jump” at 1500 grams is also visible in the graph
which radiates one-ounce bins from 1600 grams, suggesting that small-sample variation is not driving the visible
discontinuity at 1500 grams. Finally, when we estimate a discontinuity in a formal regression framework at 1600
grams we find no evidence of either a first stage or a reduced form effect at 1600 grams.

28A probit model predicts a difference of -0.0095 in a model with no controls other than the trend terms
(evaluated at the cutoff), and -0.0065 in a model with full controls evaluated at the cutoff and the mean of the
other control variables.

29For example, our OLS estimate of -0.0095 (s.e.=0.0022) for one-year mortality has a standard error of 0.0048
when we cluster at the gram level.
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suggest a steeper slope after the threshold.30 In terms of the covariates, the largest impact

on our main coefficient of interest is found when we introduce year indicators, likely because

medical treatments and associated survival rates have changed so much over time. The estimated

change in mortality around the threshold in the specification with the year indicators decreases

to -0.0076. Again, this remains a large effect, and we also consider heterogeneity across time

periods below. When we include the full set of covariates, the results are largely unchanged.31

To be conservative, in the rest of our analysis, we always report a specification that includes the

full set of covariates.

The remaining outcomes in Table 1 are mortality measures at shorter time intervals. The

28-day mortality coefficient is similar in magnitude to the one-year mortality coefficient, despite

a smaller mean mortality rate of .0383%. Given different mean mortality rates, the estimate

implies a 23% reduction in 28-day mortality as compared to a 17% reduction in one-year mortal-

ity. As discussed above, the similarity between the one-year and 28-day mortality rates implies

that any effects of being categorized as very-low birth weight are seen in the first month of life

- a time when these infants are largely receiving medical care (as described more below in our

length of stay results). Similarly, 7-day and 24-hour mortality rates are lower for those who are

very low birth weight compared to those just above the threshold, with differences of between

16% and 19% compared to the mean mortality rate for infants above the threshold. Finally,

1-hour mortality rates (not shown) are also higher for those born just above the threshold.32

The following two subsections consider the extent to which newborns classified as very low

birth weight receive discontinuously more medical treatments relative to newborns just above

1500 grams. While the universe of births in the natality file allows us to consider mortality effects

with a large sample, these data do not include summary measures of treatment. As described

above, we are able to examine summary measures of treatment in our hospital discharge data

30In the OLS specification estimating a treatment effect of -0.0095 in Table 1, for example, we reject the
hypothesis that the two slope coefficients are the same at the 5% level; the p-value of the test is .0435.

31The estimated coefficients on many of these covariates as well as one of the year indicators are reported in
Appendix Table A1. Characteristics that are associated with lower mortality include prenatal visits, mother’s
age, and African American. Higher mortality is associated with mother’s first birth, males, longer gestational
age (where greater age in this bandwidth suggests that the newborn is particularly small for gestational age),
and singleton births (where the low birth weight in this bandwidth is not explained by the presence of multiple
births). We only show a sub-set of the coefficients on these covariates in order to keep the table to one page.

32In a probit model with full controls, the main marginal effect of interest, evaluated at the cutoff and the mean
of the other control variables, is -0.0012 (s.e.=0.0005) compared to a mean 1-hour mortality rate of 0.0055 just
above the threshold.
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from five states (Arizona, California, Maryland, New Jersey, and New York). These states

appear to have broadly representative mortality outcomes. When we estimate our mortality

results separately within each state and rank them by the estimated coefficient scaled by mean

mortality just above the threshold, each of the states in our 5-state sample falls toward the

middle of the distribution.33

Our mortality results are similar when limit our nationwide data to only these five states.

On this sample of nearly 50,000 births, we estimate that mortality falls by 1.2 percentage points

(s.e.=0.42) compared to a mean of 5.4% (as reported in Table 5).34

C. Differences in summary measures of treatment

Figure 3A reports mean hospital charges in one-ounce bins. The measure appears fairly flat

at $94,000 for the three ounces prior to the threshold, then falls discontinuously to $85,000

after the threshold and continues on a downward trend, consistent with fewer problems among

relatively heavier newborns. This flattening before the threshold is suggestive that newborns

who are up to three ounces from the threshold may receive additional treatment due to the

VLBW categorization.

As the large mean charges suggest, this measure is right skewed. The results are similar,

however, when we estimate the relationship using median comparisons and when the charges are

transformed by the natural logarithm to place less weight on large charge amounts, as described

below.35

As noted in Section IIC, if prices differ across our threshold of interest, then any discontinuous

jump in charges could in part be due to changes in prices rather than changes in quantities. One

way to test whether differences in quantities of care are driving the main results is to consider a

33Specifically, we estimate separate models with no control variables in all available years in the nationwide data
in each of the 50 states and the District of Columbia. With the most negative value of the estimated coefficient
scaled by mean mortality just above the threshold ranked as 1, Arizona ranks 25 (-0.0101/.0618), California ranks
21 (-.0185/.0682), Maryland ranks 19 (-.0148/.0511), New Jersey ranks 16 (-.0153/.0423), and New York ranks
15 (-.0208/.0569). The scaled coefficients mitigate differences in the underlying mean mortality just above the
threshold: in a separate ranking of states by mean mortality, New Jersey ranks the lowest of any state, but
Arizona, California, New Jersey, and New York are more to the middle of the distribution, ranking 26, 30, 7, and
13 respectively.

34The mortality outcomes were also considered in these five states from 1991-2002 - the overlap of the years
between the state data and the nationwide data. As expected, the results are imprecisely estimated with the
smaller sample, and the point estimates are lower as well.

35Note that our sample sizes vary somewhat when looking at charges variables in levels or in logs due to
observations with missing or zero charges. Graphing the mean probability that charges are missing or zero across
1500 grams does not reveal a discontinuous change across this threshold.
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quantity measure that is consistently measured across hospitals: length of stay in the hospital.

Figure 3B shows that average length of stay drops from just over 27.3 days immediately prior

to the threshold to 25.7 days immediately after the threshold. Of course, length of stay and

charges are not independent measures, as longer stays accrue higher charges both in terms

of room charges and are associated with a greater number of services provided. We further

investigate the differences in such service provision measures below.

As in the reduced form results for infant mortality, we compare treatment measures above

and below the threshold using a local linear regression and a bandwidth of 3 ounces (85 grams).

In addition, we estimate OLS models following equation 3, where the outcome, Y , now represents

hospital charges or length of stay. Figure 3 shows that the linear trend controls within 3 ounces

above and below the threshold appear reasonable.36 Again, results are similar when we estimate

alternative models, such as count models for length of stay.37

Table 2 reports the regression results. The first column reports estimates from the local linear

regression and hospital charges are $9,450 higher just before the threshold. This is relatively

large compared to the mean charges of $82,000 above the threshold. The remaining columns

report the OLS results. The first column mimics the local linear regression but now places equal

weight on the observations up to 3 ounces on either side of the threshold. Without controls, the

estimate decreases somewhat to $9,021; with full controls the estimated increase in charges for

infants categorized as very low birth weight is largely unchanged ($9065, s.e.=$2,297). These

estimates imply a difference of approximately 11% compared to the charges accrued by infants

above the threshold.

We report the coefficients on the controls in Appendix Table A1. There are fewer controls in

the 5-state sample than there are in the nationwide sample, as the discharge data do not include

the birth certificate data. Results are qualitatively similar in a separate analysis of California,

which allows for a wider set of controls from the linked birth certificate data. The coefficients

suggest that preterm births, multiple births, and cesarean sections accrue higher charges.

In related models of length of stay, we find that newborns weighing just under 1500 grams

36Estimation of our first stage and reduced form results with quadratic rather than linear trends in birth
weight gave similar results, with the estimates from linear trend specifications most often being slightly smaller
in magnitude and hence more conservative than the estimates from quadratic trend specifications.

37The estimated incidence-rate ratio for the indicator of being just below the threshold is 1.076 (s.e.=0.018) in
a model with year indicators and 1.068 (s.e.=0.18) in a model with full controls.
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have stay lengths that are between 1.5 and 2 days longer, depending on the model.38 This

represents a difference of 6-8% compared to the mean length of stay of 25 days above the

threshold.

Note that our first stage variables could be censored in two ways. First, newborns just above

1500 grams have higher mortality rates (as shown above) and thus mechanically may receive

less medical treatment. This effect would make our first stage effect look less conservative,

but would make the cost per year of life saved estimates we derive below more conservative

(since larger first stage effects will make our marginal return estimates look less cost effective).

Further, it appears that the length of stay differences are too large to be explained entirely by

such censoring.39

A second potential source of censoring in our 5-state sample is the possibility that newborns

just below the cutoff were transferred to another hospital. In the HCUP data we do not observe

charges across hospital transfers, implying our first stage measures could be censored. In the

California data, however, we can observe hospital transfers and our results are similar when

such transfers are included in the treatment measures in California - as shown in Table 4.40

Further, those born just below the threshold are slightly less likely to experience a transfer to

another hospital (Table 4). This difference in transfers would tend to understate the treatment

of newborns just below the threshold and bias the results away from finding an increase in care

for these infants.

To ensure that our results are not driven by a small number of newborns with large charge

amounts, we investigated median differences in charges as well as the natural logarithm of

charges, which places less weight on large amounts and greater weight on smaller ones. Appendix

Figure A2 reports these measures separately for the five-state sample and California - a state

where longitudinal data allows calculations of treatment measures across hospitals if the newborn

were transferred. The relationship is similar to the mean comparisons when median charges are

38Note that we define our length of stay variable such that the smallest value is 1 - a value of 2 indicates that
the stay continued beyond the first day, and so forth. This definition allows us to include observations in our log
length of stay variable that are less than one full day.

39If the length of stay difference of 2 days was driven entirely by the 1 percentage point reduction in mortality,
then the uncensored length of stay for the newborns in question would have to be 2/0.01 or 200 days long. While
not impossible, only 11 newborns within our bandwidth have stays greater than 200 days.

40When the dependent variable is length of stay including transfers, the main coefficient of interest is 1.36
(s.e.=0.561) in a model with year indicators and 1.24 (s.e.=0.553) in a model with full controls, compared to a
mean of 27.0 for those born just above the threshold.
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considered: the ounce just below the threshold has median charges of $68,000 and the ounce

just after the threshold has median charges of $59,000, implying a jump of $9,000, or 15% of

median charges above the threshold. Further, Table 4 shows results from a median regression

with full controls, and median charges are found to be $9,415 lower just after the threshold.

Figure A2B reports the means for log charges, which are relatively noisy around 10.6 log

points from 5 ounces above the threshold, with an increase just prior to the threshold. The

upward slope is largely driven by newborns with few charges.41 Further, when data from hospi-

tals where newborns were transferred are included using the longitudinal data from California

(Appendix Figure A2D), log charges are relatively flat at 11.17 in the one-ounce bins just before

the threshold and drop to 11.00 after the threshold. Appendix Figures A2E and A2F report

similar estimates to the main results when median log charges are compared in both the 5-state

sample and in the California sample (differences of 14 and 12 log points, respectively).

Table 4 reports results when the dependent variable is log charges. When we impose a linear

trend in grams, charges are found to be 28 log points higher just before the threshold. If we

do not extrapolate using a linear trend, as the upward trend prior to the threshold within our

bandwidth likely reflects noise rather than a true increase, then a difference between 10.77 log

points just prior to the threshold and a return to 10.6 just after the threshold would suggest

an alternative estimate of 17 log points. Further, when we use the longitudinal data from

California to calculate total charges for newborn treatment including charges associated with

hospital transfers, and the upward trend prior to the threshold is not present, the estimate is 22

log points (Table 4). Meanwhile, when log length of stay is the dependent variable, newborns

weighing just below the threshold are found to stay 14 log points fewer days in care, and 11 log

points when length of stay including transfers is compared in the California data.

An alternative measure to hospital charges is a measure of hospital costs.42 This measure

41The upward slope disappears when the sample is restricted to newborns with greater the $3,000 in charges.
A plot of an indicator that the newborn accrued charges of less than $3,000 against birth weight revealed a fairly
noisy series. An OLS model with the standard controls suggests that such low charge amounts are less likely for
newborns just below the threshold, with an estimated coefficient on birth weight less than 1500g of -0.042 (s.e.
= 0.0065), compared to a mean above the threshold of 0.093.

42The Centers for Medicare and Medicaid Services (CMS) report cost-to-charge ratios for each hospital in each
year beginning in 1996 and the data are available through 2005. Our charge data are available from 1991-2006
(see Appendix Table A3). To include the information from all of these years, the 2000 cost-to-charge ratios were
used to deflate charges in all states but New York where the first year of data is 2001 and the 2001 cost-to-charge
ratio is used. Further, we followed a CMS suggestion to replace the hospital’s cost-to-charge ratio with the state
median if the cost-to-charge ratio is beyond the 5th or 95th percentile of the state’s distribution. Results were
similar, though noisier, when the sample was restricted to 1996-2005 and each hospital-year cost-to-charge ratio
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is known to introduce noise into the results, as the hospital-level cost to charge ratios are

a rough measure of the difference between costs and charges and the ratios are volatile over

time within hospitals. That said, the estimated cost is closer to the marginal cost of interest.

While these costs may not represent social costs for such care - the nurses, physicians, and

capital expenditures may not be affected by the births of a small number of very low birth

weight infants - they represent our best summary measurement of the difference in treatment

that VLBW classification affords. For this reason, we use costs rather than charges in our

interpretation of the social costs of medical treatment for these newborns, as in Section IX

below.

The figures for hospital costs in levels and in logs are similar to the main results, with a trend

that is somewhat more steep after the threshold when levels are considered. As reported in Table

4, the cost measure is $4,200 higher just before the threshold in a model without controls, and

$3,800 higher in a model with controls, compared to an average cost of nearly $40,000 just above

the threshold, or approximately 10%. A median regression (not shown) suggests a difference

of $4,800 compared to a median level of $30,100 within 3 ounces above the threshold: a 16%

difference.

In summary, we find differences in summary treatment measures of approximately 10-15%

with some variation in the estimate depending on the treatment measure. In terms of charges,

the difference across the discontinuity is approximately $9,500. When we deflate charges by a

cost-to-charge ratio, this difference is closer to $4,000.

D. Mechanisms: Differences in types of care

The discharge data include procedure codes that can be used to investigate the types of care

that differ for infants on either side of the very low birth weight threshold. We explore the data

for such differences, with a special focus on common perinatal procedures. Like the mortality

differences, however, the smaller 5-state sample tends to make such differences difficult to find.

Table 3 and Figure 4 present differences for measures of common procedures.

One of the most common procedures is some form of ventilation.43 Figure 4A does not offer

was employed.
43We observe several measures of assisted ventilation, including continuous positive airway pressure (CPAP)

ventilation, a procedure which can be thought of as less serious than a traditional ventilator; intubation, which
involves an endotrachial breathing tube being inserted through a newborn’s mouth into her lungs; and several
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compelling evidence of a meaningful difference in ventilation by birth weight, however. Further,

the nationwide data include ventilation measures, so sample size considerations do not play a

role, but in those data we still find little evidence of an increase in ventilation among these

newborns.

Another common measure of resource utilization that a priori seems to be a likely source

of the differences we observe in our summary treatment measures is admission to a neonatal

intensive care unit (NICU). Since care provided in such units is costly, it seems plausible that

the threshold could be used to gain entry into such a unit. We find little difference on this

margin in our data, however. First, we examine the California data, which includes a variable

on whether or not the infant spent at least 24 hours in a NICU or died in the NICU in less than

24 hours. We include newborns born in hospitals that did not have a NICU for comparability to

our main results, which also include such newborns. Table 3 suggests a modest increase in NICU

use (approximately 3 percentage points as compared to a mean just above the threshold of 44

percentage points), but Figure 4B shows little evidence of a discontinuous change. Second, we

examine the Maryland HCUP data, which records the number of days in the NICU, but again

we find little evidence of a difference at the threshold.44 Our results are consistent with a study

of NICU referrals, in which very low birth weight was not listed among the common reasons for

triage to a NICU.45

Perhaps the most compelling differences we find are for two relatively common procedures:

diagnostic ultrasound of the infant and operations on the heart. As noted above, diagnostic

ultrasounds are used to check for bleeding or swelling of the brain and some physician manuals

cite 1500 grams as a threshold below which diagnostic ultrasounds are suggested. Figure

4C suggests a jump in ultrasounds of roughly 2 percentage points compared to a mean of

approximately 25%. Table 3 suggests a similar estimate of between 2 and 3 percentage points.

other measures of ventilator use. Within these subcategories, we found little support for any discontinuous change.
Some oxygen may be provided before birth weight is measured, although to the best of our knowledge we are not
able to separate this from ventilation provided after birth weight is measured in our data.

44The New Jersey HCUP data include a field for NICU charges, but this variable proves unreliable: the
fraction of newborns with non-missing NICU charges for this at-risk population is only 2%. Recent nationwide
birth certificate data include an indicator for NICU admission for a handful of states. We do not see a visible
discontinuity in these data, albeit potentially due to the small sample of births in the years for which we observe
this variable.

45The most common was birth complications, followed by transitional respiratory distress, hyperbilirubine-
mia, prematurity and postmaturity, congenital anomalies, and “small for gestational age,” or SGA (Zupancic &
Richardson, 1998). Interestingly, Zupancic & Richardson (1998) concluded that “little of triage care has a strong
base of evidence, potentially leaving more discretion – and thus variability – in diagnosis and management.”
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The pattern of the “operations on the heart” indicator shows an upward pre-trend in the pro-

cedures prior to the threshold and what appears to be a discontinuous drop after the threshold.

Table 3 suggests that the jump is between 1.5 and 2.4 percentage points, or roughly 8% higher

than the mean rate for those born above the threshold in this sample. If we do not extrapolate

the pre-trend, Figure 4D shows a cardiac surgery rate of 30.0% prior to the threshold and 26.7%

after the threshold, a difference of 3.3 percentage points.

In summary, we examine several possible treatment mechanisms at the discontinuity. The

strongest evidence that we find is for operations on the heart and diagnostic ultrasounds, for

which we estimate an approximate 10% increase in usage just prior to the VLBW threshold.

We show that these differences are statistically significant when the usual heteroskedastic-robust

standard errors are used for comparability to the main results, but these standard errors could be

corrected to account for the search across procedures. When we apply a Bonferroni correction

for the different types of procedures, our estimates remain statistically significant.46 We find

little evidence of differences in NICU usage or other common procedures such as ventilation,

however, including an examination of ventilation in the nationwide data with much larger sample

sizes.

VI. Robustness & specification checks

In this section, we test for evidence of differences in covariates across our VLBW threshold

(sub-section A), discuss potential sample selection issues (sub-section B), discuss the sensitivity

of our results to alternative bandwidths (sub-section C), and examine our mortality results by

cause of death (sub-section D).

46To consider differences in potentially costly care, we searched for differences in procedures used to define
NICU quality levels in California (Phibbs et al., 2007). Excluding NICU measures, which we examined separately,
these included two summary measures of cardiac care, seven different measures of ventilation procedures, and
diagnostic ultrasound. The p-values on diagnostic ultrasound and cardiac care using the reported standard errors
are 0.002 and 0.018, respectively. Using the conservative Bonferroni correction by multiplying these p-values by
10 implies that the estimates are significant at the 2% and 18% levels; multiplying these p-values by three for
the three categories of exploration would imply that the estimates are significant at the 1% and 4% levels. A
separate exploration considered an additional 5 categories of procedures that were among the top-25 most common
primary and secondary procedures in our data: injection of medicines, excision of tissue, repair of hernia, and
two additional diagnostic procedures. Again, we found little visual evidence of a change in these procedures at
the 1500 gram cutoff.
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A. Testing for evidence of differences in covariates across 1500 grams

As discussed above, it is thought that birth weight cannot be predicted in advance of birth with

the accuracy needed to change (via birth timing) the classification of a newborn from being just

above 1500 grams to being just below 1500 grams. As such, we expect that the newborns will

be similar above and below the threshold in both observable and unobservable characteristics.

Moreover, as discussed in Section VA, most forms of strategic recategorization of newborns based

on birth weight around 1500 grams should be detectable in our histograms of birth frequencies

by gram of birth weight. That said, it is still of interest to directly compare births on either side

of our threshold based on observable characteristics.

Table A2 compares means of observable characteristics above and below the threshold, con-

trolling for linear trends in grams from the threshold, as in the main analysis. A summary

measure is the predicted mortality rate from a probit model of mortality on all of the controls

(specifically, the newborn characteristics X ′
i

described above together with year indicators).

Most of the comparisons show similar levels across the threshold, with few that appear to be

meaningfully different. Given the large sample size, however, some of the differences are statis-

tically significant.

To further consider these differences, Figure 5 compares covariates of interest in the 5 ounces

around the VLBW threshold.47 Here, the comparisons appear even more stable across the

threshold. In particular, gestational age, which is particularly related to birth weight, is gen-

erally smooth through the threshold. Prenatal visit rates appear different in the linear-trend

specifications in Table A2, but Figure 5G reveals little difference. While Table A2 suggests a

statistically significant difference in predicted mortality, Figure 5J, which is in the same scale

as actual mortality Figure 2, suggests little difference across the threshold. It appears that

newborns are nearly identical based on observable variables regardless of whether they weighed

in at a level just below or just above the VLBW threshold.

B. Sample selection

One possible source of sample selection is the possibility that very sick infants are discontinuously

reported more frequently as fetal deaths across our cutoffs of interest. Although we would expect

47The list was selected for ease of presentation and includes the major covariates of interest. Similar results
were found for additional covariates as well.
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such sample selection to be apparent in the births histogram we examined above, we can also

test for such sample selection directly using data on fetal death reports from the National Center

for Health Statistics (NCHS) perinatal mortality data for 1995 to 2002. There are two types of

fetal death classifications in these data: greater than or equal to 20 gestational weeks, and less

than 20 gestational weeks. In practice, the frequency of fetal deaths for less than 20 gestational

weeks is negligible for all birth weights above 1000 grams, and thus near our discontinuities

only the greater than or equal to 20 gestational week fetal deaths are relevant. As in the births

data, there are reporting spikes for fetal deaths at ounce-equivalent gram intervals, but graphical

analyses of these data does not suggest any spikes in fetal death reporting that are discontinuous

across our cutoffs of interest.

C. Bandwidth sensitivity

The local-linear regression results are qualitatively similar for a wide range of bandwidths (see

Table 6). The magnitude of the mortality estimates decreases with the bandwidth, suggesting

that our relatively large bandwidth is conservative. When the bandwidth includes only one

ounce on either side of the threshold (h = 30 grams), the difference in 1-year mortality is -2.7

percentage points; when h = 150 grams, the estimate decreases to -0.8 percentage points, which

is similar to our main results.

In terms of the treatment measures in the 5-state sample, the hospital charges are estimated

to decrease by approximately $8,000 when 1 ounce is used as the bandwidth and $6500 when

150 grams is used, compared to our estimate of just over $9,000. When hospital costs or length

of stay are examined, our estimates are similar regardless of bandwidth: e.g. $4,300 for hospital

costs and 2.4 days for a one-ounce bandwidth; $2600 and 1.14 days when h = 150. Meanwhile,

when log charges are considered (not shown), the estimates decrease as the bandwidth increases.

D. Causes of death

For several reasons, it is of interest to ask which causes of death appear to account for our

observed mortality effect. First, if our mortality effect appeared to be driven by so-called

“external” causes of death (such as accidents), this would be concerning since it would be

difficult to link deaths from those causes to differences in medical inputs. Second, from a policy
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perspective, it is of substantive interest to know which causes of death appear to be driving our

results.

On the first point, a graphical examination of trends in “external” causes of death as a

share of all deaths across our discontinuities does not suggest any spikes in external deaths that

are discontinuous across our cutoffs of interest. Formalizing this in our regression framework,

we find no statistically significant change in external deaths across our cutoffs of interest (see

Appendix Table A4).

On the second point, we examine cause of death for newborns around 1500 grams as follows.

We group causes of death into broad, mutually exclusive categories that are consistent over time

based on the 9th and 10th revisions of the ICD cause of death classes.48 Graphically, a visually

discernable jump is primarily noticeable for deaths due to perinatal conditions (such as jaundice

and respiratory distress syndrome) and, to a lesser extent, for deaths due to nervous system

and sense organ disorders. These results support the notion that differences in care received in

the hospital are likely driving the main results, as these conditions are known to be relatively

common neonatal infections. Formalized regression estimates (see Appendix Table A4) confirm

an economically significant and modestly statistically significant jump in perinatal conditions,

as well as for nervous system and sense organ disorders.49

We also examine a few individual causes of death - namely, respiratory distress syndrome

(RDS), sudden infant death syndrome (SIDS), and jaundice. We find no visible discontinuities for

RDS or SIDS (nor any statistically significant regression estimates). For jaundice, the graphical

results are noisy but consistent with an increase in deaths due to jaundice above 1500 grams, a

result confirmed in regression estimates which find a modestly statistically significant jump in

jaundice deaths when moving from just below to just above 1500 grams.50

48In particular, the 9th-revision 61 infant cause of death and 10th-revision 130 infant cause of death recode
groups.were used to create the following categories: (1) infectious and parasitic diseases (such as meningococcal
diseases); (2) neoplasms (that is, cancers); (3) endocrine, nutritional, metabolic, immunity, and blood disorders
(such as cystic fibrosis); (4) nervous system and sense organ disorders (such as meningitis); (5) respiratory system
disorders (such as pneumonia); (6) digestive system disorders (such as gastritis); (7) congenital anomalies (such
as congenital malformations of the heart); (8) perinatal conditions (such as jaundice); (9) symptoms, signs, and
ill-defined conditions (such as SIDS, or sudden infant death syndrome); and (10) other causes of death (such as
external deaths).

49The nervous system and sense organ disorder category includes meningitis, which is a common form of
morbidity and mortality among newborns - particularly in the first month of life (Levene et al., 2008).

50Neonatal jaundice is a common problem among newborns (Levene et al., 2008), and it should be detected
during the initial hospital stay as opposed to after discharge for newborns in our bandwidth. A reference in the
medical literature gives the following background information on jaundice: “Jaundice is observed during the first
week of life in approximately 60% of term infants and 80% of preterm infants...Jaundice, consisting of indirect or
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VII. Variation in treatment effects

Several potential sources of heterogeneity in our estimated treatment effects are of interest. In

this section, we discuss over time (sub-section A), across hospitals (sub-section B), and across

sub-groups of newborns (sub-section C).

A. Time period & technology changes

It is possible that that there is heterogeneity in outcomes and treatment across time - due, for

example, to technological changes in medical treatments for at-risk newborns over the time pe-

riod we examine. For example, one major technological innovation occurring during our sample

is the development of artificial surfactant. Respiratory problems in newborns are frequently

caused by insufficient pulmonary surfactant, a “wetting” protein on the surface of the alveoli

(Beers, 2003). Surfactant helps to keep the alveoli open, and a lack of surfactant is often referred

to as respiratory distress syndrome (RDS). The use of artificial surfactant began in the early

1990s, but unfortunately we do not observe the use of surfactant in our primary data sets. How-

ever, even without data on surfactant use we can still examine differences in our first stage and

reduced form results across different time periods to test for general evidence of a “surfactant”

effect.51

Table 5 reports 1-year mortality results for four time periods available in our data: 1983-1987;

1988-1991; 1995-1998; and 1999-2002. In general, we find a reduction in mortality associated

with VLBW status in each period, even though average mortality just above the threshold

declines from 8.13% in the first period to 3.78% in the last period. The estimates suggest 18%,

12%, 2%, and 18% lower mortality rates compared to the mean rates for infants born within

3 ounces above the threshold. In general, these trends over time are not consistent with a

“surfactant” story or any other clear medical technology story of which we are aware.

The five-state discharge data also allow us to consider changes in our first stage over time.

direct bilirubin, that is present at birth or appears within the first 24 hours of life requires immediate attention....”
(Behrman et al., 2000).

51The more recent birth certificate data referenced above include an indicator for the use of artificial surfactant.
We do not see a visible discontinuity in this variable, again potentially due to the small sample of births. These
data also include an indicator for steroid medication administered to mothers prior to birth to help their newborns’
lungs produce more surfactant and mature more quickly; although ideally we would use this indicator as the basis
for a placebo test (since the medication is provided prior to the measurement of birth weight), the fact that we
did not observe a visible discontinuity on this variable may again be due to the small sample of births for which
we observe this variable.
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We again divide the sample into four periods, in part to coincide with the time periods studied

in the nationwide data: 1991-1994, 1995-1998, 1999-2002, and 2003-2006. Here, hospital charges

appear to be greater for those born just below the threshold in all time periods, with a smaller

difference in the 2003-2006 period.52 In general, this suggests that both our first stage and

reduced form results are relatively unchanged over time.53

B. Hospital types

We also consider potential heterogeneity in outcomes and treatment across hospitals, which

our regression discontinuity design allows us an opportunity to rigorously address. In contexts

without a regression discontinuity, comparisons of births in higher quality hospitals to births in

lower quality hospitals could be biased: on one hand, a positive correlation could arise if healthier

mothers choose to give births at better hospitals; on the other hand, a negative correlation could

arise if riskier mothers choose to give birth at better hospitals, knowing that their infant will

need more care than an average newborn. However, as discussed above, because birth weight

should not be predictable in advance of birth with the accuracy needed to move a birth from

just above to just below our 1500 gram threshold of interest, selection should not be differential

across our discontinuity - implying that we can calculate internally valid estimates for different

types of hospitals and consider how the quality of the hospital affects the results.

One natural grouping of hospitals, given our population under study, is the level of neonatal

care available in an infant’s hospital of birth. For our California data, classifications of neonatal

care availability by hospital by year are available during our time period due to analysis by

Phibbs et al. (2007).54 In the sample of newborns within our bandwidth, 10% of births occur at

hospitals with no NICU, just over 12% at hospitals with a Level 0-2 NICU, and the remainder

at hospitals with Level 3A-3D NICUs.55

52Part of this difference arises because the states in our sample change with time because of data availability
(see Appendix Table A3) - the last period does not include California, for example.

53Plotting first stage estimates by year against reduced form estimates by year for our five-state sample, nor-
malizing each coefficient by the mean outcome for newborns above 1500 grams within our bandwidth, suggests
that years with larger first stage estimates are associated with larger reduced form estimates.

54We are grateful to Christopher Afendulis and Ciaran Phibbs for sharing this data with us. Phibbs et al. (2007)
used the same California data we study to identify the quality level of NICUs (Levels 1 to 3D) by hospital by year,
in part based on NICU quality definitions from the American Academy of Pediatrics (definitions which in turn
are primarily based on whether hospitals offer specific types of procedures, such as specific types of ventilation
and surgery).

55In particular, 1.2% at hospitals with a Level 0 NICU, 0.04% at hospitals with a Level 1 NICU, 11.3% at
hospitals with a Level 2 NICU, 10.9% at hospitals with a Level 3A NICU, 28.7% at hospitals with a Level 3B
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While we can examine our reduced form estimates by NICU quality level (no NICU, and

levels 0, 1, 2, 3A, 3B, 3C, and 3D), it is worth noting that we expect to lack sufficient sample

size within these NICU quality level sub-samples to give clean estimates of these effects for our

one-year mortality outcome.56 Regression estimates which interact our regression discontinuity

variable as well as our linear birth weight trends with indicators for the NICU quality level

available in a newborn’s hospital of birth generally do not give statistically significant estimates

for our one-year mortality outcome, with the exception of Level 0/1/2 NICU hospitals - for

which we estimate a negative, statistically significant coefficient.57 Qualitatively, the mortality

coefficients are negative for non-NICU hospitals as well as Level 0/1/2 and Level 3D NICU

hospitals (although the magnitude of the coefficient for Level 3D NICU hospitals is orders of

magnitude smaller than the other two coefficients), whereas the mortality coefficients for other

hospitals are positive (again, not statistically significant).

Using charges as a first stage outcome in the same regression framework, we estimate eco-

nomically and statistically significant positive coefficients for non-NICU hospitals as well as Level

0/1/2 and Level 3B hospitals; coefficients for the other hospitals do not produce statistically

significant coefficients.58

Clearly we can only give a very cautious interpretation of these trends given that many of

our estimates are not statistically significant at conventional levels. That said, Figure 6 plots

one descriptive analysis - namely, plotting first stage estimates by hospital against reduced form

estimates by hospital, normalizing each coefficient by the mean outcome for newborns above 1500

grams within our bandwidth for that type of hospital. Hospitals with larger first stage estimates

have larger reduced form estimates, which provides further evidence that treatment differences

are driving the outcome differences. In addition, this analysis provides suggestive evidence that

NICU, 21.6% at hospitals with a Level 3C NICU, and 16.2% at hospitals with a Level 3D NICU. Because of the
low number of births we observe in Level 0 or Level 1 NICUs, we create a combined category for births in Level
0, 1, an 2 NICU hospitals.

56In the California data, we estimate a treatment coefficient of -0.0027 (s.e.=0.0068, p=0.6909). When all years
in the nationwide data are included for California, however, we do find a statistically significant effect: coefficient
of -0.014 (s.e.=0.0066).

57Specifically, we estimate the following: for non-NICU hospitals, -0.0304 (s.e.=0.0223, p=0.1735); for Level
0/1/2 NICU hospitals, -0.0436 (s.e.=0.0186, p=0.0193); for Level 3A NICU hospitals, 0.0032 (s.e.=0.0209,
p=0.8773); for Level 3B NICU hospitals, 0.0141 (s.e.=0.0116, p=0.2244); for Level 3C NICU hospitals, 0.0076
(s.e.=0.0149, p=0.6099); and for Level 3D hospitals, -0.0017 (s.e.=0.0177, p=0.9224).

58Specifically, we estimate the following: for non-NICU hospitals, 15000 (s.e.=7800, p=0.0534); for Level 0/1/2
NICU hospitals, 19000 (s.e.=5300, p=0.0003); for Level 3A NICU hospitals, 10000 (s.e.=9600, p=0.2967); for Level
3B NICU hospitals, 15000 (s.e.=7100, p=0.0400); for Level 3C NICU hospitals, 453 (s.e.=11000, p=0.9678); and
for Level 3D hospitals, -12000 (s.e.=9900, p=0.2306).
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the non-NICU and Level 0/1/2 NICU hospitals are the hospitals where our estimated effects are

largest.59

C. Sub-group analyses

The final set of results compares the mortality results across different values of our main co-

variates. We concentrate on the mortality outcomes because we can take advantage of the large

sample sizes in the nationwide data to split the sample into subgroups. The estimates provide

suggestive evidence on the sources of our main results. In particular, we find statistically signif-

icant differences for less educated mothers; newborns with missing father’s information (a proxy

for single parenthood in our data, which otherwise lacks a stable marital status indicator); single

births (where low birth weight may point to greater developmental problems); and male patients

(who are known to be more vulnerable). The first stage estimates by subgroup exhibit similar

differences, with a larger first stage for male newborns and singleton births.

VIII. Alternative thresholds

In this section we discuss alternative birth weight thresholds (sub-section A) as well as gestational

age-based thresholds (sub-section B).

A. Alternative birth weight thresholds

A main limitation to our analysis is that the returns are estimated at a particular point in the

birth weight distribution. To the extent that we find large returns to treatment for newborns

just below the 1500 gram threshold, the evidence suggests that the threshold should be moved

to a higher birth weight where the cost of saving a statistical life is likely closer to the estimates

of the value of a statistical life.

We can also examine other points in the birth weight distribution where differences in treat-

ment may be expected. The presence of discontinuities at other thresholds need not invalidate

our main findings at 1500 grams. Rather, other discontinuities could provide an opportunity

59Another way to consider treatment intensity in the nationwide data is to compare states that have higher
end-of-life spending levels according to the Dartmouth Atlas of Healthcare: a resource that considers Medicare
spending. When the 1996 state rankings are used (the earliest year available, although the rankings are remarkably
stable over the years 1996-2005), the mortality effects are found in the bottom two and top two quintiles, suggesting
that the results are fairly robust across different types of hospital systems that vary by spending levels.
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to trace out marginal returns for wider portions of the overall birth weight distribution. At

points in the distribution where we do not anticipate treatment differences, however, econom-

ically and statistically significant jumps of magnitudes similar to our VLBW treatment effects

could suggest that the discontinuity we observe at 1500 grams may be due to natural variation

in treatment and mortality in our data.

Discussions with physicians and readings of the medical literature suggest that other cutoffs

may be relevant. The ICD-9 codes, for example, list separate diagnosis codes (V21.30-V21.35)

that depend on birth weight in grams: 0-500, 500-999, 1000-1499, 1500-1999, 2000-2500, etc.

Cloherty & Stark (1998) report separate recommendations for the care of “extremely low-birth

weight infants (ELBW)” with birth weight lower than 1000 grams. In addition, there may be

other salient thresholds in gestational age that physicians use to determine care.

To investigate other potential thresholds, we estimate differences in mortality and hospital

charges for each 100 gram interval between 1000 and 3000 grams. We use local linear regression

estimates because they are less sensitive to observations far from the thresholds, and our pilot

bandwidth of 3 ounces for comparability.

In terms of the mortality differences, the largest difference in mortality compared to the

mean at the cutoff is found at 1500 grams (23%), other than one found at 1800 grams (27%).60

A 5% reduction in mortality (relative to the mean) is found at 1000 grams and a 16% reduction

in mortality if found at 2500 grams. That said, the differences at 1000 and 2500 grams appear to

be driven by the inappropriate use of linear trends before and after these thresholds, as graphs

do not reveal convincing discontinuities in mortality at these, or other, cutoffs.

When we considered hospital charges, again 1500 grams stands out with a relatively large

discontinuity, especially compared to discontinuities at birth weights between 1100 and 2500g.

A 12% increase in charges (relative to the mean) is found for newborns classified as extremely

low birth weight (1000 grams), with similarly large differences for 800 and 900 gram thresholds.

These differences at and below 1000 grams are not robust to alternative specifications such as

the transformation of charges by the natural logarithm, however. One explanation for the lack

of stability in the estimates at these alternative birth weight thresholds is that there are fewer

601800 grams is a commonly cited threshold for changes in feeding practices (Cloherty & Stark, 1998). However,
we cannot observe changes in feeding practices in our data, and, as discussed in the next paragraph, we do not
observe a correspondingly large discontinuity at 1800 grams in our hospital charges measure.
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newborns to study and the spending levels are particularly susceptible to outliers given the large

charge amounts. In summary, we find striking discontinuities in treatment and mortality at the

VLBW threshold, but less convincing differences at other points of the distribution.

B. Gestational age and SGA analyses

As motivated by the discussion in Section IIB, we examine heterogeneity in outcomes and

treatment by gestational age across the 37-week threshold. In graphical analyses using the

nationwide sample, measures of average mortality by gestational week appear smooth across

the 37-week threshold. Similarly, in graphical analyses using the California data, which report

gestation in days, measures of average mortality, charges, and length of stay by gestational

day appear smooth across this threshold. Corresponding regression results yield statistically

significant coefficients of the expected sign, but we do not emphasize them here given the lack

of a visibly discernable discontinuity in the graphical analysis.61

Even though we do not observe meaningful discontinuities in outcomes or treatment at 37

gestational weeks, there is still reason to investigate the interaction between birth weight and

gestational age through the “small for gestational age” (SGA) classification: newborns below the

10th percentile of birth weight for a given gestational age. From conversations with physicians,

we have reason to believe that doctors use SGA charts such as that established by Fenton

(2003).62 On this chart, 2500 grams is almost exactly the 10th percentile of birth weight for a

gestational age of 37 weeks. If physicians treat based on SGA cutoffs, we expect discontinuities

in outcomes and treatment at 2500 grams to be most pronounced exactly at 37 weeks and less

pronounced at other values of gestational weeks, although we are agnostic about the pattern

of decline. In regression results (not shown) in which we fully interact the low birth weight

indicator and linear trends with dummies for each value of gestational week, we indeed find that

the effect of the low birth weight designation is largest in magnitude at 37 weeks, and it declines

as gestational weeks move away from 37 in both directions. Several of the interacted low birth

61Specifically, the coefficient on an indicator variable for “below 37 gestational weeks” is -0.00070 (robust
s.e.=0.0001277) in a specification that includes linear trends, run on an estimation sample of 21,562,532 obser-
vations within a 3 week bandwidth around 37 weeks. Mean mortality above the threshold is 0.0032. To address
the concern that discontinuities could be obscured in cases where gestational age can be manipulated, we also
estimate a specification which includes only vaginal births that are not induced or stimulated and find similar
results.

62The SGA chart by Fenton (2003) updates the previous work of Babson & Benda (1976), which was available
during our sample period.
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weight indicators are statistically different from zero. Overall, this evidence is consistent with

treatment based on SGA around 2500 grams.

We also examine a potential SGA treatment threshold around the 1500 gram discontinuity.

In the Fenton (2003) chart, 1500 grams is considered SGA for newborns with between 32 and

33 gestational weeks. In regression results (not shown), we see that discontinuities in mortality

around 1500 grams are most pronounced at 29 weeks and decrease on either side of 29 weeks,

which is not clearly consistent with treatment based on the Fenton (2003) definition of SGA

around 1500 grams.

IX. Estimating returns to medical spending

In this section, for comparability to the existing literature we present a Cutler & Meara (2000)-

style time series estimate of the returns to large changes in spending over time for newborns in

our bandwidth (sub-section A). We then combine our first stage and reduced form estimates

to derive two-sample estimates of the marginal returns to medical spending for newborns near

1500 grams (sub-section B).

A. Comparison to time-series estimates of returns to medical spending

As one benchmark, we can compare our marginal return estimate to the type of return estimate

calculated by Cutler & Meara (2000). The spirit of the Cutler-Meara calculation is to assume

that within-birth weight changes in survival over time are primarily due to improvements in

medical technologies, and to thus value medical improvements by looking at changes over time

in within-birth weight expenditures and health outcomes. For comparability to our marginal

returns calculation, we undertake this calculation in our California data as a “long difference”

in costs (in 2006 dollars) and one-year mortality from 1991 to 2002. Within our bandwidth,

we estimate a $30,000 increase in costs and a 0.0295 decline in one-year mortality over this

period, which implies a return under the Cutler-Meara assumptions of $1 million dollars. By

this metric, as we will see below, our marginal return estimates appear to be similar or slightly

more cost-effective than time-series returns to large changes in spending for newborns in our

bandwidth.
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B. Two-sample estimates of marginal returns to medical spending

As discussed in Section IV, we can combine our results to produce two-sample estimates of the

effect of treatments on health outcomes around the VLBW threshold. To do so, we need to

invoke the exclusion restriction that the VLBW designation can only affect mortality through

treatments captured by our treatment measure. As discussed above, this assumption is more

plausible for our summary treatment measures (charges, costs, and length of stay) than it is for

our mechanism variables. We focus on costs to summarize treatment in terms of dollars.

Because we examine health outcomes and summary treatments in different data sources, we

require additional assumptions to combine our estimates. To be as conservative as possible in

these assumptions, we can restrict our combined estimate to California, the only population for

which we observe one-year mortality and costs in the same data set. (As discussed above, we

do not observe one-year mortality in the other states in our 5-state sample.) In the California

data, in a specification without covariates, we estimate that costs increase by $2900 (se =

1770) as birth weight approaches the VLBW threshold from above, but we do not estimate a

statistically significant change in mortality across the threshold. Thus, we do not have enough

statistical power to estimate the effect of higher treatment levels on mortality using our regression

discontinuity design in this sample.

For another conservative combination of estimates with more power, we can combine mortal-

ity and cost estimates based only on the states in the 5-state sample. Because we only observe

one-year mortality for these states in the national data, we obtain the one-year mortality es-

timate on the national data, restricted so that it contains only those newborns in the 5-state

sample in available years. We standardize covariates across the two samples, so that if we had

the exact same newborns in the two samples, our two-sample estimate would be identical to

a one-sample estimate on the complete data.63 Coefficients are shown in the last column of

Table 5, where $4,550 in additional costs are associated with a 0.74 percentage point reduction

in mortality.

If we are willing to assume that costs differences in the 5-state sample in the available years

63Specifically, we restrict the national data to the 5 states in the years 1991 and 1995-2002. Also, for compara-
bility with the 5-state sample, we restrict the national sample to contain only in-hospital births. Because we do
not have individual-level identifiers, we cannot restrict the national sample to contain the exact same newborns
as the 5-state sample, but the agreement is very good. The restricted national sample contains 23,698 infants,
and the 5-state sample contains 21,479.
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(1991-2006) are broadly representative of what we would observe in the full national sample in

available years (1983-2002), we can compare our main results: a difference of $3,812 in costs and

a one-year mortality reduction of 0.73 percentage points as birth weight approaches the VLBW

threshold from above.

Equivalently, we can compute a measure of dollars per newborn life saved. In such a calcu-

lation, the numerator is our hospital costs estimate: $3,812 for each VLBW newborn in the full

5-state sample. The denominator is our mortality estimate: a 0.73 percentage point reduction in

mortality among VLBW newborns in the full sample. These estimates imply that the cost per

newborn life saved is $522,191 ($3,812/.0073). In the 5-state sample over the years that overlap

with the nationwide data, we attain a slightly larger estimate of costs per newborn life saved

of $615,270 ($4,553/.0074). Following Inoue & Solon (forthcoming), we calculate an asymptotic

$95% confidence interval on this estimate of approximately $30,000 to $1.20 million. Note that

this confidence interval for the estimate from the restricted sample is conservative relative to the

analogous confidence interval for the more precise estimate we obtain from the full samples.64

We can compare these estimates of the cost per newborn life saved to a variety of potential

benchmarks. If we take the very conservative view that the mortality effects that we estimate do

not persist beyond one year, it is relevant to compare our costs estimates to estimates of the value

of one year of life from the literature, which are generally around $100,000 (see Cutler (2004)).

Based on this comparison, the interventions that we observe do not appear to be cost-effective.

However, it is generally agreed that one-year mortality effects likely persist well beyond one year.

In this case, we can compare our cost estimates to estimates of the value of an entire life. If our

one-year mortality effects persist but life span and quality of life are reduced, we can compare

our estimates to quality-adjusted value of newborn life calibrations, such as those from Cutler &

Meara (2000). Specifically, in their analysis, Cutler & Meara (2000) calibrate the value of life in

1990 for newborns born between 1,000 and 2,499 grams (based on life expectancy and expected

quality of life, including disabilities associated with being low birth weight) to be approximately

$2,700,000, implying our estimated expenditures are cost effective, even at the upper bound of

our more conservative 95% confidence interval. If we take the even less conservative view that

our one-year mortality effects persist and that the newborns who are saved do not experience

64Using the full samples with common covariates, we obtain an estimate of $537,640 with an approximate 95%
confidence interval of $30,000 to $1.05 million.
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decreases in life span or quality of life, the relevant benchmark is approximately $3 to $7 million

dollars (Cutler, 2004).65 Comparison with this benchmark suggests that the treatments that we

observe are very cost-effective.

X. Conclusion

In the universe of all births in the US over 20 years, we estimate that newborns weighing just

below 1500 grams have substantially lower mortality rates than newborns that weigh just over

1500 grams, despite a general decline in health associated with lower birth weight. Specifically,

one-year mortality falls by approximately one percentage point as birth weight crosses 1500

grams from above, which is large relative to mean one-year mortality of 5.5% just above 1500

grams. Robustness tests suggest some variation around this point estimate, but a reduction in

mortality of close to 0.7 percentage points for newborns just below the threshold is generally

found.

It appears that infants categorized as “very low birth weight” have a lower mortality rate

because they receive additional treatment. Using all births from five states that report treatment

measures and birth weight - states that have a similar mortality discontinuity to the nationwide

sample - we find that treatment differences are on the order of $9,500 in hospital charges,

or $4,000 when these charges are converted into costs. While these costs may not represent

social costs for such care - the nurses, physicians, and capital expenditures may not be affected

by the births of a small number of very low birth weight infants - they represent our best

summary measurement of the difference in treatment that the VLBW classification affords.

Taken together, our estimates suggest that the cost of saving a statistical life for newborns near

1500 grams is approximately $550,000 with an upper bound of approximately $1.2 million in

2006 dollars, suggesting that greater levels of spending for at-risk infants near 1500 grams would

be expected to yield benefits that outweigh their costs.

65An alternative interpretation of our results would assume that the VLBW threshold was currently set “opti-
mally” from a social perspective, which would imply that society places a relatively low value on lives of infants
near this threshold. However, an innovation in this paper is the consideration of the universe of newborns in the
US over a 20 year period, which allows us to precisely detect the mortality difference. It is possible that such
effects are simply unknown to physicians or other institutions that determine treatment thresholds.
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Figure 1: Frequency of births by gram: Population of US births between 1350-1650 grams
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Notes: NCHS birth cohort linked birth/infant death files, 1983-1991 and 1995-2003, as described
in the text.
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Figure 2: One-year and 28-day mortality around 1500 grams

A:  One-year mortality
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Notes: NCHS birth cohort linked birth/infant death files, 1983-1991 and 1995-2003, as described
in the text. Points represent means in one-ounce bins radiating from 1500 grams.
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Figure 3: Summary treatment measures around 1500 grams

A:  Hospital charges
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Notes: Data are all births in the 5-state sample (AZ, CA, MD, NY, and NJ), as described in
the text. Charges are in 2006 dollars. Points represent means in one-ounce bins radiating from
1500 grams.
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Figure 4: Specific treatment measures around 1500 grams

C:  Diagnostic Ultrasound
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Notes: Data are all births in the 5-state sample (AZ, CA, MD, NY, and NJ), as described in
the text. Points represent means in one-ounce bins radiating from 1500 grams.
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Figure 5: Covariates around 1500 grams
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Figure 6: First stage versus reduced form, by NICU quality level
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Table 1: Infant mortality by very low birth weight status, National data, 1983-2002 (available years)

Dependent variable:

Model: local linear OLS OLS OLS local linear OLS OLS OLS

Birth weight < 1500g -0.0121 -0.0095 -0.0076 -0.0073 -0.0107 -0.0088 -0.0074 -0.0073

(0.0023)** (0.0022)** (0.0022)** (0.0022)** (0.0019)** (0.0018)** (0.0018)** (0.0018)**

Birth weight < 1500g * Grams from cutoff -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001

(0.0000)** (0.0000)** (0.00004)** (0.0000)** (0.0000)** (0.00003)**

Birth weight >= 1500g * Grams from cutoff -0.0002 -0.0002 -0.0002 -0.0002 -0.0002 -0.0002

(0.0000)** (0.0000)** (0.00003)** (0.0000)** (0.0000)** (0.00002)**

Year controls No Yes Yes No Yes Yes

Main controls No No Yes No No Yes

Mean of dependent variable above cutoff: 0.0553 0.0383

Dependent variable:

Model: local linear OLS OLS OLS local linear OLS OLS OLS

Birth weight < 1500g -0.0068 -0.0060 -0.0049 -0.0048 -0.0068 -0.0043 -0.0036 -0.0035

(0.0017)** (0.0016)** (0.0016)** (0.0016)** (0.0017)** (0.0013)** (0.0013)** (0.0013)**

Birth weight < 1500g * Grams from cutoff -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 -0.00004

(0.0000)** (0.0000)** (0.00002)** (0.0000)* (0.0000) (0.00002)

Birth weight >= 1500g * Grams from cutoff -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 -0.00009

(0.0000)** (0.0000)** (0.00002)** (0.0000)** (0.0000)** (0.00002)**

Year controls No Yes Yes No Yes Yes

Main controls No No Yes No No Yes

Mean of dependent variable above cutoff: 0.0301 0.0191

Observations 202071

one-year mortality 28-day mortality

7-day mortality 24-hour mortality

Notes: Local linear regressions use a bandwidth of 3 ounces (85 grams). OLS models estimated on a sample within 3 ounces above and
below the VLBW threshold. “Main controls” are listed in Table A1, as well as indicators for 5-year intervals of mother’s age, 5-year intervals
of father’s age, gestational week, state of residence, year, as well as missing-information indicators for the prenatal, birth order, gestational
age and mother’s race categories. * significant at 5%; ** significant at 1%. Robust standard errors in parentheses.
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Table 2: Summary treatment measures by very low birth weight status, 5-state sample, 1991-2006

Dependent variable:

Model: local linear OLS OLS OLS local linear OLS OLS OLS

Birth weight < 1500g 9450 9021.92 8205.34 9065.17 1.97 1.78 1.76 1.46

(2710)** (2,448)** (2,416)** (2,297)** (0.451)** (0.417)** (0.417)** (0.411)**

Birth weight < 1500g * Grams from cutoff -17.30 -31.76 6.17 -0.0010 -0.0014 -0.0058

(37.00) (36.47) (34.63) (0.0065) (0.0065) (0.0064)

Birth weight >= 1500g * Grams from cutoff -73.30 -86.84 -79.51 -0.0231 -0.0238 -0.0260

(30.18)* (29.78)** (28.23)** (0.0052)** (0.0053)** (0.0052)**

Year controls No Yes Yes No Yes Yes

Main controls No No Yes No No Yes

Mean of dependent variable above cutoff: 81566 24.68

Observations 28928 30935

hospital charges length of stay

Notes: Local linear regressions use a bandwidth of 3 ounces (85 grams). OLS models estimated on a sample within 3 ounces above and
below the VLBW threshold. Five states include AZ, CA, MD, NY, and NJ (various years). “Main controls” are listed in Table A1, as well
as indicators for each year. Some observations have missing charges, as described in the text. * significant at 5%; ** significant at 1%.
Robust standard errors in parentheses.
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Table 3: Specific treatment measures by very low birth weight status: Five-state sample, 1991-2006

Dependent variable:

Model: local linear OLS OLS local linear OLS OLS

Birth weight < 1500g 0.0357 0.0380 0.0274 0.0372 0.0282 0.0265

(0.0125)** (0.0115)** (0.0112)* (0.0170)* (0.0157) (0.0156)

Birth weight < 1500g * Grams from cutoff 0.0001 0.00001 0.0003 0.0003

(0.0002) (0.0002) (0.0002) (0.0002)

Birth weight >= 1500g * Grams from cutoff -0.0001 -0.0001 0.0003 0.0003

(0.0002) (0.0001) (0.0002) (0.0002)

Year controls No Yes No Yes

Main controls No Yes No Yes

Mean of dependent variable above cutoff: 0.511 0.444

Observations 30935 16528

Dependent variable:

Model: local linear OLS OLS local linear OLS OLS

Birth weight < 1500g 0.0196 0.0166 0.0297 0.0147 0.0155 0.0236

(0.0109) (0.0101) (0.0095)** (0.0112) (0.0104) (0.0100)*

Birth weight < 1500g * Grams from cutoff 0.00004 0.00012 -0.0000 0.0001

(0.00015) (0.00014) (0.0002) (0.0001)

Birth weight >= 1500g * Grams from cutoff -0.00006 0.00018 -0.0003 -0.0002

(0.00013) (0.00012) (0.0001)* (0.0001)

Year controls No Yes No Yes

Main controls No Yes No Yes

Mean of dependent variable above cutoff: 0.244 0.260

Observations 30935 30935

Diagnostic ultrasound of infant Operations on the heart

Ventilation (various methods) California:  >24 hours in NICU

Notes: Local linear regressions use a bandwidth of 3 ounces (85 grams). OLS models estimated on a sample within 3 ounces above and
below the VLBW threshold. Five states include AZ, CA, MD, NY, and NJ (various years). “Main controls” are listed in Table A1, as well
as indicators for each year. The dependent variable in the NICU models is only available in our California data, and equals one if the infant
spent more than 24 hours in a NICU or died in the NICU at less than 24 hours. * significant at 5%; ** significant at 1%. Robust standard
errors in parentheses.
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Table 4: Specification and robustness checks
log median regression

Dependent variable: hospital costs hospital costs log(hospital costs) (hospital charges) hospital charges log(length of stay)

Birth weight < 1500g 4206 3812 0.263 0.282 9415 0.140

(1068)** (1033)** (0.106)** (0.037)** (1593)** (0.0272)**

Sample 5-State 5-State 5-State 5-State 5-State 5-State

Controls No Yes Yes Yes Yes Yes

Mean of dependent variable above cutoff: 39628 39628 9.91 10.58 81566 2.78

Observations 28769 28769 28769 28769 28928 30935

hospital hospital charges hospital costs log(charges) log(length of stay)

Dependent variable: transfer including transfers including transfers including transfers including transfers

Birth weight < 1500g -0.011 7297 2872 0.223 0.1088

(0.0067) (4313) (1776) (0.045)** (0.0319)**

Sample 5-State California California California California

Controls Yes Yes Yes Yes Yes

Mean of dependent variable above cutoff: 0.100 109421 45141 11.0 2.99

Observations 30935 14560 14560 14560 16528

Notes: All models are OLS, estimated on a sample within 3 ounces above and below VLBW threshold. All models include the gram-trend
variables and our “main controls,” which are listed in Table A1, as well as indicators for each year. Charges are in $2006. Some observations
have missing or zero charges, as described in the text. Five states include AZ, CA, MD, NY, and NJ (various years). * significant at 5%;
** significant at 1%. Robust standard errors in parentheses.
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Table 5: Results by year and for overlap of NCHS/five-state data

A.  NCHS Nationwide Data

Five states,

Dependent variable: Five states, years in NCHS

all NCHS years and multi-state data

1983-1987 1988-1991 1995-1998 1999-2002 1983-2002 1991; 1995-2002

(available years)

Birth weight < 1500g -0.0144 -0.0077 -0.00081 -0.0069 -0.0122 -0.0074

(0.0051)** (0.0048) (0.0038) (0.0035)* (0.0042)** (0.0051)

Mean of dependent variable above cutoff: 0.0813 0.0622 0.0410 0.0378 0.054 0.039

Observations 50947 47545 49989 53590 49839 23698

B.  Multi-State Sample

Dependent variable: hospital charges hospital charges hospital charges hospital charges hospital charges hospital costs

1991-1994 1995-1998 1999-2002 2003-2006 1991; 1995-2002 1991; 1995-2002

Birth weight < 1500g 12055 3515 16985 582 10108 4553

(4,538)** (3,167) (4,930)** (6,151) (2738)** (1242)**

Mean of dependent variable above cutoff: 69566 71392 93717 96124 80721 39946

Observations 5018 10711 9504 3695 21479 21479

In-hospital births only

In-hospital births only

Years:

Years:

Years in NCHS

and multi-state data

1-year mortality

Notes: All models are OLS, estimated on a sample within 3 ounces above and below VLBW threshold. All models include the gram-trend
variables. The first four columns include our “main controls,” which vary by the sample used and are described in the notes in the previous
tables. The last two columns include common covariates across samples: indicators for whether the baby is male, preterm, black,“other”
race, a twin, or a non-twin multiple birth, as well as state indicators and year indicators. Although in theory the births included in the
NCHS birth records in the state-years available in our multi-state sample should be the same as the births included in the multi-state
sample, in practice the samples are slightly different (as evidenced by the difference in sample size), largely due to 300-400 fewer births in
the discharge data in each year from 2000-2002. Some observations have missing charges, as described in the text. * significant at 5%; **
significant at 1%. Robust standard errors in parentheses.
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Table 6: Bandwidth sensitivity

A.  NCHS Nationwide Data

Dependent variable:

1-year

Mortality

Bandwidth 30 60 90 120 150

Birth weight < 1500g -0.0267 -0.0162 -0.0114 -0.00911 -0.00865

(0.00382)** (0.00269)** (0.0022)** (0.00190)** (0.00170)**

Mean of dependent variable above cutoff: 0.0607 0.0562 0.0545 0.0532 0.0515

Observations 72937 163415 233880 304630 376400

Dependent variable:

28-Day

Mortality

Bandwidth 30 60 90 120 150

Birth weight < 1500g -0.0228 -0.0146 -0.0101 -0.00828 -0.00773

(0.00322)** (0.00227)** (0.00185)** (0.00160)** (0.00143)**

Mean of dependent variable above cutoff: 0.0431 0.0390 0.0377 0.0367 0.0352

Observations 72937 163415 233880 304630 376400

B.  5-State Sample

Dependent variable:

Hospital

Charges

Bandwidth 30 60 90 120 150

Birth weight < 1500g 7670 8380 9290 8070 6490

(4300)* (3210)** (2630)** (2270)** (2030)**

Mean of dependent variable above cutoff: 83890 81527 80235 79092 77158

Observations 10533 21404 31990 42012 52471

Dependent variable:

Hospital

Costs

Bandwidth 30 60 90 120 150

Birth weight < 1500g 4460 3620 3970 3410 2580

(1880)* (1390)** (1140)** (985)** (881)**

Mean of dependent variable above cutoff: 41063 39321 38572 38028 37094

Observations 10533 21404 31990 42012 52471

Dependent variable:

Length of 

Stay

Bandwidth 30 60 90 120 150

Birth weight < 1500g 2.38 1.84 1.91 1.53 1.14

(0.743)** (0.536)** (0.439)** (0.379)** (0.340)**

Mean of dependent variable above cutoff: 25.7 24.8 24.3 24.0 23.5

Observations 11254 22877 34183 44868 56067

Notes: All models are OLS, estimated on a sample within 3 ounces above and below VLBW threshold. All models include the gram-trend
variables and our “main controls,” which vary by the sample used and are described in the notes in the previous tables. Some observations
have missing charges, as described in the text. * significant at 5%; ** significant at 1%. Robust standard errors in parentheses.
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Figure A1: Birth frequencies for wider bandwidths

A:  Birth frequency by gram
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B:  Birth frequency by gram: 1000-2500 grams
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Notes: NCHS birth cohort linked birth/infant death files, 1983-1991 and 1995-2003, as described
in the text.
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Figure A2: Alternative summary treatment measures around 1500 grams

A:  5-State:  Median Charges
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B:  California:  Median Charges, incl. Transfers
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C:  5-State:  log(Charges)
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E:  5-State:  Median log(Charges)
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Notes: Data are all births in the 5-state sample (AZ, CA, MD, NY, and NJ), as described in
the text. Some observations have missing or zero charges, as described in the text. Charges are
in 2006 dollars. Points represent means in one-ounce bins radiating from 1500 grams.
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Table A1: Coefficients on selected covariates

Sample: NCHS Nationwide Data Multi-State Sample

Dependent variable: 1-year mortality hospital charges

Birth weight < 1500g -0.0073 Birth weight < 1500g 9065

(0.0022)** (2,297)**

Birth weight < 1500g * Grams from cutoff -0.00011 Birth weight < 1500g * Grams from cutoff 6.175

(0.0000)** -34.631

Birth weight >= 1500g * Grams from cutoff -0.00018 Birth weight >= 1500g * Grams from cutoff -79.513

(0.0000)** (28.23)**

Prenatal Visits:  9-14 -0.0041 =1 if newborn is male and not missing 11611

(0.0012)** (1,145)**

Prenatal Visits:  >=15 -0.0028 Pre-term birth 22958

(0.0017) (1,688)**

Mother born outside state -0.0011 Mother's Race/Ethnicity:  African American 1827

(0.0011) -1481

First birth 0.0193 Mother's Race/Ethnicity:  Other 4533

(0.0012)** (1,600)**

Mother's Age:  31-35 (compared to <16) -0.0132 Twin birth 3405

(0.0049)** (1,346)*

Mother's Age:  36-40 -0.0122 Multiple (non-twin) birth 11835

(0.0051)* (2,354)**

Mother's Age:  41+ -0.0011 Cesarean Section 2770

(0.0065) (1,199)*

Mother's Education:  High School 0.0001 Arizona (compared to NJ) -1653

(0.0015) -2484

Mother's Education:  Some College -0.0029 California 101580

(0.0017) (1,805)**

Mother's Education:  College+ 0.0032 New Jersey 87235

(0.0019) (1,608)**

Moher's Education:  missing 0.0176 New York 60591

(0.0028)** (1,500)**

Father's Age:  31-35 (compared to <16) -0.0013 Year = 1991 (compared to 2003) -92968

(0.0187) (4,690)**

Father's Age:  36-40 -0.0016 Year = 2006 3937

(0.0188) -4694

Father's Age:  41+ -0.0044 Constant 31557

(0.0188) (4,237)**

Father's Age:  missing 0.0021

(0.0187)

Male 0.0144

(0.0010)**

Gestational Age: 37 weeks (compared to <31) 0.0252

(0.0038)**

Gestational Age: 40 weeks 0.0121

(0.0053)*

Gestational Age: 41 weeks 0.0118

(0.0069)

Mother's Race/Ethnicity:  African American -0.0189

(0.0014)**

Mother's Race/Ethnicity:  Hispanic -0.0034

(0.0019)

Singleton birth 0.0446

(0.0018)**

Twin birth 0.0114

(0.0018)**

Year = 2002 (compared to 1984) -0.0356

(0.0035)**

Constant 0.0470

(0.0243)

Mean of dependent variable above cutoff: 0.0553 81566.3098

Observations 202071 28928

Notes: All models are OLS, estimated on a sample within 3 ounces above and below VLBW
threshold. Charges are in $2006. Some observations have missing charges, as described in the
text. Five states include AZ, CA, MD, NY, and NJ (various years) * significant at 5%; **
significant at 1%. Robust standard errors in parentheses.
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Table A2: Selected covariate comparison (controlling for trends in birth weight)

adjusted mean raw mean 

below threshold above threshold p-value

Fewer than 9 Prenatal visits 0.478 0.443 (0.000)**

First birth 0.4145 0.4145 (0.860)

Mother's Age 26.41 26.44 (0.122)

Mother's Education:  <High School 0.2515 0.2495 (0.158)

Mother's Education:  High School 0.3385 0.3365 (0.195)

Mother's Education:  Some College 0.1738 0.1728 (0.574)

Mother's Education:  College+ 0.1466 0.1506 (0.001)**

Mother's Education:  Missing 0.0896 0.0906 (0.465)

Mother born outside state 0.4116 0.4076 (0.217)

Mother's Race: White 0.4426 0.4506 (0.000)**

Mother's Race:  African American 0.2504 0.2524 (0.524)

Mother's Race:  Hispanic 0.1315 0.1275 (0.058)

Father's Age 29.85 29.86 (0.646)

Missing Father's Age 0.245 0.242 (0.076)

Father's Education: <High School 0.1276 0.1266 (0.459)

Father's Education: High School 0.2636 0.2656 (0.371)

Father's Education: Some College 0.1019 0.0999 (0.287)

Father's Education: College+ 0.1066 0.1086 (0.243)

Father's Education: Missing 0.4003 0.3993 (0.698)

Male 0.4983 0.5003 (0.574)

Gestational Age 31.73 32.62 (0.000)**

Singleton Birth 0.7357 0.7437 (0.006)**

Twin Birth 0.2074 0.2214 (0.000)**

Multiple (non-twin) Birth 0.0349 0.0349 (0.969)

Vaginal Birth 0.4504 0.4754 (0.000)**

Obstetric Procedures:  Amnioscentesis 0.0480 0.0510 (0.004)**

Obstetric Procedures:  Induction 0.0874 0.1004 (0.000)**

Obstetric Procedures:  Stimulation 0.0604 0.0664 (0.000)**

Obstetric Procedures:  Tocolysis 0.1210 0.1150 (0.000)**

Obstetric Procedures: Ultrasound 0.6454 0.6484 (0.091)

Obstetric Procedures: Other 0.0624 0.0634 (0.151)

Year of Birth 1992.97 1993.00 (0.110)

Predicted 1-year Mortality 0.0586 0.0576 (0.000)**

Notes: Sample is NCHS national data. For most covariates, the number of observations is
341,140. Delivery method is available for 229,843 births; obstretric procedures are available for
229,175 births. * significant at 5%; ** significant at 1%.
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Table A3: Five-state sample: Data summary

Year AZ CA MD NJ NY Total

1991 0 1,430 0 0 0 1,430

1992 0 1,428 0 0 0 1,428

1993 0 1,346 0 0 0 1,346

1994 0 1,410 0 0 0 1,410

1995 0 1,365 251 433 921 2,970

1996 0 1,400 232 372 797 2,801

1997 0 1,317 212 408 838 2,775

1998 0 1,380 211 412 772 2,775

1999 0 1,333 259 649 882 3,123

2000 0 1,387 237 395 842 2,861

2001 138 1,380 245 383 0 2,146

2002 176 1,352 249 393 0 2,170

2003 184 0 271 404 0 859

2004 262 0 250 409 0 921

2005 271 0 249 385 0 905

2006 325 0 293 397 0 1,015

Total 1,356 16,528 2,959 5,040 5,052 30,935

Notes: Table displays years for which each of our state data sets are available, and the relevant
sample sizes for births within 3 ounces of 1500 grams.
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Table A4: One-year mortality results by cause of death

Dependent variable: all cause

infectious and 

parasitic

diseases neoplasms

endocrine,

nutritional,

metabolic,

immunity,

blood

disorders

nervous

system, sense 

organ

disorders

respiratory

system

disorders

digestive

system

disorders

congenital

anomalies

perinatal

conditions

symptoms,

signs, ill-

defined

conditions other

Model: OLS OLS OLS OLS OLS OLS OLS OLS OLS OLS OLS

Birth weight < 1500g -0.0095 -0.0031 0.0009 0.0029 -0.0131 0.0017 -0.0006 0.0091 -0.0294 0.0173 0.0144

(0.0022)** (0.0055) (0.0024) (0.0031) (0.0050)** (0.0070) (0.0050) 0.0191 (0.0188) (0.0108) (0.0093)

Mean of dependent variable above cutoff: 0.0553 0.0225 0.0038 0.0055 0.0177 0.0339 0.0161 0.4024 0.3567 0.0831 0.0582

Observations 202071 11090 11090 11090 11090 11090 11090 11090 11090 11090 11090

Dependent variable:

"external"

cause

respiratory

distress

syndrome

(RDS)

sudden infant 

death

syndrome

(SIDS) jaundice meningitis

Model: OLS OLS OLS OLS OLS

Birth weight < 1500g 0.0045 -0.0054 0.0148 -0.0034 -0.0016

(0.0048) (0.0109) (0.0095) (0.0018) (0.0030)

Mean of dependent variable above cutoff: .0141 .0878 .0608 .0022 0.0052

Observations 11090 11090 11090 11090 11090

one-year mortality, by cause

one-year mortality, by cause

Notes: The ten cause of death classifications (other than all cause mortality) in the first row were constructed to be categories which
could be defined consistently over time, across a change in cause of death coding which occurs partway through our sample; these broad
categories partition non-missing causes of death. The second row extracts some individual causes of death from these broad categories. We
exclude observations with missing information on the timing or cause of death. OLS models estimated on a sample within 3 ounces above
and below the VLBW threshold. All models include the gram-trend variables. * significant at 5%; ** significant at 1%. Robust standard
errors in parentheses.
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