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ABSTRACT

In this paper we study identification and estimation of a correlated random coefficients (CRC) panel
data model. The outcome of interest varies linearly with a vector of endogenous regressors. The coefficients
on these regressors are heterogenous across units and may covary with them. We consider the average
partial effect (APE) of a small change in the regressor vector on the outcome (cf., Chamberlain, 1984;
Wooldridge, 2005a). Chamberlain (1992) calculates the semiparametric efficiency bound for the APE
in our model and proposes a ã N consistent estimator. Nonsingularity of the APE’s information bound,
and hence the appropriateness of Chamberlain’s (1992) estimator, requires (i) the time dimension of
the panel (T) to strictly exceed the number of random coefficients (�p) and (ii) strong conditions on
the time series properties of the regressor vector. We demonstrate irregular identification of the APE
when T = p and for more persistent regressor processes. Our approach exploits the different identifying
information in the subpopulations of ‘stayers’ — or units whose regressor values change little across
periods — and ‘movers’ — or units whose regressor values change substantially across periods. We
propose a feasible estimator based on our identification result and characterize its large sample properties.
While irregularity precludes our estimator from attaining parametric rates of convergence, it limiting
distribution is normal and inference is straightforward to conduct. Standard software may be used
to compute point estimates and standard errors. We use our methods to estimate the average elasticity
of calorie consumption with respect to total outlay for a sample of poor Nicaraguan households.
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That the availability of multiple observations of the same sampling unit (e.g., individual, firm,

etc.) over time can help to control for the presence of unobserved heterogeneity is both intuitive and

plausible. The inclusion of unit-specific intercepts in linear regression models is among the most

widespread methods of ‘controlling for’ omitted variables in empirical work (e.g., Card, 1996).

The appropriateness of this modelling strategy, however, hinges on any time-invariant correlated

heterogeneity entering the outcome equation additively. Unfortunately, additivity, while statisti-

cally convenient, is difficult to motivate economically (cf., Imbens, 2007).2 Browning and Carro

(2007) present a number of empirical panel data examples where non-additive forms of unobserved

heterogeneity appear to be empirically relevant.

In this paper we study the use of panel data for identifying and estimating what is arguably the

simplest statistical model admitting nonseparable heterogeneity: the correlated random coefficients

(CRC) model. Let Y = (1      )
0 be a  ×1 vector of outcomes and X = (X1    X )

0 a  ×

matrix of regressors with X ∈ X ⊂ R and X ∈ X where X = ×∈{1}X We assume that

X is strictly exogenous. This rules out feedback from the period  outcome  to the period  ≥ 

regressor X. One implication of this assumption is that lags of the dependent variable may not

be included in X. Our model is a static one.

Available is a random sample {(YX)}=1 from a distribution 0. The 
 period outcome is

given by

 = X
0
 ()  (1)

where  is time-invariant unobserved unit-level heterogeneity and  a time-varying disturbance.

Both  and  may be vector-valued. The ×1 vector of functions  (), which we allow to vary

over time, map  and  into unit-by-period-specific slope coefficients. By ‘random’ coefficients we

mean that  () varies across units. By ‘correlated’, we mean that the entire path of regressor

values, X, may have predictive power for  (). This implies that an agent’s incremental return

to an additional unit of X may vary with X. In this sense X may be endogenous.

Equation (1) is structural in the sense that the unit-specific function

 (x) = x
0
 () (2)

traces out a unit’s period  potential outcome across different hypothetical values of x ∈ X
3

Let X = (1 0
)
0
; setting 1 () = 1 +  +  (with  and  scalar and mean zero) and

 () =  for  = 2      yields the textbook linear panel data model:

 (x) = x
0
 ++  (3)

Equation (2), while preserving linearity in X, is more flexible than (3) in that it allows for time-

2Chamberlain (1984) presents several well-formulated economic models that do imply linear specifications with

unit-specific intercepts.
3Throughout we use capital letters to denote random variables, lower case letters specific realizations of them, and

blackboard bold letters to denote their support (e.g.,   and X)..
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varying random coefficients on all of the regressors (not just the intercept). Furthermore these

coefficients may nonlinearly depend on  and/or 

Our goal is to characterize the effect of an exogenous change inX on the probability distribution

of  By ‘exogenous change’ we mean an external manipulation of X in the sense described by

Blundell and Powell (2003) or Imbens and Newey (2009). We begin by studying identification and

estimation of the average partial effect (APE) of X on  (cf., Chamberlain, 1984; Blundell and

Powell, 2003; Wooldridge, 2005a). Under (1) the average partial effect is given by

β0
≡ E

∙
 (x)

x

¸
= E [ ()]  (4)

Identification and estimation of (4) is nontrivial because, in our setup, X may vary systemati-

cally with  and/or . To see the consequences of such dependence observe that the derivative of

the mean regression function of  given X does not identify a structural parameter. Differentiating

through the integral we have

E [|X = x]

x
= β0 (x) + E [ (X)S (|X)|X = x]  (5)

with β0 (x) = E [ ()|X = x] and S (|X) = ∇ log  (|X). The second term is

what Chamberlain (1982) calls heterogeneity bias. If the (log) density of the unobserved hetero-

geneity varies sharply with x — corresponding to ‘selection bias’ or ‘endogeneity’ in a unit’s choice

of x — then the second term in (5) can be quite large.

Chamberlain (1982) studies identification of β0 ≡ β00 using panel data (cf., Mundlak, 1961,

1978b). In a second paper, Chamberlain (1992, pp. 579 - 585) calculates the semiparametric vari-

ance bound for β0 and proposes an efficient method-of-moments estimator.
4 His approach is based

on a generalized within-group transformation; naturally extending the idea that panel data allow

the research to control for time-invariant heterogeneity by ‘differencing it away’.5 Under regular-

ity conditions, which ensure nonsingularity of β0’s information bound, Chamberlain’s estimator

converges at the standard
√
 rate.

Nonsingularity of I (β0), the information for β0, generally requires the time dimension of the
panel to exceed the number of random coefficients (  ). Depending on the time series properties

of the regressors,  may need to substantially exceed . In extreme cases I (β0) may be zero
for all values of  . In such settings Chamberlain’s method breaks down. We show that, under

mild conditions, β0 nevertheless remains identified. Our method of identification is necessarily

‘irregular’: the information bound is singular and hence no regular
√
 consistent estimator exists

(Chamberlain, 1986). We develop a feasible analog estimator for β0 and characterize its large

sample properties. Although its rate of convergence is slower than the standard parametric one,

4Despite its innovative nature, and contemporary relevance given the resurgence of interest in models with het-

erogenous marginal effects, Chamberlain’s work on the CRC model is not widely known. The CRC specification is

not discussed in Chamberlain’s own Handbook of Econometrics chapter (Chamberlain, 1984), while the panel data

portion of Chamberlain (1992) is only briefly reviewed in the more recent survey by Arellano and Honoré (2001).
5Bonhomme (2010) further generalizes this idea, introducing a notion of ‘functional differencing’.
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its limiting distributions is normal. Inference is straightforward.

Our work shares features with other studies of irregularly identified semiparametric models

(e.g., Chamberlain, 1986; Manski, 1987; Heckman, 1990; Horowitz, 1992; Abrevaya, 2000; Hon-

oré and Kyriazidou, 1997; Kyriazidou, 1997; Andrews and Schafgans, 1998; Khan and Tamer,

2009). A general feature of irregular identification is its dependence on the special properties of

small subpopulations. These special properties are, in turn, generated by specific features of the

semiparametric model. Consequently these types of identification arguments tend to highlight the

importance, sometimes uncomfortably so, of maintained modelling assumptions (cf., Chamberlain,

1986, pp. 205 - 207; Khan and Tamer, 2009).

Our approach exploits the different properties, borrowing a terminology introduced by Cham-

berlain (1982), of ‘movers’ and ‘stayers’. Loosely speaking these two subpopulations respectively

correspond to those units whose regressors values, X, change and do not change across periods

(a precise definition in terms of singularity of a unit-specific design matrix is given below). We

identify aggregate time effects using the variation in  in the ‘stayers’ subpopulation. A common

trends assumption allows us to extrapolate these estimated effects to the entire population. Hav-

ing identified the aggregate time effects using stayers, we then identify the APE by the limit of a

trimmed mean of a particular unit-specific vector of regression coefficients.

Connection to other work on panel data In order to connect our work to the wider panel

data literature it is useful to consider the more general outcome response function:

 (x) =  (x  ) 

Identification of the APE in the above model may be achieved by one of two main classes of

restrictions. The correlated random effects approach invokes assumptions on the joint distribution

of (U )|X; with U = (1      )
0 Mundlak (1978a,b) and Chamberlain (1980, 1984) develop

this approach for the case where (X ) and  (U |X) are parametrically specified. Newey
(1994a) considers a semiparametric specification for  (U |X) (cf., Arellano and Carrasco, 2003).
Recently, Altonji and Matzkin (2005) and Bester and Hansen (2009) have extended this idea to the

case where  (X ) is either semi- or non-parametric along with  (U |X).
The fixed effects approach imposes restrictions on  (X  ) and  (U|X ), while leaving

 (|X), the distribution of the time-invariant heterogeneity, the so-called ‘fixed effects’, unre-
stricted. Chamberlain (1980, 1984, 1992), Manski (1987), Honoré (1992), Abrevaya (2000), and

Bonhomme (2010) are examples of this approach. Depending on the form of (X  ), the fixed

effect approach may not allow for a complete characterization of the effect of exogenous changes in

X on the probability distribution of . Instead only certain features of this relationship may be

identified (e.g., ratios of the average partial effect of two regressors).

Our methods are of the ‘fixed effect’ variety. In addition to assuming the CRC structure for

 (x) we impose a marginal stationarity restriction on  (|X )  a restriction also used by

Manski (1987), Honoré (1992) and Abrevaya (2000), however, other than some weak smoothness
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conditions, we leave  (|X) unrestricted.
Wooldridge (2005b) and Arellano and Bonhomme (2009) also analyze the CRC panel data

model. Wooldridge focuses on providing conditions under which the usual linear fixed effects (FE)

estimator is consistent despite the presence of correlated random coefficients (cf., Chamberlain,

1982, p. 11). Arellano and Bonhomme (2009) study the identification and estimation of higher-order

moments of the distribution of the random coefficients. Unlike us, they maintain Chamberlain’s

(1992) regularity conditions as well as impose additional assumptions.

Chamberlain (1982) showed that when X is discretely valued the APE is generally not iden-

tified (p. 13). However, Chernozhukov, Fernández-Val, Hahn and Newey (2009), working with

more general forms for E [|X ]  show that when  has bounded support the APE is partially

identified and propose a method of estimating the identified set.6 In contrast, in our setup we show

that the APE is point identified when at least one component of X is continuously-valued.

Section 1 presents our identification results. We begin by (i) briefly reviewing the approach

of Chamberlain (1992) and (ii) characterizing irregularity in the CRC model. We then present

our method of irregular identification. Section 2 outlines our estimator as well as its large sample

properties. Section 3 discusses various extensions of our basic approach.

In Section 4 we use our methods to estimate the average elasticity of calorie demand with

respect to total household resources. Our sample is drawn from a population that participated in a

pilot of the Nicaraguan conditional cash transfer program Red de Protección Social (RPS). Hunger

is widespread in the communities from which our sample is drawn; we estimate that immediately

prior to the start of the RPS program over half of households had less then the required number

of calories needed for all their members to engage in ‘light activity’ on a daily basis.7

A stated goal of the RPS program is to reduce childhood malnutrition, and consequently increase

human capital, by directly augmenting household income. The efficacy of this approach to reducing

childhood malnutrition largely depends on the size of the average elasticity of calories demanded

with respect to income across poor households.8 While most estimates of the elasticity of calorie

demand are significantly positive, several recent estimates are small in value and/or imprecisely

estimated, casting doubt on the value of income-oriented anti-hunger programs (Behrman and

Deolalikar, 1987).9

6They consider the probit and logit models with unit-specific intercepts (in the index) in detail. They show how to

construct bounds on the APE despite the incidental parameters problem and provide conditions on the distribution

of X such that these bounds shrink as  grows.
7We use Food and Agricultural Organization (FAO, 2001) gender- and age-specific energy requirements for ‘light

activity’, as reported in Appendix 8 of Smith and Subandoro (2007), and our estimates of total calories available

at the household-level to calculate the fraction of households suffering from ‘food insecurity’. Worldwide, the FAO

estimates that 854 million people suffered from protein-energy malnutrition in 2001-03 (FAO, 2006). Halving this

number by 2015, in proportion to the world’s total population, is the first United Nations Millennium Development

Goal. Chronic malnutrition, particularly in early childhood, may adversely affect cognitive ability and economic

productivity in the long-run (e.g., Dasgupta, 1993).
8Another motivation for studying this elasticity has to do with its role in theoretical models of nutrition-based

poverty traps (see Dasgupta (1993) for a survey).
9Wolfe and Behrman (1983), using data from Somoza-era Nicaragua, estimate a calorie elasticity of just 0.01.

Their estimate, if accurate, suggests that the income supplements provided by the RPS program should have little

effect on caloric intake.
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Disagreement about the size of the elasticity of calorie demand has prompted a vigorous method-

ological debate in development economics. Much of this debate has centered, appropriately so, on

issues of measurement and measurement error (e.g., Bouis and Haddad, 1992; Bouis, 1994; Sub-

ramanian and Deaton, 1996). The implications of household-level correlated heterogeneity in the

underlying elasticity for estimating its average, in contrast, have not been examined. If, for example,

a households’ food preferences, or preferences towards child welfare, co-vary with those governing

labor supply, then its elasticity will be correlated with total household resources. An estimation

approach which presumes the absence of such heterogeneity will generally be inconsistent for the

parameter of interest. Our statistical model and corresponding estimator provides an opportunity,

albeit in a specific setting, for assessing the relevance these types of heterogeneities.

We compare our CRC estimates of the elasticity of calorie demand with those estimated using

standard panel data estimators (e.g., Behrman and Deolalikar, 1987; Bouis and Haddad, 1992),

as well as those derived from cross-sectional regression methods as in Strauss and Thomas (1990,

1995), Subramanian and Deaton (1996), and others. Our preferred CRC elasticity estimates are 10

to 20 percent smaller than their corresponding textbook linear ‘fixed effects’ estimates (FE-OLS).

Our results are consistent with the presence of modest ‘correlated random coefficients bias’.

Section 5 summarizes and suggests areas for further research. Proofs are in the Appendix. The

notation 0     and

= respectively denotes a  × 1 vector of zeros, a  × 1 vector of ones, the

 ×  identity matrix, and equality in distribution.

1 Identification

Our benchmark data generating process combines (1) with the following assumption.

Assumption 1.1 (Stationarity and Common Trends)

(i)  () = ∗ () +  (2) for  = 1      and  = (
0
1 

0
2)
0

(ii) |X 

= |X  for  = 1      ,  6= 

(iii) 2|X 

= 2

(iv) E [ ()|X = x] exists for all  = 1      and x ∈ X .

Part (i) of Assumption 1.1 implies that the random coefficient consists of a ‘stationary’ and

‘nonstationary’ component. The stationary part, ∗ (), does not vary over time so that if

 =  we have ∗ () = ∗ (). The non-stationary part, which is a function of the

subvector 2 alone, may vary over time so that even if 2 = 2 we may have  (2) 6=  (2).

Part (ii) imposes marginal stationarity of  given X and  (cf., Manski, 1987). Marginal

stationarity, while allowing for serial dependence in  is restrictive. For example it rules out time-

varying heteroscedasticity. Part (iii) requires that 2 is independent of bothX and . Maintaining

(ii) and (iii) is weaker than assuming that  is i.i.d. over time and independent of X and  as

is often done in nonlinear panel data research (e.g., Chamberlain, 1980). Part (iv) is a technical

condition. Note that Assumption 1.1 does not restrict the joint distribution of X and . Our

model is a ‘fixed effects’ one.
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Under Assumption 1.1 we have

E [ ()|X] = E [∗ ()|X] + E [ (2)|X]
= E [∗ (1)|X] + E [ (21)]
= 0 (X) + δ0  = 1      (6)

where first equality uses part (i) of Assumption 1.1, the second parts (ii) and (iii), and the third

establishes the notation 0 (X) = E [∗ (1)|X] and δ0 = E [ (2)]. In what follows we

normalize δ01 = 0

Equation (6) is a ‘common trends’ assumption. To see this consider two subpopulations with

different regressor histories (X = x and X = x0). Restriction (6) implies that10

E [ ()|x]− E [ ()|x] = E
£
 ()|x0

¤− E £ ()|x0
¤

= δ0 − δ0

Now recall that a unit’s period  potential outcome function is  (x) = x
0
 ()  Let τ be any

point in the support of both X and X we have for all x ∈ X

E [ (τ )−  (τ )|X = x] = E [ (τ )−  (τ )] = τ 0 (δ0 − δ0)  (7)

Equation (7) implies that while the period  (linear) potential outcome functions may vary arbitrar-

ily across subpopulations defined in terms of X = x, shifts in these functions over time are mean

independent of X. A variant of (7) is widely-employed in the program evaluation literature (e.g.,

Heckman, Ichimura, Smith and Todd, 1998; Angrist and Krueger, 1999). It is also satisfied by the

linear panel data model featured in Chamberlain (1984).11

Let the ( − 1) ×1 vector of aggregate shifts in the random coefficients ¡δ02     δ0 ¢0 be denoted
by δ with the corresponding  × ( − 1)  matrix of time shifters given by

W =

⎛⎜⎜⎜⎜⎝
00 00
X02 00

. . .

00 X0

⎞⎟⎟⎟⎟⎠  (8)

Under Assumption 1.1 we can write the conditional expectation of Y given X as:

E [Y|X] =Wδ0+Xβ0 (X)  (9)

10We use the notation E [ |X = x] = E [ |x] 
11 In an NBER working paper we show how to weaken (6) while still getting positive identification results. As we

do not use these additional results when considering estimation they are omitted.

6



In some cases it will be convenient to impose a priori zero restrictions on δ0 (which would

imply restrictions on how E [ (x)] is allowed to vary over time). In order to accommodate such

situations (without introducing additional notation) we can simply redefineW and δ0 accordingly.

For example a model which allows only the intercept of E [ (x)] to shift over time is given by (9)

above withW =
¡
0−1 −1

¢0
and δ0 equal to the −1 vector of intercept shifts. To accommodate

a range of options we hereon assume thatW is a known  ×  function of X

Equation (9), which specifies a semiparametric mean regression function for Y given X, is the

fundamental building block of the results that follow. Our identification results are based solely on

different implications of (9). The role of equation (1) and Assumption 1.1 is to provide primitive

restrictions on 0 which imply (9). We emphasize that our results neither hinge on, nor necessarily

fully exploit, all of these assumptions. Rather they flow from just one of their implications.

1.1 Regular identification

The partially linear form of (9) suggests identifying δ0 using the conditional variation inW given

X as in, for example, Engle, Granger, Rice and Weiss (1986).12 In our benchmark model, however,

W is a  ×  function of X and hence no such conditional variation is available. Nevertheless

Chamberlain (1992) has shown that δ0 may be identified using the panel structure.

Let Φ (X) be some function of X mapping into  ×  positive definite matrices (in practice

Φ (X) =  will often suffice) and define the  ×  idempotent ‘residual maker’ matrix:

Φ (X) =  −X
£
X0Φ−1 (X)X

¤−1
X0Φ−1 (X)  (10)

Using the fact that Φ (X)X = 0 Chamberlain (1992) derived, for    and other regularity

conditions, the pair of moment restrictions

E

"
W0Φ−1 (X)Φ (X) (Y −Wδ0)£

X0Φ−1 (X)X
¤−1

X0Φ−1 (X) (Y −Wδ0)− β0

#
= 0

which identify δ0 and β0 by

δ0 = E
h
W

0
ΦΦ

−1 (X)WΦ

i−1
× E

h
W

0
ΦΦ

−1 (X)YΦ

i
(11)

β0 = E
h¡
X0Φ−1 (X)X

¢−1
X0Φ−1 (X) (Y −Wδ0)

i
 (12)

whereWΦ =Φ (X)W and YΦ =Φ (X)Y

Note thatΦ (X) may be viewed as a generalization of the within-group transform. To see this

12To be specific if W =W− E [W|X] has a covariance matrix of full rank, then 0 = E
W0W−1

× E
W0Y


.
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note that premultiplying (9) by Φ (X) yields

E
£
YΦ

¯̄
X
¤
= WΦδ0 +Φ (X)Xβ0 (X)

= WΦδ0

so that Φ (X) ‘differences away’ the unobserved correlated effects, β0 (X). Equation (11) shows

that δ0 is identified by the remaining ‘within-group’ variation inW.

With δ0 asymptotically known, the APE is then identified by the (population) mean of the

unit-specific generalized least squares (GLS) fits

bβ =
¡
X0Φ

−1 (X)X

¢−1
X0Φ

−1 (X) (Y −Wδ0)  (13)

Chamberlain (1992) showed that setting Φ (X) = Σ (X) = V (Y|X) is optimal; resulting in esti-
mators with asymptotic sampling variances equal to the variance bounds:

I (δ0)−1 = E
h
W

0
ΣΣ

−1 (X)WΣ

i−1
(14)

I (β0)−1 = V (β0 (X)) + E
h¡
X0Σ−1 (X)X

¢−1i
+I (δ0)−1 0 (15)

where  = E
h¡
X0Σ−1 (X)X

¢−1
X0Σ−1 (X)W

i


1.2 Irregularity of the CRC panel data model

Chamberlain’s approach requires nonsingularity of I (δ0) and I (β0)  In this section we discuss
when this condition might not hold and, consequently, no regular

√
 consistent estimator exists.

We begin by noting that singularity I (δ0) is generic if  =  our primary case. The following

proposition specializes Proposition 1 of Chamberlain (1992) to our problem.

Proposition 1.1 (Zero Information) Suppose that (i) (0 δ0β0 (·)) satisfies (9), (ii) Σ (x) is
positive definite for all x ∈ X  (iii) E

£
W0Σ−1 (X)W

¤
∞ and (iv)  =  then I (δ0) = 0

Proof. From Chamberlain (1992) the information bound for δ0 is given by

I (δ0) = E
h
W

0
ΣΣ

−1 (X)WΣ

i
so that 0I (δ0) = 0 is equivalent toWΣ = 0 with probability one. If  = , then X is square

so that

WΣ =W
³
 −X

£
X0Σ−1 (X)X

¤−1
X0Σ−1 (X) (X)

´
= 0

such thatWΣ = 0.

An intuition for Proposition 1.1 is that when  =  Chamberlain’s generalized within-group

transform ofW eliminates all residual variation inW over time. This is because the  predictors

X perfectly (linearly) predict each element of W when  = . Consequently the deviation of

8



W from its ‘within-group mean’ is identically equal to zero; any approach based on within-unit

variation will necessarily fail.

As a simple example consider the one period ( =  = 1) ‘panel data’ model where, suppressing

the  subscript,

 = δ0+ ()  (16)

with  scalar. Under Assumption 1.1 this gives (9) with W = 1 and X = . The generalized

within-group operator for this model is  (X) = 1 −
³

2

Φ(X)

´−1


Φ(X)
= 0 Consequently Y =

W = 0 and (11) does not identify δ0. By Proposition 1.1 I (δ0) = 0 We show that δ0 and β0 are
irregularly identified in this model below.

We do not provide a general result on when regular
√
 estimation of β0 is possible. However

some insight into this question can be gleaned from a few examples. First, when  = , it appears

as though β0 will not be regularly identifiable unless δ0 is known. This can be conjectured by the

form of (15) which will generally be infinite if I (δ0)−1 is. Even if δ0 is known regular identification
can be delicate. Consider the  =  = 1 model given above. In this model the right-hand-side of

(12) above specializes to E [( − δ0) ], which will be undefined in  has positive density in the

neighborhood of zero.

Less obviously, regular estimation may be impossible in heavily overidentified models (i.e., those

where  substantially exceeds ).13 To illustrate again consider (16) with δ0 known, but with  ≥ 2.
Assume further that Σ (X) =  and  =  ·  where

 ∼ U [ ]  
∼ N (0 1) 

Variation in  over time in this model is governed by , which varies across units. For those units

with  close to zero,  will vary little across periods. The unit specific design matrix in this model

is given by X0Σ−1 (X)X =
P


2 ·  ∼ 2 · U [ ]. If 0     then

E
h¡
X0Σ−1 (X)X

¢−1i
=

(
ln()−ln()

−2  ≥ 3
∞   3



so the right-hand-side of (12) will be well-defined if  ≥ 3. If  ≤ 0, then it is undefined regardless
of the number of time periods. If  ≤ 0 the support of  will contain zero, ensuring a positive

density of units whose values of X do not change over time. These ‘stayers’ will have singular

design matrices in (13), causing the variance bound for β0 to be infinite.

To summarize regular identification of β0 requires sufficient within-unit variation in X for

all units. This is a very strong condition. Many microeconometric applications are characterized

by a preponderance of stayers.14 While time series variation in X is essential for identification,

13 In contrast the variance bound for 0 will be finite when    as long as there is some variation in X over

time.
14 In Card’s (1996) analysis of the union wage premium, for example, less than 10 percent of workers switch between

collective bargaining coverage and non-coverage across periods (Table V, p. 971).
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persistence in its process is common in practice. This persistence will often imply that the right-

hand-side of (12) is undefined.

1.3 Irregular identification

In this section we show that, under weak conditions, δ0 and β0 are irregularly identified when

 =  We show how to extend our methods to the irregular    (overidentified) case in Section

3 below. Let

 = det (X)

and

X∗ = adj (X)

respectively denote the determinant and adjoint of X such that X−1 = 1

X∗ when the former

exists. In what follows we will often refer to units where  = 0 as stayers. To motivate this

terminology consider the case where  =  = 2 withW and X in (9) equal to

W =

Ã
0

1

!
 X =

Ã
1 1

1 2

!


with  scalar. This corresponds to a model with (i) a random intercept and slope coefficient and

(ii) a common intercept shift between periods one and two. In this model

 = 2 −1 = ∆;

hence  = 0 corresponds to ∆ = 0, or a unit’s value of  ‘staying’ fixed across the two periods.

More generally  = 0 if two or more rows of X coincide, which occurs if X does not change across

adjacent periods or reverts to an earlier value in a later period. Loosely-speaking, we may think of

stayers as units whose value of X changes little across periods.

Let Y∗= X∗Y and W∗ = X∗W equal Y and W after premultiplication by the adjoint of X.

In the  =  = 2 example introduced above we have

X∗ =

Ã
2 −1
−1 1

!
 Y∗ =

Ã
21 −12

∆

!
 W∗ =

Ã
−1

1

!


In an abuse of notation let β0 () = E [β0 (X)| = ]  Our identification result, in addition to

(9), requires the following assumption.

Assumption 1.2 (Smoothness and Continuity)

(i) For some 0  0  = det (X) has Pr (||  ) =

Z 

−
 () d with  ()  0 for all  ≤ 0;

(ii) E
h
kW∗k2

i
∞ and E [W∗0W∗| = 0] is nonsingular; and

(iii) the functions β0 ()  (), E [W
∗| = ]  and E [W∗0W∗| = ] are continuous in  for
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−0 ≤  ≤ 0.

Part (i) of Assumption 1.2 is essential as our approach involves conditioning on different values

of . While the requirement that  has positive density near zero is indispensable, the implication

that Pr ( = 0) = 0 can be relaxed. In Section 3 we show how to deal with the case where the

distribution  has a point mass at zero. This may occur if the distribution of X has mass points

at a finite set of values, while being continuously distributed elsewhere. If there is overlap in the

mass points of X and X ( 6= ), then the distribution of  will have a mass point at zero.

Part (ii) of Assumption 1.2 is required for identification of δ0. It will typically hold in well-

specified models and is straightforward to verify. Part (iii) is a smoothness assumption which, in

conjunction with (i), allows us to trim without changing the estimand.

Identification of the aggregate time effects, δ0 : We begin by premultiplying (9) by X∗ to
get

E [Y∗|X] =W∗δ0+β0 (X) 

where we use the fact that  = X
∗X. Conditioning on the subpopulation of ‘stayers’ yields

E [Y∗|X = 0] =W∗δ0 (17)

Under Assumption 1.2 equation (17) implies that δ0 is identified by the conditional linear predictor

(CLP)

δ0 = E
£
W∗0W∗¯̄ = 0

¤−1 × E £W∗0Y∗
¯̄
 = 0

¤
 (18)

Equation (18) shows that the subpopulation of stayers is used to tie down the aggregate time effects,

δ0. Since stayer’s correspond to units whose values of X change little over time, the evolution of

 among these units is driven by the aggregate time effects. This approach to identifying δ0 is

reminiscent of Chamberlain’s (1986) ‘identification at infinity’ result for the intercept of the censored

regression model (p. 205). Both approaches use a small subpopulation to tie down a feature of

the entire population. An important difference is that our result does not require X to have

unbounded support. Consequently, our identification result is not sensitive to the ‘tail properties’

of the distribution of X Our key requirement, that  have positive density in a neighborhood

about zero, is straightforward to verify. We do this in the empirical application by plotting a kernel

density estimate of  (), the density of .

In the  =  = 2 example we have, conditional on  = 0 the equality Y∗ =W∗∆ so that

(18) simplifies to, recalling that  = ∆,

δ0 = E [∆ |∆ = 0]  (19)

The common intercept shift is identified by the average change in  in the subpopulation of

stayers. Identification of δ0 is irregular since Pr ( = 0) = 0; δ0 corresponds to the value of the

nonparametric mean regression of ∆ given  at  = 0 Note the importance of the (verifiable)
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requirement that 0  0 for this result.

As a second example of (18) consider the one period ‘panel data’ model introduced above. From

(16) we have

E [ | = 0] = δ0,

or ‘identification at zero’.

Identification of the average partial effects, β0 : Treating δ0 as known we identify β0 (x)

for all x such that  is non-zero by

β0 (x) = E
£
X−1 (Y −Wδ0)

¯̄
X = x

¤
 (20)

It is instructive to consider the  =  = 2 case introduced above. In that model the second

component of the right-hand side of (20), corresponding to the slope coefficient on , evaluates to

β20 (x) =
E [∆ |X = x]− δ0

2 − 1
(21)

=
E [∆ |X = x]− E [∆ |∆ = 0]

2 − 1

where the second, difference-in-differences, equality follows by substituting in (19) above. Equation

(21) indicates that the average slope coefficient, in a subpopulation homogenous in X = x, is equal

to the average ‘rise’ — E [∆ |X = x] — over the common ‘run’ — 2 − 1. The evolution of 

amongst stayers is used to eliminate the aggregate time effect from the average rise (i.e., to control

for ‘common trends’) in this computation.

Using (21) we then might try, by appealing to the law of iterated expectations, to identify β20

by

E
∙
∆ − δ0
∆

¸
 (22)

An approach based on (22) was informally suggested by Mundlak (1961, p. 45). Chamberlain (1982)

considered (22) with δ0 = 0, showing that it identifies β20 if E [|∆∆|] ∞. However, if∆ has

a positive, continuous density at zero — and if E[|∆ | | ∆ = ]−δ0 does not vanish at  = 0 — then
(22) will not be finite. For example, if ∆ and ∆ are independently and identically distributed

according to the standard normal distribution, then ∆∆ will be distributed according to the

Cauchy distribution, whose expectation does not exist.

More generally the expectation

E
£
X−1 (Y −Wδ0)

¤
will be undefined if the distribution of X is such that  has a positive density in the neighborhood

of  = 0 (i.e., there is a positive density of ‘stayers’) This will occur when, for example, at least

two rows of X ‘nearly’ coincide for ‘enough’ units (i.e., when part (i) of Assumption 1.2 holds).
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To deal with the small denominator effects of stayers we trim. Under parts (i) and (iii) of

Assumption 1.2 we have the equalities (see equation (42) in the Appendix)

β0 = E [β0 (X)]

= lim
↓0

E [β0 (X) · 1 (||  )]

= lim
↓0

E
£
X−1 (Y −Wδ0) · 1 (||  )

¤
 (23)

so that β0 is identified by the limit of the trimmed mean of X
−1 (Y −Wδ0). Trimming elimi-

nates those units with near-singular design matrices (i.e., stayers); by taking limits and exploiting

continuity we avoid changing the estimand.

Note that if there is a point mass of stayers such that Pr ( = 0) = 0  0, then (23) does not

equal β0, instead it equals

β
0 = E [β0 (X)| 6= 0] 

or the movers average partial effect (MAPE). Let β
0 = E [β0 (X)| = 0] equal the corresponding

stayers average partial effect (SAPE). In Section 3 we show how to extend our results to identify

the full average partial effect β0 = 0β

0 + (1− 0)β


0 in this case.

The following proposition, which is proven in the Appendix as a by-product of the consistency

part of Theorem 2.1 below, summarizes our main identification result.

Proposition 1.2 (Irregular Identification) Suppose that (i) (0 δ0β0 (·)) satisfies (9), (ii)
Σ (x) is positive definite for all x ∈ X  (iii)  =  and (iv) Assumption 1.2 holds, then δ0 and

β0 are identified by, respectively, (18) and (23).

2 Estimation

Our approach to estimation is to replace (18) and (23) with their sample analogs. We begin by

discussing our estimator for the common parameters δ0 Let  denote some bandwidth sequence

such that  → 0 as  → ∞. We estimate δ0 by the nonparametric conditional linear predictor
fit:

bδ = ∙ 1



X

=1
1 (|| ≤ )W

∗0
 W

∗


¸−1
×
∙
1



X

=1
1 (|| ≤ )W

∗0
 Y

∗


¸
 (24)

This estimator has asymptotic properties similar to a standard (uniform) kernel regression fit for a

one-dimensional problem. In particular, in the proof to Lemma A.2 in the Appendix we show that

V
³bδ´ = 

µ
1



¶
À 

µ
1



¶


so that its mean squared error (MSE) rate of convergence is slower than 1 when  → 0. We

also show that the leading bias term in bδ is quadratic in the bandwidth so that the fastest rate of
13



convergence of bδ to δ0 will be achieved when the bandwidth sequence is of the form
∗ ∝ −15

To center the limiting distribution of
√


³bδ − δ0´ at zero we use a bandwidth sequence that
approaches zero faster than the MSE-optimal one. In particular we assume that ()

12 2 → 0

as as  →∞. We discuss our chosen bandwidth sequence in more detail below.
With bδ in hand we then estimate β0 using the trimmed mean15

bβ = 1


X

=1
1 (||  )X

−1


³
Y −W

bδ´
1


X

=1
1 (||  )

 (25)

To derive the asymptotic properties of bβ we begin by considering those of the infeasible estimator
based on the true value of the time effects, δ0:

bβ =

1


X

=1
1 (||   )X

−1
 (Y −Wδ0)

1


X

=1
1 (||  )

 (26)

Like bδ the variance of bβ is of order 1 , however its asymptotic bias is linear, not quadratic,

in  . The fastest feasible rate of convergence of bβ to β0 is consequently slower than the that

of bδ to δ0 (−23 versus −45). In order to center the limiting distribution of
√


³bβ − β0
´

at zero we assume that ()
12  → 0 as as  → ∞ This is stronger than what is needed to

appropriately center the distribution of the aggregate time effects.

The value of studying the large sample properties of
√


³bβ − β0
´
is that our feasible

estimator is a linear combination of bβ and
bδ:

bβ = bβ +
bΞ ³bδ − δ0´  (27)

with

bΞ =

1


X

=1
1 (||  )X

−1
 W

1


X

=1
1 (||  )

(28)

=

1


X

=1
1 (||  )

−1
 W∗



1


X

=1
1 (||   )



Note that bβ and
bδ are respectively computed using the ||   and || ≤  subsamples,

so they are conditionally independent given the {X}. This independence exploits the fact that
15The denominator in (25) could be replaced by 1.
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the same bandwidth sequence is used to estimate bδ and bβ; it also results from our choice of the

uniform kernel, which has bounded support. We proceed under these maintained assumption,

acknowledging that it means that the rate of convergence of bδ to δ0 is well below its optimal one.
We view the gains from using the same bandwidth sequence for both bδ and bβ — in terms of simplicity
and transparency of asymptotic analysis — as worth the cost in generality.

Lemma A.3 in the Appendix shows that

bΞ → Ξ0 ≡ lim
↓0

E
£
1 (||  )−1 W∗



¤


We therefore recover the limiting distribution of the feasible estimator bβ from our results on bβ

and bδ using a delta method type argument based on (27).
To formalize the above discussion and provide a precise result we require the following additional

assumptions.

Assumption 2.1 (Random Sampling) {(YX)}=1 are i.i.d. draws from a distribution 0

which satisfies condition (9) above.

Assumption 2.2 (Bounded Moments) E
h
kX∗Yk4 + kX∗Wk4

i
∞

Assumption 2.3 (Smoothness) β0() (), E [W
∗| = ]  E [W∗0W∗| = ], E [X∗Σ (X)X∗0| = ] 

and  () = E [kX∗Yk + kX∗Wk| = ] exist and are twice continuously differentiable for 

in a neighborhood of zero and 0 ≤  ≤ 4.

Assumption 2.4 (Local Identification) E [X∗Σ (X)X∗0| = 0] is positive definite.

Assumption 2.5 (Bandwidth) As  → ∞ we have  → 0 such that  → ∞ and

( )
12  → 0.

Assumption 2.1 is a standard random sampling assumption. Our methods could be extended

to consider other sampling schemes in the usual way. Assumptions 2.2 and 2.3 are regularity

conditions that allow for the application of Liapunov’s central limit theorem for triangular arrays

(e.g., Serfling, 1980). Assumption 2.5 is a bandwidth condition which ensures that
√


³bβ − β0´
is asymptotically centered at zero with a finite variance as discussed below.

The smoothness imposed by Assumption 2.3 can be restrictive. For example if  =  = 2 with

X = (1)
0 and 1 and 2 independent exponential random variables with parameter 1, then

 = ∆ will be a Laplace(0 ) random variable (the density of which is non-differentiable at zero).

Non-differentiablility of the density of  at  = 0 will prevent us from consistently estimating the

common time effects, δ (and, consequently, also β0). To gauge the restrictiveness of Assumption 2.3

note that twice continuous differentiability is required for nonparametric kernel estimation of, for

example, () and E [W∗| = ], and is, consequently, a standard assumption in the literature on

nonparametric density and conditional moment estimation (e.g., Pagan and Ullah, 1999; Chapters

2, 3).
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Theorem 2.1 (Large Sample Distribution) Suppose that (i) (0 δ0β0 (·)) satisfies (9), (ii)
Σ (x) is positive definite for all x ∈ X  (iii)  =  and (iv) Assumptions 1.2 to 2.5 hold, thenbδ → δ0 and bβ → β0 with the normal limiting distribution

p


Ã bδ − δ0bβ − β0
!

→ N (0Ω0)  Ω0 =

Ã
Λ0
20

Λ0Ξ
0
0

20
Ξ0Λ0
20

2Υ00 +
Ξ0Λ0Ξ

0
0

20

!

where

Λ0 = E
£
W∗0W∗¯̄ = 0

¤−1 E £W∗0X∗Σ (X)X∗0W∗¯̄ = 0
¤
E
£
W∗0W∗¯̄ = 0

¤−1
Υ0 = E

£
X∗Σ (X)X∗0

¯̄
 = 0

¤


We comment that, in contrast to the irregularly identified semiparametric models discussed in

Heckman (1990), Andrews and Schafgans (1998), and Khan and Tamer (2009), the rate of conver-

gence for our estimator does not depend on delicate ‘relative tail conditions’. Our identification

approach is distinct from the type of ‘identification and infinity’ arguments introduced by Cham-

berlain (1986) and leads to a somewhat simpler asymptotic analysis.

It is instructive to compare the asymptotic variances given in Theorem 2.1 with Chamberlain’s

regular counterparts (given in (14) and (15) above). First consider the asymptotic variance of bδ.
In our setupW∗ plays a role analogous to the generalized within-group transformation ofW used

by Chamberlain (i.e.,WΦ =Φ (X)W). Viewed in this light the form of Λ0 is similar to that of

I (δ0)−1 in the regular case. The key difference is that (i) the expectations in Λ0 are conditional on
 = 0 (i.e., averages over the subpopulation of stayers) and (ii) the variance of bδ varies inversely
with 0. The greater the density of stayers, the easier it is to estimate

bδ. We comment that we
could estimate bδ more precisely if we replaced (24) with a weighted least squares estimator. We do
not pursue this idea here as it would require pilot estimation of Σ (X), a high dimensional object,

and hence is unlikely to be useful in practice.

The asymptotic variance of bβ also parallels the form of I (β0)−1. The first term, 2Υ00, plays
the role of E

h¡
X0Σ−1 (X)X

¢−1i
in (15). This term corresponds to the average of the conditional

sampling variances of the unit specific slope estimates. The ‘better’ the typical unit-specific design

matrix, the greater the precision of the average bβ. In the irregular case 2Υ00 captures a similar
effect. There the average is conditional on  = 0 In contrast to the aggregate time effects, the

first term in the variance of bβ varies linearly with 0; suggesting that a small density of stayers is

better for estimation of β0

The second term in bβ’s variance is analogous to the I (δ0)−1 0 term in (15). This term

captures the effect of sampling variation in bδ on that of bβ. Note that  is equal to the average

of the ×  matrix of coefficients associated with the unit-specific GLS fit of the  × 1 vectorW

given the  × 1 vector of regressors X. It is instructive to consider an example where there is

no asymptotic penalty associated with not knowing δ0 LetW =
¡
0−1 −1

¢0
and X = (1)

0

with  scalar such that  = 2 and δ0 corresponds to a  =  − 1 vector of time-specific intercept
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shifts. If the distribution of  is stationary over time, then realizations of  cannot be used to

predict the time period dummies. In that case each column of  will consist of a vector of zeros

with the exception of the first element (which will equal 1 ) . The lower-right-hand element of

I (δ0)−1 0 will equal zero so that ignorance of δ0 does not affect the precision which which the
second component of β0, corresponding to the average slope, may be estimated.

16

Now consider the irregular case where  =  = 2. We have

Ξ0 = lim
↓0

E

"
1 (|∆|  )

1

∆

Ã
−1

1

!#


so that the lower-right-hand element of Ξ0Λ0Ξ
0
0 will equal zero if lim

↓0
E [1 (|∆|  ) ∆] = 0.

This condition will hold if, for example, 1 and 2 are exchangeable, so that ∆ is symmetrically

distributed about zero (at least for |∆| in a neighborhood of zero). This will ensure the asymptotic
equivalence of the feasible estimator b and its infeasible counterpart b .

Chamberlain’s variance bound for β0 contains a third term the analog of which is not present

in the irregular case. This term, V (β0 (X)), captures the effect of heterogeneity in the conditional

average of the random coefficients on the asymptotic variance of b. In the irregular case a term
equal to V (β0 (X))  also enters the expression for the sampling variance of b (see the calcula-
tions immediately prior to Equation (45) in the Appendix). However this term is asymptotically

dominated by the two terms listed in Theorem 2.1 (which are of order 1). The variance

estimator described in Theorem 2.2 below implicitly accounts for this asymptotically dominated

component.

The conditions of Theorem 2.1 place only weak restrictions on the bandwidth sequence. As

is common in the semiparametric literature we deal with bias by undersmoothing. The appendix

shows that the fastest rate of convergence of bβ for β0 in mean square is achieved by bandwidth
sequences of the form,

∗ = 0
−13

where the mean squared error minimizing choice of constant is

0 =
1

2

µ
1

0

¶13½h¡
β0 − β

0

¢ ¡
β0 − β

0

¢0i−1 × ∙2Υ0 + Ξ0Λ0Ξ00
220

¸¾13
 (29)

and β
0 = E [β0 (X)| = 0] equals the average of the random coefficients in the subpopulation

of stayers. While the bandwidth sequence ∗ achieves the fastest rate of convergence for our

estimator, the corresponding asymptotic normal distribution for b(∗) will be centered at a bias
term of 2

¡
β0 − β

0

¢
0 To eliminate this bias Assumption 2.5 requires that  → 0 fast enough

such that ( )
12  → 0 as  →∞, but slow enough such that ()

12 →∞. A bandwidth
sequence which converges to zero slightly faster than ∗ is sufficient for this purpose. In particular

16Sampling error in the estimated time effects does affect the precision with which the common intercept, the first

component of 0 may be estimated
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if

 = (−13)

then
√


³bβ − β0´ will be asymptotically centered at zero.
An alternative to undersmoothing would be to use a plug in bandwidth based on a consistent

estimate of (29), say b. Such an approach is taken by Horowitz (1992) in the context of smoothed
maximum score estimation. Denote the resulting estimate by bβPI (PI for ‘plug in’). Let bβ be the
consistent undersmoothed estimate of Theorem 2.1 and bβ

and b0 estimates of β
0 and 0. The

bias corrected estimate is then

bβBC = bβPI − 2³bβ − bβ
´ b0 b−13

Unlike undersmoothing, this does not slow down the rate of convergence of bβBC to β0. A dis-

advantage is that it is more computationally demanding. In the empirical application below we

experiment with a number of bandwidth values. A more systematic analysis of bandwidth selection,

while beyond the scope of this paper, would be an interesting topic for further research.

Computation and consistent variance estimation: The computation of bδ and bβ is facilitated
by observing that the solutions to (24) and (25) above coincide with those of the linear instrumental

variables fit bθ = ∙ 1


X

=1
Q0R

¸−1
×
∙
1



X

=1
Q0Y

∗


¸


for θ =
¡
δ0β0

¢0
and

Q
×+

=

µ
−1 1 (|| ≤  )W

∗
 
1 (||   )




¶
 R

×+
= (W∗

 1 (||  )) 

where the dependence of Q and R on  is suppressed.

Let θ () denote the probability limit of bθ when the bandwidth is held fixed at ; then, by
standard GMM arguments,

b () = ∙ 1


X

=1
Q0R

¸−1
×
∙




X

=1
Q0 bU+


bU+0
 Q

¸
×
∙
1



X

=1
Q0R

¸−1
(30)

is a consistent estimate of the asymptotic covariance of
√


³bθ − θ ()´ with
bU+
 = Y

∗
 −R

bθ
Conveniently, this covariance estimator remains valid when, as is required by Theorem 2.1, the

bandwidth shrinks with  .

Theorem 2.2 Suppose the hypotheses of Theorem 2.1 hold, and that E
h
kX∗Yk8 + kX∗Wk8

i

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∞ and that Assumption 2.3 holds for  ≤ 8 Then b ≡ b () → Ω0.

Relative to a direct estimate of Ω0, (30) implicitly includes estimates of terms that, while asymp-

totically negligible, may be sizeable in small samples. Consequently confidence intervals constructed

using it may have superior properties (cf., Newey, 1994b; Graham, Imbens and Ridder, 2009).

Operationally estimation and inference may proceed as follows. Let Y∗ R and Q denote the

 rows of their corresponding matrices. Using standard software compute the linear instrumental

variables fit of Y∗ onto R using Q as the instrument (exclude the default constant term from

this calculation). By Theorem 2.2 the ‘robust/clustered’ (at the unit-level) standard errors reported

by the program will be asymptotically valid under the conditions of Theorem 2.1.

3 Extensions

In this section we briefly develop three direct extensions of our basic results. In Section 5 we discuss

other possible generalizations and avenues for future research.

3.1 Linear functions of β0 (X)

In some applications the elements of X may be functionally related. For example

X =
³
1  

2
      

−1


´0
 (31)

In such settings β0 indexes the average structural function (ASF) of Blundell and Powell (2003).

To emphasize the functional dependence write X = x (), then

 () = x ()
0 (β0 + δ0) 

gives the expected period  outcome if (i) a unit is drawn at random from the (cross sectional)

population and (ii) she is exogenously assigned input level  =  . Similarly, differences of the

form


¡
 0
¢−  () 

give the average period  outcome difference across two counterfactual policies: one where all units

are exogenously assigned input level  =  0 and another where they are assigned  =  . Since it

is a linear function of β0 and δ0 Theorem 2.1 can be used to conduct inference on  ().

In the presence of functional dependence across the elements of X the derivative of  () with

respect to  does not correspond to an average partial effect (APE).17 Instead such derivatives

characterize the local curvature of the ASF. In such settings the average effect of a population-wide

17We thank a referee for several helpful comments on this point.
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unit increase in  (i.e., the APE) is instead given by

γ0
≡ E

∙
 (x ())



¸
= E

∙µ
x ()



¶0
 ()

¸
(32)

= E
∙µ

x ()



¶0
(β0 (x ()) + δ0)

¸


where the second equality follows from iterated expectations and Assumption 1.1. Because x () 

may covary with β0 (x ()) Theorem 2.1 cannot be directly applied to conduct inference on γ0.

Fortunately it is straightforward to extend our methods to identify and consistently estimate pa-

rameters of the form

γ0 = E [Π (X) (β0 (X) + δ0)]

= γ0 + E [Π (X)] δ0

where Π (x) is a known function of x and γ0 = E [Π (X)β0 (X)]  IfX is given by (31), for example,

then to estimate the APE we would choose

Π (x) =
x ()


=
³
0 1 2 3

2
     (− 1) −2

´


In order to estimate γ0 we proceed as follows. First, identification and estimation of δ0 is

unaffected. Second, using (20) gives for any x with  6= 0

γ0 (x) = Π (x)E
£
X−1 (Y −Wδ0)

¯̄
X = x

¤


so that

γ0 = lim
↓0

E
£
Π (X)X−1 (Y −Wδ0) · 1 (||  )

¤


This suggests the analog estimator

bγ = 1


X

=1
1 (||  )Π (X)X

−1


³
Y −W

bδ´
1


X

=1
1 (||   )



An argument essentially identical to that justifying Theorem 2.1 then gives

p


Ã bδ − δ0bγ − γ0
!

→ N
⎛⎝0

⎛⎝ Λ0
20

Λ0Ξ
0
Π0

20
ΞΠ0Λ0
20

2ΥΠ00 +
ΞΠ0Λ0Ξ

0
Π0

20

⎞⎠⎞⎠  (33)

with

ΥΠ0 = E
£
Π (X)X∗Σ (X)X∗0Π (X)0

¯̄
 = 0

¤
ΞΠ0 = lim

↓0
E
£
1 (||  )Π (X)X−1W

¤

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We can then estimate γ0 by bγ = bγ + bΠbδ
with bΠ = P

=1Π (X)  . To conduct inference on γ0 we use the delta method treating
bΠ as

known. We may ignore the effects of sampling variability in bΠ since its rate of convergence to

E [Π (X)] is 1

3.2 Density of  has a point mass at  = 0

In some settings a positive fraction of the population may be stayers such that 0
≡ Pr ( = 0)  0

This may occur even if all elements of are continuously-valued. If the only continuous component

of X is the logarithm of annual earnings, for example, a positive fraction of individuals may have

the same earnings level in each sampled period. This may be especially true if many workers are

salaried.

A point mass at  = 0 simplifies estimation of δ0 and complicates that of β0. When 0  0

the estimator

bδ = ∙ 1


X

=1
1 ( = 0)W

∗0
 W

∗


¸−1
×
∙
1



X

=1
1 ( = 0)W

∗0
 Y

∗


¸


will be
√
 -consistent and asymptotically normal for bδ, as would be the (asymptotically equivalent)

estimator described in Section 2 above.

The large sample properties of the infeasible estimator bβ
— see equation (26) — are unaffected

by the point mass at  = 0 with two important exceptions. First its probability limit is no longer

β0 the (full population) average partial effect, but β

0 = E [β0 (X)| 6= 0], the movers’ APE

introduced in Section 1. Second, its asymptotic variance is scaled up by 1 − 0, the population

proportion of movers. This gives
√


³bβ − β
0

´
→ N

³
0
2Υ00
1−0

´


Reflecting the change of plims let bβ
equal the feasible estimator defined by (25). Using

decomposition (27) we havep


³bβ − β
0

´
=

p


³bβ − β
0

´
+ bΞp

³bδ − δ0´
=

p


³bβ − β
0

´
+ Ξ0

³p


´
=

p


³bβ − β
0

´
+  (1) 

so that the sampling properties of bβ
are unaffected by those of bδ In particular, adapting the

argument used to show Theorem 2.1 yields

p


³bβ − β
0

´
→ N

µ
0
2Υ00
1− 0

¶

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If a consistent estimator of the stayers effect

β
0 ≡ E[β0 (X)| 6= 0]

can be constructed, a corresponding consistent estimator of the APE β0 = 0β

0 + (1 − 0)β


0

would be bβ ≡ bbβ
+ (1− b)bβ



where b ≡P
=1 1(|| ≤  ) is a

√
 -consistent estimator for 0

Inspection of the equation immediately preceding (17) in Section 1 suggests one possible esti-

mator for β
0  We have

E [Y∗|X] =W∗δ0+β0 (X) 

so that

β
0 = lim

↓0
E [Y∗| = ]− E [Y∗| = 0]




which suggests the estimatorÃ
δbβ

!
= argmin



X
=1

1 (|| ≤  )
¡
Y∗ −W∗

 δ−β

¢0 ¡
Y∗ −W∗

 δ−β

¢


with δ an alternative
√
-consistent estimator for δ0. Since the rate of convergence of a nonpara-

metric estimator of the derivative of a regression function is lower than for its level, the rate of

convergence of the combined estimator bβ ≡ bbβ
+ (1 − b)bβ

will coincide with that of bβ
 and

the asymptotic distribution of the latter would dominate the asymptotic distribution of bβ in this
setting. We comment that part (iii) of assumption 1.2 may be less plausible in settings where

Pr ( = 0)  018 It such settings ‘stayers’ may be very different from ‘near stayers’ such that a

local linear regression approach to estimating bβ
would be problematic.

3.3 Overidentification (  )

When    the vector of common parameters δ0 may be
√
 consistently estimated, as first

suggested by Chamberlain (1992), by the sample counterpart of (11) above:

bδ = " 1


X
=1

W
0
ΦΦW

−1
Φ

#−1
×
"
1



X
=1

W
0
ΦΦ (X)YΦ

#


with Φ ≡ Φ(X) positive definite with probability one.

The discussion in Section 1, however, suggests that Chamberlain’s (1992) proposed estimate of

β0, the sample average of

bβ ≡ (X0Φ−1 X)
−1X0Φ

−1
 (Y −W

bδ)
18We thank a referee for this observation.
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for bδ a √ -consistent estimator of δ0, may behave poorly and will be formally inconsistent when
I (β0) = 0

Adapting the trimming scheme introduced for the just identified  =  case, a natural modifi-

cation of Chamberlain’s (1992) estimator is

β̂ =

P
=1 1(det(X

0
Φ
−1
 X)  ) · (X0Φ−1 X)

−1X0Φ
−1
 (Y −W

bδ)P
=1 1(det(X

0
Φ
−1
 X)   )



If

E
∙

1

det(X0Φ
−1
 X)

¸
∞ (34)

then the introduction of trimming is formally unnecessary but may still be helpful in practice. It

is straightforward to show asymptotic equivalence of the (infeasible) trimmed mean

β̂ =

P
=1 1(det(X

0
Φ
−1
 X)  ) · (X0Φ−1 X)

−1X0Φ
−1
 (Y −Wδ0)P

=1 1(det(X
0
Φ
−1
 X)   )



with Chamberlain’s (1992) proposal when E[β(X)|det(X0Φ−1 X) ≤ ] is smooth (Lipschitz-continuous)

in  condition (34) holds, and  = (1
√
) Since ̂ will still be consistent for  even when

(34) fails, a feasible version of the trimmed mean ̂ may be better behaved in finite samples if the

design matrix (X0Φ
−1
 X) is nearly singular for some observations.

4 Application

In this section we use our methods to estimate an elasticity of calorie demand. Our goal is to

provide a concrete illustration of our methods, to compare them with alternatives which presume

the absence of any nonseparable correlated heterogeneity, and to highlight the practical importance

of trimming.

Model specification: We assume that the logarithm of total household calorie availability per

capita in period , ln (Cal), varies according to

ln (Cal) = 1() + 2() ln(Exp) (35)

where Exp denotes real household expenditure per capita in year  and 1() and 2() are

random coefficients; the latter equals the household-by-period-specific elasticity of calorie demand.

Let () = (1() 2())
0  X = (1 ln(Exp))

0  and  = ln (Cal) with X and Y as

defined above. We allow for common intercept and slope shifts over time (i.e., Assumption 1.1).

The 2000 to 2002 period coincided with a coffee crisis in Nicaragua, so there is some a priori reason

to believe that macro-shifts in the demand elasticity may be important.

23



DefiningW as in (8) gives a general semiparametric regression model of

E[Y|WX] =Wδ +Xβ(X)

with δ containing the common intercept and slope time shifts. The second element of β(x) equals

the average (base year) elasticity of calorie demand in the subpopulation of households with X = x

(i.e., a subpopulation with a common income/aggregate expenditure history).

Relative to prior work, the distinguishing feature of our model is that it allows for the elasticity

of calorie demand to vary across households in a way that may co-vary with total outlay. This

allows household expenditures to co-vary with the unobserved determinants of calorie demand. For

example both expenditures and calorie consumption are likely to depend on labor supply decisions

(cf., Strauss and Thomas, 1990). Allowing the calorie demand curve to vary across households

also provides a ‘nonparametric’ way to control for differences in household composition; a delicate

modelling decision in this context (e.g., Subramanian and Deaton, 1996).19

Data description: We use data collected in conjunction with an external evaluation of the

Nicaraguan conditional cash transfer program Red de Protección Social (RPS) (see IFPRI, 2005).

The RPS evaluation sample is a panel of 1,581 households from 42 rural communities in the depart-

ments of Madriz and Matagalpa, located in the northern part of the Central Region of Nicaragua.

Each sampled household was first interviewed in August/September 2000 with follow-ups attempted

in October of both 2001 and 2002. Here we analyze a balanced panel of 1,358 households from all

three waves.20

The survey was fielded using an abbreviated version of the 1998 Nicaraguan Living Standards

Measurement Survey (LSMS) instrument. As such it includes a detailed consumption module with

information on household expenditure, both actual and in kind, on 59 specific foods and several

dozen other common budget items (e.g., housing and utilities, health, education, and household

goods). The responses to these questions were combined to form an annualized consumption ag-

gregate, . In forming this variable we followed the algorithm outlined by Deaton and Zaidi

(2002).

In addition to recording food expenditures, actual quantities of foods acquired are available.

Using conversion factors listed in the World Bank (2002) and Instituto Nacional de Estadísticas y

Censos (2005) (henceforth INEC) we converted all food quantities into grams. We then used the

caloric content and edible percent information in the Instituto de Nutrición de Centro América y

19A limitation of our model is its presumption of linearity at the household level. Strauss and Thomas (1990) argue

that the elasticity of demand should structurally decline with household income. As we have three periods of data we

can, in principal, include an additional function of Exp in the X vector. We briefly explore this possibility below.
20A total of 1,359 households were successfully interviewed in all three waves. One of these households reports

zero food expenditures (and hence calorie availability) in one wave and is dropped from our sample. The prepa-

ration of our estimation sample from the raw public release data files involved some complex and laborious data-

processing. We outline the procedures used in this section. A sequence of heavily commented STATA do files, which

read in the IFPRI (2005) release of the data and output a text file of our estimation sample is available online at

https://files.nyu.edu/bsg1/public/
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Panamá (2000) (henceforth INCAP) food composition tables to construct a measure of daily total

calories available for each household.21 The logarithm of this measure divided by household size,

, serves as the dependent variable in our analysis.

The combination of both expenditure and quantity information at the household-level also

allowed us to estimate unit prices for foods. These unit values were used to form a Paasche cost-

of-living index for the  household in year  of

 =

∙


½X

=1


³
 


´¾
+ (1− )

¸−1
 (36)

where  is the fraction of household spending devoted to food,  the share of overall food

spending devoted to the   specific food,  the year  unit price paid by the household for food

 , and  
 its ‘base’ price (equal to the relevant 2001 sample median price). We use 2001 as our base

year since it facilitates comparison with information from a nationwide LSMS survey fielded that

year. Following the suggestion of Deaton and Zaidi (2002) we replace household-level unit prices

with village medians in order to reduce noise in the price data. In the absence of price information

on nonfood goods we set  equal to one in 2001 and to the national consumer price index (CPI)

in 2000 and 2002. Our independent variable of interest is real per capita consumption in thousands

of Cordobas: Exp = ([]);  is total household size.

Tables 1 and 2 summarize some key features of our estimation sample. Panel A of Table 1

gives the share of total food spending devoted to each of eleven broad food categories. Spending on

staples (cereals, roots and pulses) accounts for about half of the average household’s food budget

and over two thirds of its calories (Tables 1 and 2). Among the poorest quartile of households an

average of around 55 percent of budgets are devoted to, and over three quarters of calories available

derived from, staples. Spending on vegetables, fruit, and meat accounts for less than 15 percent of

the average household’s food budget and less than 3 percent of calories available. That such a large

fraction of calories are derived from staples, while not good dietary practice, is not uncommon in

poor households elsewhere in the developing world (cf., Smith and Subandoro, 2007).

Panel B of the table lists real annual expenditure in Cordobas per adult equivalent and per

capita. Adult equivalents are defined in terms of age- and gender-specific FAO (2001) recommended

energy intakes for individuals engaging in ‘light activity’ relative to prime-aged males. As a point

of reference the 2001 average annual expenditure per capita across all of Nicaragua was a nominal

C$7,781, while amongst rural households it was C$5,038 (World Bank. 2003). The 42 communities

in our sample, consistent with their participation in an anti-poverty demonstration experiment, are

considerably poorer than the average Nicaraguan rural community.22

21 In forming our measure of calorie availability we followed the general recommendations of Smith and Subandoro

(2007).
22 In October of 2001 the Cordoba-to-US$ exchange rate was 13.65. Therefore per capita consumption levels in our

sample averaged less than US$ 300 per year.
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Panel A: Expenditure Shares (%)

All Lower 25% Upper 25%

2000 2001 2002 2000 2001 2002 2000 2001 2002

Cereals 491 360 327 533 409 357 457 316 294

Roots 13 31 27 13 26 20 15 36 36

Pulses 116 125 136 112 138 165 106 107 113

Vegetables 32 49 45 28 43 34 38 58 53

Fruit 06 09 11 05 07 09 08 12 12

Meat 31 69 77 22 40 51 53 99 104

Dairy 112 147 173 90 120 150 131 168 192

Oil 40 50 50 35 52 50 39 47 47

Other foods 158 160 154 162 167 165 154 157 149

Staples♦ 621 516 490 658 573 541 578 459 443

Panel B: Total Real Expenditure & Calories

Expenditure per adult 5 506 4 679 4 510 2 503 2 397 2 200 9 481 7 578 7 460

(Expenditure per capita) (4 277) (3 764) (3 887) (2 016) (2 130) (2 102) (7 302) (5 845) (6 114)

Food share 712 692 688 738 691 686 670 679 676

Calories per adult 2 701 3 015 2 948 1 706 2 127 2 013 3 737 3 849 3 758

(Calories per capita) (2 086) (2 435) (2 529) (1 351) (1 854) (1 873) (2 842) (2 962) (3 041)

Percent energy deficient 510 393 397 850 697 762 198 145 130

Table 1: Real expenditure food budget shares of RPS households from 2000 to 2002

NOTES: Authors’ calculations based on a balanced panel of 1,358 households from the RPS evaluation dataset (see IFPRI (2005)). Real

household expenditure equals total annualized nominal outlay divided by a Paasche cost-of-living index. Base prices for the price index

are 2001 sample medians. The nominal exchange rate in October of 2001 was 13.65 Cordobas per US dollar. Total calorie availability

is calculated using the RPS food quantity data and the calorie content and edible portion information contained in INCAP (2000).

Lower and upper 25 percent refers to the bottom and top quartiles of households based on the average of year 2000, 2001 and 2002 real

consumption per adult equivalent and thus contains the same set of households in all three years.
♦ Sum of cereal, roots and pulses.
 "Adults" correspond to adult equivalents based on FAO (2001) recommended energy requirements for light activity.
 Percentage of households with estimated calorie availability less than FAO (2001) recommendations for light activity given household

demographics.
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Calorie Shares (%)

All Lower 25% Upper 25%

2000 2001 2002 2000 2001 2002 2000 2001 2002

Cereals 577 603 599 607 639 620 555 571 574

Roots 15 15 16 19 15 12 16 18 21

Pulses 131 113 128 121 113 133 131 110 121

Vegetables 07 07 06 06 06 04 08 09 08

Fruit 03 05 04 03 03 04 05 07 58

Meat 07 13 13 05 07 07 13 19 19

Dairy 41 43 45 34 30 34 47 52 55

Oil 69 76 75 58 69 67 74 81 80

Other foods 150 126 114 147 119 119 152 132 115

Staples♦ 723 731 743 747 767 766 702 699 717

Table 2: Calorie shares of RPS households from 2000 to 2002

NOTES: Authors’ calculations based on a balanced panel of 1,358 households from the RPS

evaluation dataset (see IFPRI (2005)). Total calorie availability is calculated using the RPS food

quantity data and the calorie content and edible portion information contained in INCAP (2000).

Lower and upper 25 percent refers to the bottom and top quartiles of households based on the

average of year 2000, 2001 and 2002 real consumption per adult equivalent and thus contains the

same set of households in all three years.
♦ Sum of cereal, roots and pulses.

Using the FAO (2001) energy intake recommendations for ‘light activity’ we categorized each

household, on the basis of its demographic structure, as energy deficient or not. By this criterion

approximately 40 percent of households in our sample are energy deficient each period. Amongst

the poorest quartile this fraction rises to over 75 percent. These figures are reported in Panel B of

Table 1.

Results: Table 3 reports our point estimates. Our first estimate corresponds to the pooled

ordinary least squares (OLS) fit of ln (Cal) onto ln (Exp) using all three waves of the RPS data.

Aggregate shifts in the intercept and slope coefficient are included. Also included in the model,

to control for variation in food prices across markets, is a vector of 42 village-specific intercepts.

Variants of this specification are widely employed in empirical work (e.g, Subramanian and Deaton,

1996; Table 2). The pooled OLS calorie elasticities are reported in Column 1. The elasticity

approximately equals 0.7 in 2000 and 0.6 in both 2001 and 2002. All three elasticities are precisely

determined. The estimates are high relative to others in the literature, but realistic given the

extreme poverty of the households in our sample.

Column 2 augments the first model by allowing the intercept to vary across households. This

‘fixed effects’ estimator (FE-OLS) is also widely used in empirical work when panel data are avail-

able (e.g., Behrman and Deolalikar, 1987; Bouis and Haddad, 1992). Allowing for household-specific

intercepts increases the elasticity by about 10 percent in all three years. The standard errors almost

double in size.
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Panel A: Calorie Demand Elasticities Panel B: Sensitivity to Trimming

(1)

OLS

(2)

FE

(3)

R-CRC

(4)

MDLK

(5)

I-CRC

(1)

I-CRC

(2)

I-CRC

(3)

I-CRC

2000 Elasticity
06837

(00305)

07550

(00441)

06617

(00424)

−00133
(02571)

07125

(00763)

06867

(00906)

06352

(00639)

06993

(00522)

2001 Elasticity
06105

(00383)

06635

(00608)

05861

(00565)
− − − − −

2002 Elasticity
05959

(00245)

06466

(00416)

05521

(00476)
− 05062

(00791)

05299

(00928)

04690

(00583)

05368

(00421)

Percent trimmed − − − 0 6.5 5 10 20

Time shifters? Yes Yes Yes No Yes Yes Yes Yes

Table 3: Estimates of the calorie Engel curve: linear case

NOTES: Estimates based on the balanced panel of 1,358 households described in the main text. "OLS" denotes least squares applied

to the pooled 2000, 2001, and 2002 samples, "FE-OLS" least squares with household-specific intercepts, "R-CRC" Chamberlain’s (1992)

estimator with identity weight matrix, "MDLK" the Mundlak (1961)/Chamberlain (1982) estimator described in the main text, and

"I-CRC" our irregular correlated random coefficients estimator (using the 2000 and 2002 waves only). All models, with the exception of

"MDLK", include common intercept and slope shifts across periods. The standard errors are computed in a way that allows for arbitrary

within-village correlation in disturbances across households and time.
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In Column 3 we use Chamberlain’s (1992) regular correlated random coefficients (R-CRC)

estimator with an identity weight matrix. Since we have three years of data and only two random

coefficients his methods, at least in principle, apply. The top panel of Figure 1 plots a histogram of

det (X0X), which shows a reasonable amount of density in the neighborhood of zero. This suggests
that the right-hand-side of (12) may be undefined in the population. In practice the R-CRC

estimator generates ‘sensible’ point estimates with estimated standard errors approximately equal

to those of the corresponding FE-OLS estimates. The R-CRC point estimates are smaller than

both the OLS and FE-OLS ones.

Columns 4 and 5 are based on only the 2000 and 2002 waves of data. By dropping the middle

wave of data we artificially impose that  =  = 2; this ensures irregularity (Proposition 1.1). The

lower panel of Figure 1 plots a histogram of  = ln(Exp2002) − ln(Exp2000); the figure indicates
a substantial amount of density in the neighborhood of zero. Column 4 reports the ‘Mundlak’

estimate of the demand elasticity

1



X
=1

ln(Cal2002)− ln(Cal2000)
ln(Exp2002)− ln(Exp2000)



This average, as expected, is poorly behaved. It implies a nonsensical elasticity estimate with

a very large standard error. Column 5 implements our estimator (I-CRC) with a bandwidth of

 = 
−13 where  = min ( 134) is a robust estimate of the sample standard deviation

of  ( is the sample standard deviation and  the interquartile range). This implies that we

trim, or categorize as ‘stayers’, about 7 percent of our sample. The I-CRC point estimate is sensible

and well-determined. While the estimated year 2000 elasticity is close to its OLS counterpart, the

2002 elasticity is 20 percent lower in magnitude. Panel B of the table explores the sensitivity of our

point estimates to trimming. Overall we find that the Column 5 point estimates are insensitive to

modest variations in the bandwidth.

A nonlinear model: As we have three periods of data we can modify our model to allow the

calorie elasticity to vary non-linearly with income. Nonlinearity in the calorie demand curve has

been emphasized by Strauss and Thomas (1990, 1995) and Subramanian and Deaton (1996). We

consider the model

ln (Cal) = 1() + 2() ln(Exp) + 3()Exp
−1
 

so that a household’s period-specific demand elasticity is given by 2() − 3()Exp
−1
 

We estimate the average of this elasticity in 2000, 2001 and 2002 using the approach outlined in

Section 3. Figure 2 plots the a histogram of  with X =
¡
1 ln(Exp)Exp

−1


¢0
 Because ln(Exp)

and Exp−1 are highly correlated within-units, the density of  is substantial in the neighborhood

of zero.

Table 4 reports average elasticity estimates based on the extended model. The average elastici-
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Figure 1: Histogram of the distribution of det (X0X) (top panel,  = 3  = 2) and  (bottom

panel,  =  = 2)

Notes: The two vertical blue lines in the lower panel correspond to the portion of the sample that

is trimmed in our preferred estimates (Table 3, Column 5).

Figure 2: Histogram of the distribution of  ( =  = 3)

Notes: The smallest and largest 10 percent of the ’s are excluded from the histogram. The

two vertical blue lines correspond to the portion of the sample that is trimmed in our preferred

estimates (Table 4, Column 3).
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Panel A: Calorie Demand Elasticities

(1)

OLS

(2)

FE

(3)

I-CRC

(4)

I-CRC

(5)

I-CRC

2000 Elasticity
06671

(00262)

07385

(00370)

02180

(02846)

01429

(02872)

02319

(02900)

2001 Elasticity
05992

(00380)

06514

(00584)

08889

(06342)

06150

(12170)

11262

(08696)

2002 Elasticity
05943

(00238)

06425

(00396)

05570

(05739)

06629

(03741)

04954

(05162)

Percent trimmed − − 18.8 15 25

Time shifters? Yes Yes Yes Yes Yes

Table 4: Estimates of the calorie Engel curve: nonlinear case

NOTES: Estimates based on the balanced panel of 1,358 households described in the main text.

"OLS" denotes least squares applied to the pooled 2000, 2001, and 2002 samples, "FE-OLS" least

squares with household-specific intercepts, and "I-CRC" our irregular correlated random coefficients

estimator (now using all three waves). All models include common intercept and slope shifts

across periods. The standard errors are computed in a way that allows for arbitrary within-village

correlation in disturbances across households and time. The average elasticity estimates in the

OLS and FE-OLS columns are computed using the delta method. Those in the I-CRC columns as

described in Section 3.

ties associated with the OLS and FE-OLS parameter estimates of the nonlinear model are virtually

identical to their linear model Table 3 counterparts. Although the coefficients on Exp−1 and its

interactions with the 2001 and 2002 time dummies are jointly significant in both models (not re-

ported), the effect of their inclusion on the average elasticity estimates is negligible. Column 3

reports I-CRC estimates with  = 
−13 (which, given the large density in the neighborhood

of zero, results in the trimming of 20 percent of the sample). In contrast to the linear case, the

I-CRC estimates are imprecisely determined; they are also more sensitive to variations in the band-

width (Columns 3 and 4). We conclude that we are unable to reliably fit the nonlinear CRC model

with the data available.

5 Conclusion

In this paper we have outlined a new estimator for the correlated random coefficients panel data

model. Our estimator is designed for situations where the regularity conditions required for the

method-of-moments procedure of Chamberlain (1992) do not hold. We illustrate the use of our

methods in an exploration of the elasticity of demand for calories in a population of poor Nicaraguan

households. This application is highly irregular, with many ‘near stayers’ in the sample. This

implies that elasticity estimates based on the textbook FE-OLS estimator may be far from the

relevant population average. We find that our methods work well in this setting, generating point

estimates that are 10 to 20 percent smaller in magnitude that their FE-OLS counterparts (Table

3, Columns 5 versus 2).
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While our procedure is simple to implement, it does require choosing a smoothing parameter.

As in other areas of semiparametric econometrics, our theory places only weak restrictions on this

choice. Developing an automatic, data-based, method of bandwidth selection would be useful.

Irregularity arises in other fixed effects panel data models (e.g., Manski, 1987; Honoré and

Kyriazidou, 1997; Kyriazidou, 1997; Chamberlain 2010). It is an open question as to whether

features of our approach could be extended to more complex nonlinear and/or dynamic panel

data models. In ongoing work we are studying how to extend our methods to estimate quantile

partial effects (e.g., unconditional quantiles of the distribution of the random coefficients) and to

accommodate additional ‘triangular endogeneity’.
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Appendix

A Proofs and derivations

A.1 Proof of Theorem 2.1

As noted in the main text our derivation of the limiting distribution of  utilizes the decomposition
 =  + Ξ  − 0


 (37)

with  , , and Ξ respectively equal to (26), (24), and (28) of the main text. The proof proceeds in three steps.

First we derive the limiting distribution of the infeasible estimator  . Second that of the common parameters 
Third we show that Ξ has a well-defined probability limit. The limiting distribution of  then follows from the

delta method and the independence of  and .
Large sample properties of bβ : We begin with the infeasible estimator (26) which treats 0 as known.

Recentering (26) yields

 − 0 =

1




=1
1 (||   )


X−1 (Y −W0)− 0


1




=1
1 (||   )

 (38)

First consider the expected value of the term entering the summation in the denominator of (38):

E [1 (||  )] = 1− Pr{|| ≤ }

= 1− 

 1

−1
 () d

= 1− 20 + () (39)

= 1 + (1) (40)

where the third equality follows from Assumption 1.2 and the change of variables  =  (with Jacobian dd = )

Define  to be the term entering the summation in the numerator of (38):

 ≡ 1 (||  )

X
−1
 (Y −W0)− 0


 (41)

Taking its expectation yields

E [] = E [1 (||  ) · (0 (X)− 0)] (42)

= E [1 (|| ≤ ) (0 − 0 ())]

=

 

−
(0 − 0 ()) () d

= 2

0 − 


0


0+  () 

where 0 ≡ 0 (0), again using Assumption 1.2.
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Turning to the variance of  we use the ANOVA decomposition

V () = V (E [|]) + E [V (|)]  (43)

The first term in (43) equals

V (E [|]) = E

1 (|| ≤ ) (0 ()− 0)

2


= V (0 ()) +  (1) 

Now consider V (|); using (42) above and recalling the equality X
−1 = 1


X∗ when ||  0, we have

 − E [|] = 1 (||  )

X
−1
 (Y −W)− − (0 ()− 0)


=

1 (||  )



{Y∗ −W∗
  −0 ()}

=
1 (||  )



X
∗
 (Y −W −X0 ()) 

Again defining

U ≡ Y −W −X0 (X)

= Y −W −X0 () +X(0 (X)− 0 ())

it follows from iterated expectations that

V (|) =
1 (||   )

2


E

X
∗
 (Y −W −X0 ()) (Y −W −X0 ())

0
X
∗0





=

1 (||   )

2


E

X
∗
Σ (X)X

∗0





+ 1 (||   )E


( (X)− 0 ()) ( (X)− 0 ())

0


=

1 (||   )

2


E

X
∗
Σ (X)X

∗0





+ 1 (||   )V ( (X)|) 

where Σ(X

) ≡ V (U|X). Averaging the first term in V (|) over the distribution of  gives

E

1 (||   )

2


E

X
∗
Σ (X)X

∗0





=

 −

−∞

1

2
E

X
∗
Σ (X)X

∗0


 = 

 () d (44)

+

 ∞



1

2
E

X
∗
Σ (X)X

∗0


 = 

 () d

=
1



 −1

−∞

1

2
E

X
∗
Σ (X)X

∗0


 = 

 () d

+
1



 ∞

1

1

2
E

X
∗
Σ (X)X

∗0


 = 

 () d

=
2E [X∗Σ (X)X

∗0
 | = 0]0


+ (1)

= (
−1
)

where the third equality exploits Assumptions 1.2 and 2.3.
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Averaging the second term over the distribution of  yields

E [1 (||   )V ( (X)|)] ≤ E [V ( (X)|)]

= V ( (X))

=  (1) 

Thus, combing terms,

E [V (|)] =
2E [X∗Σ (X)X

∗0
 | = 0]0


+ (1) 

Combing this result with the expression for V (E [|]) derived above yields a variance term of

V () =
2E [X∗Σ (X)X

∗0
 | = 0]0


+ (1) (45)

= 


−1



Together (42), (45), and the independence generated by random sampling (Assumption 2.1) imply that

E

1





=1



=  (1)  V


1





=1



= 


1




=  (1)  (46)

under the bandwidth assumption (Assumption 2.5). This implies weak consistency of  for 0 (and indirectly
Proposition 1.2).

To show asymptotic normality we check the conditions for Liapunov’s Central Limit Theorem (CLT) for triangular

arrays. Observe that

E
kk3 = E


1 (||  )

X−1 (Y −W0)− 0
3

= E


1 (||  )

 1

X
∗
 (Y −W0)− 0 ()− (0 − 0 ())

3



= E


1 (||  )

 1

X
∗
U + (0 (X)− 0)

3



Application of the triangle inequality and the fact that E [X∗ (Y −W0 −X0)|] = 0 yields

E

 1

X
∗
 (Y −W0)− 0 ()− (0 − 0 ())

3




≤ E

 1

X
∗
 (Y −W0 −X0 ())

+ k0 − 0 ()k
3



=

 13


E kX∗ (Y −W0 −X0 ())k3



+ k0 − 0 ()k3

+
3E
kX∗ (Y −W0 −X0 ())k2




2


k0 − 0 ()k 
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Now note that

E

kX∗ (Y −W0 −X0 ())k2




= E




X
∗
 (Y −W0 −X0 ()) (Y −W0 −X0 ())

0
X
∗0





= 


E

X
∗
 (Y −W0 −X0 ()) (Y −W0 −X0 ())

0
X
∗0





= 


E

X
∗
Σ (X)X

∗0







This gives

E

 1

X
∗
 (Y −W0)− 0 ()− (0 − 0 ())

3




≤
 13



 () + k0 − 0 ()k3 + 3 (E [X∗Σ (X)X
∗0
 |])

2


k0 − 0 ()k 

with  () as defined in Assumption 2.3. Using the above inequality yields

E
kk3 ≤

 ∞

−∞
k0 − 0 ()k3  () d−

 

−
k0 − 0 ()k3  () d

+

 −

−∞

 13
 () + 3 (E [X∗Σ (X)X

∗0
 | = ])

2
k0 − 0 ()k


 () d

+

 ∞



 13
 () + 3 (E [X∗Σ (X)X

∗0
 | = ])

2
k0 − 0 ()k


 () d

= E
k0 − 0 ()k3

− 

 1

−1
k0 − 0 ()k3  () d

+

 −1

−∞


1

2

 13
 () + 3 (E [X∗Σ (X)X

∗0
 | = ])

2
k0 − 0 ()k


 () d

+

 ∞

1


1

2

 13
 () + 3 (E [X∗Σ (X)X

∗0
 | = ])

2
k0 − 0 ()k


 () d

= E
k0 − 0 ()k3

− 20 − 

0

3 0+ (0)0
−2
2

 ∞

1

1

3
d

+
6 (E [X∗Σ (X)X

∗0
 | = 0])



0 − 

0

0 ∞

1

1

2
d+ 



−2

=  (0)0
−2
+ 6


E

X
∗
Σ (X)X

∗0


 = 0
 0 − 


0

0−1
−2
0 − 


0

0+ E k0 − 0 ()k3


= 


−2



Using the above result we can verify the Liapunov condition. Let  =






, then

1





=1
V ()→ 2E


X
∗
Σ (X)X

∗0


 = 0

0
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and also



=1
E
k − E []k313
( )

12
≤


8


=1
E
kk313

( )
12

= 


−2

13
(−1)12


= 


()

−16


=  (1) 

Application of the Liapunov CLT for triangular arrays, equation (39) above, and Slutsky’s Theorem, then yields the

follow Lemma.

Lemma A.1 Suppose that (i) (0 00 (·)) satisfies (9), (ii) Σ (x) is positive definite for all x ∈ X  (iii)  = 

and (iv) Assumptions 1.2 to 2.5 hold, then  → 0 with the normal limiting distribution

√


 − 0


→ N (0 2Υ00) 

for Υ0 = E [X∗Σ (X)X
∗0
 | = 0] 

Large sample properties of bδ : Recall that the non-random coefficients 0 are estimated by a uniform

conditional linear predictor (CLP) estimator. Recentering (24) yields

 − 0 =


1





=1
1 (|| ≤ )W

∗0
 W

∗


−1
×

1





=1
1 (|| ≤ )W

∗0
 (0 (X) +U

∗
 )


 (47)

where

U
∗

= Y
∗ −W∗

0−0 (X) (48)

= X
∗
(Y −W0 −X0 (X))

= X
∗
U

First consider the expected value of the matrix being inverted in (47). Manipulations similar to those used to

analyze  above yield
E

1 (|| ≤ )W

∗0
 W

∗



= E


1 (|| ≤ )E


W
∗0
 W

∗





=

 

−
E

W
∗0
 W

∗


 = 

 () d

= 

 1

−1
E

W
∗0
 W

∗


 = 

 () d

= 2E

W
∗0
 W

∗


 = 0

0+  ()  (49)
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while for any fixed -dimensional vector  the variance of a quadratic form in that matrix satisfies

V

1





=1
1 (|| ≤ )



0
W
∗0
 W

∗

 ≤ 1

2
E

1 (|| ≤ )E


kW∗

 k4



kk4 (50)

=
2E
kW∗

 k4
 = 0


0 kk4


+ 


1




= 


1




under Assumptions 2.3 and 2.5 so that

1





=1
1 (|| ≤ )W

∗0
 W

∗
 = 2E


W
∗0
 W

∗


 = 0

0 +  (1)  (51)

Now redefine  to equal the term entering the summation in the numerator of (47):

 ≡ 1 (|| ≤ )W
∗0
 (0 (X) +U

∗
 ) 

Using the fact that E [W∗0
 U

∗
 |] = E [W∗0

 X
∗E [U|X]|] = 0 yields an expected value of  equal to

E [] = E

1 (|| ≤ )W

∗0
 (0 (X) +U

∗
 )


= E

1 (|| ≤ )E


W
∗0
 0 (X)




=

 

−
E

W
∗0
 0 (X)

 = 

 () d

= 

 1

−1
E


W
∗0
 0 (X)

 = 

 () d

= E

W
∗0
 0 (X)

 = 0

0

2

 1

−1
d

+


E [W∗0

 0 (X)| = 0]


0 + E


W
∗0
 0 (X)

 = 0


0
0



3

 1

−1

2
d+ 



3


=
2

3


E [W∗0

 0 (X)| = 0]


0 + E


W
∗0
 0 (X)

 = 0


0
0



3
+ 



3



where we use the following Taylor approximation and Assumption 1.2 and 2.3 in deriving the second to last equality

above:

E

W
∗0
 0 (X)

 = 

 () = 0 + E


W
∗0
 0 (X)

 = 0

0

+


E [W∗0

 0 (X)| = 0]


0 + E


W
∗0
 0 (X)

 = 0


0
0


()

2
+ 



2



The numerator (47) therefore equals

1





=1
1 (|| ≤ )W

∗0
 (0 (X) +U

∗
 ) (52)

=
2

3


E [W∗0

 0 (X)| = 0]


0 + E


W
∗0
 0 (X)

 = 0


0
0



2
+ 



2


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Using the ratio of (52) and (51) yields a bias expression for  − 0 of

 − 0 =
1

3
E

W
∗0
 W

∗


 = 0
−1 ×E [W∗0

 0 (X)| = 0]


+ E


W
∗0
 0 (X)

 = 0
 00
0



2
+ 



2

 (53)

This implies that we can center the asymptotic distribution of
√


 − 0


at zero by choosing  such that

( )
12

2 → 0 (Assumption 2.5).

Now consider the variance of  As before we proceed by evaluating the two terms in in the variance decom-

position (43) separately. The first of the two terms evaluates to

V (E [|]) = V

1 (|| ≤ )E


W
∗0
 0 (X)




= E


1 (|| ≤ )

2
E

W
∗0
 0 (X)




E

W
∗0
 0 (X)



0
−E 1 (|| ≤ )E


W
∗0
 0 (X)




E

1 (|| ≤ )E


W
∗0
 0 (X)



0


Evaluating the two expectations entering the above expressions yields

E

1 (|| ≤ )E


W
∗0
 0 (X)




=

 

−
E

W
∗0
 0 (X)

 = 

 () d

= 
2

 1

−1
E

W
∗0
 0 (X)

 = 

 () d

= 


2



and

E

1 (|| ≤ )

2
E

W
∗0
 0 (X)




E

W
∗0
 0 (X)



0
=

 

−

2E

W
∗0
 0 (X)

 = 

E

W
∗0
 0 (X)

 = 
0
 () d

= 

 1

−1
()

2 E

W
∗0
 0 (X)

 = 

E

W
∗0
 0 (X)

 = 
0
 () d

= E

W
∗0
 0 (X)

 = 0

E

W
∗0
 0 (X)

 = 0
0
0

3

 1

−1

2
d+ 



3


=
2

3
E

W
∗0
 0 (X)

 = 0

E

W
∗0
 0 (X)

 = 0
0
0

3
+ 



3



We conclude that V (E [|]) = 

3

.

Now consider the second term in (43). The conditional variance, using the conditional moment restriction (9), is

V (|) = 1 (|| ≤ )V

W

∗0
 0 (X) +W

∗0
 U

∗





= 1 (|| ≤ )

2
V

W
∗0
 0 (X)




+ 1 (|| ≤ )V


W
∗0
 U

∗







Using an ANOVA decomposition to evaluate V (W∗0
 U

∗
 |) gives

V

W
∗0
 U

∗





= E


V

W
∗0
 U

∗


X




+ V


E

W
∗0
 U

∗


X




= E


W
∗0
 X

∗
Σ (X)X

∗0
W
∗





+ 0
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and hence

E

1 (|| ≤ )E


W
∗0
 X

∗
Σ (X)X

∗0
W
∗





=

 

−
E

W
∗0
 X

∗
Σ (X)X

∗0
W
∗


 = 

 () d

= 

 1

−1
E

W
∗0
 X

∗
Σ (X)X

∗0
W
∗


 = 

 () d

= 2E

W
∗0
 X

∗
Σ (X)X

∗0
W
∗


 = 0

0+  () 

Similarly

E

1 (|| ≤ )

2
V

W
∗0
 0 (X)




=

 

−

2V

W
∗0
 0 (X)

 = 

 () d

= 

 1

−1
()

2 V

W
∗0
 0 (X)

 = 

 () d

= V

W
∗0
 0 (X)

 = 0

0

3

 1

−1

2
d+ 



3


=
2

3
V

W
∗0
 0 (X)

 = 0

0

3
+ 



3



Collecting terms we conclude that

V () = 2E

W
∗0
 X

∗
Σ (X)X

∗0
W
∗


 = 0

0+  ()  (54)

Applying Liapunov’s Central Limit Theorem for triangular arrays, we have

1√




=1


→ N 
0 2E


W
∗0
 X

∗
Σ (X)X

∗0
W
∗


 = 0

0



Slutsky’s Theorem and (51) above then give the following Lemma.

Lemma A.2 Suppose that (i) (0 00 (·)) satisfies (9), (ii) Σ (x) is positive definite for all x ∈ X  (iii)  = 

and (iv) Assumptions 1.2 to 2.5 hold, then  → 0 with the normal limiting distribution

√


 − 0


→ N


0

Λ0

20




where

Λ0 = E

W
∗0
 W

∗


 = 0
−1

E

W
∗0
 X

∗
Σ (X)X

∗0
W
∗


 = 0

E

W
∗0
 W

∗


 = 0
−1



Large sample properties of bβ : The following lemma characterizes the probability limit of Ξ 
Lemma A.3 If (0 00 (·)) satisfies (9) and Assumptions 1.2 to 2.5 hold we have Ξ → Ξ0, where

Ξ0 = lim
↓0

E

1 (||   )X

−1
 W




≡ lim
→∞

Ξ 
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To verify this result, we must first establish that the defined limit exists. For  sufficiently small, we can

decompose the expectation Ξ as

Ξ = E

1 (|| ≥ 0)X

−1
 W


+ E


1 (  ||  0)X

−1
 W


= (1) + E


1 (  ||  0)

−1
 W

∗



= (1) +

 0




()− (−)






where

() ≡ ()E[ ∗
 | = ]

is twice continuously differentiable for ||  0 by Assumption 1.2. Using the Taylor’s series expansion

()− (−) = (0)− (0) + 2
(0)


· +


2(∗)
2

− 2(−∗)
2


·

2

2




for ∗ some intermediate value between  and 0 it follows that1 (    0) ·

()− (−)



 ≤ 1( ≤ 0)


2

(0)

+ max
||≤0

2()2

 · 0 
and since the right-hand side is integrable, Ξ → Ξ0 by dominated convergence. Then, taking  to be an arbitrary

(fixed) -vector, verification that Ξ → Ξ0 follows from the convergence of the covariance matrix of the numerator

of Ξ to zero:V  1 

=1
1 (||   )X

−1
 W

 =

V 1 

=1
1 (||   )

−1
 W

∗
 


≤ 2 kk2


E

1 (||   ) ||−2 kW∗

 k2


=
2 kk2



E

1 (|| ≥ 0) ||−2 kW∗

 k2

+ E


1 (  ||  0) ||−2 kW∗

 k2


= 


1




+
2 kk2


 0




() + (−)

2




where kW∗
 k2 ≡  [W∗0W∗] and

() ≡ ()E[k ∗
 k2 | = ]

is bounded for ||  0, soV  1 

=1
1 (||   )X

−1
 W

 ≤ 


1




+
4 kk2



max
||≤0

k()k
 0




1

2




= 


1




+
4 kk2



max
||≤0

k()k


1


− 1

0


= 


1




= (1)

under Assumption 2.5.

Lemmas A.1, A.2, and A.3 as well as the decomposition (37) then give Theorem 2.1.
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A.2 MSE-optimal bandwidth sequence:

The MSE-optimal bandwidth sequence given in equation (29) of the main text may be derived as follows. Using (42),

(53) and Lemma A.3 yields a leading asymptotic bias term of 2

0 − 0


0 The asymptotic variance is given in

the statement of Theorem 2.1. The asymptotic MSE of  is thus
4

0 − 


0


0 − 


0

0

2
0

2
 +

2Υ00 +
Ξ0Λ0Ξ

0
0

20




Minimizing this object with respect to  gives the result in the main text.

A.3 Proof of Theorem 2.2:

Rewriting equation (30) we have

 =


1





=1
Q
0
R

−1
×







=1
Q
0

U+

U+0
 Q


×

1





=1
Q
0
R

−1
(55)

for U+
 = Y

∗
 −R0 with  =  1 

=1
Q0
R

−1
×

1




=1
Q0
Y
∗



 for  = (00)0 and

Q
×+

=



−1
 1 (|| ≤  )W

∗
 
1 (||   )






 R

×+
= (W

∗
 1 (||   )) 

The dependence of Q and R on  is suppressed to simplify the notation.

Starting with the ‘Jacobian’ term in  we get, by the definitions of Q, R and Ξ ,
1





=1
Q
0
R =

1





=1

 −1 1 (|| ≤  )W
∗0


1(|| )




 W∗
 1 (||   )



=

 1




=1
1 (|| ≤  )W

∗0
 W

∗
 00

0


1




=1
1 (||   )X

−1
 W

1




=1
1 (||   ) 


→
 2E [W∗0

 W
∗
 | = 0]0 0

Ξ0 


by (51) and A.3. Decomposing the middle term 



=1
Q0

U

+ U+0
 Q , yields

 

=1
Q
0

U+

U+0
 Q − 





=1
Q
0
U

+
 U

+0
 Q

 (56)

≤ 2





=1

U+


 kQk2
̂ − 0

+ 





=1
kQk2

̂ − 0

2
=

2





=1


1 (|| ≤  ) kW∗

 k2
U+



+ 1 (||   )
2
U+




||2

̂ − 0


+

1





=1


1 (|| ≤  ) kW∗

 k2 + 1 (||   )
2

||2
̂ − 0

2 
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By a similar argument as for (50) above,

E


−1
 1 (|| ≤  ) kW∗

 k2
U+



+ 1 = E


−1
 1 (|| ≤  )E


kW∗

 k2
U+



+ 1 | 


→ 2E


kW∗

 k2
U+



+ 1 |  = 0

0

and the same reasoning as (44) yields

E

1 (||   ) kW∗

 k2
U+



+ 1 

||2


= E


−1
 1 (||   )



||2
E

kW∗

 k2
U+



+ 1 | 


→ 2E


kW∗

 k2
U+



+ 1 |  = 0

0

Thus, by Markov’s inequality, (56) yields







=1
Q
0

U+

U+0
 Q =







=1
Q
0
U

+
 U

+0
 Q +

̂ − 0


=







=1
Q
0
U

+
 U

+0
 Q +  (1) 

Finally,







=1
Q
0
U

+
 U

+0
 Q =  1





=1
1 (|| ≤  )W

∗0
 (Y

∗
 −W∗

 0) (Y
∗
 −W∗

 0)
0
W∗



0 0
0


00
0







=1
1 (||   )


X−1 (Y −W0)− 0


X−1 (Y −W0)− 0

0
 

By the calculations yielding (54), the expected value of the first diagonal submatrix is

E


−1
 1 (|| ≤  )W

∗0
 (Y

∗
 −W∗

 0) (Y
∗
 −W∗

 0)
0
W
∗



= 2E


W
∗0
 X

∗
Σ (X)X

∗0
W
∗


 = 0

0 +  (1) 

while the variance of any term in the matrix is 

( )

−1
= (1) by Assumptions 2.3and 2.5 (with  ≤ 8).

Similarly, the expectation of the second diagonal submatrix is

E

 1 (||   )


X
−1
 (Y −W0)− 0


X
−1
 (Y −W0)− 0

0
= 2E


X
∗
Σ (X)X

∗0 = 0

0 +  (1)

= 2Υ00 + (1)

while similar calculations to those leading to (46) yield

V  1 (||   )

X
−1
 (Y −W0)− 0


X
−1
 (Y −W0)− 0

0 ≤ 48(0)0


+ 


1




= (1)
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where 8() is defined in Assumption 2.3, Thus







=1
Q
0
U

+
 U

+0
 Q

→
 2E [W∗0

 X
∗Σ (X)X∗0W∗

 | = 0]0 00
0


0 0
0
 2Υ00 + (1)

 

ensuring  → 0
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