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1 Introduction

Parallel literatures in labor economics and education adopt similar econometric strategies for

identifying the effects of firms on wages and of teachers on student test scores. Outcomes are

modeled as the sum of the firm or teacher effect, individual heterogeneity, and transitory, or-

thogonal error. The resulting estimates of firm effects are used to gauge the relative importance

of firm and worker heterogeneity in the determination of wages. In education, so-called “value

added models” (hereafter, VAMs) have been used to measure the importance of teacher qual-

ity to educational production, to assess teacher preparation and certification programs, and as

important inputs to personnel evaluations and merit pay programs.1

All of these applications suppose that the estimates can be interpreted causally. But ob-

servational analyses can identify causal effects only under unverifiable assumptions about the

correlation between treatment assignment – the assignmentof students to teachers, or the match-

ing of workers to firms – and other determinants of test scoresand wages. If these assumptions

do not hold, the resulting estimates of teacher and firm effects are likely to be quite misleading.

Anecdotally, assignments of students to teachers incorporate matching to take advantage

of teachers’ particular specialties, intentional separation of children who are known to interact

badly, efforts on the principal’s part to reward favored teachers through the allocation of easy-to-

teach students, and parental requests (see, e.g., Jacob andLefgren, 2007; Monk, 1987). These

are difficult to model statistically. Instead, VAMs typically impose an assumption that teacher

assignments are random conditional on a single (observed orlatent) factor.

In this paper, I develop and implement tests of the exclusionrestrictions of commonly-

used value added specifications. My strategy exploits the fact that future teachers and firms

cannot have causal effects onpast outcomes, while violations of model assumptions may lead to

apparent counterfactual “effects” of this form. Both test scores and wages are serially correlated,

and as a result an association between the current teacher orfirm and the lagged outcome is

1On firm effects, see, e.g., Abowd and Kramarz (1999). For recent examinations of teacher effects modeling,
see Braun (2005a,b); Harris and Sass (2006); McCaffrey et al. (2003); and Wainer (2004).
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strong evidence against exogeneity with respect to the current outcome.

I examine three commonly used VAMs, two of which have direct parallels in the firm ef-

fects literature. In the simplest, most widely used VAM – which resembles the most common

specification for firm effects – the necessary exclusion restriction is that teacher assignments

are orthogonal to all other determinants of the so-called “gain” score, the change in a student’s

test score over the course of the year. If this restriction holds, 5th grade teacher assignments

should not be correlated with students’ gains in 4th grade. Using a large micro-data set de-

scribing North Carolina elementary students, I find that there is in fact substantial dispersion of

students’ 4th grade gains across 5th grade teachers. Students are particularly strongly sorted on

the basis of past reading gains, though there is clear evidence of sorting on math gains as well.

Because test scores exhibit strong mean reversion – and thusgains are negatively autocorrelated

– sorting on past gains produces bias in the simple VAM’s estimates.

The other VAMs that I consider rely on different exclusion restrictions, namely that class-

room assignments are as good as random conditional on eitherthe lagged test score or the

student’s (unobserved, but permanent) ability. I discuss how past gains can be used to test these

restrictions as well. I find strong evidence in the data against each.

Evidently, classroom assignments respond dynamically to annual achievement in ways that

are not captured by the controls typically included in VAM specifications. To evaluate the

magnitude of the biases that assignments produce, I comparecommon VAMs to a saturated

model that conditions on the complete achievement history.Estimated teacher effects from the

saturated model diverge importantly from those obtained from the VAMs in common use. I

discuss how selection onunobservables is likely to produce substantial additional biases.

My estimates also point to an important substantive result.To the extent that any of the

VAMs that I consider identify causal effects, they indicatethat teachers’ long-run effects are at

best weakly proxied by their immediate impacts. A teacher’seffect in the year of exposure –

the universal focus of value added analyses – is correlated only 0.3 to 0.5 with her cumulative

effect over two years, and even less with her effect over three years. Accountability policies that
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rely on measures of short-term value added are likely to do a poor job of rewarding the teachers

who are best for students’ longer run outcomes.

An important caveat to the empirical results is that they maybe specific to North Carolina.

Students in other states or in individual school districts might be assigned to classrooms in ways

that satisfy the assumptions required for common VAMs. And the results may not generalize to

models of firm effects on worker wages. But at the least, VAM-style analyses should attempt

to evaluate the model assumptions, perhaps with methods like those used here. Models that

rely on incorrect assumptions about the assignment of students to teachers and the matching of

workers to firms cannot support their intended uses. Policies that use VAM-based estimates in

hiring, firing, and compensation decisions may reward and punish teachers for the students they

are assigned as much as for their actual effectiveness in theclassroom.

Section 2 reviews prior work that uses pre-assignment variables to test exogeneity assump-

tions. Section 3 introduces the three VAMs, discusses theirimplicit assumptions, and describes

my proposed tests. Section 4 describes the data. Section 5 presents results. Section 6 attempts

to quantify the biases that non-random classroom assignments produce in VAM-based analyses.

Section 7 presents evidence on teachers’ long-run effects.Section 8 concludes.

2 Using Panel Data To Test Exclusion Restrictions

A central assumption in all econometric studies of treatment effects is that the treatment is

uncorrelated with other determinants of the outcome, conditional on covariates. Although the

assumption is ultimately untestable – the “fundamental problem of causal inference” (Holland,

1986) – the data can provide indications that it is unlikely to hold. In experiments, for exam-

ple, significant correlations between treatment and pre-assignment variables are interpreted as

evidence that randomization was unsuccessful. Similar tests are often used in non-experimental

analyses: Researchers conducting propensity score matching studies frequently check for “bal-

ance” of covariates conditional on the propensity score (Rosenbaum and Rubin, 1984), and
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analogous tests are used in regression discontinuity analyses (Imbens and Lemieux, 2008).

Panel data can be particularly useful. A correlation between treatment and some pre-

assignment variableX need not indicate bias in the estimated treatment effect ifX is uncor-

related with the outcome variable of interest. But outcomesare typically correlated within

individuals over time, so an association between treatmentand the lagged outcome strongly

suggests that the treatment is not exogenous with respect topost-treatment outcomes. This in-

sight has been most fully explored in the literature on the effect of job training on wages and

employment. Today’s wage or employment status is quite informative about tomorrow’s, even

after controlling for all observables. Evidence that assignment to job training is correlated with

lagged wage dynamics indicates that simple specifications for the effect of training on outcomes

are likely to yield biased estimates (Ashenfelter, 1978). Richer models of the training assign-

ment process may absorb this correlation while permitting identification (Heckman et al., 1987).

But even these models may impose testable restrictions on the relationship between treatment

and the outcome history (Ashenfelter and Card, 1985; Card and Sullivan, 1988; Jacobson et

al., 1993). Of course, these sorts of tests cannot diagnose all model violations. If treatment

assignments depend on unobserved determinants of future outcomes that are uncorrelated with

the outcome history, the treatment effect estimator may be biased even though treatment is

uncorrelated with past outcomes.

In studies of teacher productivity, the multiplicity of teacher “treatments” can blur the con-

nection between value added modeling and program evaluation methods. But the utility of past

outcomes for specification diagnostics carries over directly. Identification of a teacher’s effect

rests on assumptions about the relationship between the teacher assignment and the other deter-

minants of future achievement, and the relationship with past achievement can be informative

about the plausibility of these assumptions.2

2Only a few studies have attempted to validate VAMs. Jacob andLefgren (2008) and Harris and Sass (2007)
show that value added estimates are correlated with principals’ ratings of teacher performance. And Kane and
Staiger (2008) demonstrate that VAMs estimated on observational data predict teachers’ experimental effects.
These studies are extremely valuable, but they cannot rule out quantitatively important biases coming from non-
random classroom assignments. The estimated correlationsbetween principal ratings and value added are relatively
weak, and the Kane and Staiger experimental sample is too small (and potentially non-representative) to rule out
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3 Statistical Model and Methods

3.1 Defining the Problem

I take the parameter of interest in value added modeling to bethe effect on a student’s test

score at the end of gradeg of being assigned to a particular grade-g classroom rather than

another classroom at the same school. Later, I extend this tolook at dynamic treatment effects

(that is, the effect of the grade-g classroom on theg + s score). I do not distinguish between

classroom andteacher effects, and use the terms interchangably. In the Appendix,I consider

this distinction, defining a teacher’s effect as the time-invariant component of the effects of the

classrooms taught by the teacher over several years.

I am interested in whether common VAMs identify classroom effects with arbitrarily large

samples. I therefore sidestep small sample issues. Under realistic asymptotics, the number of

classrooms should rise in proportion to the number of students. If so, classroom effects are not

identified under any exogeneity restrictions: Even in the asymptotic limit, the number of stu-

dents per teacher remains finite and the sampling error in an individual teacher’s effect remains

non-trivial. I instead consider the properties of VAM estimates as the number of students grows

with the number of teachers (and classrooms) fixed. If classroom effects are identified under

these unrealistic asymptotics, VAMs may be usable in compensation and retention policy with

appropriate allowances for the sampling errors that arise with finite class sizes;3 if not, these

corrections are likely to go awry.

A final important distinction is between identification of the variance of teacher quality and

the identification of individual teachers’ effects. I focusexclusively on the latter. As it is im-

practical to report each of several thousand teachers’ estimated effects, I report only summaries

of their distribution across teachers. I select statistics, like the estimated standard deviation

of 5th grade teachers’ effects on students’ 4th grade achievement, that are informative about

any but the most extreme alternatives regarding classroom assignments.
3A typical approach shrinks a teacher’s estimated effect toward the population mean in proportion to the degree

of imprecision in the estimate. The resulting empirical Bayes estimate is the best linear predictor of the teacher’s
true effect, given the noisy estimate. See, McCaffrey et al.(2003), pp. 63-68.
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whether the VAMs can identify individual teacher effects without bias.4

3.2 Data Generating Process and the Three VAMs

Following Todd and Wolpin (2003) and Harris and Sass (2006),student achievement can be

modeled as a linear, additive function of the full history ofinputs received to date plus the

student’s innate ability. Separating classroom effects from other inputs, we can write the test

score of studenti at the end of gradeg, Aig, as

Aig = αg +
g

∑
h=1

βhgc(i,h) + µiτg +
g

∑
h=1

εihφhg + vig. (1)

Here,βhgc is the effect of being in classroomc in gradeh on the grade-g test score, andc(i, h)∈

{1, . . . ,Jh} indexes the classroom to which studenti is assigned in gradeh. µi is individual

ability. We might expect the achievement gap between high-ability and low-ability students to

grow over time; this would correspond toτg+s > τg for eachg and eachs > 0. εih captures

all other inputs in gradeh, including those received from the family, non-classroom peers, and

the community. It might also include developmental factors: A precocious child might have

positiveεs in early grades and negativeεs in later grades as her classmates catch up. As this

example shows,ε is quite likely to be serially correlated within students across grades. Finally,

vig represents measurement error in the grade-g test relative to the student’s “true” grade-g

achievement. This is independent across grades within students.5

A convenient restriction on the time pattern of classroom effects is uniform geometric decay,

βhg′c = βhgcλ g′−g for some 0≤ λ ≤ 1 and allh ≤ g < g′. A special case isλ = 1, corresponding

to perfect persistence. Although my results do not depend onthese restrictions, I impose them

as needed for notational simplicity. I consider non-uniform decay in Section 7. Note that there

4Rivkin et al. (2005) develop a strategy for identifying the variance of teachers’ effects, but not the effect of
individual teachers, under weaker assumptions than are required by the VAMs described below.

5I define theβ parameters to include any classroom-level component ofvig and assume thatvig is independent
across students in the same classroom. The Appendix discusses the use of repeated observations on teachers to
distinguish correlated errors from teachers’ true causal effects.
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is no theoretical basis for restrictions on the time patternof non-classroom effects (i.e. onφhg).

It will be useful to adopt some simplifying notation. Letωig ≡ ∑g
h=1 εihφhg be the composite

grade-g residual achievement, and let∆ indicate first differences across student grades:∆βhgc ≡

βhgc −βh,g−1,c, ∆τg ≡ τg − τg−1, ∆ωig ≡ ωig −ωig−1, and so on.

Tractable VAMs amount to decompositions ofAig (or of ∆Aig ≡ Aig−Aig−1) into the current

teacher effectβggc(i,g), a student heterogeneity component, and an error assumed tobe orthogo-

nal to the classroom assignment. Models differ in the form ofthis decomposition. In this paper I

consider three specifications: A simple regression of gain scores on grade and contemporaneous

classroom indicators,

VAM1: ∆Aig = αg +βggc(i,g) + e1ig;

an augmented regression that controls for the prior year’s score,

VAM2: ∆Aig = αg +Aig−1ψ +βggc(i,g) + e2ig;6

and a regression that stacks gain scores from several gradesand adds student fixed effects,

VAM3: ∆Aig = αg +βggc(i,g) + µi + e3ig.

All three VAMs are widely used.7 VAM2 and VAM3 can both be seen as generalizations of

VAM1: VAM2 is equivalent to VAM1 whenψ = 0, while VAM3 reduces to VAM1 when

µi ≡ 0.

Despite their similarity, the three VAMs rely on quite distinct restrictions on the process by

which students are assigned to classrooms. I discuss the three in turn.

6VAM2 is more commonly specified as an equivalent model for theend-of-year score,Aig = αg +
Aig−1(ψ +1)+ βggc(i,g) + e2ig. Relative to this, the expression in the text merely subtracts Aig−1 from each side. I
focus on the gain score version to maintain the parallel withVAM1 and VAM3.

7The most widely used VAM, the Tennessee Value Added Assessment System (TVAAS; see Sanders et al.,
1997), is specified as a mixed model for level scores that depend on the full history of classroom assignments,
but this model implies an equation for annual gain scores of the form used in VAM1. VAM2 is more widely
used in the recent economics literature. See, for example, Aaronson et al. (2007); Kane et al. (2006); Jacob and
Lefgren (2008); and Goldhaber (2007). VAM3 was proposed by Boardman and Murnane (1979), and has been
used recently by Rivkin et al. (2005); Harris and Sass (2006); Jacob and Lefgren (2008); and Boyd et al. (2007).
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3.3 The gain score model (VAM1)

Differencing the production function (1), we can write the grade-g gain score as

∆Aig = ∆αg +
g−1

∑
h=1

∆βhgc(i,h) +βggc(i,g) + µi∆τg +∆ωig +∆vig. (2)

If we assume that teacher effects do not decay,∆βhgc = 0 for all h < g. The error terme1ig from

VAM1 then has three components:

e1ig = µi∆τg +∆ωig +∆vig. (3)

VAM1 will yield consistent estimates of the grade-g classroom effects if and only if, for eachc,

E
[

e1ig |c(i, g) = c
]

= 0. (4)

Differences in last year’s gains across this year’s classrooms are informative about this restric-

tion. Using (2), the averageg−1 gain in classroomc is:

E
[

∆Aig−1 |c(i, g) = c
]

= ∆αg−1+E
[

βg−1,g−1,c(i,g−1) |c(i, g) = c
]

+E
[

e1ig−1 |c(i, g) = c
]

.

(5)

The first term is constant acrossc and can be neglected. The second term might vary with

c if (for example) a principal compensates for a bad teacher assignment in gradeg− 1 with

assignment to a better-than-average teacher in gradeg. This can be absorbed by examining

the across-c(i, g) variation in∆Aig−1 controlling for c(i, g−1). I estimate specifications of

this form below.8 Any remaining variation across grade-g classrooms ing − 1 gains, after

controlling forg−1 classroom assignments, must indicate that students are sorted into grade-g

8This strategy has zero power unless there is independent variation in c(i, g−1) andc(i, g). If students are
“streamed,” moving together with the same classmates from grade to grade, controls forc(i, g−1) will absorb all
across-c(i, g) variation. In the Tennessee STAR experiment (see Nye et al.,2004), streaming was quite common,
and in many schools there is zero independent variation in 3rd grade classroom assignments controlling for 2nd
grade assignments. This makes it impossible to distinguishthe effects of 2nd and 3rd grade teachers, and prevents
the use of my test. In the observational data examined below,students are substantially reshuffled between grades.
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classrooms on the basis ofe1ig−1.

Whether this would indicate a problem with assumption (4) depends on whethere1ig is

serially correlated. Equation (2) indicates four sources of potential serial correlation. First,

ability appears in bothe1ig ande1ig−1 (unless∆τg = 0). Second, theεig process may be serially

correlated. Third, even ifε is white noise,∆ωig is a moving average process of orderg−1

(absent strong restrictions on theφ coefficients). Finally,∆vig is an MA(1), degenerate only if

var(v) = 0.9

The discussion of serial correlation ine1ig helps clarify the conditions in which (4) will

likely hold. The most natural model that is consistent with (4) is for assignments to depend

only on student ability,µi, and for ability to have the same effect on achievement in grades

g andg−1 (i.e., ∆τg = 0). With these restrictions, VAM1 can be seen as the first-difference

estimator for a fixed effects model, with strict exogeneity of classroom assignments conditional

on µi. By contrast, (4) is not likely to hold ifc(i, g) depends, even in part, onωig−1, vig−1, or

Aig−1.

3.4 The lagged score model (VAM2)

VAM2 augments VAM1 with a control for the lagged test score. If teacher effects decay geo-

metrically at uniform rate 1−λ , the grade-g score can be written in terms of theg−1 score:

Aig =
(

αg −αg−1λ
)

+Aig−1λ +βggc(i,g) +µi
(

τg − τg−1λ
)

+ωig−ωig−1λ +vig−vig−1λ , (6)

and the grade-g gain is thus

∆Aig = α̌g +Aig−1ψ +βggc(i,g) + e2ig (7)

9Rothstein (2008b) concludes that∆vig accounts for as much as 80% of the variance of∆Aig.
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whereψ = λ −1, α̌g = αg −αg−1λ , and

e2ig = µi
(

τg − τg−1λ
)

+
g−1

∑
h=1

εih
(

φhg −φhg−1λ
)

+ εig +
(

vig − vig−1λ
)

. (8)

As before, each of the terms in (8) is likely to be serially correlated. The VAM2 exclusion

restriction,E
[

e2ig |c(i, g) = c
]

= 0, would hold if grade-g classroom assignments were random

conditional onAig−1. It is unlikely to hold if assignments depend directly one2ig−1 or on any

of its components. In particular,c(i, g) cannot depend onµi except throughAig−1.10

The VAM2 exclusion restriction can again be evaluated by replacing the dependent variable,

∆Aig, with its lag,∆Aig−1. By (6), the lagged score equals

Aig−1 = α̌ig−1 +Aig−2λ +βg−1,g−1,c(i,g−1) + e2ig−1. (9)

This can be rearranged to express theg−1 gain in terms of theg−1 score and classroom:

∆Aig−1 =
1

1+ψ
[

α̌ig−1−Aig−1ψ +βg−1,g−1,c(i,g−1) + e2ig−1
]

. (10)

Thus, the grade-g classroom assignment will have predictive power for the gain score in grade

g−1, controlling forg−1 achievement, if grade-g classrooms are correlated either with grade-

g−1 teacher effects (i.e. withβg−1,g−1,c(i,g−1)) or with e2ig−1. As in VAM1, the former can be

ruled out by controlling forg−1 classroom assignments; the latter would indicate a violation

of the VAM2 exclusion restriction ife2 is serially correlated.

10If τg − τg−1λ is constant acrossg, (6) can be seen as a fixed effects model with a lagged dependent variable.
IV and GMM estimates of the first-difference of (6), treating∆Aig−1 as an endogenous variable, can identifyλ
andβgg if c(i, g) depends onµi but is strictly exogenous conditional on this (Anderson andHsiao, 1981; Arellano
and Bond, 1991). Koedel and Betts (2007) is the only teacher value added study of which I am aware that takes
account of the issues raised by lagged dependent variables.Value added researchers typically apply OLS to (7).
This is inconsistent forψ , and identifiesβggc only if c(i, g) is random conditional onAig−1.
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3.5 The fixed effects in gains model (VAM3)

The final VAM returns to the earlier assumption of zero decay of teachers’ effects.11 It incor-

porates the ability term in (2) into the estimating equation,

∆Aig = ∆αg +βggc(i,g) + µi∆τg + e3ig, (11)

leaving only two components in the error term,e3ig = ∆ωig +∆vig.

The presence of the student fixed effect in VAM3, combined with the small time dimension

of student data sets, means that VAM3 requires stronger assumptions than the earlier models.

Assuming that∆τg = 1 for eachg, (11) is a fixed effects model. An OLS regression with fixed

effects is numerically equivalent to a regression of the de-meaned outcome on the de-meaned

explanatory variables. The de-meaned grade-g gain is:

∆Aig−
1
G

G

∑
h=1

∆Aih =

(

∆αg −
1
G

G

∑
h=1

∆αh

)

+

(

βggc(i,g)−
1
G

G

∑
h=1

βhhc(i,h)

)

+

(

e3ig −
1
G

G

∑
h=1

e3ih

)

.

(12)

The equation for the de-meaned gain score thus has a grade-specific intercept and coefficients

for all classroom assignments in grades 1 throughG. Importantly, the error terms from all

grades enter into (12). Thus, correlation between the classroom assignment in one grade and

the error term in that or any other grade would bias the estimatedβ coefficients, even in large

samples. To avoid bias, teacher assignments must be strictly exogenous conditional onµi. 12

Conditional strict exogeneity means that the same information, µi or some function of it, is

used to make teacher assignments in each grade. This requires, in effect, that principals decide

11While VAM1 and VAM2 can easily be generalized to allow for non-uniform decay, VAM3 cannot.
12As G gets large,1G shrinks toward zero, ande3ih disappears from the equation for the de-meaned grade-g gain,

g 6= h. For practical value added implementations, however,G is rarely larger than three or four. Without strict
exogeneity, one small-G approach is to focus on the first difference of (11). WhenG > 2, OLS estimation of the
first-differenced equation requires only thatc(i,g) be uncorrelated withe3ig−1, e3ig, ande3ig+1. Though this is
weaker than strict exogeneity, it is difficult to imagine an assignment process that would satisfy one but not the
other. Another option is IV/GMM (see note 10), instrumenting for both theg andg−1 classroom assignments.
Satisfactory instruments are not apparent.
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on classroom assignments for the remainder of a child’s career before she starts kindergarten. If

teacher assignments are updated each year in response to thestudent’s performance during the

previous year, strict exogeneity is violated.

The extension of my test to the strict exogeneity assumptionin VAM3 is a direct application

of Chamberlain’s (1984) correlated random effects model. Under strict exogeneity, any apparent

effect of (for example) 5th grade teachers on 4th grade gainsin VAM1 appears only because

both 5th grade teacher assignments and 4th grade gains depend on µ. 3rd grade gains also

depend on the scalarµi. So 5th grade teachers who appear to have positive effects on4th grade

gains – because they are assigned high-µ students – should also appear to have positive effects

on 3rd grade gains. An indication that a 5th grade teacher hasdifferent effects on 3rd and 4th

grade gains would thus imply that omitted time-varying determinants of gains are correlated

with teacher assignments, and therefore that assignments are not strictly exogenous.

Formally, consider a projection ofµ onto the full sequence of classroom assignments:

µi = ξ1c(i,1) + . . .+ξGc(i,G) +ηi. (13)

ξhc is the incremental information aboutµi provided by the knowledge that the student was in

classroomc in gradeh, conditional on classroom assignments in all other grades.Substituting

(13) into (11), we obtain

∆Aig = ∆αg +
G

∑
h=1

πhgc(i,h) +ηi + e3ig, (14)

whereπggc = ξgc∆τg +βggc andπhgc = ξhc∆τg for h 6= g. Under conditional strict exogeneity,

E [e3ih |c(i,1) , . . . , c(i,G)] = 0 for eachh, and the fact that (13) is a linear projection ensures

that ηi is uncorrelated with the regressors as well. An OLS regression of grade-g gains onto

classroom indicators in grades 1 throughG thus estimates theπhgc coefficients without bias.
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WhenG ≥ 3, the underlying parameters are overidentified. To see this, note that

π31 = ξ3∆τ1 = ξ3∆τ2
∆τ1

∆τ2
= π32

∆τ1

∆τ2
. (15)

∆τ1 and∆τ2 are scalars, so (15) representsJ3−1 overidentifying restrictions on the 2J3 elements

of theπ31 andπ32 vectors.13

Equation (15) implies that the elements ofπ31 should be perfectly correlated with the corre-

sponding elements ofπ32 (or, if ∆τ1/∆τ2 < 0, perfectly negatively correlated), so the correlation

between elements of the estimated coefficient vectorsπ̂31 andπ̂32 should be close to 1 (or -1).

A formal test uses optimal minimum distance (OMD), minimizing
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(16)

over the vectorξ3 and the scalars∆τ1 and∆τ2. WhenW is the sampling variance of
(

π̂ ′
31 π̂ ′

32

)′
, D

is distributedχ2 with J3−1 degrees of freedom under the null hypothesis of strict exogeneity.14

If D is above the 95% critical value from this distribution, the null is rejected. In practice,

implementations of VAM3 treatµi as a fixed effect, thus imposing the additional restriction that

∆τ2 = ∆τ1. Under the null that this model is correct, the restrictedD hasJ3 degrees of freedom.

3.6 Implementation and Computation

To put the three VAMs in the best possible light, I focus on estimation of within-school differ-

ences in classroom effects. For many purposes, one might want to make across-school com-

parisons. But students are not randomly assigned to schools, and those at one school may gain

13There areJ1 additional overidentifying restrictions created by a similar proportionality relationship between
π12 andπ13: Past teachers should have similar effects on all future grades’ gains. These restrictions might fail
either because strict exogeneity is violated or because teachers’ effects decay (that is,β12 6= β13). I therefore focus
on restrictions on thefuture teacher coefficients, as these provide sharper tests of strict exogeneity.

14Although there areJ3−2 parameters to be estimated, they are underidentified: Multiplying ξ3 by a constant
and dividing∆τ1 and∆τ2 by the same constant does not change the fit. In the implementation, I normalize∆τ1 = 1.
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systematically faster than those at another for reasons unrelated to teacher quality. Random as-

signment to classrooms within schools is at least somewhat plausible. To isolate within-school

variation, I augment each of the estimating equations discussed above with a set of indicators

for the school attended. The indicators for all of the classrooms at a school are collinear with

the indicator for the school, and I normalize the classroom coefficients to have mean zero across

classrooms in the same grade at the same school.15

The tables below report summary statistics for the teacher coefficients rather than the full

coefficient vectors themselves. Due to sampling error, summary statistics computed from the

estimated coefficients differ from those that would be obtained were the true coefficients known.

Aaronson et al. (2007) propose a simple estimator for the variance of the true coefficients across

teachers. Letγ be a mean-zeroJ-vector of true projection coefficients – those that would be

obtained with an infinitely large sample – and letγ̂ be an unbiased finite-sample estimate of

γ, with E [γ ′ (γ̂ − γ)] = 0. The variance (across elements) ofγ can be written as the difference

between the variance of the estimated coefficients and the sampling variance:

E
[

γ ′γ
]

= E
[

γ̂ ′γ̂
]

−E
[

(γ̂ − γ)′ (γ̂ − γ)
]

. (17)

I computeE [γ̂ ′γ̂] using a degrees-of-freedom adjustment for the school-level normalization of

the estimated coefficients;E
[

(γ̂ − γ)′ (γ̂ − γ)
]

is merely the average sampling variance of the

normalized coefficients. All calculations are weighted by the number of students taught.

Some of the specifications discussed above – particularly (14) – include indicators for class-

room assignments in several grades simultaneously. This introduces several complications. I

discuss them briefly here, then in more detail in the Appendix. First, school indicators in several

grades are identified only from students who switch schools between grades. School switching

is likely to be endogenous to a variety of unobserved studentcharacteristics. In specifications

containing classroom assignments from multiple grades, I restrict my sample to students who

15This normalization makesW singular in (16). For the OMD analysis, I drop the elements ofπgh that correspond
to the largest class at each school.
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do not switch schools, and include only a single set of schoolindicators.

Second, specifications with several sets of classroom indicators have design matrices of

large dimension. Numerical inverses may be unstable. My focus on samples of non-movers

eliminates this problem when the specification includes only school and teacher indicators, as

it ensures that indicators for teachers at different schools are uncorrelated and that the design

matrix is block diagonal. I treat these specifications as separate regressions for each school,

each with only a few dozen regressors. Specifications that include continuous covariates (e.g.,

VAM2) cannot be decomposed in this way. For these, I begin with brute-force estimates, then

verify the estimated coefficients using an iterative algorithm (described in the Appendix) that

does not require inversion of large matrices.

A final complication is that the coefficients for teachers in different grades can only be sep-

arately identified when there is sufficient shuffling of students between classrooms. If students

are perfectly streamed – if a student’s classmates in 4th grade were also her classmates in 3rd

grade – the 3rd and 4th grade classroom indicators are collinear. I exclude from my samples a

few schools where inadequate shuffling leads to perfect collinearity.

4 Data and Sample Construction

The specifications described in Section 3 require longitudinal data that track students’ outcomes

across several grades, linked to classroom assignments in each grade. I use administrative data

on public school students in North Carolina. The data, assembled and distributed by the North

Carolina Education Research Data Center, have been extensively cleaned to ensure accurate

matches between the component administrative data systems, and have been used for several

previous value added analyses (see, e.g., Clotfelter et al., 2006; Goldhaber, 2007).

I examine end-of-grade math and reading tests from grades 3 through 5. To construct the 3rd

grade gain, I use “pre-tests” given at the beginning of 3rd grade in place of 2nd grade scores,

which were not given. I standardize the scale scores separately for each subject-grade-year
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combination.16

The North Carolina data identify the school staff member whoadministered the end-of-

grade tests. In the elementary grades, this was usually the regular teacher. Following Clotfelter

et al. (2006), I count a student-teacher match as valid if thetest administrator taught a “self-

contained” (i.e. all day, all subject) class for the relevant grade in the relevant year, if that class

was not designated as special education or honors, and if at least half of the tests that the teacher

administered were to students in the correct grade. Using this definition, 73% of 5th graders

can be matched to teachers. In each of my analyses, I restrictthe sample to students with valid

teacher matches in all grades for which teacher assignmentsare controlled.

I focus on the cohort of students who were in 5th grade in 2000-2001. Beginning with

the population (N=99,071), I exclude students who have inconsistent longitudinal records (e.g.

gender changes between years); who were not in 4th grade in 1999-2000; who are missing

4th or 5th grade test scores; or who cannot be matched to a 5th grade teacher. I additionally

exclude 5th grade classrooms that contain fewer than 12 sample students or are the only included

classroom at the school. This leaves my base sample, consisting of 60,740 students from 3,040

5th grade classrooms and 868 schools.

My analyses all use subsets of this sample that provide sufficient longitudinal data. In

analyses of 4th grade gains, for example, I exclude studentswho have missing 3rd grade scores

or who were not in 3rd grade in 1998-1999. In specifications that include identifiers for teachers

in multiple grades, I further exclude students who changed schools between grades, plus a few

schools where streaming produces perfect collinearity.

Table 1 presents summary statistics. I show statistics for the population, for the base sample,

and for my most restricted sample (used for estimation of equation (14)). The last is much

smaller than the others, largely because I require studentsto have attended the same school in

grades 3 through 5 and to have valid teacher matches in each grade. Table 1 indicates that the

16The test scale is meant to ensure that one point corresponds to an equal amount of learning at each grade and
at each point in the within-grade distribution. Rothstein (2008b) and Ballou (2008) emphasize the importance of
this property for value added modeling. All of the results here are robust to using the original scale.
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base and restricted samples have higher mean 5th grade scores than the full population. This

primarily reflects the lower scores of students who switch schools frequently.17 Average 5th

grade gains are similar across samples. The Appendix describes each sample in more detail.

As discussed above, my tests can be applied only if there is sufficient re-shuffling of class-

rooms between grades. An Appendix table shows the fraction of students’ 5th grade class-

mates who were also in the same 4th grade classes, by the number of 4th grade classes at the

school. Complete reshuffling (combined with equally-sizedclasses) would produce 0.5 with

two classes, 0.33 with three, and so on. The actual fractionsare larger than this, but only

slightly. In schools with exactly three 5th grade teachers,for example, 35% of students’ 5th

grade classmates were also their classmates in 4th grade. Inonly 7% of multiple-classroom

schools do the 4th and 5th grade classroom indicators have less than full rank (after dropping

one teacher per grade).

Table 2 presents the correlation of test scores and gains across grades and subjects. The

table indicates that 5th grade scores are correlated above 0.8 with 4th grade scores in the same

subject, while correlations with scores in earlier grades or other subjects are somewhat lower.

5th grade gains are strongly negatively correlated with 4thgrade levels and gains in the same

subject and weakly negatively with those in the other subject. The correlations between 5th and

3rd grade gains are small but significant both within and across subjects.

VAM3 is predicated on the notion that student ability is an important component of annual

gains. Assuming that high-ability students gain faster (i.e. thatτg+1 > τg for eachg), this

would imply positive correlations between gains in different years. There is no indication of

this in Table 2. One potential explanation is that noise in the annual tests introduces negative

autocorrelation in gains, but Rothstein (2008a,b) concludes that noise cannot account for the

magnitude of the observed negative year-to-year correlation. This strongly suggests that VAM3

is poorly suited to the test score data generating process.

17Table 1 shows that average 3rd and 4th grade scores in the “population” are well above zero. The norming
sample that I use to standardize scores in each grade consists of all students in that grade in the relevant year (i.e.
of all 3rd graders in 1999), while only those who make normal progress to 5th grade in 2001 are included in the
sample for Columns 1-2. The low scores of students who repeatgrades account for the discrepancy.
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5 Results

Tables 3, 4, and 5 present results for the three VAMs in turn. Ibegin with VAM1, in Table

3. I regress 5th grade math and reading gains (in Columns 1 and2, respectively) on indicators

for 5th grade classrooms, then normalize the resulting coefficients to have mean zero within

each school. In each case, the hypothesis that all of the teacher coefficients are zero (i.e. that

classroom indicators have no explanatory power beyond thatprovided by school indicators) is

decisively rejected. The VAM indicates that the within-school standard deviations of 5th grade

teachers’ effects on math and reading are 0.15 and 0.11, respectively. This is similar to what

has been found in other studies (e.g., Aaronson et al., 2007;Rivkin et al., 2005).

Columns 3 and 4 present falsification tests in which 4th gradegains are substituted for

the 5th grade gains as dependent variables, with the specification otherwise unchanged. The

standard deviation of 5th grade teachers’ “effects” on 4th grade gains is 0.08 in each subject,

and the hypothesis of zero association is rejected in each specification. In both the standard

deviation and statistical significance senses, 5th grade classroom assignments are slightly more

strongly associated with 4th grade reading gains than with math gains.

One potential explanation for these counterfactual effects is that they represent omitted vari-

ables bias deriving from my failure to control for 4th grade teachers. Columns 5-8 present es-

timates that do control for 4th grade classroom assignments, using a sample of students who

attended the same school in 4th and 5th grades and can be matched to teachers in each grade.

Two aspects of the results are of interest. First, 4th grade teachers have strong independent

predictive power for 5th grade gains. This is at least suggestive that the “zero decay” assump-

tion is violated. I return to this in Section 7. Second, the coefficients on 5th grade classroom

indicators in models for 4th grade gains remain quite variable – even more so than in the sparse

specifications in Columns 3 and 4 – and are significantly different from zero. Evidently, the

correlation between 5th grade teachers and 4th grade gains derives from sorting on the basis of

the 4th graderesidual, not merely from between-grade correlation of teacher assignments.

These results strongly suggest that the exclusion restrictions for VAM1 are violated. To
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demonstrate this conclusively, however, we need to show that the residual in VAM1,e1ig, is

serially correlated. To examine this, I re-estimated VAM1 for 4th grade teachers’ effects on 4th

grade gains. The correlation between ˆe1i4 andê1i5 is -0.38 in math and -0.37 in reading.

The negative serial correlation ofe1 implies that students with high gains in 4th grade will

tend to have low gains in 5th grade, and vice versa. Because VAM1 evidently does not ade-

quately control for classroom assignments, it gives unearned credit to teachers who are assigned

students who did poorly in 4th grade, as these students will predictably post unusually high 5th

grade gains when they revert toward their long-run means. Similarly, teachers whose students

did unusually well in 4th grade will be penalized by the students’ fall back toward their long-

run means in 5th grade. Indeed, an examination of the VAM1 coefficients indicates that 5th

grade teachers whose students have above-average 4th gradegains have systematically lower

estimated value added than teachers whose students underperformed in the prior year. Impor-

tantly, this pattern is stronger than can be explained by sampling error in the estimated teacher

effects; it reflect true mean reversion and not merely measurement error.

Table 4 repeats the falsification exercise for VAM2. The structure is identical to that of

Table 3. Columns 1 and 2 present estimates of the basic VAM for5th grade teachers’ effects on

5th grade gains, controlling for 4th grade math and reading scores. The standard deviations of

5th grade teachers’ effects are nearly identical to those inTable 3. Columns 3 and 4 substitute

4th grade gains as the dependent variable. Once again, we seethat 5th grade teachers are

strongly predictive, more so in reading than in math. Columns 5-8 augment the specification

with controls for 4th grade teachers. The 5th grade teacher coefficients are no longer jointly

significant in the 4th grade math gain specification, though they remain quite large in magnitude.

They are still highly significant in the specification for 4thgrade reading gains.

The VAM2 residuals, like the VAM1 residuals, are strongly correlated between 4th and

5th grades, -0.21 in math and -0.19 in reading. They are also correlated across subjects: -

0.14 between 4th grade reading and 5th grade math. Thus, the evidence that 5th grade teacher

assignments are correlated with earlier reading gains evenafter controlling for 4th grade scores
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in both subjects indicates that the VAM2 exclusion restriction is violated, regardless of whether

the dependent variable is the math or the reading gain. As before, 5th grade teachers’ effects on

5th grade gains are negatively correlated with their counterfactual “effects” on 4th grade gains,

suggesting that mean reversion in student achievement – combined with non-random classroom

assignments – is an important source of bias in VAM2.

As discussed in Section 3.5, the falsification test for VAM3 takes a different form. I begin

by selecting the subsample with non-missing 3rd and 4th grade gains; valid teacher assignments

in grades 3, 4, and 5; and continuous enrollment at the same school in all three grades. I exclude

26 schools where the three sets of indicators for teachers ingrades 3, 4, and 5 (dropping one

teacher in each grade from each school) are collinear. I thenregress both the 3rd and 4th grade

gains on school indicators and on each of the three sets of teacher indicators.18

Table 5 reports estimates for math gains, in Columns 1 and 2, and for reading gains, in

Columns 4 and 5. The first panel shows the standard deviations(adjusted for sampling error)

of the coefficients for each grade’s teachers. Gains in each subject and in each grade are sub-

stantially correlated with classroom assignments in all three grades. Although p-values are not

shown, in all 12 cases the hypothesis of zero effects is rejected. Columns 3 and 6 report the

across-teacher correlations between the coefficients in the models for 3rd and 4th grade gains

(i.e., betweenπg3 andπg4). The most important correlation is that for 5th grade teachers, -0.04

for math and -0.06 for reading. Recall that strict exogeneity implies that the 5th grade teacher

coefficients in the model for 4th grade gains should be proportional to the corresponding co-

efficients in the model for 3rd grade gains,π54 = (∆τ4/∆τ3)π53, implying a correlation of±1.

The near-zero correlations strongly suggest that a single ability factor is unable to account for

the apparent “effects” of 5th grade teachers on gains in earlier grades. Indeed, they are direct

evidence against the VAM3 identifying assumption of conditional strict exogeneity.

18It is not essential to the correlated random effects test that the full sequence of teacher assignments back to
grade 1 be observed, but the test may over-reject if classroom assignments in grades 3-5 are correlated with those
in 1st and 2nd grade and if the latter have continuing effectson 3rd and 4th grade gains. Recall, however, that
VAM3 assumes such lagged effects away.
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The lower panel of Table 5 presents OMD estimates of the restricted model.19 I consider

two versions, one that constrains∆τ4/∆τ3 = 1 (as would be needed in order to estimate VAM3

using conventional fixed effects methods) and another that does not. Neither model is able to

fit the data. For math scores, the estimated ratio∆τ4/∆τ3 from the less restrictive model is 0.14,

implying that student ability is much more important to 3rd grade than to 4th grade gains. Thus,

the constrained estimates imply negligible coefficients for 5th grade teachers in the equation

for 4th grade gains, and do a very poor job of fitting the unconstrained estimate of the standard

deviation of these coefficients, 0.099. The test statisticD is 2,136, and the overidentifying

restrictions are overwhelmingly rejected. In the reading specification, the∆τ4/∆τ3 ratio is close to

one, and the restricted model allows for meaningful coefficients on 5th grade teachers in both the

3rd and 4th grade gain equations, albeit much less variability than is seen in the unconstrained

model. But the test statistic is even larger here, and the restricted model is again rejected. We

can thus conclude that 5th grade teacher assignments are notstrictly exogenous with respect to

either math or reading gains, even conditional on single-dimensional (subject-specific) student

heterogeneity. The identifying assumption for VAM3 is thusviolated.

The results in Tables 3, 4, and 5 indicate that all three of theVAMs considered here rely

on incorrect exclusion restrictions – teacher assignmentsevidently depend on the past learning

trajectory even after controlling for student ability or the prior year’s test score. It is possible,

however, that slight modifications of the VAMs could eliminate the endogeneity. I have explored

several alternative specifications to gauge the robustnessof the results. I have re-estimated

VAM1 and VAM2 with controls for student race, gender, and free lunch status; this has no

effect on the tests. Similarly, I have explored a variety of alternative test scalings. The three

VAMs continue to fail falsification tests when I use the original score scales or percentiles in

place of the standardized-by-grade scores used in Tables 3,4, and 5.

The results are also not specific to the cohort examined here;I obtain similar results using

data from other cohorts. As a final investigation, I have extended the tests to evaluate VAM

19The OMD analysis uses a variance-covariance matrixW that is robust to arbitrary heteroskedasiticity and
within-student, between-grade clustering.
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analyses that use data from multiple cohorts of students to distinguish between permanent and

transitory components of a teacher’s “effect.” As discussed in the Appendix, the implicit as-

sumptions under which this can avoid the biases identified here do not appear to hold in the

data.

6 How Much Does This Matter?

The results in Section 5 indicate that the identifying assumptions for all three VAMs are violated

in the North Carolina data. However, if classroom assignments nearly satisfy the assumptions

underlying the VAMs, the models might yield almost unbiasedestimates of teachers’ causal

effects. In this Section, I use the degree of sorting on prioroutcomes to quantify the magnitude

of the biases resulting from non-random assignments. I focus on VAM1 and VAM2, as the lack

of correlation between 3rd and 5th grade gains (Table 2) strongly suggests that the additional

complexity and strong maintained assumptions of VAM3 are unnecessary.

In general, classroom assignments may depend both on variables that are observable by

the econometrician and on unobserved factors. The former can in principle be incorporated

into VAM specifications. Accordingly, the first part of my investigation focuses on the role

of observable characteristics that are omitted from VAM1 and VAM2. I compare VAM1 and

VAM2 to a saturated specification that controls for teacher assignments in grades 3 and 4, end-

of-grade scores in both subjects in both grades, and scores from the tests given at the beginning

of 3rd grade. This specification would identify 5th grade teachers’ effects if assignments were

random conditional on the test score and teacher assignmenthistory. It is thus more general

than VAM2. It does not strictly nest VAM1, however: Assignment of teachers based purely on

student ability (µi) would satisfy the VAM1 exclusion restriction, but not thatfor the saturated

model. Of course, if assignments depend on both ability and lagged scores, VAM1, VAM2, and

the saturated VAM are all misspecified.

Table 6 presents comparisons of the saturated VAM with VAM1 and VAM2. The first rows
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show the estimated standard deviations of teachers’ effects obtained from VAM1 and VAM2, as

applied to the subset of students with complete test score histories and valid teacher assignments

in each prior grade. The unadjusted estimates are somewhat higher than those in Tables 3 and

4, as the smaller sample yields noisier estimates. The sampling-adjusted estimates are quite

similar to those from the larger sample. The next two rows of the Table show estimates from

the saturated specification. Standard deviations are somewhat larger, but not dramatically so.

The final two rows describe the bias in the simpler VAMs relative to the saturated model (that

is, βVAM1
55 −β saturated

55 andβVAM2
55 −β saturated

55 ). I again show both the raw standard deviation of

the point estimates and an adjusted standard deviation thatremoves the portion due to sampling

error. For VAM1, the bias has a standard deviation over a third as large as the standard deviation

of the estimated effects. For VAM2, which already includes asubset of the controls in the

saturated model, the bias is somewhat smaller. For both VAMs, the bias is more important in

estimates of teachers’ value added for math scores than for reading scores.

Of course, the exercise carried out here can only diagnose bias in VAM1 and VAM2 from

selection onobservables – variables that can easily be included in the VAM specification. In

a companion paper (Rothstein, 2008a), I attempt to quantifythe bias that is likely to result

from selection on unobservables. Classroom assignments likely also depend on characteristics

– behavior, personality, parental intervention, etc. – that may be observed by the principal

but are unobserved by the econometrician. These characteristics may be predictive of future

outcomes. Following the intuition (Altonji et al., 2005) that the weight of observable (to the

econometrician) and unobservable variables in classroom assignments is likely to mirror their

relative weights in predicting achievement, one can use thedegree of sorting on observables to

estimate the importance of unobservables and therefore themagnitude of the bias in estimated

teacher effects. Under varying assumptions about the amount of information that parents and

principals have, I find that the bias from non-random assignments is plausibly 50-75% as large

(in standard deviation terms) as the estimates of teachers’effects in VAM1, and perhaps half
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this large in VAM2.20 These estimates imply that VAM2 and especially VAM1 seriously mis-

identify teachers’ true causal effects, crediting teachers for the students they are assigned. One

cannot be confident that a teacher identified as good by these models is in fact a good teacher,

rather than simply a teacher who was given students predicted (by principals, if not by the

econometrician) to gain quickly.

7 Short-Run vs. Long-Run Effects

Although classroom assignments are the focus of this paper,it is worth returning to another

implication of the results in Section 5. Recall from Columns5-6 of Tables 3 and 4 that 4th

grade teachers appear to have large effects on students’ 5thgrade gains. Given the results for

4th grade gains, these “effects” cannot be treated as causal. But setting this issue aside, we can

use the lagged teacher coefficients to evaluate restrictions on time pattern of teachers’ effects

(that is, on the relationship betweenβgg and βg,g+s in the production function (1)) that are

universally imposed in value added analyses.

When only a single grade’s teacher assignment is included, VAM2 implicitly assumes that

teachers’ effects decay at a uniform, geometric rate (βg,g+s = βggλ s for λ ∈ [0, 1]), while VAM1

assumes zero decay (λ = 0). It is not clear that either restriction is reasonable. One can certainly

imagine that some teaching styles (e.g., “teaching to the test”) would produce large short-run

effects that decay quickly while other styles (emphasizingindependent exploration) might yield

smaller short-run effects that persist and even grow in later years.21 As this example shows, it

is far from clear that accountability policy should focus exclusively on short-run effects rather

than long-run effects if the two in fact differ.

While several studies have attempted to estimate the decay parameterψ,22 this is the first

20Kane and Staiger’s (2008) comparison of experimental and non-experimental value added estimates would be
unlikely to detect biases of this magnitude.

21Although a full discussion is beyond the scope of this paper,assumptions about “decay” are closely related to
issues of test scaling and content coverage (Rothstein, 2008b; Ballou, 2008; Martineau, 2006).

22Studies predating this one include Andrabi et al. (2008), Sanders and Rivers (1996), and Konstantopoulos
(2007).
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value added study of which I am aware that estimates teachers’ immediate and lagged effects

without imposing a restriction of uniform decay. As a final investigation, I analyze the validity

of this restriction by comparing a grade-g teacher’s initial effect in gradeg with her longer-run

effect on scores in gradeg+1 or g+2.23 Under the uniform decay restriction, these should be

perfectly correlated (except for sampling error).

I begin by estimating VAM1 and VAM2 for 3rd, 4th, and 5th gradegains, augmenting each

specification with controls for past teachers back to 3rd grade. I then compute 3rd and 4th

grade teachers’ cumulative effects over one, two, and (for 3rd grade teachers) three years. Table

7 presents summary statistics for these cumulative effects. I show their standard deviation and

their correlation with the initial effectsβggc, both adjusted for sampling error. Two aspects of the

results are of note. First, the standard deviation of teachers’ estimated “effects” falls in the year

after contact – there is much more variation in 4th grade teachers’ effects on 4th grade scores

than in those same teachers’ effects on 5th grade scores. With uniform decay at rate(1−λ ),

var(βg,g+s) = λ s var(βgg), so this is consistent with the mounting evidence that teachers’ effects

decay importantly in the year after contact (Andrabi et al.,2008; Kane and Staiger, 2008; Jacob

et al., 2008). Second, the correlation between teachers’ first year effects and their two year

cumulative effects is much less than one, ranging between 0.33 and 0.51 depending on the

model and subject. Correlations with three-year cumulative effects are (mostly) lower, centered

around 0.4. This is not even approximately consistent with uniform decay. Even if we assume

that the VAM-based estimates can be treated as causal, a teacher’s first year effect is a poor

proxy for her longer-run impact.

As a final exercise, I bring together the analyses of endogeneity bias and decay to investigate

whether estimates of short-run effects from VAM1 and VAM2 are reasonably accurate proxies

from those that would be obtained from a superior model for longer-run effects. I estimate

23For VAM1, the effect of being in classroomc in gradeg on achievement in gradeg+ s is simply∑s
t=0 βg,g+t,c.

In VAM2, the presence of a lagged dependent variable complicates the calculation of cumulative effects. If
only the same-subject score is controlled, the effect of 3rdgrade teacherc on 5th grade achievement is
(β33c (1+ ψ4)+ β34c) (1+ ψ5) + β35c. A similar but more complex expression characterizes the effects when
lagged scores in both math and reading are controlled, as in my estimates.
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the saturated VAM from Section 6 for both 4th and 5th grade gains, controlling for all past

observables, and compute the implied cumulative effect of 4th grade teachers on students’ 5th

grade outcomes. Figure 1 shows the scatterplot of VAM1 and VAM2 estimates of 4th grade

teacher effects against those from the cumulative saturated specification. Both VAM1- and

VAM2-based estimates of effects on math scores correlate just over 0.4 with those from the

richer model, while correlations for reading achievement are below 0.35.

Many teacher accountability policies focus only on the verybest and very worst teachers.

Figure 1 shows the 20th and 80th percentiles of the distribution of estimated effects from each

model. For each contrast, I compute the fraction of teachersin the top and bottom quintile

according to the cumulative, saturated specification who are assigned to the same quintile by

VAM1 or VAM2. These are similar to the correlations, around 0.43 for math and 0.35 for

reading. Even ignoring the impact of sampling error, which would tend to exacerbate these

results but is not accounted for here, it is clear that model misspecification produces extreme

amounts of misclassification. Policies that use VAM1 or VAM2to attempt to identify the best

and worst teachers will both reward and punish teachers who do not deserve it and fail to reward

and punish teachers who do.

8 Discussion

Access to panel data allows the econometrician to control for individual heterogeneity much

more flexibly than can be accomplished in cross-sectional data, but even panel data models

can identify treatment effects only if assignment to treatment satisfies strong ignorability as-

sumptions. This has long been recognized in the literature on program evaluation, but has

received relatively little attention in the literature on the estimation of teachers’ effects on stu-

dent achievement. In this paper, I have shown how the availability of lagged outcome measures

can be used to evaluate common value added specifications.

The results presented here show that the assumptions underlying common VAMs are sub-
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stantially incorrect, at least in North Carolina. Classroom assignments are not exogenous condi-

tional on the typical controls, and estimates of teachers’ effects based on these models cannot be

interpreted as causal. Clear evidence of this is that each VAM indicates that 5th grade teachers

have quantitatively important “effects” on students’ 4th grade learning.

This result casts serious doubt on the value of simple VAMs for accountability and incentive

policies, which will clearly be sensitive to the assignmentof students to teachers. Teachers

operating under high-stakes VAM-based accountability andincentive systems can be expected

to lobby their principals to be assigned the “right” students who will predictably yield high value

added scores, and principals will presumably alter their assignment rules to direct these students

toward favored teachers. As teacher-student matching is a potentially important determinant of

student learning (Clotfelter et al., 2006; Dee, 2005), distortion of these matches due to efforts

to manipulate teachers’ value added scores can have real efficiency consequences.

It is clear that richer VAMs are needed. These will need to accommodate dynamic classroom

assignments and will probably require behavioral assumptions about the principal’s objective

function and information set. For example, one might assumethat classroom assignments de-

pend on the principal’s best prediction of students’ unobserved ability, and that this prediction

is after receipt with each year’s test results. None of the VAMs considered here can accom-

modate assignments of this form, which on its face seems moreplausible than the identifying

assumptions for VAM1, VAM2, or VAM3.

Attempts to infer causal effects even from rich, dynamic VAMs call for a great deal of

caution and attention to the required assumptions. Any VAM proposed for policy use should be

subjected both to thorough validation and to falsification exercises. The tests implemented here

suggest a starting point, and may be adaptable to richer models. Failure to reject the exclusion

restrictions need not indicate that the restrictions are correct, as my tests can identify only

sorting based on past observables. But rejection does indicate that the VAM-based estimates

are likely to be misleading about teachers’ causal effects.

Even with a valid model, it will also be important to measure teachers’ effects on student
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achievement over several years, not merely at the end of the year of exposure. Estimates of

teacher quality are evidently quite sensitive to this aspect of the model. By contrast, there is

little apparent need to allow for permanent heterogeneity in students’ rates of growth, as the

data provide no indication of such heterogeneity.

The questions investigated and methods used here have applications beyond the estimation

of individual teacher quality. The Appendix shows that conclusions about the relationship be-

tween teachers’ observed characteristics and their value added also rest on unsteady ground.

Estimates of the quality of schools and of the effects of firmson workers’ wages use identical

econometric models, and rely on similar exclusion restrictions. Evidence about the “effects” of

future schools and employers on current outcomes would be informative about the validity of

both sets of estimates.
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A Data Appendix

This appendix describes the construction of the samples used in the paper. I begin with
records on all students who were enrolled in 5th grade in North Carolina public schools in 2000-
2001. From this universe, I exclude students with inconsistent longitudinal records (i.e. “male”
in some years and “female” in others, amounting to less than 1% of the population); those who
cannot be matched to 4th grade records from 1999-2000, perhaps because they skipped a grade
or attended private school (10%); those who cannot be matched to a 5th grade teacher or for
whom the 5th grade test administrator is not a valid teacher as defined in the text (24%); those
whose 5th grade class has fewer than 12 included students (1%); and those whose elementary
school contains only a single included 5th grade class (3%).This leaves me with a sample of
60,740, 61.3% of the initial population. I refer to this sample as the “base” sample.

Each of my analyses uses subsets of this sample that have complete data on test scores
and teacher assignments for enough years to permit the analysis. A student might be excluded
from the analytical subsample for a particular analysis because there is no record in one of
the necessary grades; because there is a record but no test score; because the student changed
schools between grades; because she could not be matched to avalid teacher in each of the
required grades; because she was the only otherwise-usablestudent from her class in one or
more grades; because there was only one included class at herschool in one or more grades; or
because the school did not shuffle students adequately between grades, leading to collinearity
between the classroom assignments in one year and those in other years. Appendix Table A1
describes the samples used in Columns 1-4 of Tables 3 and 4 (requiring complete test histories
from grades 3-5 and teacher assignments in grade 5); in Columns 5-8 of those Tables (also
requiring valid teacher assignments in 4th grade); and in Table 5 (also requiring 3rd grade
teacher assignments and scores from the beginning-of-third-grade tests).

Appendix Table A2 reports statistics on shuffling of classrooms between 4th and 5th grades.
This uses a somewhat different sample than other tables, consisting of all students with valid
records and valid teacher matches in both grades 4 and 5 who did not switch schools or make
abnormal progress between grades. Using this sample, I count the number of 4th grade classes
at the school, and I compute for each student the fraction of her 5th grade classmates who were
also in her 4th grade class. I average this over the full sample and over subsamples defined by
the number of 4th grade teachers at the school. I also identify schools where dummies for theJ4
4th grade teachers andJ5 5th grade teachers have rank less thanJ4 + J5−2, indicating perfect
collinearity of at least one teacher assignment with the others, and re-compute the statistic
excluding observations from those schools.

B Technical Appendix

This appendix provides more detail on some of the computations undertaken in the paper.

B.1 School-level normalizations

As discussed in the text, each of my regressions includes fixed effects for the school at-
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tended, and coefficients on teacher indicators are normalized to have mean zero at the school
level. This normalization is easiest to describe if the sample consists of only a single school.
Let T be anN-by-J matrix of indicators for having been taught by each of theJ teachers in a
particular grade at that school. Many of my regressions takethe form

y = α +T β + ε. (18)

Let S = [1T ] be the data matrix formed by augmenting theT matrix with a constant. Because
each student has exactly one teacher,S′S has rankJ, so not all of theJ +1 coefficients inα and
β can be separately identified. Suppose, without loss of generality, that the last element ofT
is dropped. Let̂b be the estimates of the remaining elements ofβ , and letVb be the estimated
sampling variance-covariance matrix forb̂. Form β̂ =

(

b̂′0
)′

, and letV be the corresponding
variance matrix,

V ≡

(

Vb 0J

0′J 0

)

, (19)

where 0J is a column vector ofJ zeros.
Let n be aJ-vector with elementsn j, wheren j is the number of students taught by teacher

j. Then the weighted average element ofβ̂ , weighting each teacher by the number of students

taught, can be written aŝ̄β = (n′1J)
−1n′β̂ (where 1J is a J-vector of ones), and the vector

β̂ −
¯̂β =

(

IJ −1J (n′1J)
−1 n′

)

β̂ ≡ Dβ̂ has weighted mean zero across teachers. The sampling

variance matrix for the normalized coefficientsβ̂ −
¯̂β is simplyDVD′. This has rankJ −1.

The extension of this procedure to samples spanning many schools is straightforward. Sup-
pose that the teacher indicators are ordered, so that the first J1 come from school 1, the nextJ2

from school 2, and so on. Let̂β be the full vector of estimated coefficients with the coefficient
for the final teacher at each school set to zero (i.e theJ1, (J1+ J2), etc., elements of̂β ), and
let V be the sampling variance matrix (with rows and columns of zeros corresponding to the
zero elements of̂β ). Finally, letDsbe theJs-by-Js demeaning matrix for schools, computed as
described above. Then the demeaning matrix for the full sample is block diagonal:

D =











D1 0 · · · 0
0 D2 · · · 0
...

...
...

...
0 0 · · · DS











. (20)

As before, the demeaned vector of coefficients isDβ̂ and the variance-covariance matrix is
DVD′. This variance-covariance matrix has rank equal to∑s Js−S.

B.2 Sampling-adjusted standard deviations

For many of the models considered in the paper, I report the standard deviation across teach-
ers of the teacher coefficients. Letθ̂be aJ-vector of coefficients, normalized as described above
within each ofS schools, letV be the variance-covariance matrix, and letn be a vector of student
counts.
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The (weighted) variance of teachers’ effects is

ˆvar
(

θ̂
)

=
1

J −S
θ̂ ′diag{ñ} θ̂ , (21)

where diag{ñ} is theJ-by-J matrix with diagonal elementj equal ton j/n̄ (wheren̄ =(1′1)−11′n)
and zeros off the diagonal. Note that this incorporates a degrees-of-freedom adjustment for the
school-level normalization.

The standard deviation of teachers’ estimated effects is merely the square root of the above
expression. This overstates the standard deviation that would be obtained in an infinitely large
sample. Letθ be the plim ofθ̂ , under the fixed-J asymptotics described in the text, and letθ̂ =
θ +u, whereu is sampling error andE [uu′] = V . This suggests that we can write the variance
of the “true” (net of sampling error) effects as var(θ) = var

(

θ̂
)

−var(u), where these variances
are computed across the elements ofθ and weighted byn. The var

(

θ̂
)

term is estimated as

described above. var(u) is estimated as1J ∑ j n̄−1n jv j j, where ¯n ≡ (1′1)−11′n, as above, andv j j

is the jth diagonal element ofV .

B.3 Computation of regressions with teacher indicators formultiple grades
when there are no covariates

Several of the specifications used here include indicators for teachers in several grades si-
multaneously. The correlated random efffects analysis is the most involved, with indicators for
3rd, 4th, and 5th grade teachers in the same regression (equation (14)):

Ãi3 = Ti3π33+Ti4π43+Ti5π53+ e3i3 (22)

Ãi4 = Ti3π34+Ti4π44+Ti5π54+ e3i4. (23)

Two computational challenges arise. First, not all of theπ coefficients can be separately com-
puted. The particular problem arises because I restrict thesample to students who do not change
schools. The fitted values of the regressions would be unchanged were we to add a constantc
to each element of theπg,h corresponding to a teacher at a particular schoolj and subtract the
same constant from the similarly-defined elements ofπk,h for somek 6= g. As a result, the mean
of πg,h across all teachers in gradeg at schoolj cannot be separately identified. I augment (22)
and (23) with school indicators, then select one teacher in each grade at each school to exclude
from the regressions.24 I treat the excludedπ coefficient as zero, with sampling variance zero.
After estimating the regression, I normalize the coefficients of (22) and (23) to have mean zero
across teachers in each grade at each school, using the procedure described above.

The second issue derives from the sheer size of the regression. Even after excluding the over-
identified coefficients, each of theTig vectors has over 2,200 elements, and the full regression
(after dropping redundant indicators) has 5,501 regressors. Numerical inversion of a matrix
of this dimension may introduce inaccuracies. My focus on samples of students who do not

24The sample used for these regressions excludes schools where, due to insufficient mixing, the[Ti3 Ti4 Ti5]
submatrix corresponding to teachers at the school has rank less thanJs3 + Js4+ Js5−2.
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switch schools permits a simpler computation. Re-order theindependent variables in equations
(22) and (23) asX =

[

X(1), X(2), . . . , X(J)

]

, whereX( j) contains the indicator for schoolj and
the indicators for all teachers (in all three grades) at school j. Any sample student who ever
appears in schoolj never appears in any other school, soX ′

( j)X(k) = 0 for all j 6= k. This ensures

thatX ′X is block-diagonal:

X ′X =











X ′
(1)X(1) 0 · · · 0

0 X ′
(2)X(2) · · · 0

...
...

.. .
...

0 0 · · · X ′
(J)X(J)











. (24)

(X ′X)−1 is also block-diagonal, with blocks consisting of the inverse of the school-level design
matrices:

(

X ′X
)−1

=



















(

X ′
(1)X(1)

)−1
0 · · · 0

0
(

X ′
(2)X(2)

)−1
· · · 0

...
...

...
...

0 0 · · ·
(

X ′
(J)X(J)

)−1



















. (25)

Each block has dimension of only a few dozen, so inversion is straightforward. Theπ co-
efficients (before the within-school normalization) and robust sampling variances are readily
computed from(X ′X)−1. The covariances between the coefficients of equations (22)and (23)
can be computed with

cov
(

Π4, Π5
)

=
(

X ′X
)−1

X ′diag(êi4êi5)X
(

X ′X
)−1

. (26)

This implicitly clusters on the individual student, and is equivalent to applying system OLS to
the simultaneous equations (22) and (23).

B.4 Computation of regressions with teacher indicators formultiple grades
when there are continuous covariates

In a few cases (e.g. the “saturated” model discussed in Section 6), I include continuous
regressorsZ along with the school and teacher indicators from several grades. These regressions
have the form

y = XΠ+Zψ + ε. (27)

Letting W = [X Z] and Λ = [Π′ ψ ′]′, we havey = WΛ + ε. Because theψ coefficients are
common across schools,W ′W is no longer block-diagonal, and the school-by-school strategy
described above cannot be used directly here. In these models, I use a brute-force OLS regres-
sion estimator (implemented in Matlab) to compute the regression of the school de-meanedy
on the de-meanedW . This may introduce numerical inaccuracy in the estimated coefficients,
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Λ̂0. To avoid this, I use an iterative algorithm to obtain improved coefficient estimates. At each
iterationt (beginning witht=1), there are two steps:

1. Treat theψ parameters as known, using values from the previous iteration,ψ̂t−1. Regress
y−Zψ̂t−1 on X . The methods used in the previous section can be applied here, asX ′X is
block diagonal with blocks corresponding to schools. Labelthe resulting coefficientŝΠt

2. Treating theΠ̂t coefficients as known, regressy−XΠ̂t on Z. Z typically contains only a
handful of variables, so this is simple to calculate. Label the resulting coefficientŝψt , and
use these as inputs to step 1 on the next iteration.

These steps are repeated until the coefficient vector converges. Convergence is considered to
have been achieved when the maximum change in the regressionresidualset ≡ y−XΠ̂t −Zψ̂t

from the previous iteration – that is,‖et − et−1‖sup – is less than 10−6σy.
This is essentially the Gauss-Seidel method, though the structure of the problem makes it

possible to use only two sub-vectors of the full parameter vectorΛ rather than stepping through
each element ofΛ separately as in typical implementations. It can be shown tobe a contraction
mapping on the sum of squared errors, so the coefficients necessarily converge to the OLS
coefficients. Abowd et al. (2002) use a similar (in spirit, though not in detail) computational
strategy.

In practice, the initial brute-force estimates are quite accurate, and only one or two iterations
are required before convergence is achieved. As the iterative algorithm does not yield standard
errors, I use a brute-force estimate of(W ′W )−1 to compute these.

C Additional Specifications

C.1 Teachers’ observable characteristics

VAMs are used not only to estimate individual teachers’ effects, but also to assess the re-
lationship of teacher quality with teachers’ observed characteristics (see, e.g., Clotfelter et al.,
2006, 2007; Goldhaber and Brewer, 1997; Hanushek and Rivkin, 2006). These analyses replace
the teacher indicators in VAM1, VAM2, or VAM3 with vectors ofteacher observables – edu-
cation, experience, etc. The tests developed in the main text can be applied to these models as
well. Appendix Table C1 presents results for mathematics. (Results for reading are similar and
are available from the author.) I focus on a short vector of teacher characteristics: An indica-
tor for whether the teacher has a master’s degree, a linear experience measure, an indicator for
whether the teacher has less than two years of experience, and the teacher’s score on the Praxis
tests required to obtain elementary certification in North Carolina.25 As in the other analyses,

25Each test is standardized among North Carolina teachers whotook it in the same year, then (when multiple
scores are available) scores are averaged across tests.
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I restrict attention to students who can be assigned to validteachers in each grade for which
teacher characteristics will be controlled and who do not switch schools between grades. I fur-
ther exclude students for whom I am unable to assemble complete characteristics for each of
the relevant teachers.

Column 1 presents estimates from VAM1 of the effects of 4th and 5th grade teachers on 5th
grade gains, controlling for school fixed effects and clustering the standard errors on the school.
The 5th grade teacher coefficients echo those in the literature: A master’s degree appears to
make little difference, but inexperienced teachers have quite negative effects on student gains.
Interestingly, inexperienced 4th grade teachers seem to have largepositive effects on 5th grade
gains, perhaps indicating that students quickly make up fortime lost during 4th grade. See the
discussion in Section 7.

Column 2 repeats the VAM1 specification, this time using the 4th grade gain as the depen-
dent variable. The 4th grade teacher coefficients are consistent with those seen for 5th grade
teachers in Column 1. But Column 2 also indicates that the 5thgrade teacher’s Praxis score is
positively associated with the 4th grade gain score, while the coefficient on the dummy for an
inexperienced 5th grade teacher is negative and nearly significant (t = −1.85). The hypothesis
that all 5th grade teacher characteristics have zero coefficients is rejected (p = 0.02). This is
clear evidence that the VAM1 exclusion restriction is violated by student sorting.

Columns 3 and 4 present the analysis of VAM2, modeling 5th grade scores in Column 3
and 3rd grade scores in Column 4. Results in Column 3 are similar to those in Column 2. In
Column 4, none of the 5th grade coefficients are individuallysignificant, but the test that all
are zero is marginally significant (p = 0.11). Given the low power of my tests for analyses
of teacher characteristics, which are only weakly correlated with student achievement in any
grade, I interpret this as only mildly encouraging.

Columns 5 and 6 present the correlated random effects analysis that I use to evaluate VAM3,
modeling 3rd and 4th grade gains, respectively, as functions of the characteristics of teachers
in grades 3 through 5. I again consider two restricted models, one that constrains student abil-
ity to enter identically into each grade’s gain score equation and another that allows different
ability coefficients in different grades. The former model –corresponding to the version of
VAM3 that is uniformly used in the literature – implies that the 5th grade teacher coefficients in
columns 5 and 6 of Table 6 should be equal. Iin fact, we see a significant negative coefficient
for the no experience indicator in the model for 4th grade gains and a marginally significant
(t = 1.67) positive coefficient in the model for 3rd grade gains. Thehypothesis of equal effects
is decisively rejected (p=0.02). The less restrictive model requires only that the coefficients
in columns 5 and 6 be proportional to one another. This restriction is consistent with the data
(p=0.81). However, the OMD estimates indicate a factor of proportionality of -0.92. If we
normalizeτ̃3 = 1, defining “ability” to have a positive effect on 3rd grade gains, the model in-
dicates that high ability students gain muchless during 4th grade than their low ability peers.
An alternative interpretation of this extremely counterintuitive result is that the test is unable
to detect violations of strict exogeneity in this context. The correlated random effects test has
power against violations of strict exogeneity only if classroom assignments depend on factors
that are correlated with the included variables. As all of the coefficients except those for the
inexperienced teacher indicator are small and far from statistically significant, and as even the
inexperienced teacher coefficients are consistent with themodel only with implausible coef-
ficient estimates, the simplest interpretation is that VAM3is poorly suited to identifying the
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effects of teacher characteristics on student achievement. Indeed, when I extend the analysis
to use the characteristics of 6th grade teachers – students are typically in middle school in 6th
grade, and ability tracking is more pronounced – to strengthen the overidentification test (see
Rothstein, 2008b), I reject proportionality of the 6th grade teacher coefficients.

C.2 Distinguishing between teacher and classroom effects using cross-
cohort comparisons

In the main paper, I use the terms “classroom effects” and “teacher effects” interchangeably
to describe the effects of being in a single classroom. Undercertain circumstances a distinction
between the two – between a teacher’s effect that is the same every year and a classroom effect
that may vary from year to year as the teacher is assigned new cohorts of students – may make
it possible to obtain unbiased estimates of teachers’ causal effects under weaker conditions than
are considered in the text.

Let βtyc be the effect of being in classroomc taught by teachert in yeary. (I suppress grade
subscripts for notational simplicity.) We can decompose this into a permanent component as-
sociated with the teacher and a time-varying component associated with transitory aspects of
the classroom in yeary. Let c(t, y) be the classroom taught by teachert in yeary, and assume
thatβtyc(t,y) = θt +υty. Here,θt is the teacher’s effect, andυty is the additional portion of the
classroom effect. If we assume that the non-random assignments of students to classrooms are
completely transitory – that the pre-assignment characteristics of students in classroomc(t, y)
are uncorrelated both with the characteristics of studentsin c(t, y+1) and with the teacher’s
true effectθt – then the bias inβ̂tyc(t,y) will be uncorrelated from one year to the next. A

decomposition of̂β into permanent teacher components and transitory components – a regres-
sion of β̂tyc onto teacher indicators – would yield unbiased estimates ofthe permanent teacher
componentsθt . Alternatively, the variance ofθt across teachers can be estimated from the
between-year covariance ofβ :

E
[

βtyc(t,y)βt,y+1,c(t,y+1)

]

= E
[

θ2
t

]

+E
[

vtyvt,y+1
]

+E [θtvty]+E
[

θtvt,y+1
]

. (28)

By the assumptions above, the final three terms are all zero. This sort of decomposition has
been used by Hanushek et al. (2005) and Kane and Staiger (2008), among others.

This strategy relies crucially on the assumption that the assignments are uncorrelated across
years. If some teachers are repeatedly assigned students with high expected gains that are not
controlled in the VAM, this will create bias in the estimatesof θt and E

[

θ2
t

]

. To evaluate
whether assignments are in fact uncorrelated across years,I use students who were in 5th grade
in 2000 to estimate a regression of 5th grade gains on all prior scores, absorbing 5th grade
classroom indicators. This resembles the saturated VAM used above, but it excludes classroom
indicators from prior grades. Using the coefficients from this regression, I form predicted 5th
grade gains for each 5th grade student in both 2000 and 2001, then average these to the class-
room level. These mean predicted gains represent bias in single-cohort estimates of VAM1. I
also residualize the predicted gains against 4th grade scores to obtain the bias in VAM2. I then
correlate the average predicted gains (or residual gains) of a teacher’s students in 2000 with
those for the same teacher’s students in 2001.
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In each VAM and in each subject, these cross-cohort correlations are positive and highly
statistically significant. Evidently, teachers who are assigned good students in one year are
typically assigned better-than-average students the nextyear as well. Thus, while data following
teachers for several years may have some value for reducing bias from non-random assignments
– the (observable) quality of a teacher’s students is not perfectly correlated over time – the
assumptions that would support simple corrections are not satisfied in the North Carolina data.
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Figure 1: Comparison of VAM1 and VAM2 for 4th grade teacher effects to estimates of 4th
grade teachers’ effects on 5th grade scores from the saturated VAM
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Notes: The graphs show scatterplots of 4th grade teachers’ estimated effects on 4th grade gains
from VAM1 and VAM2 (vertical axes) against effects on 5th grade scores computed from a sat-
urated VAM that controls for all past teachers and scores (horizontal axes). Teacher effects are
normalized to mean zero within each school. Dashed lines show the 20th and 80th percentile
of the estimated effects. Each panel shows the correlation between the two sets of estimates
(weighted by the number of students taught, but not adjustedfor sampling error), plus the frac-
tion of teachers who are assigned to the top and bottom quintiles by the cumulative saturated
model who are also assigned to these quintiles by VAM1 and VAM2.
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Table 1.  Summary statistics

Mean SD Mean SD Mean SD
(1) (2) (3) (4) (5) (6)

# of students 99,071 60,740 23,415
# of schools 1,269 868 598

1 5th grade teacher 122 0 0
2 5th grade teacher 168 207 122
3-5 5th grade teachers 776 602 440
>5 5th grade teacher 203 59 36

# of 5th grade classrooms 4,876 3,040 2,116
# of 5th grade classrooms w/ valid teacher match 3,315 3,040 2,116
Female 49% 50% 51%
Black 29% 28% 23%
Other non-white 8% 7% 6%
Consistent student record 99% 100% 100%
Complete test score record, G4-5 88% 99% 100%
Complete test score record, G3-5 81% 91% 100%
Complete test score record, G2-5 72% 80% 100%
Changed schools between G3 and G5 30% 27% 0%
Valid teacher assignment in grade 3 68% 78% 100%
Valid teacher assignment in grade 4 70% 86% 100%
Valid teacher assignment in grade 5 72% 100% 100%
Fr. of students in G5 class in same G4 class 0.22 [0.19] 0.22 [0.17] 0.30 [0.19]
Fr. of students in G5 class in same G3 class 0.15 [0.15] 0.15 [0.13] 0.28 [0.18]
Math scores 3rd grade (beginning of year) 0.11 [0.97] 0.14 [0.96] 0.20 [0.96]

3rd grade (end of year) 0.09 [0.94] 0.11 [0.94] 0.19 [0.91]
4th grade (end of year) 0.04 [0.97] 0.07 [0.97] 0.20 [0.93]
5th grade (end of year) 0.00 [1.00] 0.09 [0.98] 0.20 [0.94]
3rd grade gain -0.02 [0.70] -0.02 [0.69] 0.00 [0.69]
4th grade gain -0.02 [0.58] -0.01 [0.58] 0.01 [0.56]
5th grade gain -0.01 [0.55] 0.01 [0.55] -0.01 [0.53]

Reading scores 3rd grade (beginning of year) 0.08 [0.98] 0.12 [0.98] 0.17 [0.98]
3rd grade (end of year) 0.08 [0.95] 0.11 [0.94] 0.19 [0.91]
4th grade (end of year) 0.04 [0.98] 0.07 [0.97] 0.18 [0.93]
5th grade (end of year) 0.00 [1.00] 0.07 [0.97] 0.17 [0.94]
3rd grade gain 0.01 [0.76] 0.00 [0.75] 0.01 [0.75]
4th grade gain -0.02 [0.59] -0.02 [0.59] 0.00 [0.57]
5th grade gain -0.01 [0.59] 0.00 [0.58] -0.02 [0.57]

Notes:  Summary statistics are computed over all available observations.  Test scores are standardized 
using all 3rd graders in 1999, 4th graders in 2000, and 5th graders in 2001, respectively, regardless of 
grade progress.  "Population" in Columns 1-2 is students enrolled in 5th grade in 2001, merged to 3rd and 
4th grade records (if present) for the same students in 1999 and 2000, respectively.  Columns 3-4 describe 
the base sample discussed in the text; it excludes students with missing 4th and 5th grade test scores, 
students without valid 5th grade teacher matches, 5th grade classes with fewer than 12 sample students, 
and schools with only one 5th grade class.  Columns 5-6 further restrict the sample to students with non-
missing scores in grades 3-5 (plus the 3rd grade beginning-of-year tests) and valid teacher assignments in 
each grade, at schools with multiple classes in each school in each grade and without perfect collinearity of 
classroom assignments in different grades.

Population Base sample Most restricted 
sample



Table 2.  Correlations of test scores and score gains across grades 

N

Mean SD Math Reading Math Reading
(1) (2) (3) (4) (5) (6) (7)

Math scores
G5 0.02 1.00 1 0.78 0.29 0.08 70,740
G4 0.07 0.97 0.84 0.73 -0.27 -0.07 61,535
G3 0.09 0.95 0.80 0.70 -0.02 -0.03 57,382
G3 pretest 0.08 0.97 0.71 0.64 0.00 -0.03 50,661

Reading scores
G5 0.01 1.00 0.78 1 0.10 0.31 70,078
G4 0.06 0.97 0.73 0.82 -0.05 -0.29 61,535
G3 0.09 0.95 0.70 0.78 -0.01 -0.05 57,344
G3 pretest 0.08 0.99 0.59 0.65 0.00 -0.05 50,629

Math gains
G4-G5 0.01 0.55 0.29 0.10 1 0.25 61,349
G3-G4 -0.01 0.58 0.11 0.07 -0.41 -0.07 56,171
G2-G3 0.02 0.70 0.08 0.05 -0.02 0.01 50,615

Reading gains
G4-G5 0.00 0.58 0.08 0.31 0.25 1 60,987
G3-G4 -0.02 0.59 0.08 0.10 -0.08 -0.41 56,159
G2-G3 0.02 0.75 0.09 0.10 -0.01 0.02 50,558

Notes:  Each statistic is calculated using the maximal possible sample of valid student records 
with observations on all necessary scores and normal grade progress between the relevant 
grades.  Column 7 lists the sample size for each row variable; correlations use smaller samples 
for which the column variable is also available.  Italicized correlations are not different from zero 
at the 5% level.

Correlations
5th grade score 5th grade gain

Summary 
statistics



Table 3.  Evaluation of the gain score VAM

Math Reading Math Reading Math Reading Math Reading
(1) (2) (3) (4) (5) (6) (7) (8)

Standard deviation of teacher coefficients
5th grade teacher

Unadjusted SD 0.179 0.160 0.134 0.142 0.197 0.181 0.151 0.168
Adjusted SD 0.149 0.113 0.077 0.084 0.163 0.126 0.090 0.105
p-value <0.01 <0.01 0.02 <0.01 <0.01 <0.01 0.03 <0.01

4th grade teacher
Unadjusted SD 0.188 0.181 0.220 0.193
Adjusted SD 0.150 0.125 0.182 0.140
p-value <0.01 <0.01 <0.01 <0.01

n n n n y y y y

# of students 55,142 55,142 55,142 55,142 40,661 40,661 40,661 40,661
# of 5th grade teachers 3,038 3,038 3,038 3,038 2,761 2,761 2,761 2,761
# of schools 868 868 868 868 783 783 783 783
R2 0.195 0.100 0.132 0.086 0.297 0.176 0.254 0.174
Adjusted R2 0.148 0.047 0.081 0.033 0.203 0.066 0.154 0.064

Notes:  Sample for Columns 1-4 includes students from the base sample (see text) with non-missing 
scores in each subject in grades 3-5.  Columns 5-8 exclude students without valid 4th grade teacher 
matches and those who switched schools between 4th and 5th grade. Adjustments and p-values are 
based on heteroskedasticity-robust variances.

4th grade gain

Exclude invalid 4th grade 
teacher assignments & 
5th grade movers?

5th grade gain 4th grade gain 5th grade gain



Table 4.  Evaluation of the lagged score VAM

Math Reading Math Reading Math Reading Math Reading
(1) (2) (3) (4) (5) (6) (7) (8)

Teacher coefficients
5th grade teacher

Unadjusted SD 0.176 0.150 0.120 0.129 0.191 0.169 0.138 0.150
Adjusted SD 0.150 0.109 0.067 0.076 0.161 0.121 0.079 0.091
p-value <0.01 <0.01 0.04 <0.01 <0.01 <0.01 0.16 <0.01

4th grade teacher
Unadjusted SD 0.160 0.162 0.182 0.175
Adjusted SD 0.121 0.109 0.142 0.126
p-value <0.01 <0.01 <0.01 <0.01

Continuous controls
4th grade math score -0.317 0.239 0.368 -0.213 -0.292 0.255 0.332 -0.229

(0.004) (0.004) (0.004) (0.004) (0.004) (0.005) (0.005) (0.005)
4th grade reading score 0.195 -0.383 -0.218 0.380 0.189 -0.387 -0.206 0.379

(0.004) (0.004) (0.004) (0.004) (0.004) (0.005) (0.005) (0.005)

n n n n y y y y

# of students 55,142 55,142 55,142 55,142 40,661 40,661 40,661 40,661
# of 5th grade teachers 3,038 3,038 3,038 3,038 2,761 2,761 2,761 2,761
# of schools 868 868 868 868 783 783 783 783
R2 0.313 0.249 0.274 0.237 0.385 0.315 0.354 0.307
Adjusted R2 0.273 0.206 0.231 0.193 0.302 0.224 0.268 0.215

Notes:  Samples correspond to those in Table 3.  Adjustments, p-values, and standard errors are robust 
to heteroskedasticity.

4th grade gain

Exclude invalid 4th grade 
teacher assignments & 5th 
grade movers?

5th grade gain 4th grade gain 5th grade gain



Table 5.  Gain score VAM with student fixed effects:  Correlated random effects estimates

3rd grade 4th grade Corr((1),(2)) 3rd grade 4th grade Corr((4),(5))
(1) (2) (3) (4) (5) (6)

Unrestricted model
Standard deviation of teacher effects, adjusted

5th grade teacher 0.135 0.099 -0.04 0.144 0.123 -0.06
4th grade teacher 0.136 0.193 -0.07 0.160 0.163 -0.08
3rd grade teacher 0.228 0.166 -0.36 0.183 0.145 -0.24

Fit statistics
R2 0.314 0.376 0.245 0.284
Adjusted R2 0.129 0.209 0.042 0.092

Constant coefficients restricted model (OMD)
Ratio, effect on G4 / effect on G3
SD of G5 teacher effects 0.068 0.068 0.098 0.098
Objective function
95% critical value
p value

Scalar coefficients restricted model (OMD)
Ratio, effect on G4 / effect on G3
SD of G5 teacher effects 0.126 0.018 0.088 0.103
Objective function
95% critical value
p value

Notes:  N=25,974.  Students who switched schools between 3rd and 5th grade, who are missing test scores in 
3rd or 4th grade (or on the 3rd grade beginning-of-year tests), or who lack valid teacher assignments in any 
grade 3-5 are excluded.  Schools with only one included teacher per grade or where teacher indicators are 
collinear across grades are also excluded.

Math Reading

1,685 1,685
<0.01 <0.01

1 1

8,269 9,514

0.14

2,136
1,684
<0.01

1.17

2,174
1,684
<0.01



Math Reading Math Reading
(1) (2) (3) (4)

Standard deviation of 5th grade teachers' estimated effects
Unadjusted for sampling error 0.203 0.189 0.197 0.176
Adjusted for sampling error 0.162 0.127 0.162 0.121

SD of 5th grade teachers' estimated effects from saturated specification
Unadjusted for sampling error 0.206 0.200 0.206 0.200
Adjusted for sampling error 0.172 0.148 0.172 0.148

SD of bias in simple VAMs relative to the saturated specification
Unadjusted for sampling error 0.118 0.130 0.097 0.106
Adjusted for sampling error 0.060 0.054 0.037 0.028

Notes:  N=23,415.

VAM1 VAM2

Table 6.  Magnitude of bias in VAM1 and VAM2 relative to a saturated specification 
that controls for all past observables



Table 7.  Persistence of teacher effects in VAMs with lagged teachers

Math Reading Math Reading
(1) (2) (3) (4)

Cumulative effect of 4th grade teachers over two years
Standard deviation of 4th grade teacher effects, adjusted

on 4th grade scores 0.184 0.150 0.188 0.140
on 5th grade scores 0.108 0.118 0.118 0.110

Correlation(effect on 4th grade, 
   effect on 5th grade), adjusted 0.455 0.413 0.511 0.334

Cumulative effect of 3rd grade teachers over three years
Standard deviation of 3rd grade teacher effects, adjusted

on 3rd grade scores 0.218 0.172 0.209 0.167
on 4th grade scores 0.136 0.126 0.120 0.130
on 5th grade scores 0.185 0.199 0.129 0.147

Correlation(effect on 3rd grade, 
   effect on 5th grade), adjusted 0.395 0.341 0.450 0.447

VAM1 VAM2



Appendix Table A1.  Construction of analytical samples

Require student data in grades
Require teacher links in grades

N % N % N %
Base sample 60,740 100% 60,740 100% 60,740 100%
Excluded for

Missing record 3,772 6% 3,772 6% 3,772 6%
Missing test scores 1,825 3% 1,466 2% 5,226 9%
Changed schools 0 -- 7,181 12% 15,083 25%
Missing/invalid teacher match 0 -- 6,497 11% 9,400 15%
Only student in class 1 0% 10 0% 110 0%
Only class in school 0 -- 384 1% 556 1%
Collinearity 0 -- 769 1% 619 1%

Final sample 55,142 40,661 25,974

4, 5

Sample A Sample B Sample C

Tables 3-4, 
Cols 1-4

Table 5Sample used in

2, 3, 4
3, 4, 5

(1) (2) (3)

3, 4, 5
5

Tables 3-4, 
Cols 5-8
3, 4, 5



1 2 3 4 5+ 2+ Total
(1) (2) (3) (4) (5) (6) (7)

Base sample
# of students 1,515 6,032 12,508 12,441 14,717 45,698 47,213
# of schools 109 206 268 197 164 835 944
Fr. of 5th grade classmates 
who were in the same 4th 
grade class 1.00 0.52 0.35 0.27 0.21 0.31 0.33

Schools with perfect collinearity
# of students 1,515 600 402 293 191 1,486 3,001
# of schools 109 35 16 7 4 62 171

Exclude schools with perfect collinearity
# of students 5,432 12,106 12,148 14,526 44,212 44,212
# of schools 171 252 190 160 773 773
Fr. of 5th grade classmates 
who were in the same 4th 
grade class 0.51 0.35 0.27 0.20 0.30 0.30

Number of 4th grade classes at school

Notes:  A school has "perfect collinearity" if the J4 indicators for 4th grade teachers and the J5 

indicators for 5th grade teachers together have rank less than J4 + J5 - 1.

Appendix Table A2.  Average fraction of 5th grade classmates who were in the same 4th 
grade class



5th grade 4th grade 5th grade 4th grade 3rd grade 4th grade
(1) (2) (3) (4) (5) (6)

5th grade teacher
MA degree -0.05 -1.49 -0.75 -0.74 2.20 -1.12

(1.30) (0.99) (1.30) (0.90) (1.43) (1.04)
Experience 0.09 0.05 0.07 0.06 -0.04 -0.02

(0.07) (0.05) (0.07) (0.05) (0.07) (0.05)
1(Experience < 2) -5.35 -2.87 -5.95 -2.02 3.65 -4.13

(1.88) (1.55) (1.84) (1.41) (2.19) (1.61)
Praxis score 1.50 1.32 2.26 0.41 -1.03 1.03

(0.80) (0.61) (0.77) (0.54) (0.82) (0.62)
4th grade teacher

MA degree -1.93 2.83 -1.19 1.92 0.67 3.25
(1.30) (1.53) (1.12) (1.23) (1.33) (1.62)

Experience -0.10 0.07 -0.09 0.05 -0.07 0.13
(0.07) (0.08) (0.06) (0.06) (0.07) (0.08)

1(Experience < 2) 5.21 -5.77 3.76 -3.96 1.06 -5.89
(1.75) (2.00) (1.57) (1.66) (2.09) (2.16)

Praxis score -1.48 2.18 -0.72 1.29 0.17 2.53
(0.76) (0.89) (0.65) (0.72) (0.81) (0.94)

3rd grade teacher
MA degree 0.25 0.72

(1.91) (1.44)
Experience 0.18 -0.16

(0.11) (0.08)
1(Experience < 2) -0.58 -1.04

(3.05) (2.24)
Praxis score 0.34 -0.05

(1.07) (0.80)
4th grade scores (*100)

Math -0.31 0.36
(0.01) (0.01)

Reading 0.21 -0.22
(0.01) (0.01)

N 20,251 20,251 20,251 20,251 18,239 18,239
R2 0.147 0.142 0.264 0.278 0.105 0.145
p-value, G5 teacher 

coeffs. = 0 <0.01 0.02 <0.01 0.11 0.13 0.04
Restricted specification, G5 teacher effects are equal in G3, G4 models

p-value  0.02
Restricted specification, G5 teacher effects are proportional in G3, G4 models

Ratio, effect on G4 to effect on G3 -0.92
p-value for overid. test 0.81

Note: Dependent variables in each column are math gain scores in the relevant grade, multiplied by 100.

Appendix Table C1.  Models for the effects of teacher observable characteristics on math gains

VAM1 VAM2
VAM3 (correlated 
random effects)


