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1 Introduction

Parallel literatures in labor economics and education adiopilar econometric strategies for
identifying the effects of firms on wages and of teachers odestt test scores. Outcomes are
modeled as the sum of the firm or teacher effect, individutdrogeneity, and transitory, or-
thogonal error. The resulting estimates of firm effects aeduto gauge the relative importance
of firm and worker heterogeneity in the determination of veade education, so-called “value
added models” (hereafter, VAMS) have been used to measerentbortance of teacher qual-
ity to educational production, to assess teacher preparatnd certification programs, and as
important inputs to personnel evaluations and merit pagrams’

All of these applications suppose that the estimates camtkepreted causally. But ob-
servational analyses can identify causal effects only undeerifiable assumptions about the
correlation between treatment assignment — the assigrohstutdents to teachers, or the match-
ing of workers to firms — and other determinants of test scanelswages. If these assumptions
do not hold, the resulting estimates of teacher and firm &fi@e likely to be quite misleading.

Anecdotally, assignments of students to teachers incatpanatching to take advantage
of teachers’ particular specialties, intentional sepanadf children who are known to interact
badly, efforts on the principal’s part to reward favoredctear's through the allocation of easy-to-
teach students, and parental requests (see, e.g., Jactlefgneh, 2007; Monk, 1987). These
are difficult to model statistically. Instead, VAMs typibalmpose an assumption that teacher
assignments are random conditional on a single (observiadent) factor.

In this paper, | develop and implement tests of the exclusastrictions of commonly-
used value added specifications. My strategy exploits tbetfeat future teachers and firms
cannot have causal effects past outcomes, while violations of model assumptions may lead to
apparent counterfactual “effects” of this form. Both tesires and wages are serially correlated,

and as a result an association between the current teacfiemand the lagged outcome is

10n firm effects, see, e.g., Abowd and Kramarz (1999). Forrmeeeaminations of teacher effects modeling,
see Braun (2005a,b); Harris and Sass (2006); McCaffrey €@03); and Wainer (2004).



strong evidence against exogeneity with respect to thectautcome.

| examine three commonly used VAMs, two of which have direatafiels in the firm ef-
fects literature. In the simplest, most widely used VAM — ethresembles the most common
specification for firm effects — the necessary exclusiorricdin is that teacher assignments
are orthogonal to all other determinants of the so-calledri'gscore, the change in a student’s
test score over the course of the year. If this restrictiold$)dbth grade teacher assignments
should not be correlated with students’ gains in 4th gradsindgJa large micro-data set de-
scribing North Carolina elementary students, | find thatehe in fact substantial dispersion of
students’ 4th grade gains across 5th grade teachers. $waterparticularly strongly sorted on
the basis of past reading gains, though there is clear esgdeinsorting on math gains as well.
Because test scores exhibit strong mean reversion — anddinsare negatively autocorrelated
— sorting on past gains produces bias in the simple VAM's1esies.

The other VAMs that | consider rely on different exclusiostrections, namely that class-
room assignments are as good as random conditional on d¢itbdagged test score or the
student’s (unobserved, but permanent) ability. | discass past gains can be used to test these
restrictions as well. | find strong evidence in the data agjaach.

Evidently, classroom assignments respond dynamicallpboal achievement in ways that
are not captured by the controls typically included in VAMesffications. To evaluate the
magnitude of the biases that assignments produce, | congpanenon VAMSs to a saturated
model that conditions on the complete achievement histestimated teacher effects from the
saturated model diverge importantly from those obtainecthfthe VAMs in common use. |
discuss how selection amobservablesis likely to produce substantial additional biases.

My estimates also point to an important substantive reslitthe extent that any of the
VAMs that | consider identify causal effects, they indicHtat teachers’ long-run effects are at
best weakly proxied by their immediate impacts. A teacheiffsct in the year of exposure —
the universal focus of value added analyses — is correlatddo3 to 0.5 with her cumulative

effect over two years, and even less with her effect oveetiiears. Accountability policies that



rely on measures of short-term value added are likely to dwoa job of rewarding the teachers
who are best for students’ longer run outcomes.

An important caveat to the empirical results is that they m@gpecific to North Carolina.
Students in other states or in individual school districightibe assigned to classrooms in ways
that satisfy the assumptions required for common VAMSs. Araresults may not generalize to
models of firm effects on worker wages. But at the least, VAlesanalyses should attempt
to evaluate the model assumptions, perhaps with methoeldHikse used here. Models that
rely on incorrect assumptions about the assignment of stade teachers and the matching of
workers to firms cannot support their intended uses. Pslitiat use VAM-based estimates in
hiring, firing, and compensation decisions may reward amigbuteachers for the students they
are assigned as much as for their actual effectiveness ldhsroom.

Section 2 reviews prior work that uses pre-assignment bvigsato test exogeneity assump-
tions. Section 3 introduces the three VAMSs, discusses timgilicit assumptions, and describes
my proposed tests. Section 4 describes the data. Sectia@s8rs results. Section 6 attempts
to quantify the biases that non-random classroom assigisperduce in VAM-based analyses.

Section 7 presents evidence on teachers’ long-run effetstion 8 concludes.

2 Using Panel Data To Test Exclusion Restrictions

A central assumption in all econometric studies of treatneffects is that the treatment is
uncorrelated with other determinants of the outcome, d¢adil on covariates. Although the
assumption is ultimately untestable — the “fundamentablemm of causal inference” (Holland,
1986) — the data can provide indications that it is unlikehhold. In experiments, for exam-
ple, significant correlations between treatment and psegament variables are interpreted as
evidence that randomization was unsuccessful. Similés ggs often used in non-experimental
analyses: Researchers conducting propensity score mgtstudies frequently check for “bal-

ance” of covariates conditional on the propensity scoreséRbaum and Rubin, 1984), and



analogous tests are used in regression discontinuity sem(ymbens and Lemieux, 2008).

Panel data can be particularly useful. A correlation betwgeatment and some pre-
assignment variabl¥ need not indicate bias in the estimated treatment effextig uncor-
related with the outcome variable of interest. But outcoraestypically correlated within
individuals over time, so an association between treatrapdtthe lagged outcome strongly
suggests that the treatment is not exogenous with respgoistetreatment outcomes. This in-
sight has been most fully explored in the literature on ttieotfof job training on wages and
employment. Today’s wage or employment status is quiteiné&tive about tomorrow’s, even
after controlling for all observables. Evidence that assignt to job training is correlated with
lagged wage dynamics indicates that simple specificatmrité effect of training on outcomes
are likely to yield biased estimates (Ashenfelter, 1978ghBr models of the training assign-
ment process may absorb this correlation while permittiegtiification (Heckman et al., 1987).
But even these models may impose testable restrictionseoretationship between treatment
and the outcome history (Ashenfelter and Card, 1985; CaddSaslivan, 1988; Jacobson et
al., 1993). Of course, these sorts of tests cannot diagribseodel violations. If treatment
assignments depend on unobserved determinants of futtoemes that are uncorrelated with
the outcome history, the treatment effect estimator mayiased even though treatment is
uncorrelated with past outcomes.

In studies of teacher productivity, the multiplicity of teer “treatments” can blur the con-
nection between value added modeling and program evatuatgthods. But the utility of past
outcomes for specification diagnostics carries over diretdentification of a teacher’s effect
rests on assumptions about the relationship between tblesieassignment and the other deter-
minants of future achievement, and the relationship witt pahievement can be informative

about the plausibility of these assumpticns.

20nly a few studies have attempted to validate VAMs. Jacoblasfgren (2008) and Harris and Sass (2007)
show that value added estimates are correlated with paigipatings of teacher performance. And Kane and
Staiger (2008) demonstrate that VAMs estimated on obdenaltdata predict teachers’ experimental effects.
These studies are extremely valuable, but they cannot wilguantitatively important biases coming from non-
random classroom assignments. The estimated correldtwgen principal ratings and value added are relatively
weak, and the Kane and Staiger experimental sample is tolb @mnd potentially non-representative) to rule out



3 Statistical Model and Methods

3.1 Defining the Problem

| take the parameter of interest in value added modeling tthbeeffect on a student’s test
score at the end of gradgof being assigned to a particular graglelassroom rather than
another classroom at the same school. Later, | extend tho®koat dynamic treatment effects
(that is, the effect of the gradgelassroom on thg+ s score). | do not distinguish between
classroom andteacher effects, and use the terms interchangably. In the Appendiansider
this distinction, defining a teacher’s effect as the timeirant component of the effects of the
classrooms taught by the teacher over several years.

| am interested in whether common VAMs identify classroofeas with arbitrarily large
samples. | therefore sidestep small sample issues. Unalstieasymptotics, the number of
classrooms should rise in proportion to the number of stisdéhso, classroom effects are not
identified under any exogeneity restrictions: Even in thergsotic limit, the number of stu-
dents per teacher remains finite and the sampling error individual teacher’s effect remains
non-trivial. | instead consider the properties of VAM esdit@s as the number of students grows
with the number of teachers (and classrooms) fixed. If atesareffects are identified under
these unrealistic asymptotics, VAMs may be usable in corsggonm and retention policy with
appropriate allowances for the sampling errors that arige finite class size$:if not, these
corrections are likely to go awry.

A final important distinction is between identification ogtlaariance of teacher quality and
the identification of individual teachers’ effects. | fooeclusively on the latter. As it is im-
practical to report each of several thousand teachershatgd effects, | report only summaries
of their distribution across teachers. | select statistige the estimated standard deviation

of 5th grade teachers’ effects on students’ 4th grade aehient, that are informative about

any but the most extreme alternatives regarding classrasigraments.

3A typical approach shrinks a teacher’s estimated effecatduhe population mean in proportion to the degree
of imprecision in the estimate. The resulting empirical 8agstimate is the best linear predictor of the teacher’s
true effect, given the noisy estimate. See, McCaffrey €28l03), pp. 63-68.
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whether the VAMs can identify individual teacher effectshwiut bias*

3.2 Data Generating Process and the Three VAMs

Following Todd and Wolpin (2003) and Harris and Sass (206f)dent achievement can be
modeled as a linear, additive function of the full historyiputs received to date plus the
student’s innate ability. Separating classroom effecmfother inputs, we can write the test

score of studeritat the end of gradg, Aig, as
9 9
Aig=ag+ Z Brgc(ih) + HiTg+ Z EihGhg + Vig- (1)
h=1 h=1

Here,Bngc is the effect of being in classrooain gradeh on the gradeg test score, and(i, h) €
{1,...,Jn} indexes the classroom to which studeér$ assigned in grade. ; is individual
ability. We might expect the achievement gap between higlaand low-ability students to
grow over time; this would correspond tg,s > 14 for eachg and eacts > 0. &y captures
all other inputs in gradé, including those received from the family, non-classroaarg, and
the community. It might also include developmental factgksprecocious child might have
positivees in early grades and negatigs in later grades as her classmates catch up. As this
example showss is quite likely to be serially correlated within studentsass grades. Finally,
Vig represents measurement error in the gradest relative to the student’s “true” grade-
achievement. This is independent across grades withieststl

A convenient restriction on the time pattern of classrooi@at$ is uniform geometric decay,
Brgc = BngcA 99 for some 0< A < landallh < g<d. Aspecial case ig =1, corresponding
to perfect persistence. Although my results do not depenti@se restrictions, | impose them

as needed for notational simplicity. | consider non-umifatecay in Section 7. Note that there

4Rivkin et al. (2005) develop a strategy for identifying theriance of teachers’ effects, but not the effect of
individual teachers, under weaker assumptions than atgresbpy the VAMs described below.

5| define theB parameters to include any classroom-level componew}@nd assume thaly is independent
across students in the same classroom. The Appendix décties use of repeated observations on teachers to
distinguish correlated errors from teachers’ true cauatts.



is no theoretical basis for restrictions on the time pattémon-classroom effects (i.e. apg).

It will be useful to adopt some simplifying notation. L@y = zgzl Eih(hg be the composite
gradeg residual achievement, and Ietndicate first differences across student gradggsy. =
Bngc — Bhg—1,c) ATg = Tg— Tg_1, Ag = Wg — Wg-1, and so on.

Tractable VAMs amount to decompositionsfg (or of AAjg = Aig — Aig—1) into the current
teacher effecByyi ), @ student heterogeneity component, and an error assurbectthogo-
nal to the classroom assignment. Models differ in the fortiisfdecomposition. In this paper |
consider three specifications: A simple regression of gaones on grade and contemporaneous

classroom indicators,

VAML: AAig = dg+ Byge(i,g) + €tig;

an augmented regression that controls for the prior yeaoses

VAM2: AAjg = ag+ Aig-1 + Byge(i, g) + €2igi°

and a regression that stacks gain scores from several gradeslds student fixed effects,
VAM3: AAig = dg+ Byge(i,g) + Hi + E3ig-

All three VAMs are widely used. VAM2 and VAM3 can both be seen as generalizations of
VAM1: VAM2 is equivalent to VAM1 wheny = 0, while VAM3 reduces to VAM1 when
i =0

Despite their similarity, the three VAMs rely on quite distt restrictions on the process by

which students are assigned to classrooms. | discuss #ithturn.

6VAM2 is more commonly specified as an equivalent model for #rel-of-year scoreAy = ag +
Aig-1 (Y + 1) + Bygei,g) + €2ig- Relative to this, the expression in the text merely suldrag 1 from each side. |
focus on the gain score version to maintain the parallel W#M1 and VAM3.

’The most widely used VAM, the Tennessee Value Added AssassSystem (TVAAS; see Sanders et al.,
1997), is specified as a mixed model for level scores thatritepa the full history of classroom assignments,
but this model implies an equation for annual gain scoredefform used in VAM1. VAM2 is more widely
used in the recent economics literature. See, for exampemson et al. (2007); Kane et al. (2006); Jacob and
Lefgren (2008); and Goldhaber (2007). VAM3 was proposed bgrBman and Murnane (1979), and has been
used recently by Rivkin et al. (2005); Harris and Sass (200#)ob and Lefgren (2008); and Boyd et al. (2007).



3.3 The gain score model (VAM1)
Differencing the production function (1), we can write thadeg gain score as

g-1
AAig = Aag+ Z ABnge(i h) + Boge(i,g) + HihTg+ Awg + Avig. 2)
h=1

If we assume that teacher effects do not deAgg. = O for allh < g. The error terne,jg from

VAM1 then has three components:
€lig = HiATg+Awg +Avig. 3)
VAM1 will yield consistent estimates of the gradeslassroom effects if and only if, for each
E [ewg|c(i,g) =] =0. (4)

Differences in last year’s gains across this year’s clasasoare informative about this restric-

tion. Using (2), the averagg— 1 gain in classroona is:

E [AAg-1|c(i,9) =c] =Aag-1+E [By1g-1c(,g-1)|€(i, 9) = c| +E [eng-1]c(i,9) =] .

)
The first term is constant acrossand can be neglected. The second term might vary with
c if (for example) a principal compensates for a bad teachgigasient in gradg) — 1 with
assignment to a better-than-average teacher in ggadehis can be absorbed by examining
the across(i, g) variation inAAjg_1 controlling for c(i,g—1). | estimate specifications of
this form below? Any remaining variation across gradeclassrooms irg— 1 gains, after

controlling forg — 1 classroom assignments, must indicate that students ideg $oto gradey

8This strategy has zero power unless there is independeitivarin c(i, g— 1) andc(i, g). If students are
“streamed,” moving together with the same classmates fr@uegyto grade, controls fax(i, g— 1) will absorb all
acrosse(i, g) variation. In the Tennessee STAR experiment (see Nye e2@¢04), streaming was quite common,
and in many schools there is zero independent variationdrgBade classroom assignments controlling for 2nd
grade assignments. This makes it impossible to distinghiskeffects of 2nd and 3rd grade teachers, and prevents
the use of my test. In the observational data examined bstodents are substantially reshuffled between grades.
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classrooms on the basis ®fg_1.

Whether this would indicate a problem with assumption (4ethels on whetheg;q is
serially correlated. Equation (2) indicates four sourckpaiential serial correlation. First,
ability appears in botlyjg andeyig_1 (UnlessAtg = 0). Second, thejg process may be serially
correlated. Third, even if is white noise Awg is a moving average process of order 1
(absent strong restrictions on tipecoefficients). FinallyAvig is an MA(1), degenerate only if
var(v) =0.°

The discussion of serial correlation &ig helps clarify the conditions in which (4) will
likely hold. The most natural model that is consistent with i§ for assignments to depend
only on student abilityy;, and for ability to have the same effect on achievement idega
gandg—1 (i.e., Aty = 0). With these restrictions, VAM1 can be seen as the firdedhce
estimator for a fixed effects model, with strict exogeneftglassroom assignments conditional
on ;. By contrast, (4) is not likely to hold i€ (i, g) depends, even in part, @ng_1, Vig—1, Of

Aig-1.

3.4 The lagged score model (VAM2)

VAM2 augments VAM1 with a control for the lagged test scoretebcher effects decay geo-

metrically at uniform rate + A, the gradeg score can be written in terms of tige- 1 score:
Aig= (ag—ag-1A) +Aig1A + Byge(i g + Hi (Tg— Tg-1A ) + g — wg-1A +Vig—Vig-1A, (6)

and the gradergain is thus

AAig = ag‘i‘Aig—lw‘i‘ngc(Lg) + €ig (7

9Rothstein (2008b) concludes that g accounts for as much as 80% of the variancAAf,.
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wherey = A —1, 0g = g — 0g—1A, and

g-1
€ig = Hi (Tg—Tg-1A) + > &in (thg — ¢hg-1A ) + &ig+ (Vig — Vig-14) - (8)
H=1

As before, each of the terms in (8) is likely to be seriallyretated. The VAM2 exclusion
restriction,E [eZig lc(i,g) = } =0, would hold if gradeg classroom assignments were random
conditional onAjg_1. It is unlikely to hold if assignments depend directly &1 or on any
of its components. In particulae(i, g) cannot depend op; except throughig_1.1°

The VAM2 exclusion restriction can again be evaluated bya@pg the dependent variable,

AAg, with its lag,AAig_1. By (6), the lagged score equals

Ag-1= big-1+Ag-2A + By-1g-1.¢(ig-1) + €ig-1- ©)

This can be rearranged to expressghel gain in terms of thg — 1 score and classroom:

AAg 1= [éigfl —Aig-1¥+By-19-1ci,g-1) T e2igfl] . (10)

1+y

Thus, the graderclassroom assignment will have predictive power for th@ gaore in grade
g— 1, controlling forg — 1 achievement, if gradg-classrooms are correlated either with grade-
g— 1 teacher effects (i.e. Withy_1 g 1¢(i,g—1)) Or With €ig_1. As in VAM1, the former can be
ruled out by controlling fog— 1 classroom assignments; the latter would indicate a vawlat

of the VAM2 exclusion restriction i&, is serially correlated.

10f 74— Tg—1A is constant acrosg, (6) can be seen as a fixed effects model with a lagged depevaréble.
IV and GMM estimates of the first-difference of (6), treatifg;_1 as an endogenous variable, can idenkify
andpy if c(i, g) depends om; but is strictly exogenous conditional on this (Anderson Histho, 1981; Arellano
and Bond, 1991). Koedel and Betts (2007) is the only teachlerevadded study of which | am aware that takes
account of the issues raised by lagged dependent variaddéise added researchers typically apply OLS to (7).
This is inconsistent fogy, and identifiegygc only if (i, g) is random conditional 0Ag_1.

11



3.5 The fixed effects in gains model (VAM3)

The final VAM returns to the earlier assumption of zero deckteachers’ effects? It incor-

porates the ability term in (2) into the estimating equation

AAg = Adg + Byge(ig) + HilTg + Esig, (11)

leaving only two components in the error terggg = Awg + Avig.

The presence of the student fixed effect in VAM3, combinedhwit small time dimension
of student data sets, means that VAM3 requires strongenmgdgans than the earlier models.
Assuming thaAtg = 1 for eachg, (11) is a fixed effects model. An OLS regression with fixed
effects is numerically equivalent to a regression of therd&ned outcome on the de-meaned

explanatory variables. The de-meaned grgdgin is:

AAg— G Z AAL = <Aag —é E Aah) + (ngc(i,g) - éhglﬁhhc(i,h)> + (esig - é hiesm) :
(12)
The equation for the de-meaned gain score thus has a graddismtercept and coefficients
for all classroom assignments in grades 1 thro@hlmportantly, the error terms from all
grades enter into (12). Thus, correlation between the rdass assignment in one grade and
the error term in that or any other grade would bias the es#idfa coefficients, even in large
samples. To avoid bias, teacher assignments must beystrketyenous conditional qn. 12
Conditional strict exogeneity means that the same infaonat; or some function of it, is

used to make teacher assignments in each grade. This reqoiedfect, that principals decide

while VAM1 and VAM2 can easily be generalized to allow for roniform decay, VAM3 cannot.

2As G gets Iargeé shrinks toward zero, arg, disappears from the equation for the de-meaned ggayien,
g # h. For practical value added implementations, howegeis rarely larger than three or four. Without strict
exogeneity, one smalb approach is to focus on the first difference of (11). Wi 2, OLS estimation of the
first-differenced equation requires only tiei,g) be uncorrelated witlesig_1, €39, andesig;1. Though this is
weaker than strict exogeneity, it is difficult to imagine asignment process that would satisfy one but not the
other. Another option is IV/IGMM (see note 10), instrumegtfor both theg andg — 1 classroom assignments.
Satisfactory instruments are not apparent.

12



on classroom assignments for the remainder of a child’secd&fore she starts kindergarten. If
teacher assignments are updated each year in responsestadbat’s performance during the
previous year, strict exogeneity is violated.

The extension of my test to the strict exogeneity assumjmi®MS3 is a direct application
of Chamberlain’s (1984) correlated random effects modatéy strict exogeneity, any apparent
effect of (for example) 5th grade teachers on 4th grade gaifdM1 appears only because
both 5th grade teacher assignments and 4th grade gainsddepgn 3rd grade gains also
depend on the scalas. So 5th grade teachers who appear to have positive effecttharade
gains — because they are assigned higstudents — should also appear to have positive effects
on 3rd grade gains. An indication that a 5th grade teachediffesent effects on 3rd and 4th
grade gains would thus imply that omitted time-varying deieants of gains are correlated
with teacher assignments, and therefore that assignment®astrictly exogenous.

Formally, consider a projection @f onto the full sequence of classroom assignments:

Hi = &1y +-- -+ Eae(i,e) T i (13)

éne 1s the incremental information abopt provided by the knowledge that the student was in
classroont in gradeh, conditional on classroom assignments in all other gra8ebstituting
(13) into (11), we obtain
G
AAig = Dag+ Z Thgc(i,h) + i + €3ig; (24)
h=1

whereyge = §gcATg + Byge and mhge = éncATg for h# g. Under conditional strict exogeneity,
Elesn|c(i,1),...,c(i,G)] = 0 for eachh, and the fact that (13) is a linear projection ensures

that n; is uncorrelated with the regressors as well. An OLS regoessf gradeg gains onto

classroom indicators in grades 1 throu@hthus estimates thapg. coefficients without bias.

13



WhenG > 3, the underlying parameters are overidentified. To seertbie that

AT AT
1 = &3AT) = E3ATr— =TB

—. 15
ATy 2AT2 (15)

AT, andAt, are scalars, so (15) represedys- 1 overidentifying restrictions on thel2elements
of the 157 and B, vectors!3

Equation (15) implies that the elementsraf should be perfectly correlated with the corre-
sponding elements ats; (or, if A1/ar, < 0, perfectly negatively correlated), so the correlation
between elements of the estimated coefficient vedigrand 75, should be close to 1 (or -1).

A formal test uses optimal minimum distance (OMD), minimgi

/

TE &NT TE ENT
D 81 | 3ATy w-L 81 | 3ATy (16)

B2 &3AT, B2 &AT,

over the vecto€z and the scalait; andAt,. WhenW is the sampling variance ¢f, ﬁéz)', D
is distributedy? with J3 — 1 degrees of freedom under the null hypothesis of strict exeiy!*
If D is above the 95% critical value from this distribution, thdlns rejected. In practice,

implementations of VAM3 tregt; as a fixed effect, thus imposing the additional restrictivat t

AT, = At1. Under the null that this model is correct, the restridiekdasJs degrees of freedom.

3.6 Implementation and Computation

To put the three VAMSs in the best possible light, | focus onneation of within-school differ-
ences in classroom effects. For many purposes, one mighttewanake across-school com-

parisons. But students are not randomly assigned to sgleowlghose at one school may gain

B3There arel;, additional overidentifying restrictions created by a $amproportionality relationship between
T and r3: Past teachers should have similar effects on all futurdeg’agains. These restrictions might fail
either because strict exogeneity is violated or becaushées! effects decay (that if;2 # B13). | therefore focus
on restrictions on th&uture teacher coefficients, as these provide sharper tests dfestogeneity.

14Although there are; — 2 parameters to be estimated, they are underidentified:ipiiitg &3 by a constant
and dividingAt; andATt, by the same constant does not change the fit. In the impletrmmtenormalizeAt; = 1.

14



systematically faster than those at another for reasoredaiad to teacher quality. Random as-
signment to classrooms within schools is at least somewhasible. To isolate within-school
variation, | augment each of the estimating equations dseti above with a set of indicators
for the school attended. The indicators for all of the clagsrs at a school are collinear with
the indicator for the school, and | normalize the classroosffients to have mean zero across
classrooms in the same grade at the same scfiool.

The tables below report summary statistics for the teacbefficients rather than the full
coefficient vectors themselves. Due to sampling error, samrstatistics computed from the
estimated coefficients differ from those that would be ot®diwere the true coefficients known.
Aaronson et al. (2007) propose a simple estimator for thanee of the true coefficients across
teachers. Ley be a mean-zerd-vector of true projection coefficients — those that would be
obtained with an infinitely large sample — and febe an unbiased finite-sample estimate of
y, with E[y (y—y)] = 0. The variance (across elements)afan be written as the difference

between the variance of the estimated coefficients and thplsay variance:

E[YY|=E[VV]-E[(y-V) (V-] (17)

| computeE [y y] using a degrees-of-freedom adjustment for the school-fewenalization of
the estimated coefficient [(y— y) (V- y)] is merely the average sampling variance of the
normalized coefficients. All calculations are weighted Iy humber of students taught.

Some of the specifications discussed above — particulagly{include indicators for class-
room assignments in several grades simultaneously. Ttizdinces several complications. |
discuss them briefly here, then in more detail in the Apperfpst, school indicators in several
grades are identified only from students who switch schosteéen grades. School switching
is likely to be endogenous to a variety of unobserved studeatacteristics. In specifications

containing classroom assignments from multiple gradesstrict my sample to students who

15This normalization makeé# singular in (16). For the OMD analysis, | drop the elementggthat correspond
to the largest class at each school.
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do not switch schools, and include only a single set of schmlitators.

Second, specifications with several sets of classroom atalis have design matrices of
large dimension. Numerical inverses may be unstable. Mydamn samples of non-movers
eliminates this problem when the specification includey sshool and teacher indicators, as
it ensures that indicators for teachers at different schao uncorrelated and that the design
matrix is block diagonal. | treat these specifications asusdp regressions for each school,
each with only a few dozen regressors. Specifications tlehtde continuous covariates (e.g.,
VAM2) cannot be decomposed in this way. For these, | begih Witite-force estimates, then
verify the estimated coefficients using an iterative aldponi (described in the Appendix) that
does not require inversion of large matrices.

A final complication is that the coefficients for teachersiifetient grades can only be sep-
arately identified when there is sufficient shuffling of stuidebetween classrooms. If students
are perfectly streamed — if a student’s classmates in 4ttegneere also her classmates in 3rd
grade — the 3rd and 4th grade classroom indicators are eatlin exclude from my samples a

few schools where inadequate shuffling leads to perfednealtity.

4 Data and Sample Construction

The specifications described in Section 3 require longitaldiata that track students’ outcomes
across several grades, linked to classroom assignmerashngeade. | use administrative data
on public school students in North Carolina. The data, abtsarand distributed by the North
Carolina Education Research Data Center, have been exbnsleaned to ensure accurate
matches between the component administrative data syséemishave been used for several
previous value added analyses (see, e.g., Clotfelter, 20416; Goldhaber, 2007).

| examine end-of-grade math and reading tests from grades3gh 5. To construct the 3rd
grade gain, | use “pre-tests” given at the beginning of 3atlgrin place of 2nd grade scores,

which were not given. | standardize the scale scores s&paifar each subject-grade-year
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combinationt®

The North Carolina data identify the school staff member vadministered the end-of-
grade tests. In the elementary grades, this was usuallgtwdar teacher. Following Clotfelter
et al. (2006), | count a student-teacher match as valid iteseadministrator taught a “self-
contained” (i.e. all day, all subject) class for the relévgnade in the relevant year, if that class
was not designated as special education or honors, ancdsithalf of the tests that the teacher
administered were to students in the correct grade. Usisgd#finition, 73% of 5th graders
can be matched to teachers. In each of my analyses, | rebisample to students with valid
teacher matches in all grades for which teacher assignraemtontrolled.

| focus on the cohort of students who were in 5th grade in 220@t. Beginning with
the population (N=99,071), | exclude students who haveriastent longitudinal records (e.g.
gender changes between years); who were not in 4th gradeQie+2®00; who are missing
4th or 5th grade test scores; or who cannot be matched to ar&dle geacher. | additionally
exclude 5th grade classrooms that contain fewer than 12leatuglents or are the only included
classroom at the school. This leaves my base sample, dogsi$it0,740 students from 3,040
5th grade classrooms and 868 schools.

My analyses all use subsets of this sample that provide mrffitongitudinal data. In
analyses of 4th grade gains, for example, | exclude studémshave missing 3rd grade scores
or who were notin 3rd grade in 1998-1999. In specificatioasiticlude identifiers for teachers
in multiple grades, | further exclude students who changbdals between grades, plus a few
schools where streaming produces perfect collinearity.

Table 1 presents summary statistics. | show statistich#population, for the base sample,
and for my most restricted sample (used for estimation ofgn (14)). The last is much
smaller than the others, largely because | require studemtsave attended the same school in

grades 3 through 5 and to have valid teacher matches in eadk.gfable 1 indicates that the

16The test scale is meant to ensure that one point correspoiaisequal amount of learning at each grade and
at each point in the within-grade distribution. Rothstél6@8b) and Ballou (2008) emphasize the importance of
this property for value added modeling. All of the resultsehare robust to using the original scale.
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base and restricted samples have higher mean 5th grade sisarethe full population. This
primarily reflects the lower scores of students who switdiosts frequently.” Average 5th
grade gains are similar across samples. The Appendix desagach sample in more detail.

As discussed above, my tests can be applied only if therdfisieut re-shuffling of class-
rooms between grades. An Appendix table shows the fractisgtuglents’ 5th grade class-
mates who were also in the same 4th grade classes, by the nofmttl grade classes at the
school. Complete reshuffling (combined with equally-siziksses) would produce 0.5 with
two classes, 0.33 with three, and so on. The actual fractimedarger than this, but only
slightly. In schools with exactly three 5th grade teachasgexample, 35% of students’ 5th
grade classmates were also their classmates in 4th gradmlyiriy% of multiple-classroom
schools do the 4th and 5th grade classroom indicators hasdHhan full rank (after dropping
one teacher per grade).

Table 2 presents the correlation of test scores and gainssagrades and subjects. The
table indicates that 5th grade scores are correlated ab8weith 4th grade scores in the same
subject, while correlations with scores in earlier gradestber subjects are somewhat lower.
5th grade gains are strongly negatively correlated withgdétte levels and gains in the same
subject and weakly negatively with those in the other subjEte correlations between 5th and
3rd grade gains are small but significant both within and sceubjects.

VAM3 is predicated on the notion that student ability is amportant component of annual
gains. Assuming that high-ability students gain fastes. (ithattg,, > 14 for eachg), this
would imply positive correlations between gains in diff@rgears. There is no indication of
this in Table 2. One potential explanation is that noise emahnual tests introduces negative
autocorrelation in gains, but Rothstein (2008a,b) coreduithat noise cannot account for the
magnitude of the observed negative year-to-year coroglaiihis strongly suggests that VAM3

is poorly suited to the test score data generating process.

1Table 1 shows that average 3rd and 4th grade scores in thelqimm” are well above zero. The norming
sample that | use to standardize scores in each grade cook#t students in that grade in the relevant year (i.e.
of all 3rd graders in 1999), while only those who make nornragpess to 5th grade in 2001 are included in the
sample for Columns 1-2. The low scores of students who regpades account for the discrepancy.
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5 Results

Tables 3, 4, and 5 present results for the three VAMs in turbedin with VAM1, in Table
3. | regress 5th grade math and reading gains (in Columns 2 amdpectively) on indicators
for 5th grade classrooms, then normalize the resultingficosits to have mean zero within
each school. In each case, the hypothesis that all of thedeaoefficients are zero (i.e. that
classroom indicators have no explanatory power beyondotteaided by school indicators) is
decisively rejected. The VAM indicates that the within-gsohstandard deviations of 5th grade
teachers’ effects on math and reading are 0.15 and 0.1leatsgy. This is similar to what
has been found in other studies (e.g., Aaronson et al., RiOKin et al., 2005).

Columns 3 and 4 present falsification tests in which 4th gigalaes are substituted for
the 5th grade gains as dependent variables, with the s@itficotherwise unchanged. The
standard deviation of 5th grade teachers’ “effects” on 4tug gains is 0.08 in each subject,
and the hypothesis of zero association is rejected in eaetifgjation. In both the standard
deviation and statistical significance senses, 5th grasiom assignments are slightly more
strongly associated with 4th grade reading gains than withmains.

One potential explanation for these counterfactual effescthat they represent omitted vari-
ables bias deriving from my failure to control for 4th gradachers. Columns 5-8 present es-
timates that do control for 4th grade classroom assignmasisg a sample of students who
attended the same school in 4th and 5th grades and can beethatcteachers in each grade.
Two aspects of the results are of interest. First, 4th gradehers have strong independent
predictive power for 5th grade gains. This is at least suggethat the “zero decay” assump-
tion is violated. | return to this in Section 7. Second, thefficients on 5th grade classroom
indicators in models for 4th grade gains remain quite végialeven more so than in the sparse
specifications in Columns 3 and 4 — and are significantly diffefrom zero. Evidently, the
correlation between 5th grade teachers and 4th grade gaiivesi from sorting on the basis of
the 4th gradeesidual, not merely from between-grade correlation of teachegassents.

These results strongly suggest that the exclusion rastigfor VAM1 are violated. To
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demonstrate this conclusively, however, we need to showthigaresidual in VAM1,&jq, is
serially correlated. To examine this, | re-estimated VAM@4th grade teachers’ effects on 4th
grade gains. The correlation betwespn andejs is -0.38 in math and -0.37 in reading.

The negative serial correlation ef implies that students with high gains in 4th grade will
tend to have low gains in 5th grade, and vice versa. Becaudé¢IMévidently does not ade-
guately control for classroom assignments, it gives ureshonedit to teachers who are assigned
students who did poorly in 4th grade, as these students seidliptably post unusually high 5th
grade gains when they revert toward their long-run meansil&iy, teachers whose students
did unusually well in 4th grade will be penalized by the studéfall back toward their long-
run means in 5th grade. Indeed, an examination of the VAMfficants indicates that 5th
grade teachers whose students have above-average 4thggiadéhave systematically lower
estimated value added than teachers whose students uriderga in the prior year. Impor-
tantly, this pattern is stronger than can be explained bypsiamerror in the estimated teacher
effects; it reflect true mean reversion and not merely measent error.

Table 4 repeats the falsification exercise for VAM2. The ctie is identical to that of
Table 3. Columns 1 and 2 present estimates of the basic VAGtfograde teachers’ effects on
5th grade gains, controlling for 4th grade math and readioges. The standard deviations of
5th grade teachers’ effects are nearly identical to thoSalte 3. Columns 3 and 4 substitute
4th grade gains as the dependent variable. Once again, wihatesth grade teachers are
strongly predictive, more so in reading than in math. Colarif8 augment the specification
with controls for 4th grade teachers. The 5th grade teaabefficients are no longer jointly
significant in the 4th grade math gain specification, thobgly temain quite large in magnitude.
They are still highly significant in the specification for 4jfade reading gains.

The VAM2 residuals, like the VAM1 residuals, are stronglyretated between 4th and
5th grades, -0.21 in math and -0.19 in reading. They are als@lated across subjects: -
0.14 between 4th grade reading and 5th grade math. Thusyittenee that 5th grade teacher

assignments are correlated with earlier reading gains &encontrolling for 4th grade scores
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in both subjects indicates that the VAM2 exclusion restritts violated, regardless of whether
the dependent variable is the math or the reading gain. Asd&ebth grade teachers’ effects on
5th grade gains are negatively correlated with their catexttual “effects” on 4th grade gains,

suggesting that mean reversion in student achievement bineohwith non-random classroom

assignments — is an important source of bias in VAM2.

As discussed in Section 3.5, the falsification test for VAMRes a different form. | begin
by selecting the subsample with non-missing 3rd and 4theggachs; valid teacher assignments
in grades 3, 4, and 5; and continuous enrollment at the sano®kia all three grades. | exclude
26 schools where the three sets of indicators for teacheggaitles 3, 4, and 5 (dropping one
teacher in each grade from each school) are collinear. Irggness both the 3rd and 4th grade
gains on school indicators and on each of the three setsafeéemdicators?®

Table 5 reports estimates for math gains, in Columns 1 andh@ fa reading gains, in
Columns 4 and 5. The first panel shows the standard devigiaaipssted for sampling error)
of the coefficients for each grade’s teachers. Gains in ealoje& and in each grade are sub-
stantially correlated with classroom assignments in adélgrades. Although p-values are not
shown, in all 12 cases the hypothesis of zero effects istegjecColumns 3 and 6 report the
across-teacher correlations between the coefficientseimibdels for 3rd and 4th grade gains
(i.e., betweemnys and ). The most important correlation is that for 5th grade teash-0.04
for math and -0.06 for reading. Recall that strict exoggniefplies that the 5th grade teacher
coefficients in the model for 4th grade gains should be ptopaal to the corresponding co-
efficients in the model for 3rd grade gaing, = (A14/ar3) T3, iMmplying a correlation oft1.
The near-zero correlations strongly suggest that a sirigligyafactor is unable to account for
the apparent “effects” of 5th grade teachers on gains ineeajtades. Indeed, they are direct

evidence against the VAMS3 identifying assumption of coiodidl strict exogeneity.

181t is not essential to the correlated random effects testthwafull sequence of teacher assignments back to
grade 1 be observed, but the test may over-reject if classassignments in grades 3-5 are correlated with those
in 1st and 2nd grade and if the latter have continuing effent8rd and 4th grade gains. Recall, however, that
VAM3 assumes such lagged effects away.
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The lower panel of Table 5 presents OMD estimates of theictstrmodel® | consider
two versions, one that constraifig/ar; = 1 (as would be needed in order to estimate VAM3
using conventional fixed effects methods) and another thes ehot. Neither model is able to
fit the data. For math scores, the estimated rattiar; from the less restrictive model is 0.14,
implying that student ability is much more important to 3rdde than to 4th grade gains. Thus,
the constrained estimates imply negligible coefficientsSih grade teachers in the equation
for 4th grade gains, and do a very poor job of fitting the untainmsed estimate of the standard
deviation of these coefficients, 0.099. The test statiStis 2,136, and the overidentifying
restrictions are overwhelmingly rejected. In the readipecification, thé\w/ar; ratio is close to
one, and the restricted model allows for meaningful coedfits on 5th grade teachers in both the
3rd and 4th grade gain equations, albeit much less vataHtilan is seen in the unconstrained
model. But the test statistic is even larger here, and theigtsl model is again rejected. We
can thus conclude that 5th grade teacher assignments as&intly exogenous with respect to
either math or reading gains, even conditional on singheetlisional (subject-specific) student
heterogeneity. The identifying assumption for VAM3 is tiviglated.

The results in Tables 3, 4, and 5 indicate that all three ofvihkls considered here rely
on incorrect exclusion restrictions — teacher assignmaritiently depend on the past learning
trajectory even after controlling for student ability oetprior year’s test score. It is possible,
however, that slight modifications of the VAMSs could elimi@éhe endogeneity. | have explored
several alternative specifications to gauge the robusiofei®e results. | have re-estimated
VAM1 and VAM2 with controls for student race, gender, andeftanch status; this has no
effect on the tests. Similarly, | have explored a variety ltdéraative test scalings. The three
VAMs continue to fail falsification tests when | use the omigli score scales or percentiles in
place of the standardized-by-grade scores used in Tablesd 5.

The results are also not specific to the cohort examined het#gin similar results using

data from other cohorts. As a final investigation, | have edésl the tests to evaluate VAM

19The OMD analysis uses a variance-covariance matfishat is robust to arbitrary heteroskedasiticity and
within-student, between-grade clustering.
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analyses that use data from multiple cohorts of studentsstmduish between permanent and
transitory components of a teacher’s “effect.” As discdsisethe Appendix, the implicit as-
sumptions under which this can avoid the biases identified e not appear to hold in the

data.

6 How Much Does This Matter?

The results in Section 5 indicate that the identifying agstions for all three VAMs are violated
in the North Carolina data. However, if classroom assigriseaarly satisfy the assumptions
underlying the VAMSs, the models might yield almost unbiagstimates of teachers’ causal
effects. In this Section, | use the degree of sorting on migcomes to quantify the magnitude
of the biases resulting from non-random assignments. sSfoalMVAM1 and VAM2, as the lack
of correlation between 3rd and 5th grade gains (Table 2hgltycsuggests that the additional
complexity and strong maintained assumptions of VAM3 aneagessary.

In general, classroom assignments may depend both on Meitiat are observable by
the econometrician and on unobserved factors. The fornreircarinciple be incorporated
into VAM specifications. Accordingly, the first part of my iestigation focuses on the role
of observable characteristics that are omitted from VAMd &AM2. | compare VAM1 and
VAM2 to a saturated specification that controls for teaclssignments in grades 3 and 4, end-
of-grade scores in both subjects in both grades, and saoregiie tests given at the beginning
of 3rd grade. This specification would identify 5th gradecteas’ effects if assignments were
random conditional on the test score and teacher assigrimegaty. It is thus more general
than VAM2. It does not strictly nest VAM1, however: Assignmef teachers based purely on
student ability () would satisfy the VAM1 exclusion restriction, but not tHat the saturated
model. Of course, if assignments depend on both ability aggdd scores, VAM1, VAM2, and
the saturated VAM are all misspecified.

Table 6 presents comparisons of the saturated VAM with VAMA Y¥AM2. The first rows
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show the estimated standard deviations of teachers’ sftdxttiined from VAM1 and VAM2, as
applied to the subset of students with complete test sceterfés and valid teacher assignments
in each prior grade. The unadjusted estimates are somevgtegrtihan those in Tables 3 and
4, as the smaller sample yields noisier estimates. The sagrptijusted estimates are quite
similar to those from the larger sample. The next two rowshefTable show estimates from
the saturated specification. Standard deviations are shatdarger, but not dramatically so.

The final two rows describe the bias in the simpler VAMs rekato the saturated model (that
is, BYAML _ gsaturated gng GYAM2 _ gsaturated) | ggain show both the raw standard deviation of
the point estimates and an adjusted standard deviationaiimatves the portion due to sampling
error. For VAM1, the bias has a standard deviation over d tigrlarge as the standard deviation
of the estimated effects. For VAM2, which already includesuaset of the controls in the
saturated model, the bias is somewhat smaller. For both \aMsbias is more important in
estimates of teachers’ value added for math scores thaeddirg scores.

Of course, the exercise carried out here can only diagn@seibiVAM1 and VAM2 from
selection orobservables — variables that can easily be included in the VAM specifaratiln
a companion paper (Rothstein, 2008a), | attempt to quattidybias that is likely to result
from selection on unobservables. Classroom assignméetyg kiso depend on characteristics
— behavior, personality, parental intervention, etc. -t thay be observed by the principal
but are unobserved by the econometrician. These chastatemmay be predictive of future
outcomes. Following the intuition (Altonji et al., 2005)aththe weight of observable (to the
econometrician) and unobservable variables in classrasigraments is likely to mirror their
relative weights in predicting achievement, one can useléigeee of sorting on observables to
estimate the importance of unobservables and thereformagmitude of the bias in estimated
teacher effects. Under varying assumptions about the anodunformation that parents and
principals have, | find that the bias from non-random assgmmnis plausibly 50-75% as large

(in standard deviation terms) as the estimates of teach#egts in VAM1, and perhaps half
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this large in VAM220 These estimates imply that VAM2 and especially VAM1 seripusis-
identify teachers’ true causal effects, crediting teaslier the students they are assigned. One
cannot be confident that a teacher identified as good by thedelmis in fact a good teacher,
rather than simply a teacher who was given students pred{tie principals, if not by the

econometrician) to gain quickly.

7 Short-Run vs. Long-Run Effects

Although classroom assignments are the focus of this paperworth returning to another
implication of the results in Section 5. Recall from Colunti$§ of Tables 3 and 4 that 4th
grade teachers appear to have large effects on studentgtddl gains. Given the results for
4th grade gains, these “effects” cannot be treated as cdisdetting this issue aside, we can
use the lagged teacher coefficients to evaluate restricbartime pattern of teachers’ effects
(that is, on the relationship betweglyy and yq.s in the production function (1)) that are
universally imposed in value added analyses.

When only a single grade’s teacher assignment is includ&t2/implicitly assumes that
teachers’ effects decay at a uniform, geometric r8§g (s = BygA °for A € [0, 1]), while VAM1
assumes zero decay £ 0). Itis not clear that either restriction is reasonablee Can certainly
imagine that some teaching styles (e.g., “teaching to tsig)tevould produce large short-run
effects that decay quickly while other styles (emphasizgpendent exploration) might yield
smaller short-run effects that persist and even grow irr kggars?! As this example shows, it
is far from clear that accountability policy should focusksively on short-run effects rather
than long-run effects if the two in fact differ.

While several studies have attempted to estimate the derayneteny,?? this is the first

20Kane and Staiger’s (2008) comparison of experimental amdaxperimental value added estimates would be
unlikely to detect biases of this magnitude.

21Although a full discussion is beyond the scope of this pagesyumptions about “decay” are closely related to
issues of test scaling and content coverage (Rothstei@2@allou, 2008; Martineau, 2006).

22studies predating this one include Andrabi et al. (2008hd8as and Rivers (1996), and Konstantopoulos
(2007).
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value added study of which | am aware that estimates teddhersediate and lagged effects
without imposing a restriction of uniform decay. As a finalastigation, | analyze the validity
of this restriction by comparing a gradgteacher’s initial effect in gradg with her longer-run
effect on scores in gradp+ 1 or g+ 2.23 Under the uniform decay restriction, these should be
perfectly correlated (except for sampling error).

| begin by estimating VAM1 and VAM2 for 3rd, 4th, and 5th graglans, augmenting each
specification with controls for past teachers back to 3raigral then compute 3rd and 4th
grade teachers’ cumulative effects over one, two, and (gBade teachers) three years. Table
7 presents summary statistics for these cumulative efféstsow their standard deviation and
their correlation with the initial effectBgyyc, both adjusted for sampling error. Two aspects of the
results are of note. First, the standard deviation of teatkstimated “effects” falls in the year
after contact — there is much more variation in 4th gradehiesac effects on 4th grade scores
than in those same teachers’ effects on 5th grade scoreb. wform decay at ratél — A ),
var(Byg+s) = A3var(Byg), so this is consistent with the mounting evidence that teeCleffects
decay importantly in the year after contact (Andrabi et2008; Kane and Staiger, 2008; Jacob
et al., 2008). Second, the correlation between teachess'yigar effects and their two year
cumulative effects is much less than one, ranging betwegd &d 0.51 depending on the
model and subject. Correlations with three-year cumwatifects are (mostly) lower, centered
around 0.4. This is not even approximately consistent witifoumn decay. Even if we assume
that the VAM-based estimates can be treated as causal, lzet&afirst year effect is a poor
proxy for her longer-run impact.

As afinal exercise, | bring together the analyses of endatydnias and decay to investigate
whether estimates of short-run effects from VAM1 and VAM2 egasonably accurate proxies

from those that would be obtained from a superior model fogéy-run effects. | estimate

23For VAML, the effect of being in classrooain gradeg on achievement in gradgt sis simply 5 Bgg+t.c-
In VAM2, the presence of a lagged dependent variable comgicthe calculation of cumulative effects. If
only the same-subject score is controlled, the effect of @rade teachec on 5th grade achievement is
(Bsac (1+ Wa) + Baac) (1+ Ws) + Basc. A similar but more complex expression characterizes tifectf when
lagged scores in both math and reading are controlled, ay istimates.
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the saturated VAM from Section 6 for both 4th and 5th gradegacontrolling for all past
observables, and compute the implied cumulative effectlofyfade teachers on students’ 5th
grade outcomes. Figure 1 shows the scatterplot of VAM1 ant¥Astimates of 4th grade
teacher effects against those from the cumulative satligtecification. Both VAM1- and
VAM2-based estimates of effects on math scores correlateouer 0.4 with those from the
richer model, while correlations for reading achievemeatteelow 0.35.

Many teacher accountability policies focus only on the Veegt and very worst teachers.
Figure 1 shows the 20th and 80th percentiles of the distobudf estimated effects from each
model. For each contrast, | compute the fraction of teacimetBe top and bottom quintile
according to the cumulative, saturated specification wiecaasigned to the same quintile by
VAML1 or VAM2. These are similar to the correlations, around3®for math and 0.35 for
reading. Even ignoring the impact of sampling error, whiabuld tend to exacerbate these
results but is not accounted for here, it is clear that mods$pecification produces extreme
amounts of misclassification. Policies that use VAM1 or VAMZattempt to identify the best
and worst teachers will both reward and punish teachers wmtideserve it and fail to reward

and punish teachers who do.

8 Discussion

Access to panel data allows the econometrician to controinfidividual heterogeneity much
more flexibly than can be accomplished in cross-sectiont, daut even panel data models
can identify treatment effects only if assignment to tresitrsatisfies strong ignorability as-
sumptions. This has long been recognized in the literatar@rogram evaluation, but has
received relatively little attention in the literature dretestimation of teachers’ effects on stu-
dent achievement. In this paper, | have shown how the avi#jadf lagged outcome measures
can be used to evaluate common value added specifications.

The results presented here show that the assumptions vindecbmmon VAMs are sub-
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stantially incorrect, at least in North Carolina. Classnoassignments are not exogenous condi-
tional on the typical controls, and estimates of teachdfstts based on these models cannot be
interpreted as causal. Clear evidence of this is that eadVl MAlicates that 5th grade teachers
have quantitatively important “effects” on students’ 4tadg learning.

This result casts serious doubt on the value of simple VAMsaézountability and incentive
policies, which will clearly be sensitive to the assignmehstudents to teachers. Teachers
operating under high-stakes VAM-based accountabilityiandntive systems can be expected
to lobby their principals to be assigned the “right” studemho will predictably yield high value
added scores, and principals will presumably alter thaigasnent rules to direct these students
toward favored teachers. As teacher-student matchingaseapally important determinant of
student learning (Clotfelter et al., 2006; Dee, 2005),attgin of these matches due to efforts
to manipulate teachers’ value added scores can have reiefly consequences.

Itis clear that richer VAMs are needed. These will need t@atnodate dynamic classroom
assignments and will probably require behavioral asswonptabout the principal’s objective
function and information set. For example, one might asstiraeclassroom assignments de-
pend on the principal’s best prediction of students’ unoles ability, and that this prediction
is after receipt with each year’s test results. None of thé/gAconsidered here can accom-
modate assignments of this form, which on its face seems plausible than the identifying
assumptions for VAM1, VAM2, or VAMS3.

Attempts to infer causal effects even from rich, dynamic V@\RHll for a great deal of
caution and attention to the required assumptions. Any VAdppsed for policy use should be
subjected both to thorough validation and to falsificatinareises. The tests implemented here
suggest a starting point, and may be adaptable to richer Isxdeéi&lure to reject the exclusion
restrictions need not indicate that the restrictions ameect, as my tests can identify only
sorting based on past observables. But rejection doesatedibat the VAM-based estimates
are likely to be misleading about teachers’ causal effects.

Even with a valid model, it will also be important to measwradhers’ effects on student
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achievement over several years, not merely at the end ofdheof exposure. Estimates of
teacher quality are evidently quite sensitive to this aspéthe model. By contrast, there is
little apparent need to allow for permanent heterogeneaitstudents’ rates of growth, as the
data provide no indication of such heterogeneity.

The questions investigated and methods used here haveatppis beyond the estimation
of individual teacher quality. The Appendix shows that dosmns about the relationship be-
tween teachers’ observed characteristics and their valdedaalso rest on unsteady ground.
Estimates of the quality of schools and of the effects of fiomsvorkers’ wages use identical
econometric models, and rely on similar exclusion restms. Evidence about the “effects” of
future schools and employers on current outcomes wouldfoeniative about the validity of

both sets of estimates.
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A Data Appendix

This appendix describes the construction of the sampled insthe paper. | begin with
records on all students who were enrolled in 5th grade iniNGarolina public schools in 2000-
2001. From this universe, | exclude students with incoasidbngitudinal records (i.e. “male”
in some years and “female” in others, amounting to less tBamflthe population); those who
cannot be matched to 4th grade records from 1999-2000, pelerause they skipped a grade
or attended private school (10%); those who cannot be matithe 5th grade teacher or for
whom the 5th grade test administrator is not a valid teacbelefined in the text (24%); those
whose 5th grade class has fewer than 12 included studen)s §éb¥hthose whose elementary
school contains only a single included 5th grade class (3is leaves me with a sample of
60,740, 61.3% of the initial population. | refer to this sdengs the “base” sample.

Each of my analyses uses subsets of this sample that havdeterdata on test scores
and teacher assignments for enough years to permit thesasmady student might be excluded
from the analytical subsample for a particular analysisabee there is no record in one of
the necessary grades; because there is a record but nodestlsecause the student changed
schools between grades; because she could not be matchedlid geacher in each of the
required grades; because she was the only otherwise-ustabllent from her class in one or
more grades; because there was only one included class st in one or more grades; or
because the school did not shuffle students adequately &etyrades, leading to collinearity
between the classroom assignments in one year and thodeeinyatars. Appendix Table Al
describes the samples used in Columns 1-4 of Tables 3 anduir{rey complete test histories
from grades 3-5 and teacher assignments in grade 5); in @al&¥8 of those Tables (also
requiring valid teacher assignments in 4th grade); and blera (also requiring 3rd grade
teacher assignments and scores from the beginning-ofginade tests).

Appendix Table A2 reports statistics on shuffling of classne between 4th and 5th grades.
This uses a somewhat different sample than other tablesjstimg of all students with valid
records and valid teacher matches in both grades 4 and 5 whwotlswitch schools or make
abnormal progress between grades. Using this sample, t teinumber of 4th grade classes
at the school, and | compute for each student the fractioribth grade classmates who were
also in her 4th grade class. | average this over the full saraptl over subsamples defined by
the number of 4th grade teachers at the school. | also igestiifools where dummies for thig
4th grade teachers adg 5th grade teachers have rank less than Js — 2, indicating perfect
collinearity of at least one teacher assignment with theersthand re-compute the statistic
excluding observations from those schools.

B Technical Appendix

This appendix provides more detail on some of the computstimdertaken in the paper.

B.1 School-level normalizations

As discussed in the text, each of my regressions included &fects for the school at-
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tended, and coefficients on teacher indicators are norathtz have mean zero at the school
level. This normalization is easiest to describe if the dangpnsists of only a single school.
Let T be anN-by-J matrix of indicators for having been taught by each of dneachers in a
particular grade at that school. Many of my regressions ttaééorm

y=a+Tp+e. (18)

Let S= [1T] be the data matrix formed by augmenting Thenatrix with a constant. Because
each student has exactly one teacB&has rankJ, so not all of thel + 1 coefficients ino and

B can be separately identified. Suppose, without loss of gétyerthat the last element af

is dropped. Leb be the estimates of the remaining elementg o&nd letV, be the estimated

sampling variance-covariance matrix for Formﬁ = (6’ 0)/, and letV be the corresponding

variance matrix,
(M 0
V= ( 0, 0 ) , (29

where Q is a column vector of zeros.
Let n be aJ-vector with elements;, wheren; is the number of students taught by teacher

j- Then the weighted average elemenﬁoﬁ/velghtlng each teacher by the number of students
taught can be written aB (n'1y ) n B (where % is a J-vector of ones), and the vector
B B = (IJ —1;(n 13) n ) B= DB has welghted mean zero across teachers. The sampling

variance matrix for the normalized coefficierﬁis— B is simplyDVD'. This has rank — 1.

The extension of this procedure to samples spanning mampkcis straightforward. Sup-
pose that the teacher indicators are ordered, so that thé,fteme from school 1, the ned
from school 2, and so on. Lﬁ be the full vector of estimated coefficients with the coedfinti
for the final teacher at each school set to zero (i.eJihé€J; + Jp), etc., elements o/B) and
letV be the sampling variance matrix (with rows and columns obg&orresponding to the
zero elements gB). Finally, letDsbe theJs-by-Js demeaning matrix for schos] computed as
described above. Then the demeaning matrix for the full $amlock diagonal:

D, 0 --- O
0 D, --- O

D= T . (20)
0 0 --- Ds

As before, the demeaned vector of coeﬁicientﬁ)ﬁ; and the variance-covariance matrix is
DVD'. This variance-covariance matrix has rank equgf4ds— S.

B.2 Sampling-adjusted standard deviations

For many of the models considered in the paper, | report tredstrd deviation across teach-
ers of the teacher coefficients. L@be aJ-vector of coefficients, normalized as described above
within each ofSschools, leV be the variance-covariance matrix, andiée a vector of student
counts.
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The (weighted) variance of teachers’ effects is

var () = J—lsé’diag{ﬁ} . (21)
where diad fi} is theJ-by-J matrix with diagonal elemerjtequal tohj/n (wheren = (1’1)’1 1'n)
and zeros off the diagonal. Note that this incorporates aedsgof-freedom adjustment for the
school-level normalization.

The standard deviation of teachers’ estimated effects reljnthe square root of the above
expression. This overstates the standard deviation thaldwie obtained in an infinitely large
sample. LeB be the plim off, under the fixed} asymptotics described in the text, andet
6 +u, whereu is sampling error ané& [uu’] = V. This suggests that we can write the variance
of the “true” (net of sampling error) effects as ¥&) = var(6) —var(u), where these variances
are computed across the element¥and weighted byr. The var(é) term is estimated as
described above. véu) is estimated ag ¥ ;0 In;v;;, wheren= (1'1)"'1'n, as above, and;
is the jth diagonal element of.

B.3 Computation of regressions with teacher indicators fomultiple grades
when there are no covariates

Several of the specifications used here include indicatorgebchers in several grades si-
multaneously. The correlated random efffects analysisasiost involved, with indicators for
3rd, 4th, and 5th grade teachers in the same regressiorti@u(B4)):

Az = Tiamss+ TiuTuz+ TisThs + €33 (22)
A = TiamBa+ TiaTusa+ TisTha+ €3a. (23)

Two computational challenges arise. First, not all of theoefficients can be separately com-
puted. The particular problem arises because | restrictah®ple to students who do not change
schools. The fitted values of the regressions would be umggthwere we to add a constant
to each element of they, corresponding to a teacher at a particular schjaaid subtract the
same constant from the similarly-defined elementggffor somek # g. As a result, the mean
of iy across all teachers in gradat schoolj cannot be separately identified. | augment (22)
and (23) with school indicators, then select one teacheséh grade at each school to exclude
from the regression&' | treat the excluded coefficient as zero, with sampling variance zero.
After estimating the regression, | normalize the coeffitsesf (22) and (23) to have mean zero
across teachers in each grade at each school, using thelprecescribed above.

The second issue derives from the sheer size of the regne&sren after excluding the over-
identified coefficients, each of thig vectors has over 2,200 elements, and the full regression
(after dropping redundant indicators) has 5,501 regresshumerical inversion of a matrix
of this dimension may introduce inaccuracies. My focus anas of students who do not

24The sample used for these regressions excludes schoolg whes to insufficient mixing, théTiz Tig Tis)
submatrix corresponding to teachers at the school has easkharls; + Jsg + Jss — 2.
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switch schools permits a simpler computation. Re-ordeimrttiependent variables in equations
(22) and (23) aX = [X(1), X2}, - --» X(5)], whereX,;, contains the indicator for schogland
the indicators for all teachers (in all three grades) at stho Any sample student who ever
appears in schoglnever appears in any other schoolx‘fBX(k) = 0 for all j # k. This ensures

thatX’X is block-diagonal:

XXy O o0
0 X\ X e 0
X/X — : (2): (2) . : (24)
0 0 XXy

(X’X)_1 is also block-diagonal, with blocks consisting of the irse2of the school-level design
matrices:

(x('l)x(l))_l 0 s 0
(X'X)il _ O <X(’2)X.(2)> O . (25)
oo (x)”

Each block has dimension of only a few dozen, so inversionraghtforward. Therr co-
efficients (before the within-school normalization) antbust sampling variances are readily
computed frorr(X’X)_l. The covariances between the coefficients of equationsaf22)23)
can be computed with

cov(IM%, M%) = (X'X) X' diag(§aéis) X (X'X) *.

(26)
This implicitly clusters on the individual student, and uévalent to applying system OLS to
the simultaneous equations (22) and (23).

B.4 Computation of regressions with teacher indicators fomultiple grades
when there are continuous covariates

In a few cases (e.g. the “saturated” model discussed in@e6), | include continuous
regressor& along with the school and teacher indicators from seveeal@g. These regressions
have the form

y=XM+2Zy+e¢. (27)

LettingW = [X Z] andA = [’ ¢/]', we havey = WA + ¢. Because they coefficients are
common across schooM/’'W is no longer block-diagonal, and the school-by-schookesgya
described above cannot be used directly here. In these mddele a brute-force OLS regres-
sion estimator (implemented in Matlab) to compute the regjom of the school de-meangd
on the de-meaned/. This may introduce numerical inaccuracy in the estimatsgfficients,
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Ao. To avoid this, | use an iterative algorithm to obtain imprd\coefficient estimates. At each
iterationt (beginning witht=1), there are two steps:

1. Treat thep parameters as known, using values from the previous iterafi 1. Regress
y—Z{x_1 on X. The methods used in the previous section can be appliedema(éXAis
block diagonal with blocks corresponding to schools. Labelresulting coefficientS;

2. Treating thd; coefficients as known, regregs- XMionZ. Z typically contains only a
handful of variables, so this is simple to calculate. Labelresulting coefficients, and
use these as inputs to step 1 on the next iteration.

These steps are repeated until the coefficient vector cgaserConvergence is considered to
have been achieved when the maximum change in the regressidnalss =y — XI1; — Z{x
from the previous iteration — that ige — &_1||g,, — is less than 100y

This is essentially the Gauss-Seidel method, though thietste of the problem makes it
possible to use only two sub-vectors of the full parametetaré\ rather than stepping through
each element o\ separately as in typical implementations. It can be shovireta contraction
mapping on the sum of squared errors, so the coefficientsssacly converge to the OLS
coefficients. Abowd et al. (2002) use a similar (in spiripdlgh not in detail) computational
strategy.

In practice, the initial brute-force estimates are quitiaate, and only one or two iterations
are required before convergence is achieved. As the ieralkgorithm does not yield standard
errors, | use a brute-force estimate(W’W)’l to compute these.

C Additional Specifications

C.1 Teachers’ observable characteristics

VAMs are used not only to estimate individual teachers’ @#gbut also to assess the re-
lationship of teacher quality with teachers’ observed abtaristics (see, e.g., Clotfelter et al.,
2006, 2007; Goldhaber and Brewer, 1997; Hanushek and Ri2RD6). These analyses replace
the teacher indicators in VAM1, VAM2, or VAM3 with vectors téacher observables — edu-
cation, experience, etc. The tests developed in the maircéexbe applied to these models as
well. Appendix Table C1 presents results for mathematRes(lts for reading are similar and
are available from the author.) | focus on a short vector ather characteristics: An indica-
tor for whether the teacher has a master’s degree, a linparience measure, an indicator for
whether the teacher has less than two years of experiert¢hameacher’s score on the Praxis
tests required to obtain elementary certification in Norgialina2® As in the other analyses,

25Each test is standardized among North Carolina teacherdadhat in the same year, then (when multiple
scores are available) scores are averaged across tests.
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| restrict attention to students who can be assigned to v@#dhers in each grade for which
teacher characteristics will be controlled and who do natcdwschools between grades. | fur-
ther exclude students for whom | am unable to assemble coenpharacteristics for each of
the relevant teachers.

Column 1 presents estimates from VAM1 of the effects of 4ithBth grade teachers on 5th
grade gains, controlling for school fixed effects and cliustethe standard errors on the school.
The 5th grade teacher coefficients echo those in the literath master’'s degree appears to
make little difference, but inexperienced teachers hawe quegative effects on student gains.
Interestingly, inexperienced 4th grade teachers seenvimlaegepositive effects on 5th grade
gains, perhaps indicating that students quickly make upifog lost during 4th grade. See the
discussion in Section 7.

Column 2 repeats the VAM1 specification, this time using ttiegtade gain as the depen-
dent variable. The 4th grade teacher coefficients are densiwith those seen for 5th grade
teachers in Column 1. But Column 2 also indicates that theyfbtle teacher’s Praxis score is
positively associated with the 4th grade gain score, whigedoefficient on the dummy for an
inexperienced 5th grade teacher is negative and nearlifisagt ¢ = —1.85). The hypothesis
that all 5th grade teacher characteristics have zero ciggfficis rejectedd = 0.02). This is
clear evidence that the VAM1 exclusion restriction is viethby student sorting.

Columns 3 and 4 present the analysis of VAM2, modeling 5thigrscores in Column 3
and 3rd grade scores in Column 4. Results in Column 3 areasimailthose in Column 2. In
Column 4, none of the 5th grade coefficients are individusigynificant, but the test that all
are zero is marginally significant (p = 0.11). Given the lowvpo of my tests for analyses
of teacher characteristics, which are only weakly coreglatith student achievement in any
grade, | interpret this as only mildly encouraging.

Columns 5 and 6 present the correlated random effects an#tgs | use to evaluate VAMS,
modeling 3rd and 4th grade gains, respectively, as funstadrihe characteristics of teachers
in grades 3 through 5. | again consider two restricted moaels that constrains student abil-
ity to enter identically into each grade’s gain score equmtnd another that allows different
ability coefficients in different grades. The former modetefresponding to the version of
VAM3 that is uniformly used in the literature — implies thhet5th grade teacher coefficients in
columns 5 and 6 of Table 6 should be equal. lin fact, we seerdafisignt negative coefficient
for the no experience indicator in the model for 4th gradengand a marginally significant
(t = 1.67) positive coefficient in the model for 3rd grade gains. hiapothesis of equal effects
is decisively rejected (p=0.02). The less restrictive mhadguires only that the coefficients
in columns 5 and 6 be proportional to one another. This r&ln is consistent with the data
(p=0.81). However, the OMD estimates indicate a factor ajprtionality of -0.92. If we
normalizeTs = 1, defining “ability” to have a positive effect on 3rd graderga the model in-
dicates that high ability students gain mueks during 4th grade than their low ability peers.
An alternative interpretation of this extremely countasitive result is that the test is unable
to detect violations of strict exogeneity in this contexhelcorrelated random effects test has
power against violations of strict exogeneity only if clessn assignments depend on factors
that are correlated with the included variables. As all & toefficients except those for the
inexperienced teacher indicator are small and far fromissiizdlly significant, and as even the
inexperienced teacher coefficients are consistent withrtbdel only with implausible coef-
ficient estimates, the simplest interpretation is that VAMI®oorly suited to identifying the
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effects of teacher characteristics on student achieveniedeed, when | extend the analysis
to use the characteristics of 6th grade teachers — studentgmcally in middle school in 6th
grade, and ability tracking is more pronounced — to strezrgthe overidentification test (see
Rothstein, 2008b), | reject proportionality of the 6th gradacher coefficients.

C.2 Distinguishing between teacher and classroom effectssimg cross-
cohort comparisons

In the main paper, | use the terms “classroom effects” aratcter effects” interchangeably
to describe the effects of being in a single classroom. Uoeeain circumstances a distinction
between the two — between a teacher’s effect that is the seang year and a classroom effect
that may vary from year to year as the teacher is assigned olearts of students — may make
it possible to obtain unbiased estimates of teachers’ tatfsats under weaker conditions than
are considered in the text.

Let Biyc be the effect of being in classroamaught by teachdrin yeary. (I suppress grade
subscripts for notational simplicity.) We can decomposeg ithito a permanent component as-
sociated with the teacher and a time-varying componentcagsd with transitory aspects of
the classroom in year. Letc(t,y) be the classroom taught by teachén yeary, and assume
thatBtyC(w) = 6 + uyy. Here, 6 is the teacher’s effect, angy is the additional portion of the
classroom effect. If we assume that the non-random assigisméstudents to classrooms are
completely transitory — that the pre-assignment chariaties of students in classrooatit, y)
are uncorrelated both with the characteristics of studentst, y+ 1) and with the teacher’s
true effectt — then the bias i) Will be uncorrelated from one year to the next. A

decomposition of% into permanent teacher components and transitory comporenregres-
sion of By onto teacher indicators — would yield unbiased estimatéseopermanent teacher
componentss. Alternatively, the variance of; across teachers can be estimated from the
between-year covariance Bf

E [Bycity)By+Lety+y)] = E [67] +E [Vigtyra] +E [Bvty] +E [Bvy1a] - (28)

By the assumptions above, the final three terms are all zelngs sbrt of decomposition has
been used by Hanushek et al. (2005) and Kane and Staiger)(2008ng others.

This strategy relies crucially on the assumption that tisggasnents are uncorrelated across
years. If some teachers are repeatedly assigned studehthligh expected gains that are not
controlled in the VAM, this will create bias in the estimats6 and E [Bﬂ. To evaluate
whether assignments are in fact uncorrelated across yeses students who were in 5th grade
in 2000 to estimate a regression of 5th grade gains on alf pdores, absorbing 5th grade
classroom indicators. This resembles the saturated VAM abeve, but it excludes classroom
indicators from prior grades. Using the coefficients frons tlegression, | form predicted 5th
grade gains for each 5th grade student in both 2000 and 2081 alverage these to the class-
room level. These mean predicted gains represent biasgiestohort estimates of VAML. |
also residualize the predicted gains against 4th gradesdtomnobtain the bias in VAM2. | then
correlate the average predicted gains (or residual gaing)teacher’s students in 2000 with
those for the same teacher’s students in 2001.
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In each VAM and in each subject, these cross-cohort coiektare positive and highly
statistically significant. Evidently, teachers who areigresd good students in one year are
typically assigned better-than-average students theyeaxias well. Thus, while data following
teachers for several years may have some value for reduigiadrobm non-random assignments
— the (observable) quality of a teacher’s students is ndepiy correlated over time — the
assumptions that would support simple corrections areatafed in the North Carolina data.
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Figure 1: Comparison of VAM1 and VAM?2 for 4th grade teachdeets to estimates of 4th
grade teachers’ effects on 5th grade scores from the satiivaiV

VAML vs. cumulative saturated model, Math
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Notes: The graphs show scatterplots of 4th grade teachssiaed effects on 4th grade gains
from VAM1 and VAM2 (vertical axes) against effects on 5thdgascores computed from a sat-
urated VAM that controls for all past teachers and scoregZbotal axes). Teacher effects are
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normalized to mean zero within each school. Dashed linew she 20th and 80th percentile
of the estimated effects. Each panel shows the correlatbrden the two sets of estimates
(weighted by the number of students taught, but not adjusteshmpling error), plus the frac-
tion of teachers who are assigned to the top and bottom tpsriiy the cumulative saturated
model who are also assigned to these quintiles by VAM1 and YAM
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Table 1. Summary statistics

Population Base sample Most restricted
sample

Mean SD Mean SD Mean SD

Y ) 3 4 () (6)
# of students 99,071 60,740 23,415
# of schools 1,269 868 598
1 5th grade teacher 122 0 0
2 5th grade teacher 168 207 122
3-5 5th grade teachers 776 602 440
>5 5th grade teacher 203 59 36
# of 5th grade classrooms 4,876 3,040 2,116
# of 5th grade classrooms w/ valid teacher match 3,315 3,040 2,116
Female 49% 50% 51%
Black 29% 28% 23%
Other non-white 8% 7% 6%
Consistent student record 99% 100% 100%
Complete test score record, G4-5 88% 99% 100%
G3-5 81% 91% 100%
G2-5 72% 80% 100%
Changed schools between G3 and G5 30% 27% 0%
Valid teacher assignment in grade 3 68% 78% 100%
grade 4 70% 86% 100%
grade 5 72% 100% 100%

Fr. of students in G5 class in same G4 class 0.22 [0.19] 0.22 [0.17] 0.30 [0.19]

Fr. of students in G5 class in same G3 class 0.15 [0.15] 0.15 [0.13] 0.28 [0.18]

Math scores 3rd grade (beginning of year) 0.11 [0.97] 0.14 [0.96] 0.20 [0.96]

3rd grade (end of year) 0.09 [0.94] 0.11 [0.94] 0.19 [0.91]

4th grade (end of year) 0.04 [0.97] 0.07 [0.97] 0.20 [0.93]

5th grade (end of year) 0.00 [1.00] 0.09 [0.98] 0.20 [0.94]

3rd grade gain -0.02 [0.70] -0.02 [0.69] 0.00 [0.69]

4th grade gain -0.02 [0.58] -0.01 [0.58] 0.01 [0.56]

5th grade gain -0.01 [0.55] 0.01 [0.55] -0.01 [0.53]

Reading scores 3rd grade (beginning of year) 0.08 [0.98] 0.12 [0.98] 0.17 [0.98]

3rd grade (end of year) 0.08 [0.95] 0.11 [0.94] 0.19 [0.91]

4th grade (end of year) 0.04 [0.98] 0.07 [0.97] 0.18 [0.93]

5th grade (end of year) 0.00 [1.00] 0.07 [0.97] 0.17 [0.94]

3rd grade gain 0.01 [0.76] 0.00 [0.75] 0.01 [0.75]

4th grade gain -0.02 [0.59] -0.02 [0.59] 0.00 [0.57]

5th grade gain -0.01 [0.59] 0.00 [0.58] -0.02 [0.57]

Notes: Summary statistics are computed over all available observations. Test scores are standardized
using all 3rd graders in 1999, 4th graders in 2000, and 5th graders in 2001, respectively, regardless of
grade progress. "Population” in Columns 1-2 is students enrolled in 5th grade in 2001, merged to 3rd and
4th grade records (if present) for the same students in 1999 and 2000, respectively. Columns 3-4 describe
the base sample discussed in the text; it excludes students with missing 4th and 5th grade test scores,
students without valid 5th grade teacher matches, 5th grade classes with fewer than 12 sample students,
and schools with only one 5th grade class. Columns 5-6 further restrict the sample to students with non-
missing scores in grades 3-5 (plus the 3rd grade beginning-of-year tests) and valid teacher assignments in
each grade, at schools with multiple classes in each school in each grade and without perfect collinearity of

classroom assignments in different grades.



Table 2. Correlations of test scores and score gains across grades

Summary Correlations N
statistics 5th grade score 5th grade gain
Mean SD Math Reading Math Reading
@) 2 3 4 5) (6) ()

Math scores

G5 0.02 1.00 1 0.78 0.29 0.08 70,740

G4 0.07 0.97 0.84 0.73 -0.27 -0.07 61,535

G3 0.09 0.95 0.80 0.70 -0.02 -0.03 57,382

G3 pretest 0.08 0.97 0.71 0.64 0.00 -0.03 50,661
Reading scores

G5 0.01 1.00 0.78 1 0.10 0.31 70,078

G4 0.06 0.97 0.73 0.82 -0.05 -0.29 61,535

G3 0.09 0.95 0.70 0.78 -0.01 -0.05 57,344

G3 pretest 0.08 0.99 0.59 0.65 0.00 -0.05 50,629
Math gains

G4-G5 0.01 0.55 0.29 0.10 1 0.25 61,349

G3-G4 -0.01 0.58 0.11 0.07 -0.41 -0.07 56,171

G2-G3 0.02 0.70 0.08 0.05 -0.02 0.01 50,615
Reading gains

G4-G5 0.00 0.58 0.08 0.31 0.25 1 60,987

G3-G4 -0.02 0.59 0.08 0.10 -0.08 -0.41 56,159

G2-G3 0.02 0.75 0.09 0.10 -0.01 0.02 50,558

Notes: Each statistic is calculated using the maximal possible sample of valid student records
with observations on all necessary scores and normal grade progress between the relevant
grades. Column 7 lists the sample size for each row variable; correlations use smaller samples
for which the column variable is also available. Italicized correlations are not different from zero
at the 5% level.



Table 3. Evaluation of the gain score VAM

5th grade gain 4th grade gain 5th grade gain 4th grade gain

Math Reading Math Reading Math Reading Math Reading

(€)) ) (©) (4) (©) (6) ) 8)

Standard deviation of teacher coefficients
5th grade teacher
Unadjusted SD 0.179 0.160 0.134 0.142 0.197 0.181 0.151 0.168

Adjusted SD 0.149 0.113 0.077 0.084 0.163 0.126 0.090 0.105
p-value <0.01 <0.01 0.02 <0.01 <0.01 <0.01 0.03 <0.01
4th grade teacher
Unadjusted SD 0.188 0.181 0.220 0.193
Adjusted SD 0.150 0.125 0.182 0.140
p-value <0.01 <0.01 <0.01 <0.01
Exclude invalid 4th grade
teacher assignments & n n n n y y y y
5th grade movers?
# of students 55,142 55,142 55,142 55,142 40,661 40,661 40,661 40,661
# of 5th grade teachers 3,038 3,038 3,038 3,038 2,761 2,761 2,761 2,761
# of schools 868 868 868 868 783 783 783 783
R2 0.195 0.100 0.132 0.086 0.297 0.176 0.254 0.174
Adjusted R2 0.148 0.047 0.081 0.033 0.203 0.066 0.154 0.064

Notes: Sample for Columns 1-4 includes students from the base sample (see text) with non-missing
scores in each subject in grades 3-5. Columns 5-8 exclude students without valid 4th grade teacher
matches and those who switched schools between 4th and 5th grade. Adjustments and p-values are
based on heteroskedasticity-robust variances.



Table 4. Evaluation of the lagged score VAM

5th grade gain 4th grade gain 5th grade gain 4th grade gain

Math Reading Math Reading Math Reading Math Reading

€)) 2) ©) (4) (©) (6) ) (8)

Teacher coefficients
5th grade teacher

Unadjusted SD 0.176  0.150 0.120 0.129 0.191 0.169 0.138 0.150

Adjusted SD 0.150 0.109 0.067 0.076 0.161 0.121 0.079 0.091

p-value <0.01 <o0.01 0.04 <0.01 <0.01 <0.01 0.16 <0.01
4th grade teacher

Unadjusted SD 0.160 0.162 0.182 0.175

Adjusted SD 0.121  0.109 0.142 0.126

p-value <0.01 <0.01 <0.01 <0.01

Continuous controls
4th grade math score -0.317 0.239 0.368 -0.213 -0.292 0.255 0.332 -0.229
(0.004) (0.004) (0.004) (0.004) (0.004) (0.005) (0.005) (0.005)
4th grade reading score  0.195 -0.383 -0.218 0.380 0.189 -0.387 -0.206  0.379
(0.004) (0.004) (0.004) (0.004) (0.004) (0.005) (0.005) (0.005)

Exclude invalid 4th grade

teacher assignments & 5th n n n n y y y y
grade movers?

# of students 55,142 55,142 55,142 55,142 40,661 40,661 40,661 40,661
# of 5th grade teachers 3,038 3,038 3,038 3,038 2,761 2,761 2,761 2,761
# of schools 868 868 868 868 783 783 783 783
R2 0.313 0.249 0.274 0.237 0.385 0.315 0.354 0.307
Adjusted R2 0.273 0.206 0.231 0.193 0.302 0.224 0.268 0.215

Notes: Samples correspond to those in Table 3. Adjustments, p-values, and standard errors are robust
to heteroskedasticity.



Table 5. Gain score VAM with student fixed effects: Correlated random effects estimates

Math Reading
3rd grade 4th grade Corr((1),(2)) 3rd grade 4th grade Corr((4),(5))
@) 2) 3 4) ®) (6)
Unrestricted model
Standard deviation of teacher effects, adjusted

5th grade teacher 0.135 0.099 -0.04 0.144 0.123 -0.06

4th grade teacher 0.136 0.193 -0.07 0.160 0.163 -0.08

3rd grade teacher 0.228 0.166 -0.36 0.183 0.145 -0.24

Fit statistics

R2 0.314 0.376 0.245 0.284

Adjusted R2 0.129 0.209 0.042 0.092
Constant coefficients restricted model (OMD)

Ratio, effect on G4 / effect on G3 1 1

SD of G5 teacher effects 0.068 0.068 0.098 0.098

Obijective function 8,269 9,514

95% critical value 1,685 1,685

p value <0.01 <0.01
Scalar coefficients restricted model (OMD)

Ratio, effect on G4 / effect on G3 0.14 1.17

SD of G5 teacher effects 0.126 0.018 0.088 0.103

Obijective function 2,136 2,174

95% critical value 1,684 1,684

p value <0.01 <0.01

Notes: N=25,974. Students who switched schools between 3rd and 5th grade, who are missing test scores in
3rd or 4th grade (or on the 3rd grade beginning-of-year tests), or who lack valid teacher assignments in any
grade 3-5 are excluded. Schools with only one included teacher per grade or where teacher indicators are
collinear across grades are also excluded.



Table 6. Magnitude of bias in VAM1 and VAM2 relative to a saturated specification
that controls for all past observables

VAM1 VAM2
Math Reading Math Reading
) 2 3 4)

Standard deviation of 5th grade teachers' estimated effects

Unadjusted for sampling error 0.203  0.189 0.197 0.176

Adjusted for sampling error 0.162 0.127 0.162 0.121
SD of 5th grade teachers' estimated effects from saturated specification

Unadjusted for sampling error 0.206  0.200 0.206  0.200

Adjusted for sampling error 0.172  0.148 0.172  0.148
SD of bias in simple VAMs relative to the saturated specification

Unadjusted for sampling error 0.118 0.130 0.097 0.106

Adjusted for sampling error 0.060 0.054 0.037 0.028

Notes: N=23,415.



Table 7. Persistence of teacher effects in VAMs with lagged teachers

VAM1 VAM?2
Math Reading Math Reading
1) 2) (©) (4)
Cumulative effect of 4th grade teachers over two years
Standard deviation of 4th grade teacher effects, adjusted
on 4th grade scores 0.184 0.150 0.188 0.140
on 5th grade scores 0.108 0.118 0.118 0.110
Correlation(effect on 4th grade,
effect on 5th grade), adjusted 0.455 0.413 0.511 0.334
Cumulative effect of 3rd grade teachers over three years
Standard deviation of 3rd grade teacher effects, adjusted
on 3rd grade scores 0.218 0.172 0.209 0.167
on 4th grade scores 0.136 0.126 0.120 0.130
on 5th grade scores 0.185 0.199 0.129 0.147
Correlation(effect on 3rd grade,
effect on 5th grade), adjusted 0.395 0.341 0.450 0.447




Appendix Table A1. Construction of analytical samples

Sample A Sample B Sample C
) 2 )
Sample used in Tables 3-4, Tables 3-4, Table 5
Cols 1-4 Cols 5-8
Require student data in grades 3,4,5 3,4,5 2,3,4
Require teacher links in grades 5 4,5 3,4,5
N % N % N %
Base sample 60,740 100% 60,740 100% 60,740 100%
Excluded for
Missing record 3,772 6% 3,772 6% 3,772 6%
Missing test scores 1,825 3% 1,466 2% 5,226 9%
Changed schools 0 -- 7,181 12% 15,083 25%
Missing/invalid teacher match 0 -- 6,497 11% 9,400 15%
Only student in class 1 0% 10 0% 110 0%
Only class in school 0 -- 384 1% 556 1%
Collinearity 0 -- 769 1% 619 1%
Final sample 55,142 40,661 25,974




Appendix Table A2. Average fraction of 5th grade classmates who were in the same 4th
grade class

Number of 4th grade classes at school

1 2 3 4 5+ 2+  Total
€3] ) ©) (4) () (6) ()

Base sample
# of students 1,515 6,032 12,508 12,441 14,717 45,698 47,213
# of schools 109 206 268 197 164 835 944
Fr. of 5th grade classmates
who were in the same 4th

grade class 1.00 0.52 0.35 0.27 0.21 0.31 0.33
Schools with perfect collinearity

# of students 1,515 600 402 293 191 1,486 3,001

# of schools 109 35 16 7 4 62 171
Exclude schools with perfect collinearity

# of students 5432 12,106 12,148 14,526 44,212 44,212

# of schools 171 252 190 160 773 773

Fr. of 5th grade classmates
who were in the same 4th

grade class 0.51 0.35 0.27 0.20 0.30 0.30

Notes: A school has "perfect collinearity" if the J, indicators for 4th grade teachers and the Js
indicators for 5th grade teachers together have rank less than J, + Js - 1.



Appendix Table C1. Models for the effects of teacher observable characteristics on math gains

VAMS3 (correlated

VAM1 VAM2 random effects)
5th grade 4th grade 5th grade 4th grade  3rd grade 4th grade
@ ) 3 (4) 5) (6)
5th grade teacher
MA degree -0.05 -1.49 -0.75 -0.74 2.20 -1.12
(1.30) (0.99) (1.30) (0.90) (1.43) (1.04)
Experience 0.09 0.05 0.07 0.06 -0.04 -0.02
(0.07) (0.05) (0.07) (0.05) (0.07) (0.05)
1(Experience < 2) -5.35 -2.87 -5.95 -2.02 3.65 -4.13
(1.88) (1.55) (1.84) (1.41) (2.19) (1.61)
Praxis score 1.50 1.32 2.26 0.41 -1.03 1.03
(0.80) (0.61) (0.77) (0.54) (0.82) (0.62)
4th grade teacher
MA degree -1.93 2.83 -1.19 1.92 0.67 3.25
(1.30) (1.53) (1.12) (1.23) (1.33) (1.62)
Experience -0.10 0.07 -0.09 0.05 -0.07 0.13
(0.07) (0.08) (0.06) (0.06) (0.07) (0.08)
1(Experience < 2) 5.21 -5.77 3.76 -3.96 1.06 -5.89
(1.75) (2.00) (1.57) (1.66) (2.09) (2.16)
Praxis score -1.48 2.18 -0.72 1.29 0.17 2.53
(0.76) (0.89) (0.65) (0.72) (0.81) (0.94)
3rd grade teacher
MA degree 0.25 0.72
(1.91) (1.44)
Experience 0.18 -0.16
(0.112) (0.08)
1(Experience < 2) -0.58 -1.04
(3.05) (2.24)
Praxis score 0.34 -0.05
(1.07) (0.80)
4th grade scores (*100)
Math -0.31 0.36
(0.01) (0.01)
Reading 0.21 -0.22
(0.01) (0.01)
N 20,251 20,251 20,251 20,251 18,239 18,239
R2 0.147 0.142 0.264 0.278 0.105 0.145
p-value, G5 teacher
coeffs. =0 <0.01 0.02 <0.01 0.11 0.13 0.04
Restricted specification, G5 teacher effects are equal in G3, G4 models
p-value 0.02
Restricted specification, G5 teacher effects are proportional in G3, G4 models
Ratio, effect on G4 to effect on G3 -0.92
p-value for overid. test 0.81

Note: Dependent variables in each column are math gain scores in the relevant grade, multiplied by 100.



