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1. Introduction
The goal of researchers using structural vector autoregressions (SVARs) with long-run

restrictions is to guide the development of new business cycle models. This procedure uses a

simple time series technique and minimal economic theory to identify the pattern of responses

of economic aggregates to a technology shock in the data. The idea is that developers of new

models should focus only on ones which can reproduce these patterns.1 We subject the

commonly used version of this procedure to a natural economic test and �nd that it is not

useful unless technology shocks account for virtually all of the �uctuations in output.

The growing interest in such SVARs stems largely from the recent �nding of researchers

using this procedure that a technology shock leads to a fall in hours. (See, for example, Galí

1999, Francis and Ramey 2005, and Galí and Rabanal 2005.) The conclusion drawn from

this �nding is that only models with this pattern are deemed promising.

Since a positive technology shock leads to a rise in hours in most real business cycle

models, the researchers argue that their SVAR analyses doom both existing and future real

business cycle models and point to other types of models, such as sticky price models which

can produce this pattern, as promising. (See Galí 1999, Francis and Ramey 2005, and Galí

and Rabanal 2005.) In particular, these analyses doom all of the work on second generation

business cycle models which augment the early technology-shock-only models with more

shocks that help the model better �t key features of the data, especially the volatility of

hours.2 A key feature of these second generation models is that, even though nontechnology

shocks account for a sizable fraction of output �uctuations, a positive technology shock leads

to a rise in hours.

Here we focus on the SVAR literature that uses the common approach. In this ap-

proach, researchers run VARs on the actual data, impose some identifying assumptions on

the VARs in order to back out empirical impulse responses to various shocks, and then com-

pare those empirical SVAR impulse responses to theoretical responses from various economic

models. Models that generate theoretical responses with the same pattern as the SVAR re-

sponses are thought to be promising; others are not. The main claim of this literature is

that its SVAR procedure is useful because it can con�dently and correctly distinguish be-

tween promising and unpromising classes of models regardless of the details of nontechnology

shocks, other than minimal assumptions like orthogonality.

We evaluate this claim by subjecting the SVAR procedure to a natural economic test.
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We treat a real business cycle model with technology shocks and labor wedge shocks that

we refer to as nontechnology shocks as the data-generating mechanism, apply the SVAR

procedure to the model�s data, and see if the procedure can do what is claimed for it. Our

model is a stripped-down version of many popular business cycle models that satis�es the two

key identifying assumptions of the SVAR literature: technology and nontechnology shocks

are orthogonal, and nontechnology shocks have no permanent e¤ect on the level of labor

productivity, whereas technology shocks do� a commonly used long-run restriction.

In our test, we �rst generate data from the business cycle model, drawing a large

number of sequences of roughly the same length as postwar U.S. data. Then we apply the

SVAR procedure with the typical small number of lags on each sequence of model-generated

data and compute the means of the impulse responses and con�dence bands.3 Finally, we

compare the SVAR impulse responses to those of the theoretical model, to see how well this

procedure can reproduce the model�s responses.4

We begin with the speci�cation used by Galí (1999), Francis and Ramey (2005), and

Galí and Rabanal (2005), which has two variables in the VAR: the growth rate of labor

productivity and the �rst di¤erence of hours. We refer to this speci�cation as the DSVAR.

Because of the limited length of the available time series, the VAR is estimated with a small

number of lags, typically four. In investigating this speci�cation, we sidestep one minor

technical issue: the existence of an autoregressive representation of the model, by using a

QDSVAR speci�cation in which hours are quasi-di¤erenced.5 When the quasi-di¤erencing

parameter is close to one, as it is in our test, the impulse responses of the QDSVAR and the

DSVAR are indistinguishable.

We �nd that, in principle, the SVAR claim of not needing to specify the details of

nontechnology shocks is correct if the researcher has extremely long time series to work with.

With series of the length available in practice, however, the SVAR claim is incorrect. When

nontechnology shocks play a nontrivial role in output �uctuations, a researcher who applies

the QDSVAR procedure to data generated by our model will con�dently but incorrectly

conclude that the data are not generated from our model.

Speci�cally, we �nd that when nontechnology shocks account for a trivial fraction

of output �uctuations, the means of the SVAR impulse responses are close to the model�s

theoretical impulse responses. But that is not true when nontechnology shocks account for

a nontrivial fraction of output �uctuations. Then the estimated impulse response of hours
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to a technology shock is negative and signi�cantly so. Indeed, when nontechnology shocks

account for 50% of output �uctuations, the estimated impact e¤ect of a technology shock

on hours coincides with Galí�s negative estimate and has con�dence bands that rule out our

real business cycle model. In the model used to generate the data, of course, the theoretical

impulse response of hours to a technology shock is positive. If we followed the logic in the

SVAR literature (as in Galí 1999, Francis and Ramey 2005, and Galí and Rabanal 2005),

we would then infer that the data are inconsistent with our real business cycle model and

potentially consistent with a sticky price model. This inference would be incorrect because

the data are generated by our model. In this sense, our results cast doubt on the conclusion

in the SVAR literature that their SVAR analyses doom existing real business cycle models.

Our �ndings cast doubt on another conclusion as well, that technology shocks account

for, at best, a minor fraction of business cycle �uctuations. Galí (1999) reaches this conclusion

by combining the SVAR result that hours fall after a technology shock with the observation

that hours are procyclical to infer that technology shocks cannot account for more than a

minor fraction of business cycle �uctuations. Ironically, we have shown that SVAR results are

likely to lead to the wrong inference when technology shocks account for a minor fraction of

business cycle �uctuations and to lead to the right inference when technology shocks account

for essentially all of business cycle �uctuations.

We also test another speci�cation of the VAR, the LSVAR, which replaces the di¤er-

ence in hours with the level of hours. Here we �nd that when nontechnology shocks play a

nontrivial role in business cycle �uctuations, the con�dence bands are so wide that the pro-

cedure does not allow a researcher to distinguish between promising and unpromising classes

of models. In particular, the procedure cannot tell whether the data are generated by a real

business cycle model or a sticky price model. Thus, the LSVAR procedure also fails the main

claim of the SVAR literature.

We obtain intuition for our �ndings from two propositions. One shows that the VAR

on observables from our model has an in�nite-order representation. With our parameter

values, the coe¢ cients in this representation decay very slowly. With series of the length

available in practice, the estimated impulse responses are not close to the theoretical impulse

responses when the nontechnology shock is not trivial. Our analysis indicates that this poor

performance is due to lag-truncation bias. That is, the small number of lags in the estimated

VAR dictated by available data lengths makes the estimated VAR a poor approximation to
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the in�nite-order VAR of the observables from the model. Another proposition shows that a

VAR with a small number of lags is a good approximation to the model�s in�nite-order VAR

when nontechnology shocks play a minor role. This result helps explain why theoretical and

empirical responses are close when nontechnology shocks play a small role.

We then ask, Are the only models worth developing ones in which technology shocks

account for virtually all of the �uctuations in output? We argue that both the literature and

the data say the answer is no.

Our critique challenges the dramatic recent result from the SVAR literature, which

implies the death of the real business cycle model. The common SVAR approach with long-

run restrictions is not a useful tool for making such judgments. The root of its problem is that

the procedure compares two very di¤erent sets of statistics: empirical and theoretical impulse

responses. As statistics of the data, empirical impulse responses are entirely unobjectionable.

The comparison between the two sets of statistics, however, is inappropriate because it is

prone to various pitfalls, especially lag-truncation bias.

Not all SVAR procedures make such inappropriate comparisons. A preferable alterna-

tive to the common approach is one that compares empirical impulse responses based on the

data to impulse responses from identical structural VARs run on data from the model of the

same length as the actual data. We call this the Sims�Cogley�Nason approach because it has

been advocated by Sims (1989) and successfully applied by Cogley and Nason (1995). On

purely logical grounds, the Sims�Cogley�Nason approach is superior to the approach we scru-

tinize here; it treats the data from the U.S. economy and the model economy symmetrically,

thereby avoiding the problems of the common approach.

Our work here is related to a theoretical literature that discusses estimation and infer-

ence problems in models with an in�nite number of parameters, most prominently, the work

of Sims (1971, 1972). Faust and Leeper (1997) build on Sims�arguments to discuss inference

problems in in�nite-dimensional VARs that underlie the SVAR approach. They argue that

�unless strong restrictions are applied, conventional inferences regarding impulse responses

will be badly biased in all sample sizes�(p. 345). For some related applied critiques of the

SVAR literature, see Cooley and Dwyer (1998) and Erceg, Guerrieri, and Gust (2005). (For

a discussion of the literature, see Chari, Kehoe, and McGrattan 2007a, henceforth, CKM.)
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2. Tools for testing
Let�s start our critique of the common SVAR approach with long-run restrictions by

brie�y describing the two basic tools needed to apply our natural economic test: a structural

VAR procedure and a business cycle model.

2.1. A structural VAR procedure

The VAR procedure we evaluate is a version of Blanchard and Quah�s 1989 procedure

used recently by Galí (1999), Francis and Ramey (2005), and Galí and Rabanal (2005). The

idea is to uncover the parameters of a structural model from running VARs and using several

identifying assumptions. The structural model is given by

Yt = A0"t + A1"t�1 + A2"t�2 + : : : ; (1)

where the vector Yt is given by (y1t; y2t)0; where y1t = � log(yt=lt) is the �rst di¤erence of

the log of labor productivity, y2t = log lt � � log lt�1; and lt is a measure of the labor input.
We consider two speci�cations: in the di¤erenced speci�cation (DSVAR), � = 1; so y2t is the

�rst di¤erence in the log of the labor input; in the level speci�cation (LSVAR), � = 0; so

y2t is simply the log of the labor input. Here the A�s are the structural coe¢ cients and the

"t = ("
z
t ,"

d
t )
0 represent the structural technology and nontechnology shocks, with E"t"

0
t = �

and E"t"
0
s = 0 for s 6= t: The response of Yt in period t+ i to a shock in period t is given by

Ai: From these responses, the impulse responses for yt=lt and lt can be determined.

The associated VAR is of the form

Yt = B1Yt�1 + : : :+BpYt�p + vt: (2)

This VAR, as it stands, can be thought of as a reduced form of an economic model. Speci�-

cally, the reduced-form error terms vt have no structural interpretation. Inverting the VAR

is convenient in order to express it in its equivalent moving-average form:

Yt = C0vt + C1vt�1 + C2vt�2 + : : : ; (3)

where the moving-average coe¢ cients, the C�s; are related to the B�s in the standard way.

The idea behind the SVAR procedure is to use the reduced-form model Eq. (3),

together with the bare minimum of economic theory, to back out structural shocks and the
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responses to those shocks.

To identify the structural parameters, the A�s, from the reduced-form parameters,

the B�s, some assumptions are needed. The SVAR procedure we are evaluating uses two

identifying assumptions together with a sign restriction and an auxiliary assumption. One

identifying assumption is that technology and nontechnology shocks are orthogonal. The

other identifying assumption is a long-run restriction, the assumption that
P1

i=0Ai(1; 2) = 0

and
P1

i=0Ai(1; 1) 6= 0; where Ai(j; k) is the element in the jth row and the kth column of the
matrix Ai: This assumption captures the idea that nontechnology shocks do not a¤ect the

level of labor productivity in the very long run, but technology shocks do. The sign restriction

is that a technology shock is called positive if it raises the level of labor productivity in the

long run.6

An auxiliary assumption, typically not emphasized by researchers, is also needed,

namely, that

A(L)�1 exists and is equal to I �
pX
i=1

BiL
i; (4)

where A(L) = A0 + A1L+ . . . and where L is the lag operator. (See CKM for details.)

Our analysis of the problems with the common approach rests crucially on an analysis

of the auxiliary assumption Eq. (4). In all of our versions of the baseline business cycle

model, the auxiliary assumption is satis�ed for an in�nite number of lags (p = 1): In
practice, however, with existing data lengths, researchers are forced to run VARs with a

much smaller number of lags, typically four. This lag truncation introduces a bias into the

impulse responses computed using the common approach. The point of our analysis is to

quantify how this lag-truncation bias varies with parameters. We also point out special

circumstances under which, even though the VAR is truncated, the impulse responses to a

technology shock have no lag-truncation bias.

2.2. A business cycle model

To test the claim made for the common SVAR approach with long-run restrictions,

we will use a business cycle model with two shocks: changes in technology Zt; which have a

unit root, and an orthogonal tax on labor � lt. The model satis�es the two key identifying

assumptions of the SVAR procedure we are evaluating, that technology and nontechnology
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shocks are orthogonal and that nontechnology shocks do not permanently a¤ect the level of

labor productivity, whereas technology shocks do.

We think of our model as a natural one with which to conduct our test. It is a

variant of widely used real business cycle models that have been extensively studied in the

literature. The multiple shocks in our model are motivated in part by the inability of the

early technology-shock-only models, such as those in Kydland and Prescott (1982) and King,

Plosser, and Rebelo (1988), to generate the volatility of hours observed in the data. (See

the references in note 1.) A key feature of the multiple-shock models is that, in them,

nontechnology shocks account for a nontrivial fraction of output �uctuations.

Our choice of the tax on labor as the nontechnology shock is motivated by our earlier

work (Chari, Kehoe, and McGrattan, 2007b). In that work we show that many of the models

in the literature are equivalent to a prototype business cycle model with a labor wedge that

resembles a stochastic tax on labor. We also show that the labor wedge and the productivity

shock account for the bulk of �uctuations in U.S. data. As we show in Chari, Kehoe, and

McGrattan (forthcoming), this labor wedge can be thought of as arising from �uctuations in

government spending, money, and the elasticity of demand of �nal goods producers in a New

Keynesian model. (For early work making similar connections, see, among others, Rotemberg

and Woodford 1992 and Goodfriend and King 1997.)

In our model, consumers� utility functions are given by E0
P1

t=0[�(1 + 
)]
tU(ct; lt)

de�ned over per capita consumption ct and per capita labor lt; where � is the discount factor

and 
 the growth rate of the population. Consumers maximize utility subject to the budget

constraint

ct + (1 + �x)[(1 + 
)kt+1 � (1� �)kt] = (1� � lt)wtlt + rtkt + Tt; (5)

where �x denotes a constant tax on investment, kt denotes the per capita capital stock, � the

depreciation rate of capital, wt the wage rate, rt the rental rate on capital, and Tt lump-sum

transfers, and where � < 1; 
 � 0; and 0 � � � 1:
In the model, �rms have a constant returns to scale production function, F (kt; Ztlt),

where Zt is labor-augmenting technical progress. Firms maximize F (kt; Ztlt) � rtkt � wtlt.
The resource constraint is ct+(1+
)kt+1 = yt+(1��)kt where yt denotes per capita output.

The stochastic process for the two shocks, logZt and � lt; which, we refer to as the
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technology and nontechnology shocks, is

logZt+1 = �z + logZt + log zt+1 (6)

� lt+1 = (1� �l)�� l + �l� lt + "lt+1; (7)

where log zt and "lt are mean zero normal random variables with standard deviations �z and

�l. We let "t = (log zt; "lt), where these variables are independent of each other and i.i.d. over

time: The constant �z � 0 is the drift term in the random walk for technology, the parameter
�l is the persistence parameter for the labor tax, and �� l is the mean of the labor tax.

Our model satis�es the two key identifying assumptions of the SVAR approach using

long-run restrictions. By construction, the two types of shocks are orthogonal. And in the

model�s steady state, the level of labor productivity is not a¤ected by labor tax rates but is

a¤ected by technology levels. Thus, regardless of the persistence of the stochastic process on

labor taxes, a shock to labor taxes has no e¤ect on labor productivity in the long run.

In making our model quantitative, we use functional forms and parameter values

familiar from the business cycle literature, and we assume that the time period is one quarter.

We assume that the utility function has the form U(c; l) = log c + � log(1 � l) and the
production function, the form F (k; l) = k�l1��: We choose the time allocation parameter

� = 1:6, the capital share � = :33, the serial correlation of the nontechnology shock �l = :95;

and the mean tax labor tax �� l = :4: We choose the depreciation rate, the discount factor,

and the growth rates so that, on an annualized basis, depreciation is 6%, the rate of time

preference 2%, the population growth rate 1%, and the technology growth rate 2%.

In this model, a 1% positive technology shock leads to a persistent increase in hours

worked. For our parameter values, on impact hours increase by .42%, and the half-life of the

impulse response is about 18 quarters.

It is easy to show that the model�s theoretical impulse response is independent of the

persistence parameter �l and the variances of the innovations �
2
z and �

2
l : As we will see, when

the SVAR procedures are applied to data from this model, their empirical impulse responses

will vary with these parameters.
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3. The natural economic test
We test the main claim of the common SVAR approach with long-run restrictions by

comparing the business cycle model�s impulse responses to those obtained by applying the

SVAR procedure to data from that model, the SVAR impulse responses. Proponents of this

procedure claim that it can con�dently distinguish between promising and unpromising classes

of models without the researchers having to specify the details of nontechnology shocks. We

show that this claim is false.

3.1. An inessential technical issue

Before describing our test, we dispense with a technical issue. The common SVAR ap-

proach assumes that an autoregressive representation of the variables (� log(yt=lt); lt��lt�1)
exists for the models to be evaluated, in the sense that the auxiliary assumption is satis�ed

for some, possibly in�nite, number of lags p. For the LSVAR speci�cation (� = 0), the

variables have an autoregressive representation. The DSVAR speci�cation (� = 1), however,

overdi¤erences hours and introduces a root of 1 in the moving-average representation, which

is at the edge of the noninvertibility region of roots. Hence, no autoregressive representation

for the DSVAR exists.

This technical issue is not essential to our �ndings. We demonstrate that by con-

sidering, instead, a QDSVAR speci�cation with � close to 1. When � is less than 1, these

variables have an autoregressive representation. When � is close to 1, the impulse responses

of the QDSVAR and the DSVAR are so close as to be indistinguishable. In our quantitative

analyses, we will set the quasi-di¤erencing parameter � equal to .99. With the QDSVAR spec-

i�cation and an in�nitely long data series, the SVAR recovers the model�s impulse response.

Hence, there is no issue of misspeci�cation with the QDSVAR.

3.2. Which speci�cation is preferable?

We also ask which speci�cation a researcher would prefer, the QDSVAR or the LSVAR,

on a priori grounds. The time series of hours worked in our model is highly serially correlated,

and we �nd that standard unit root tests do not reject the hypothesis that the hours series

has a unit root. At least since Hurwicz (1950), we have known that autoregressions on

highly serially correlated variables are biased in small samples and that quasi-di¤erencing such

variables may diminish that bias. Since both the QDSVAR and the LSVAR speci�cations

have desirable asymptotic properties, on a priori grounds the QDSVAR seems preferable.
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3.3. Evaluation of the SVAR claim

In our evaluation, we treat the business cycle model as the data-generating process

and draw from it 1,000 data sequences of roughly the same length as our postwar U.S. data,

which is 180 quarters. We run the SVAR procedure for each of the two speci�cations on

each sequence of model data and report on the SVAR impulse responses of hours worked to

technology shocks. We repeat this procedure for a wide range of parameter values for the

stochastic processes and �nd that the SVAR procedure cannot do what is claimed for it.

In this test, we are conducting a simple thought experiment. Suppose that the data-

generating mechanism is our real business cycle model at a particular parameter setting, and

suppose that a researcher applies the SVAR procedure to these data without knowing that

they were generated by our model. What would this researcher conclude? Note that as we

vary the parameter values underlying our data-generating mechanism, we are simply asking

how the conclusions of the researcher would change, not which parameter values of our model

�t the data for some given country in some given time period.

In terms of our evaluation, we study the impulse response of hours worked to a tech-

nology shock and focus on a simple statistic designed to capture the di¤erence between the

impulse responses of the business cycle model and the SVARs. That statistic is the impact

error, de�ned as the percentage di¤erence between the mean across sequences of the SVAR

impact coe¢ cient and the model�s impact coe¢ cient.

We compute the impact error for a range of values of the relative variability of the

two shocks: the ratio of the innovation variance of the nontechnology shock to that of the

technology shock (�2l =�
2
z). To help interpret this relative variability, we translate it into more

familiar units: the percentage of output variability due to technology shocks. We compute

this percentage from the ratio of the variance of HP-�ltered output with the technology

shock alone relative to the variance of HP-�ltered output with both shocks. We compute

these variances from simulations of length 100,000.

In Fig. 1, panels A and B, the lines labeled Small Sample Mean plot the impact errors

of the QDSVAR and LSVAR speci�cations against the percentage of the output variability

due to technology shocks. The dashed lines represent the mean of the 95% bootstrapped

con�dence bands across the same 1,000 sequences used in computing the small sample mean.

Notice that the impact errors for the QDSVAR speci�cation are all negative, whereas

those for the LSVAR speci�cation are essentially all positive. Note that an error of �100%
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implies that the SVAR impact coe¢ cient is zero (instead of .42), whereas any error more

negative than �100% implies that the SVAR impact coe¢ cient is negative. The �gure reveals
that when the percentage of output variability due to technology shocks is large, so that the

variance of nontechnology shocks is small relative to that of technology shocks, the impact

error is small in both speci�cations. As the percentage of output variability due to technology

shocks decreases, the absolute value of the impact error increases.

Fig. 1 supports our main �nding: the claim of the SVAR literature that this approach

can con�dently distinguish between promising and unpromising classes of models regardless

of the details of the other shocks is incorrect. For the QDSVAR, we see that except when

the technology shock accounts for more than 80% of the variability of output, the QDSVAR

con�dently gets the wrong answer on impact, in the sense that the con�dence bands do not

include zero percent error. Moreover, unless technology shocks account for the bulk of output

variability, say, more than 70%; the mean impact coe¢ cient is negative, since the impact error

is more negative than �100%.
For the LSVAR, we see that except when the technology shock accounts for virtually

all of the variability of output, the con�dence bands in the LSVAR are so wide that this

procedure cannot distinguish between most models of interest. Here, unless the technology

shock accounts for much more than 90% of output �uctuations, the con�dence bands include

negative values for the impact coe¢ cient (that is, values for which the impact error is below

�100%). Hence, as long as technology shocks account for less than 90% of output �uctuations,
the LSVAR cannot distinguish between a class of models that predict a negative impact (like

sticky price models) and a class of models that predict a positive impact (like real business

cycle models). In terms of the impact error, note that when technology shocks account for

less than 45% of the variability of output, the mean impact error is greater than 100%. Note

also that the con�dence bands for the LSVAR are wider than those for the QDSVAR.

We also report on the distribution of the impact error across simulations. For brevity�s

sake, we investigate this distribution for a particular ratio of the variance of the nontechnology

shock to that of the technology shock that we refer to as the Galí parameters. Brie�y, this

ratio is set so that the mean impact coe¢ cient equals �:33; the impact coe¢ cient consistent
with Galí�s (1999) bivariate DSVAR.7

Fig. 2 reports on these distributions for the QDSVAR and the LSVAR. In panel A we

see the distribution for the QDSVAR: almost all of the mass lies below the theoretical impact
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coe¢ cient, and the distribution is fairly symmetric around its mean value. In panel B we

see a di¤erent pattern for the LSVAR distribution: the mass is spread out over an extremely

wide range, which includes the model�s impact coe¢ cient. In CKM we analyze properties of

the impulse responses in periods other than in the impact period and obtain similar results.

We also ask which speci�cation a researcher would prefer, the QDSVAR or the LSVAR,

on a priori grounds. The time series of hours worked in our model is highly serially correlated,

and we �nd that standard unit root tests do not reject the hypothesis that the hours series

has a unit root. At least since Hurwicz (1950), we have known that autoregressions on

highly serially correlated variables are biased in small samples and that quasi-di¤erencing such

variables may diminish that bias. Since both the QDSVAR and the LSVAR speci�cations

have desirable asymptotic properties, on a priori grounds the QDSVAR seems preferable.

So far we have simply assumed that researchers must choose either the QDSVAR

speci�cation or the LSVAR speci�cation for all samples. In practice, researchers often conduct

tests to determine which speci�cation is preferable for their particular samples. Typically,

they conduct unit root tests to determine whether hours should be speci�ed in the VAR

as levels or as �rst di¤erences. We also investigated whether our �ndings are robust to a

procedure that mimics the procedures conducted in practice. They are.

Researchers often conduct lag-length tests to determine the appropriate number of

lags to include in their VARs. In an attempt to mimic a variant of the common approach

that uses both lag-length tests and unit root tests, we experiment with variants of the SVAR

procedure. For the QDSVAR speci�cation, we retained only sequences that passed both the

unit root test and the standard lag-length tests. We also allowed the lag length for each

sequence to be determined by the lag-length tests. Our �ndings are virtually identical to

those reported above. For the LSVAR speci�cation, we retained only sequences that passed

the lag-length test, and we allowed the lag length for each sequence to be determined by the

lag-length tests. Here also, our results are virtually identical to those we have reported.

Considering the results from all our quantitative analysis, we conclude that for both

speci�cations, the main claim of the SVAR literature is not correct.

4. Analyzing the SVAR�s impulse response error
Here we investigate why the SVAR procedure fails our natural economic test. We

determine that the problem with the procedure rests crucially on the auxiliary assumption
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Eq. (4), that Yt has an autoregressive representation well approximated with a small number

of lags. The impact error is large in our test when the business cycle model does not satisfy

this assumption and small when it does. In all of the versions of our business cycle model,

the auxiliary assumption is satis�ed with an in�nite number of lags (p = 1). In practice,
however, researchers are forced by the existing data lengths to run SVARs with a small

number of lags, typically four. This lag truncation introduces a bias into the SVAR impulse

responses. We here quantify how the lag-truncation bias varies with parameters and point

out that, even though the VAR is truncated, when nontechnology shocks play a trivial role

in output �uctuations, the impulse responses to a technology shock have no such bias.

4.1. Decomposition of the impact error: two biases

As we discuss below, if a VAR with an in�nite number of lags were to be estimated

on an in�nite amount of data, then the impulse responses from the common approach would

converge, in the usual sense, to the theoretical impulse responses. This discussion implies a

natural decomposition of the impact error into that due to small-sample bias and that due to

lag-truncation bias. We do this decomposition here and �nd that the SVAR error is primarily

due to the lag-truncation bias.

Let �A0(p; T ) denote the mean of the small-sample distribution of the matrix of impact

coe¢ cients of the SVAR impulse response when the VAR has p lags and the length of the

sample is T: In practice, this mean is approximated as the mean across a large number of

simulations: Since the observed variables have an autoregressive representation, it follows

that �A0(p = 1; T = 1) coincides with the model�s theoretical impulse response. That
convergence implies that the (level of the) impact error associated with our implementation

of the common approach is �A0(p = 4; T = 180) � �A0(p = 1; T = 1): We can decompose
this error into two parts:

�
�A0(p = 4; T = 180)� �A0(p = 4; T =1)

�
+
�
�A0(p = 4; T =1)� �A0(p =1; T =1)

�
:

The term in the �rst brackets is the small-sample bias, the di¤erence between the mean of

the SVAR impulse response over simulations of length 180 when the VAR has four lags and

the SVAR population impulse response when the VAR has four lags. The term in the second

brackets is the lag-truncation bias, the di¤erence between the SVAR population impulse

response when the VAR has four lags and the model�s theoretical impulse response.
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That VARs have small-sample biases has been known at least since Hurwicz (1950):

even when the true model has a VAR with four lags, the estimated coe¢ cients are biased

in small samples. This type of bias is small for our model: for the QDSVAR speci�cation,

it is very small, and for the LSVAR speci�cation, it is small compared to the lag-truncation

bias. These �ndings can be seen in panels A and B of Fig. 1, which display the population

estimates and means of those in the small sample. Note in the �gure that the small-sample

bias does not vary much with the relative variance of the nontechnology shock.

These �ndings lead us to focus on the lag-truncation bias. As we will show, with a

su¢ ciently large number of lags, the lag-truncation bias becomes arbitrarily small. We ask

how many lags are needed here for the lag-truncation bias to be small. The answer, we �nd,

is too many.

Panel A of Fig. 3 displays the QDSVAR responses to a technology shock for lag

lengths p ranging from 4 to 300. Notice that even with 20 lags, the lag-truncation bias of

the QDSVAR speci�cation is large. Note, too, that the convergence to the model�s impulse

response function is not monotonic. Finally, note that more than 200 lags are needed for the

lag-truncation bias of the QDSVAR to be small.

Panel B of Fig. 3 shows the LSVAR impulse responses to the same shock for lag lengths

p ranging from 4 to 100. Here, as with the QDSVAR, we see that the impulse response is a

good approximation to the model�s impulse response only for an extremely large number of

lags. In practice, of course, accurately estimating VARs with so many lags is not feasible.

4.2. Intuition for the lag-truncation bias

Here we discuss two propositions that provide intuition for when the SVAR procedure

performs poorly and when it performs well.

The �rst proposition shows that if both shocks have positive variance, then the ob-

served variables have an in�nite-order VAR representation. Therefore, that any �nite-order

VAR su¤ers from truncation bias. The second proposition shows that if the variance of non-

technology shocks is small, then so is the truncation bias. Thus, here the VAR procedure

with a small number of lags performs well.

Consider a state space system, of the form Xt+1 = AXt + B"t; and the observer

equation, of the form Yt = CXt+D"t; with the same number of observables as shocks, so that

the matrix D is square. Standard arguments (as in Fernández-Villaverde, Rubio-Ramírez,
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Sargent, and Watson 2007) lead to the following result:

Proposition 1. (Existence of an In�nite-Order Autoregressive Representation) Con-

sider any state space system in which D is invertible, the eigenvalues of A are less than 1,

and the eigenvalues of A � BD�1C are strictly less than 1. Then the observed variables Yt

have an in�nite-order autoregressive representation given by

Yt = B1Yt�1 +MB1Yt�2 +M
2B1Yt�3 + : : :+D"t (8)

where the decay matrix M is given by M = C[A�BD�1C]C�1 and B1 = CBD�1:

In CKM we show that for a wide range of parameters, the su¢ cient conditions in

Proposition 1 are satis�ed in our business cycle model for both the QDSVAR and LSVAR

speci�cations. Thus, our model has a VAR representation with p =1: Since our model also
satis�es the two key identifying assumptions of the SVAR procedures, we have that if a VAR

with an in�nite number of lags were run on an in�nitely long sample of data generated by

our model, then the impulse responses from these two SVAR speci�cations would coincide

exactly (in the relevant sense of convergence) with those of the model. We emphasize that

neither speci�cation su¤ers from the invertibility problems discussed by Hansen and Sargent

(1991) and Fernández-Villaverde, Rubio-Ramírez, Sargent, and Watson (2007). Moreover,

neither speci�cation su¤ers from issues of identi�cation, overdi¤erencing, or speci�cation

error. Without more detailed quantitative analyses, theory provides no guidance as to which

speci�cation is preferable.

Given our model parameters, for the QDSVAR speci�cation (including the quasi-

di¤erencing parameter � = :99); the eigenvalues for M are �1 = :99 and �2 = :96, whereas

for the LSVAR speci�cation, they are �1 = 0 and �2 = :96: At our model parameters,

for both speci�cations, the largest eigenvalue is close to 1. Since the rate of decay is, at

least asymptotically, determined by the largest eigenvalue, these eigenvalues suggest that

an autoregression with a small number of lags is a poor approximation to the in�nite-order

autoregression. It is not surprising, then, that the SVAR procedure performs poorly when

both shocks have nontrivial variances.

We now give intuition for why the SVAR procedures perform well when the variance of

the nontechnology shock is small relative to that of the technology shock. In CKM we show

that, when the nontechnology shock is zero, for both speci�cations, the observed variables
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have an AR1 representation. By continuity we have the following proposition:

Proposition 2. (Small Truncation Bias When nontechnology Shocks Small) In both

the QDSVAR and the LSVAR speci�cations of the observed variables Yt; as the variance of

nontechnology shocks converges to zero, the truncation bias in an SVAR procedure that uses

a VAR of order 1 converges to zero.

In CKM we also show that a version of Proposition 2 applies for more general systems:

loosely, if we have as many variables as shocks, then the truncation bias converges to zero as

the variance of one of the nontechnology shocks converges to zero. This version of Proposition

2 sheds light on a literature that argues that sometimes SVARs with long-run restrictions

work well. For example, Fernández-Villaverde, Rubio-Ramírez, and Sargent (2005) show

that in Fisher�s (2006) model, the population estimates from an SVAR procedure with one

lag closely approximate the model�s impulse responses. In CKM we show that Fisher�s VAR

system is a special case of a general version of Proposition 2.

5. Does adding variables and shocks help?
So far we have focused on an SVAR with just two variables� the log di¤erence of labor

productivity and a measure of the labor input� and two shocks� one to technology and one

to nontechnology. In the SVAR literature, researchers often check how their results change

when they add one or more variables and shocks to the SVAR. Would such an alteration to

the SVAR we have been testing help improve its performance with the data from our business

cycle model? We �nd that typically it does not.

In the data, the covariance of observed variables is almost always nonsingular, so

that models that generate singular covariance matrices are uninteresting. If we simply add

variables to the VAR without adding shocks to a business cycle model, the covariance matrix

in the resulting VAR is often singular. To ensure that the covariance matrix in the VAR is

nonsingular when we add more variables, we add more shocks.

The obvious candidate for a variable to include is some measure of capital. In practice,

most researchers prefer using the investment-output ratio as a capital-like variable rather than

the capital stock directly because they think the capital stock is poorly measured.

Let�s see what happens with this ratio included in the VAR. Consider an SVAR with

three variables and three shocks. The third variable is the log of the investment-output ratio.
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Here, in addition to the growth of labor productivity and the measure of labor, Yt includes

the investment-output ratio. In terms of additional shocks, we let the investment tax be the

third shock. We assume that taxes on investment follow the autoregressive process

�xt+1 = (1� �x)��x + �x�xt + "xt+1; (9)

where "xt ; together with our earlier shocks "
z
t and "

d
t ; are jointly normal, independent of each

other, and i.i.d. over time. The standard deviation of "xt is �x: As we show in Chari, Kehoe,

and McGrattan (2007b), taxes on investment in a prototype model arise either from �nancial

frictions as in Bernanke, Gertler, and Gilchrist (1999) or from �uctuations in the technology

for producing investment goods as in Greenwood, Hercowitz, and Krusell (2000).

We examine a quantitative version of our three-shock model with a three-variable

LSVAR with Yt = (� log(yt=lt); lt; xt=yt) and show that the impact errors are large even for
small variances of the investment tax shock. To do so, we use Galí parameters for the labor

tax shock and set �x = :95 for the investment tax shock. We �nd, for example, when the

investment tax accounts for 30% of output variability, both speci�cations have impact errors

over 100% as well as extremely wide con�dence bands. (For details, see CKM.)

Proposition 2 might be interpreted as suggesting that the SVAR procedure will ap-

proximately uncover the model�s impulse response as long as a relatively small number of

shocks (or factors) account for the bulk of �uctuations in the data. Our results here suggest

that, in practice, such an interpretation should be treated with caution.

6. Are we con�dent that nontechnology shocks are trivial?
We have disproved the main claim of the literature on SVARs with long-run restric-

tions: that the SVAR procedure can con�dently distinguish between promising and unpromis-

ing classes of models regardless of the details of nontechnology shocks, other than minimal

assumptions like orthogonality. We have also shown that both speci�cations do reasonably

well only when nontechnology shocks account for a trivial fraction of the variability in output.

Should a researcher be con�dent that nontechnology shocks play a trivial role for all

cross-country data sets and all time periods? Presumably not. Should a researcher be con�-

dent that nontechnology shocks play a trivial role even in postwar U.S. data? We argue no.

Indeed, many macroeconomists are interested in developing models in which nontechnology

shocks play a substantial role in output �uctuations. And evidence from our model suggests
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that nontechnology shocks may actually play a nontrivial role. We also respond to our critics

who have argued that macroeconomists are con�dent that nontechnology shocks have played

a trivial role in output �uctuations in the postwar U.S. data.

6.1. Evidence from the literature

Here we argue that the business cycle literature and the SVAR literature provide

evidence that macroeconomists are unwilling to con�dently declare that nontechnology shocks

are trivial. Indeed, the emerging consensus is that nontechnology shocks are signi�cant.

6.1.1. The business cycle literature

The business cycle literature contains a wide range of procedures for estimating the

percentage of output variability due to technology shocks and a wide range of resulting

estimates. Prescott (1986) estimates this percentage at 76%. Eichenbaum (1991) estimates

a related fraction and �nds that it can range between 5% and 200%.8 McGrattan (1994)

obtains a point estimate of 41% with a standard error of 46%. Thus, a plausible case can

be made that in the U.S. data, technology shocks account for essentially any value between

zero and 100% of output variance. Put di¤erently, when the U.S. data are viewed through

the lens of the growth model, dismissing any estimate in this range is unreasonable.

The emerging consensus in the business cycle literature, in fact, is that nontechnology

shocks play an important role in output variability. This emerging consensus can be seen in

the second generation of the real business cycle literature, which emphasizes that, in order

for models to mimic the data, nontechnology shocks must account for a signi�cant fraction

of output volatility. (See, for example, the references in note 1.)

6.1.2. The SVAR literature

The SVAR literature also provides direct evidence on the relative contribution of tech-

nology shocks to the variability in output. Galí and Rabanal (2005), using an LSVAR spec-

i�cation, estimate that the percentage of output variability due to technology shocks ranges

from 3% to 37%. (For the DSVAR speci�cation, this percentage ranges from 6% to 31%.)

Other SVAR studies, such as the one by Christiano, Eichenbaum, and Vigfusson (2003), �nd

estimates that range from 2% to 63%, depending on the speci�cation.
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6.2. Evidence from our model

We can also use our model to shed light on whether researchers should be con�dent

that the only models worth developing are ones in which nontechnology shocks play a trivial

role. As we argue in Chari, Kehoe, and McGrattan (2007b), in terms of aggregates many

detailed models are observationally equivalent to a prototype model like the business cycle

model we use here. Each detailed model implies a particular stochastic process for the shocks

in our prototype model. We show here that the evidence from our prototype model suggests

a substantial role for nontechnology shocks. Thus, using the logic of Chari, Kehoe, and

McGrattan (2007b) on the mapping between prototype and detailed models, we argue that

researchers should be interested in developing detailed models in which nontechnology shocks

play a nontrivial role.

Here we discuss three pieces of evidence that suggest that developing such models is

worthwhile. This evidence is based on the SVAR procedure�s central �nding, on the volatility

of hours in the data, and on a variety of speci�cations of maximum likelihood estimation.

With one exception, all of this evidence suggests that nontechnology shocks play a substantial

role in output �uctuations. The exception is the maximum likelihood speci�cation, which

uses the growth of output and the level of hours as observables. This exception does not

lead us to be con�dent that nontechnology shocks play a trivial role, however, because even

within the maximum likelihood estimation context, other speci�cations are preferable.

6.2.1. Based on the SVAR central �nding

One type of evidence on the relative size of the two shocks is based on the central

result of the SVAR literature: Galí�s (1999) widely noted �nding that a positive technology

shock drives down hours worked on impact. For our SVAR model to generate that �nding,

technology shocks must account for only a modest fraction of output variability.

We demonstrate that in Fig. 4 and Table 1. Fig. 4 adds to Fig. 1 details on the

values of impact errors and con�dence bands when the parameters of nontechnology shocks

are set to the Galí parameters, that is, when the mean impact coe¢ cient equals �:33; the
impact coe¢ cient consistent with Galí�s (1999) bivariate DSVAR. At this value of the impact

coe¢ cient, the variance of output due to a technology shock is roughly 50% for our model,

so that nontechnology shocks play an important role. (See the �rst row of Table 1.)

19



6.2.2. Based on the volatility of hours in U.S. data

Next, we ask how large must nontechnology shocks be if our business cycle model

is to reproduce the volatility of U.S. hours? To answer that question, we set the standard

deviation of the technology shock, �z; to reproduce Prescott�s (1986) measure of the standard

deviation of an innovation to total factor productivity �TFP: We then ask, more precisely,

what must be the volatility (standard deviation) of the nontechnology shock, �l; in order

to reproduce the observed volatility in hours? We �nd that at this level of nontechnology

volatility, technology shocks account for roughly 40% of the observed volatility in output.

Now, returning to Fig. 4 and Table 1, we can examine the performance of the SVAR

procedure with the QDSVAR and the LSVAR speci�cations at this setting of nontechnology

and technology shocks. We see that the impact error for the QDSVAR speci�cation is �300%
(Table 1) and that this speci�cation con�dently rejects the possibility that the impact coe¢ -

cient is positive (Fig. 4). At this level of volatility, the impact error for the LSVAR is 118%,

but the con�dence bands for this speci�cation are so wide that it cannot distinguish between

models of interest.

6.2.3. Based on maximum likelihood estimation

A last type of evidence on the relative sizes of the two shocks is the results of maximum

likelihood estimation. In our estimation procedure, we �x all the parameters of the model

except for those of the stochastic processes. We then use a standard maximum likelihood

procedure to estimate the parameters of the vector AR1 process, Eq. (6) and (7), using

several speci�cations for the observed variables.

In the hours speci�cation, we let the observed variables be Yt = (� log yt; log lt)0: In the

investment speci�cation, we let Yt = (� log yt; � log xt)
0: In both speci�cations, we impose

an upper bound of :995 on the persistence parameter �l: Table 1 displays the results of the

estimation. In the hours speci�cation, the variability of output due to technology is fairly

large, 76%; the impact error for the QDSVAR is �86%; and the impact error for the LSVAR
is 3%: In the investment speci�cation, the variability of output due to technology is more

modest, 30%; the impact error for the QDSVAR is �438%; and the impact error for the
LSVAR is 190%: Clearly, the impact error for both of these speci�cations depends sensitively

on the speci�cation of observed variables. But note that the con�dence bands for all of these

impact errors are huge.
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We then ask which speci�cation is preferable, in the sense that it leads to more accurate

estimates of the key parameters of the stochastic process. To answer this question, we conduct

Monte Carlo experiments for our business cycle model. We set the key parameters at �l = :99;

�l = 1%, and �z = 1%:We generate 1,000 simulations of the same length as the actual data.

For each simulation, we estimate the parameters of the stochastic process with maximum

likelihood, using the speci�cations of the observed variables. We impose the same bound on

�l of :995 as in our estimation using actual data.

From Table 2 we see that the investment speci�cation clearly yields more accurate

estimates of the model parameters than does the hours speci�cation. We repeated this exercise

using higher values of �l and found that the investment speci�cation continues to yield more

accurate estimates of the model parameters. These �ndings lead us to prefer the investment

speci�cation for estimating the model�s parameters.

Clearly, the variability of output due to technology shocks associated with the max-

imum likelihood estimates is sensitive to the variables included in the observer equation,

especially investment. The reason for this sensitivity is that a stripped-down model like ours

cannot mimic well all of the comovements in U.S. data, so it matters what features of the data

the researcher is primarily interested in. Full information methods like maximum likelihood

turn out to be sensitive to details such as which variables are included in the estimation. Our

Monte Carlo experiments lead us to prefer the investment speci�cation. And this speci�cation

leads to a large impact error for the LSVAR.

6.3. Response to our critics

Christiano, Eichenbaum, and Vigfusson (2007) have criticized our critique of SVARs.

We agree with them that if researchers are only interested in developing models in which non-

technology shocks play a trivial role, then both the QDSVAR and the LSVAR procedures are

useful guides. We have argued, however, that the vast majority of researchers are interested

in developing models in which nontechnology shocks play a nontrivial role and that for such

researchers both the QDSVAR and the LSVAR procedures using the common approach are

likely to be useless.

They have also pointed to one piece of evidence that nontechnology shocks play at best

a modest role in postwar U.S. data. This piece essentially consists of our maximum likelihood

estimate for the hours speci�cation. While this piece of evidence, taken in isolation, does
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buttress that case, the bulk of the evidence from the literature and our model argues for

assuming nontechnology shocks play a nontrivial role.

We have also argued that structural VARs may be useful in developing business cycle

theory if researchers use the Sims-Cogley-Nason approach rather than the common approach.

We are puzzled why our critics seem so reluctant to use the Sims-Cogley-Nason approach.

This approach seems straightforward: researchers simply run the identical VAR in the model

that they run in the data. In our notation this means that researchers compute �Ai(p =

4; T = 180) for their model and compare it to the impulse response in the data. Doing so will

eliminate the problems associated with both the lag-truncation bias and the small-sample

bias.

Computing �Ai(p = 4; T = 180) typically involves Monte-Carlo simulations. For

researchers who want to avoid such simulations, an alternative approach is to compare

�Ai(p = 4; T = 1) to the impulse response in the data. This comparison eliminates the
problems associated with the lag-truncation bias but not those associated with the small-

sample bias. In this sense this approach is superior to the common approach.

Can the Sims-Cogley-Nason approach be used when, as is often the case in practice,

researchers want to add more variables to the VAR beyond the two or three considered here?

Yes. Of course, in order to avoid singularity when running the VAR on model-generated

data, researchers must add at least as many shocks to the model as the number of variables

added to the VAR. The reluctance to use this approach might stem from an unwillingness

to model the additional shocks in detail. This reluctance is often justi�ed by the idea in the

common approach literature that this procedure works well regardless of the speci�cation of

the additional shocks. As we have shown, this idea is false.

In sum, we see no coherent argument for the use of the common approach over the

Sims-Cogley-Nason approach or the alternative approach described above.

7. Conclusion
The central �nding of the recent structural vector autoregression (SVAR) literature

with a di¤erenced speci�cation of hours is that technology shocks lead to a fall in hours.

Researchers have used this �nding to argue that real business cycle models are unpromising.

We subjected this SVAR speci�cation to a natural economic test by showing that when applied

to data generated from a multiple-shock business cycle model, the procedure incorrectly
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concludes that the model could not have generated the data as long as nontechnology shocks

play a nontrivial role. We also tested another popular speci�cation, which uses the level of

hours, and showed that with nontrivial nontechnology shocks, it cannot distinguish between

real business cycle models and sticky price models. The crux of the problem for both SVAR

speci�cations is that available data necessitate a VAR with a small number of lags and, when

nontechnology shocks play a nontrivial role, such a VAR is a poor approximation to the

model�s VAR.

Elsewhere (in Chari, Kehoe, and McGrattan 2007b), we have argued for the usefulness

of another approach to developing business cycle theory: business cycle accounting. This

approach has the same goal as the SVAR approach� to quickly shed light on which class of

models is promising� but business cycle accounting su¤ers from fewer shortcomings.

Notes

1Of course, if a researcher has a speci�c model in hand there are many more e¢ cient
ways to evaluate it than the SVAR procedure. Thus, the main point of the procedure is to
help guide the development of new models which have not yet been speci�ed in enough detail
that one could use these other methods.

2See, for example, Cooley and Hansen (1989); Benhabib, Rogerson, and Wright (1991);
Bencivenga (1992); Rotemberg and Woodford (1992); Braun (1994); McGrattan (1994);
Stockman and Tesar (1995); Hall (1997); Bernanke, Gertler, and Gilchrist (1999); Green-
wood, Hercowitz, and Krusell (2000); and Christiano, Eichenbaum, and Evans (2005).

3We also conduct a variety of standard lag-length tests and �nd that these tests do not
detect the need for more lags.

4We emphasize that our test is a logical analysis of the inferences drawn from the SVAR
approach and neither asks nor depends on why productivity in the U.S. data �uctuates. In our
test, we use data generated from an economic model because in the model we can take a clear
stand on what constitutes a technology shock. Hence, in our test, the question of whether
�uctuations in total factor productivity in U.S. data come from changes in technology or from
other forces is irrelevant.

5One critique of the DSVAR procedure is that in all economic models, the time series
hours worked per person is bounded, and therefore, the stochastic process for hours per person
cannot literally have a unit root. Hence, according to the critique, the DSVAR procedure
is misspeci�ed with respect to all economic models and, thus, is useless for distinguishing
among broad classes of models. This critique is simplistic. We are sympathetic to the
view expressed in the DSVAR literature that the unit root speci�cation is best viewed as a
statistical approximation for variables with high serial correlation. See, for example, Francis
and Ramey (2005) for an eloquent defense of this position. See also Marcet (2005) for a
defense of di¤erencing in VARs.

23



6In some of the VAR literature, sign restrictions are viewed as convenient normalizations
with no economic content. Our sign restriction, in contrast, is a restriction implied by a large
class of economic models, including the business cycle models considered below. It is similar in
spirit to the long-run restriction. Both restrictions use the idea that while economic models
may have very di¤erent implications for short-run dynamics, they often have very similar
implications for long-run behavior.

7Galí (1999) reports that on impact, a one standard deviation technology shock leads
to a �:38% change in hours. We convert this statistic to the response to a 1% technology
shock, z; by dividing his statistic by the standard deviation of the technology shock. We use
Prescott�s (1986) measure of the standard deviation of an innovation to total factor produc-
tivity �TFP to construct the standard deviation of the technology shock �z: The relationship
between these standard deviations is �z = �TFP=(1� �): Prescott measures �TFP to be :763,
and our capital share is � = :33, so that after conversion Galí�s statistic becomes �:33 (=
�:38=�z):

8In a summary of the evidence on this fraction, Eichenbaum eloquently states, �What
the data are actually telling us is that, while technology shocks almost certainly play some role
in generating the business cycle, there is simply an enormous amount of uncertainty about
just what percent of aggregate �uctuations they actually do account for. The answer could be
70% as Kydland and Prescott (1991) claim, but the data contain almost no evidence against
either the view that the answer is really 5% or that the answer is really 200%�(Eichenbaum
1991, p. 608).
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Table 1. Parameter Estimates and Statistics of Interest for the Model with Taxes on Labor

Parameter Estimates Statistics of Interestb

Impact Error

Evidence ρl σz σl %var(y) QDSVAR LSVAR

Gaĺı VAR response .950 .0114 .0073 50 −220 76
(−344,−79) (−230,245)

Hours volatility .950 .0114 .0088 40 −300 118
(−448,−132) (−252,322)

Maximum likelihooda

Hours specification .995 .0114 .0050 76 −86 3
(.0093) (.0006) (.0005) (−171,−5) (−219,123)

Investment specification .942 .0178 .0173 30 −438 190
(.0076) (.0016) (.0013) (−616,−226) (−270,442)

a For the maximum likelihood parameter estimates, the values in parentheses are standard errors. The hours specification
uses observations on output and labor; the investment specification, observations on output and investment.

b The first statistic is the variance of output due to the technology shock, reported as a percentage. The last two are the
mean impact errors for the QDSVAR and LSVAR specifications. The values in parentheses are means of the upper and
lower means of 95% confidence bands across 1,000 applications of the SVAR procedures.



Table 2. Monte Carlo Analysis of Maximum Likelihood Estimation

for Two Sets of Observables in the Model with Taxes on Labor

Hours Specificationa Investment Specificationa

Estimates ρl σz σl ρl σz σl

True estimates .990 .0100 .0100 .990 .0100 .0100

Monte Carlo estimates

Mean .980 .0101 .0096 .990 .0100 .0100

% Standard deviation 1.83 .053 .084 .076 .053 .083

a The hours specification uses observations on output and labor; the investment specification, observations on output and
investment.



Figure 1Impa
t Errors and Confiden
e Bands of the SVAR Pro
eduresa

A. QDSVAR
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a In both panels, small sample impact errors are mean errors in the impact coefficient of hours from 1,000
applications of the four-lag SVAR procedures with ρl = .95 applied to model simulations of length 180.
Dashed lines are 95% confidence bands. Population errors are also shown.



Figure 2Histogram of Errors for Gal�� Parametersa

A. QDSVAR
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a In both panels, histograms show the impact coefficients of hours from 1,000 applications of the four-lag
SVAR procedures to model simulations of length 180 using Gaĺı (1999) parameters.



Figure 3Model and SVAR Population Responses of Hoursa

A. QDSVAR
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a In both panels, dashed lines are population impulse responses of hours to a technology shock using Gaĺı
(1999) parameters and varying the lag length p in the SVAR procedures.



Figure 4Innovation Varian
e Ratio Implied by Gal�� Parameters (G) and U.S. Hours (H)a

A. QDSVAR
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a In both panels, the solid line is the small sample mean impact error in the coefficient of hours from
1,000 applications of the four-lag SVAR procedures with ρl = .95 applied to model simulations of length
180. Dashed lines are 95% confidence bands. Point G corresponds to the Gaĺı (1999) parameters, while
point H corresponds to parameters which reproduce the variance of U.S. hours.


