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Introduction

Many applications in financial economics involve data series that have different starting

dates, or, more rarely, different ending dates. Settings where some data series are available

over a much shorter time frame than others include estimation and testing using interna-

tional data, and performance evaluation of mutual funds. These problems represent only

the most extreme examples of differences in data length. More broadly, aggregate stock

return data may be available over a longer time frame than macroeconomic data, cash flow

and earnings data, term structure data, or options data.

The econometrics literature has derived various methods of confronting samples of un-

equal lengths. An early work is that of Anderson (1957), who derives a maximum likelihood

estimator for a bivariate normal distribution in which one variable has more observations

than another. More recently, Harvey, Koopman, and Penzer (1998) develop a Kalman-filter

approach to missing data, while Schmidt (1977), Swamy and Mehta (1975), and Conniffe

(1985) focus on extending the seemingly unrelated regression approach to cases in which

more data is available for one equation than the other. Stambaugh (1997) derives estimates

of the mean and variance of financial time series, as well as the posterior distribution of

returns, assuming returns are normally and independently distributed, in a setting where

some return series start at a later date than others. Pastor and Stambaugh (2002a, 2002b)

derive Bayesian posteriors for means and variances of mutual fund returns using samples

of unequal length, under the assumption of normality and identically and independently

distributed returns. Storesletten, Telmer, and Yaron (2004) combine a time series of macro-

economic variables with the shorter Panel Study of Income Dynamics (PSID) to estimate

the relationship between cross-sectional variance and recessions. They show how to use the

panel structure of the data to infer how the PSID would have behaved over the longer time

span. Patton (2006) derives maximum likelihood estimators for samples of unequal length

when data are non-normal.1

These previous studies take a likelihood-based approach. In contrast, our approach

is based on the generalized method of moments (GMM). We show that our method is

1See Little and Rubin (2002) for a survey of the statistical literature confronting missing data problems.
Another strand of literature considers the problem of n independent individuals observed at up to T time
periods, where some individuals drop out of the study (see, e.g., Robins and Rotnitsky (1995)). The
independence across individuals and the fact that asymptotics are derived as n, rather than T , approaches
infinity differentiates this problem from the one considered here.
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more efficient than standard GMM and more efficient than introducing the data from the

longer series in a “naive” way. Because it is based on GMM, our method can be used for

nonlinear estimation, and for processes that are serially correlated and feature conditional

heteroskedasticity. We focus on GMM because, as shown as Cochrane (2001), many com-

mon estimation techniques used in finance can be seen as special cases of GMM. Further,

many empirical studies in finance explicitly use GMM, such as Harvey (1989), MacKinlay

and Richardson (1991) and Zhou (1994).2 Assumptions required for the consistency and

asymptotic normality of the standard GMM estimator are also required here. We adopt

the mixing assumption of White and Domowitz (1984) as a means of limiting the temporal

dependence of the underlying stochastic process. Intuitively, mixing requires that autoco-

variances vanish as the lag length increases. This assumption allows for many processes of

interest in financial economics, such as finite ARMA processes with general conditions on

the underlying errors (see Phillips (1987)).3

Because our method is based on GMM, many of our results are asymptotic.4 So that

the asymptotic approximation is reasonable, care must be taken to insure that the missing

data problem does not become trivial as the sample size becomes large. We thus develop an

asymptotic theory that keeps the fraction of missing data fixed as the sample size approaches

infinity. To be precise, if T denotes the length of the longer sample, we say that λT is the

length of the shorter sample, for 0 < λ ≤ 1. We hold λ constant, as T approaches infinity.

This approach has a parallel in the simulated method of moments estimation technique (see

Duffie and Singleton (1993)), where the length of the simulated series divided by the length

of the observed series is assumed to be constant as both series lengths approach infinity,

and also in the literature on structural breaks (Andrews and Fair (1988), Ghysels and Hall

(1990), Andrews and Ploberger (1994), Stock (1994), Sowell (1996), Ghysels, Guay, and

Hall (1997)).

We focus on the case in which some moment conditions are observed over the full range

2Burguete, Gallant, and Souza (1982) and Hansen (1982) describe the GMM estimator and derive its
asymptotic properties. Hansen and Singleton (1982) derive implications for estimation and testing of financial
models; Brandt (1999) derives implications for the estimation of optimal portfolio and consumption choice.
Newey and McFadden (1994) and Hall (2005) survey work on GMM and related estimators.

3Like many of the studies mentioned above, we do assume that the data is missing at random, in the
sense defined by Little and Rubin (2002). Stambaugh (1997) discusses cases where this assumption holds in
financial time series, such as when the start date depends only on the long-history asset returns, and cases
where it does not, such as when the decision to add a country to a list of emerging markets depends on past
unobserved returns on that country (see Goetzmann and Jorion (1999)).

4We also verify, in Monte Carlo experiments, that our methods deliver efficiency gains in small samples.
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of dates while others are observed over a time span that has the same ending date but a

later starting date because this is the most common pattern in finance applications (we

later generalize this to other patterns of missing data).5 While general, these estimators

are straightforward to implement, as we show in an application involving international data

(Section 2), and have natural and intuitive interpretations.

The first estimator (which we call the adjusted-moment estimator) uses full sample

averages to estimate the moments for which full-sample data are available, and short sample

averages to estimate moments for which only short-sample data are available. Then the

moments for which only the short sample is available are “adjusted” using coefficients from

a regression of the short-sample moments on the full-sample moments. This is reminiscent

of an adjustment that appears in Stambaugh (1997) and Little and Rubin (2002) but here

operates in a more general context. The second estimator, (which we call the over-identified

estimator) uses the extra data available from the full sample as a new set of moment

conditions. This estimator was suggested by Stambaugh (1997) and, in the linear context of

that paper, turns out to be identical to our adjusted-moment estimator (and the maximum-

likelihood estimator proposed in that paper). In the more general context of our paper, the

two estimators are equivalent asymptotically but typically differ in finite samples.

In that it is based on GMM, our study is closely related to that of Singleton (2006,

Chapter 4.5). Besides placing the missing data problem within the context of GMM, Sin-

gleton also takes the same approach to asymptotics: Namely the ratio of the length of the

shorter sample to that of the longer sample remains constant as the total length goes to

infinity in both his study and ours. Singleton proposes moment conditions that are the

same as those for our over-identified estimator. However, he derives a different weighting

matrix. The weighting matrix that we derive allows us to show that our estimators are more

efficient than standard GMM, and more efficient than a naive approach to using the full

sample. We also depart from Singleton’s study in that we define the asymptotically equiv-

alent adjusted-moment estimator, study the finite-sample performance of the estimators,

and apply them to predictive regressions.

The organization of the paper is as follows. Section 1 defines our estimators and discusses

their efficiency properties. Section 2 provides intuition for the efficiency gains from using the

5In its focus on the efficiency results of carefully including additional data, this study has parallels in
studies that focus on including high-frequency data in estimation while accounting for market microstructure
effects (see Ait-Sahalia, Mykland, and Zhang (2005), Bandi and Russell (2006)).
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full sample. Section 3 illustrates our methods through an application to international data.

Section 4 presents a Monte Carlo analysis showing that the efficiency gains are present

in small samples. Most of our paper focuses on the case where one data series begins

earlier than another. However, our approach can easily be generalized to other patterns of

missing data, provided that the data is missing in large blocks.6 Section 5 provides this

generalization. Section 6 concludes.

1 GMM estimators for samples of unequal length

1.1 Definitions

Following Cochrane (2001), assume that the model to be estimated can be expressed as

E [f(xt, θ0)] = 0.

Here, f is a vector of l restrictions. The true parameters of the model are represented by

the q-vector θ0. Finally, xt is a vector-valued stochastic process. In what follows, we derive

results based on assumptions that are standard in a GMM setting; see Appendix A for more

detail.

In many applications, it happens that data are missing for the early part of the sample

period for some moment conditions (see Section 2 for an application to international data).

We partition the elements of xt so that xt =
[
x>1t x

>
2t

]>
, where data on x1t are assumed

to be available for the full period, and data on x2t are assumed to be available for only

the later part of the sample period. Similarly, we can partition the elements of f into

those that depend only on x1t and those that depend on both x1t and x2t: f(xt, θ) =

[f1(x1t, θ)
> f2(xt, θ)

>]>. Let f1 be l1 × 1 and f2 be l2 × 1, where l1 + l2 = l.

Let λ denote the fraction of the period for which all data are available. Then x1t is

observed from t = 1, . . . , T , while x2t is observed from t = (1 − λ)T + 1, . . . T . Define the

6Under general assumptions on the dependence of the underlying stochastic process, it is necessary that
the number of “blocks” remains fixed asymptotically. This distinguishes the problem we tackle from the
problem posed by data sampled at different frequencies (see Ghysels, Santa-Clara, and Valkanov (2005)).
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Figure 1: Notation for data missing at the start of the sample

following partial sums:7

g1,T (θ) =
1

T

T∑
t=1

f1(x1t, θ),

g1,(1−λ)T (θ) =
1

(1− λ)T

(1−λ)T∑
t=1

f1(x1t, θ),

g1,λT (θ) =
1

λT

T∑
t=(1−λ)T+1

f1(x1t, θ),

and

g2,λT (θ) =
1

λT

T∑
t=(1−λ)T+1

f2(xt, θ).

Sums of f are indexed by the length of the sample. This is a slight abuse of notation

because the subscript λT does not refer to the sum taken over observations 1, . . . , λT . The

subscripts λT , (1−λ)T and T can be understood as referring to intervals of the data rather

than the ending point of the sample. Figure 1 illustrates the notation.

Let w1t = f1(x1t, θ0) and w2t = f2(xt, θ0). Following Hansen (1982), define matrices

Rij(τ) = E
[
wi0w

>
j,−τ

]
, i, j = 1, 2.

Under standard assumptions, these sums converge (see White (1994, Proposition 3.44)).

Let

Sij =
∞∑

τ=−∞
Rij(τ).

7Formally, λ is a rational number strictly between 0 and 1. Define n0 to be the smallest positive integer
n such that nλ is an integer. We consider partial sums of f of length λT and (1 − λ)T for T a multiple of
n0. For the remainder of the paper, we let T approach infinity along the subsequence of integer multiples
of n0. Alternatively, we could define partial sums of length λn0T

′ and (1 − λ)n0T
′ for any integer T ′. The

results would be identical, but the notation would be more cumbersome.
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and

S =

[
S11 S12

S21 S22

]
.

It is also useful to define the matrix of coefficients from a regression of the second series on

the first:

B21 = S21S
−1
11 .

The residual variance from this regression will be denoted Σ, where

Σ = S22 − S21S−111 S12. (1)

Note that S is known as the spectral density matrix.

In this setting, standard GMM corresponds to using moment conditions measured over

the subperiod for which all the data are available. That is, the standard GMM estimator

solves

min
θ

[
g1,λT (θ)> g2,λT (θ)>

]>
WT

[
g1,λT (θ)

g2,λT (θ)

]
.

for a positive definite and symmetric weighting matrix WT . In what follows, we will focus

on the case where the weighting matrix is asymptotically efficient. In the case of standard

GMM, this implies that the weighting matrix asymptotically approaches S−1. We let ŜT

denote an estimator of S.8 Let

θ̂ST = argminθ

[
g1,λT (θ)> g2,λT (θ)>

]>
Ŝ−1T

[
g1,λT (θ)

g2,λT (θ)

]
. (2)

We call this the short estimator.

Standard arguments show that the short estimator is consistent and asymptotically

normal. However, the short estimator does not use all of the data available. A natural

estimator to consider takes the same form as (2), except g1,λT (θ) is replaced by its full-

sample counterpart, g1,T (θ). Because this is the simplest estimator that makes use of all of

the data, we call this the long estimator and let

θ̂LT = argminθ

[
g1,T (θ)> g2,λT (θ)>

]> (
ŜLT

)−1 [ g1,T (θ)

g2,λT (θ)

]
, (3)

where ŜLT is an estimate of SL, the asymptotic variance of
√
λT
[
g1,T (θ)> g2,λT (θ)>

]>
.

8Stated more precisely, we choose ŜT to converge to S almost surely. Convergence for estimates of
variance-covariance matrices that follow should be interpreted similarly.
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We will argue, however, that the long estimator introduces new data in a suboptimal

way. We define two alternative estimators. The first takes θ̂LT as a starting point and adjusts

the second set of moment conditions based on sample properties of the first set of moment

conditions. To define this estimator, let B̂21,λT be a matrix converging to B21. The adjusted

moment estimator, θ̂AT , solves

θ̂AT = argminθ

[
g1,T (θ)> gA2,T (θ)>

]> (
ŜAT

)−1 [ g1,T (θ)

gA2,T (θ)

]
, (4)

where

gA2,T (θ) = g2,λT (θ) + B̂21,λT (1− λ)(g1,(1−λ)T (θ)− g1,λT (θ))

and ŜAT is an estimate of SA, the asymptotic variance of
√
λT
[
g1,T (θ)> gA2,T (θ)>

]>
.

The difference between (3) and (4) lies in the second set of moment conditions, for which

only the short sample is available. Because

g1,T = (1− λ)g1,(1−λ)T + λg1,λT ,

the second set of moment conditions for the adjusted-moment estimator, gA2,T (θ), can be

written as

gA2,T (θ) = g2,λT + B̂21,λT (g1,T − g1,λT ).

The expression above illustrates the role of the longer sample in helping to estimate the

second set of moment conditions. Consider for example the case where g1 and g2 are

univariate. If g1 is below average in the second part of the sample, and if g1 and g2 are

positively correlated, g2 is also likely to be below average. Thus the estimate of E[f2(x0, θ)]

should be adjusted upward relative to g2.

Finally, we define an estimator that makes use of longer data sample to add over-

identifying restrictions. The over-identified estimator solves

θ̂IT = argminθ

[
g1,(1−λ)T (θ)> g1,λT (θ)>g2,λT (θ)>

]> (
ŜIT

)−1  g1,(1−λ)T (θ)

g1,λT (θ)

g2,λT (θ)

 , (5)

where ŜIT is an estimate of SI , the asymptotic variance of
√
λT
[
g1,(1−λ)T (θ)> g1,λT (θ)>g2,λT (θ)>

]
.

1.2 Asymptotic distribution

Theorems B.2 and B.3 in Appendix B show that each estimator is consistent for θ0 and

is asymptotically normal. Standard errors can be obtained using the same results as in
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previous work on GMM. Standard errors depend on the derivative of the moment conditions.

Define

D0,i = E
[
(∂fi/∂θ)|θ0

]
,

for i = 1, 2, and

D0 =

[
D0,1

D0,2

]
.

For the short, long, and adjusted-moment estimators, D0 is the derivative of the moment

condition evaluated at θ0. As shown in Theorem B.3, the asymptotic distributions of the

estimators are normal and centered around θ0. For example, for the adjusted-moment

estimator:
√
λT (θ̂AT − θ0)→d N

(
0,
(
D>0

(
SA
)−1

D0

)−1)
(6)

Analogous equations hold for the short and long estimator, where SA is replaced by S and

SL respectively (recall that the short estimator is standard GMM). Similarly, for the over-

identified estimator, the derivative D0 is replaced by [D>0,1 D
>
0 ] and SA is replaced by SI . In

each case, the difference between the estimator and θ0 is scaled by
√
λT . This an arbitrary

choice: we could have equally well have chosen
√
T (or indeed any constant multiplied by

√
T ), and adjusted the variance-covariance matrix in (6) appropriately. Regardless of this

choice, it is convenient to keep it the same for all four estimators.

An important practical step in implementing these estimators is obtaining estimates

of the spectral density matrices SL, SA, and SI to substitute into the equations above.

Conveniently, these estimates can be obtained with no more difficulty than estimating the

matrix S because these matrices can be completely characterized in terms of the submatrices

Sij of S. As shown in Theorem B.1:9

SL =

[
λS11 λS12

λS21 S22

]
(7)

SA =

[
λS11 λS12

λS21 S22 − (1− λ)S21S
−1
11 S12

]
(8)

SI =


λ

1−λS11 0 0

0 S11 S12

0 S21 S22

 . (9)

9Our proposed weighting matrix for the over-identified estimator can be contrasted with that proposed
by Singleton (2006). The weighting matrix he proposes is equivalent to the inverse of the matrix given in
(9), without the λ/(1 − λ) term in the upper left block.
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These formulas show that it suffices to have an estimate of the original spectral density

matrix S (see Cochrane (2001) for a discussion). Given such an estimate, SA and SI are

easily constructed by extracting submatrices: S11 is the upper left l1 × l1 submatrix, S22 is

the l2 × l2 lower right submatrix, and so on. Such an estimate will generally make use of

the last λT observations, because it is necessary to have all series available. In Appendix D,

we discuss a means of constructing an estimate of S that uses all of the data.

Underlying these results is the asymptotic independence between non-overlapping sam-

ples. That is,
√
λTg1,(1−λ)T and

√
λTgi,λT are jointly normally distributed and have zero

covariance in the limit as the sample size approaches infinity. Please see Appendix A for a

formal statement and proof. Asymptotic independence is intuitive: as more and more data

become available, the parts of the non-overlapping samples that are close to one another

become an ever smaller part of the whole. The samples come to be dominated by terms

that are far away and thus nearly independent.

1.3 Efficiency properties

We now compare the asymptotic efficiency of the four estimators. The proof of the following

theorem can be found in Appendix C.

Theorem 1. Assume the short, long, adjusted-moment and over-identified estimators are

defined as (2)–(5). Then

1. The asymptotic distribution of the adjusted-moment estimator is identical to that of

the over-identified estimator.

2. The adjusted-moment estimator and over-identified estimator are more efficient than

the short estimator.

3. The adjusted-moment estimator and over-identified estimator are more efficient than

the long estimator.

Theorem 1 shows that asymptotically, the adjusted-moment and over-identified estima-

tors are the same despite the fact that they take very different forms. The second statement

shows that there is indeed an efficiency gain from using the longer sample. Moreover, it

is more efficient to use the adjusted-moment or over-identified estimators than to use the

longer sample in a “naive” way, as the third statement shows.
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In contrast, the long estimator, despite its use of all the data, may not be more efficient

than the short estimator. Statement 2 relies on the fact that

S − SA = (1− λ)

[
S11 S12

S21 S21S
−1
11 S12

]
,

is positive semi-definite (that is, S is at least as large, in a matrix sense as SA). However,

the analogous quantity for the long estimator,

S − SL = (1− λ)

[
S11 S12

S21 0

]

will generally not be positive semi-definite. Thus it is not sufficient to simply include the

full data in the estimation. The non-overlapping part of the sample must be introduced in

precisely the right way to produce a gain in efficiency. The difference between the efficient

estimators (the adjusted-moment and over-identified estimators) and the long estimator is

especially surprising given that, when attention is restricted to estimating f1(x, θ), the three

estimators are asymptotically identical. In fact, the gains in efficiency occur because the

method uncovers the deviation of g1,λT from zero. Because of the correlation between g1,λT

and g2,λT , the deviation of g1,λT from zero implies that g2,λT is also likely to deviate from

zero. The efficient estimators make use of this information to construct an estimator of the

mean of f2(x, θ) that improves on g2,λT .

The previous results address the case when the efficient weighting matrix for each esti-

mator is used. Sometimes it is of interest to use a weighting matrix that is asymptotically

inefficient because of small-sample considerations. As the next theorem shows, there is an

efficiency gain for using the full sample in this setting as well. The proof is in Appendix C

Theorem 2. Assume that the weighting matrices approach a positive-definite matrix W .

The adjusted-moment estimator is more efficient than the short estimator and the long

estimator.

1.4 Comparing the efficient estimators

Because the adjusted-moment estimator and the over-identified estimator are asymptotically

identical, we refer to them as the efficient estimators. The above results raise the question

of whether these estimators are identical in finite samples, and, if not, what the differences

are. We answer these questions by deriving the first-order conditions that determine the
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estimators. For the purpose of this discussion, we assume that ŜIT = SI , ŜAT = SA and

B̂21,λT = B21. However, the results apply as long as these matrices are constructed using

the same estimated submatrices of S.

As shown in Appendix C, the first-order condition determining the over-identified esti-

mator is equal to

1− λ
λ

g>1,(1−λ)TS
−1
11

∂g1,(1−λ)T

∂θ
+ g>1,λTS

−1
11

∂g1,λT
∂θ

+ (g2,λT −B21g1,λT )>Σ−1
∂

∂θ
(g2,λT −B21g1,λT ) = 0. (10)

The first order condition determining the adjusted-moment estimator is

1

λ
g>1,TS

−1
11

∂g1,T
∂θ

+ (g2,λT −B21g1,λT )>Σ−1
∂

∂θ
(g2,λT −B21g1,λT ) = 0. (11)

According to Theorem 1, these two first order conditions must be equivalent as T → ∞.

Indeed they are, because

lim
T→∞

∂g1,(1−λ)T

∂θ

∣∣∣∣
θ̂IT

= lim
T→∞

∂g1,λT
∂θ

∣∣∣∣
θ̂IT

= lim
T→∞

∂g1,T
∂θ

∣∣∣∣
θ̂AT

= D0,1,

and

1− λ
λ

g>1,(1−λ)TS
−1
11 D0,1 + g>1,λTS

−1
11 D0,1 =

1

λ

(
(1− λ)g>1,(1−λ)T + λg>1,λT

)
S−111 D0,1

=
1

λ
g>1,TS

−1
11 D0,1.

For finite T , however, (10) and (11) will generally not be equivalent. Therefore the values

of the adjusted-moment and over-identified estimators will differ as well.

There is a special case when the two estimators will be the same, even in finite samples.

The estimators will be identical when

∂g1,(1−λ)T

∂θ
=
∂g1,λT
∂θ

,

which occurs, for example, when the parameter to be estimated is the mean of x.

1.5 The effect of the full sample

How does including the full sample influence the parameter estimates? For convenience, we

consider an often-encountered special case. We assume that the system is exact identified,

and, moreover, the first set of moment conditions (of length T ) is sufficient to identify a
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subset θ1 of the parameters. That is, θ1 is exactly identified by those moment conditions

available over the full sample. We will call the remaining parameters θ2.

We first discuss the effect of using the full sample on estimation of θ1. A natural

conjecture is that the long, adjusted-moment, and over-identified estimators all produce

the same estimates of θ1, namely those found by setting g1T equal to zero. This is clearly

the case for the adjusted-moment and long estimators. For the over-identified estimator, we

use the argument in the previous section to decompose the first-order conditions as follows:

1− λ
λ

g>1,(1−λ)TS
−1
11

∂g1,(1−λ)T

∂θ1
+ g>1,λTS

−1
11

∂g1,λT
∂θ1

+ (g2,λT −B21g1,λT )>Σ−1
∂

∂θ1
(g2,λT −B21g1,λT ) = 0 (12)

and

1− λ
λ

g>1,(1−λ)TS
−1
11

∂g1,(1−λ)T

∂θ2
+ g>1,λTS

−1
11

∂g1,λT
∂θ2

+ (g2,λT −B21g1,λT )>Σ−1
∂

∂θ2
(g2,λT −B21g1,λT ) = 0 (13)

Under our stated assumptions, f1 is only a function of θ1, not of θ2. Therefore, (13) reduces

to

(g2,λT −B21g1,λT )>Σ−1
∂

∂θ2
g2,λT = 0

Further, because the system is exactly identified, and because f1 can identify θ1, it follows

that ∂
∂θ2

g2,λT is invertible and that

g2,λT −B21g1,λT = 0.

Therefore,
1− λ
λ

g>1,(1−λ)TS
−1
11

∂g1,(1−λ)T

∂θ1
+ g>1,λTS

−1
11

∂g1,λT
∂θ1

= 0 (14)

is the first-order condition that identifies θ1 for the over-identified estimator. As discussed

in the section above, this set of equations will in general not be satisfied by the value of θ1

that sets g1T = 0. To summarize, the adjusted-moment estimator gives the same estimate

for θ1 as simply using the full sample. The over-identified estimator gives a possibly different

estimate, one that depends on the point in time in which the second series begins. While

this dependence is possibly unattractive, (14) nonetheless has an interpretation: it is a

weighted average of the moment conditions from the earlier and later parts of the sample,
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where the weights are proportional to the derivatives, and thus to the amount of information

contained in each part of the sample.

We now ask how including the full sample might effect the standard errors of θ1 and θ2.

We focus on asymptotic results, so the results for the over-identified and adjusted-moment

estimator will be the same.

D0 =

[
D0,1

D0,2

]
=

[
d11 0

d21 d22

]
,

where

dij =
∂fi
∂θj

, i = 1, 2,

and where d11 and d22 are invertible.

The inverse of D0 takes the form

D−10 =

[
d−111 0

−d−122 d21d
−1
11 d−122

]
.

Therefore, the asymptotic variance of the short estimator of θ1 equals d−111 S11(d
−1
11 )>. Simi-

larly, the asymptotic variance of the efficient estimators of θ1 (first block of
(
D>0

(
SA
)−1

D0

)−1
)

can be written as

d−111 S
A
11(d

−1
11 )> = λd−111 S11(d

−1
11 )>.

This shows that asymptotic standard errors for the estimates of θ1 shrink by a factor of

1 −
√
λ when the efficient estimators are used rather than the short estimator. As shown

above, the second set of moment conditions f2 has no effect on the estimation of θ1 (see

also Ahn and Schmidt (1995)).

The standard errors of the efficient estimators for θ2 are determined by the second

diagonal block of
(
D>0

(
SA
)−1

D0

)−1
, which reduces to

(
D>0

(
SA
)−1

D0

)−1
22

= d−122

[
d21d

−1
11 S

A
11 − SA21

] (
SA11
)−1 [

d21d
−1
11 S

A
11 − SA21

]>
(d−122 )>

+ d−122

[
SA22 − SA21

(
SA11
)−1

SA12

]
(d−122 )>. (15)

Thus the variance for the second set of parameters can be decomposed into two parts. The

first part represents the effect of the first moment conditions on the second variables. The

second part represents the variance due only to the residual variance of the second set of

moment conditions: SA22−SA21
(
SA11
)−1

SA12 is the variance-covariance matrix of the second set

13



of moment conditions conditional on the first. The second diagonal block of
(
D>0 S

−1D0

)−1
22

,

which gives the standard errors for θ2 under standard GMM, has an analogous decomposi-

tion:(
D>0 (S)−1D0

)−1
22

= d−122

[
d21d

−1
11 S11 − S21

]
(S11)

−1 [d21d−111 S11 − S21
]>

(d−122 )>

+ d−122

[
S22 − S21 (S11)

−1 S12

]
(d−122 )>. (16)

Comparing (15) with (16) reveals the source of the efficiency gain. The first term in

(15) is equal to λ multiplied by the first term in (16):[
d21d

−1
11 S

A
11 − SA21

] (
SA11
)−1 [

d21d
−1
11 S

A
11 − SA21

]>
= λ

[
d21d

−1
11 S11 − S21

]
S−111

[
d21d

−1
11 S11 − S21

]>
.

However the second terms are the same, not surprisingly because they represent the variance

of the second moment conditions conditional on the value of the first:

SA22 − SA21
(
SA11
)−1

SA12 = S22 − S21S−111 S12.

The percent decline in standard errors depends on the first term relative to the whole.

For example, when the second set of moments are perfectly correlated with the first set, the

residual variance is zero,

S22 − S21S−111 S12 = 0, (17)

and the standard errors for θ2 also shrink by a factor of 1 −
√
λ. At the other extreme,

suppose that f2 tells you nothing about θ1, i.e. d21 = 0 (θ1 does not enter into f2) and

S21 = S>12 = 0 (the moment conditions are independent). Then the inclusion of the longer

series leads to no shrinkage in the asymptotic variance of θ2.

Of course, even if the two sets of moment conditions are independent (S21 = S>12 = 0),

the sampling variance of θ2 may still fall because the sampling variance of θ1 is reduced. As

long as d21 6= 0, the first term in (15) is nonzero and there is an effect on the standard errors

of θ2. Similarly, even if there is no impact of θ1 on the second set of moment conditions

(d21 = 0) the first set of moment conditions help to estimate θ2 if the covariance between

the two moment conditions is nonzero.

Imposing the restriction d21 = 0 allows us to extend the above discussion to the long

estimator. In this exactly-identified case, the long estimator θ̂LT solves

g1,T (x, θ̂LT ) = 0 (18)

g2,λT (x, θ̂LT ) = 0. (19)
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It follows that long estimates for θ1 are asymptotically identical to the efficient estimates

for these parameters (they are numerically identical to the adjusted-moment estimates and

asymptotically identical to the over-identified estimates). However, the long estimates of

θ2 are numerically identical to the short estimates, not to the efficient estimates.10 This

follows because the efficient estimates for θ2 solve

g2,λT (x, θ̂AT ) + B̂21,λT (g1,T (x, θ̂AT )− g1,λT (x, θ̂AT )) = 0

rather than (19). This starkly illustrates the surprising role of the long sample in helping

to estimate θ2.
11 As we illustrate in the section that follows, this surprising result occurs

because the separation uncovers the deviation of g1,λT from zero. Because of the correlation

between g1,λT and g2,λT , the deviation of g1,λT from zero implies that g2,λT is also likely

to deviate from zero. The efficient estimators make use of this information to construct an

estimator of the mean of f2(x, θ) that improves on g2,λT .

2 Application to predictive regressions in international data

This section applies our method to estimating predictive regressions for returns in interna-

tional data. Reliable international data typically begin substantially later than U.S. data.

At the same time, predictive regressions are often measured with noise, making it desirable

to use as long a data series as possible. Our methods allow international data to be used

at the same time as longer US data.

2.1 Data

For the U.S., we use the annual data of Shiller (1989, Chap. 26), which begin in 1871 and

are updated through 2005. Stock returns, prices and earnings are for the S&P 500 index.

The predictor variable we use is the ratio of previous ten-year earnings to current stock

price. We refer to this as the smoothed earnings-price ratio. This ratio is motivated by the

present-value formula linking the earnings-price ratio to returns; normalizing by smoothed

earnings rather than earnings has the advantage that it eliminates short-term cyclical noise

10It is tempting to conclude that the lower variance for θ̂L1,T and the same variance for θ̂L2,T implies that the
long estimator is more efficient than the short estimator. This is not the case however. Efficiency requires
that any linear combination of θ̂L1,T and θ̂L2,T have lower variance than the same linear combination of short
estimates.

11The result is even more surprising given that the presence of the second set of moment conditions does
not affect estimation of the first set in this exactly identified case, as shown by Ahn and Schmidt (1995).
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(see Campbell and Shiller (1988), Campbell and Thompson (2008)). The riskfree rate is

the return on six-month commercial paper purchased in January and rolled over in July.

Because the first ten years of the sample are used to construct the predictor variable, the

data series of the predictor and returns begins in 1881 and ends in 2005. All variables are

deflated using the consumer price index (CPI).

Data on international indices come from Ken French’s website. The raw data on inter-

national indices come from Morgan Stanley’s Capital International Perspectives (MSCI).

Fama and French (1989) discuss details of the construction of these data. The EAFE is

a value-weighted index for Europe, Australia, and the Far East: within the EAFE, coun-

tries are added when data become available. For each country returns are value-weighted

and countries are then weighted in proportion to their market values in the index. We

also examine results for sub-indices. These are Asia-Pacific (Australia, Hong Kong, Japan,

Malaysian, New Zealand, Singapore), Europe without the UK (Austria, Belgium, Switzer-

land, Germany, Spain, France, Italy, Netherlands), Europe with the UK (same as previous

with Great Britain and Ireland) and Scandinavia (Denmark, Finland, Norway, Sweden).

Data are monthly from 1975 to 2005. We compound the monthly dollar returns on these

indices to create annual returns. We then subtract changes in the CPI from the Shiller data

set described above from the log of these returns to create real continuously compounded

returns.

2.2 Applying the estimators

Let r1,t denote the excess return on the long-history asset (the S&P 500) and r2,t the excess

return on the short-history asset (the EAFE or one of the sub-indices). We estimate the

predictive regressions

r1,t+1 = α1 + β1zt + ε1,t+1 (20)

r2,t+1 = α2 + β2zt + ε2,t+1 (21)

jointly for S&P 500 and international index excess returns, where zt is the smoothed

earnings-price ratio on the S&P. Moment conditions are determined by

f1(xt, θ) =

[
1

zt

]
(r1,t+1 − α1 − β1zt) (22)

f2(xt, θ) =

[
1

zt

]
(r2,t+1 − α2 − β2zt), (23)
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where xt = (r1,t, r2,t, zt−1),

θi = [αi, βi]
>, i = 1, 2,

and θ = [θ>1 θ>2 ]>. The regression coefficients are identified by the conditions

E [f1(xt, θ0)] = E [f2(xt, θ0)] = 0.

The system is exactly identified and f1 is sufficient to identify α1 and β1. Therefore we are

in the setting of Section 1.5. Moreover, α1 and β1 do not appear as arguments in f2. The

source of the gain in estimating α2 and β2 will therefore be the correlation in the moment

conditions, which arises from the correlation between shocks to r1,t and r2,t, as shown in

Section 1.5. We refer to the two moment conditions implied by f1 as the long-history

moment conditions and the moment conditions implied by f2 as the short-history moment

conditions.

Define matrices

ZT =


1 z0
...

...

1 zT−1

 , ZλT =


1 z(1−λ)T
...

...

1 zT−1

 , Z(1−λ)T =


1 z0
...

...

1 z(1−λ)T−1

 .
and similarly,

R1,T =


1 r1,1
...

...

1 r1,T

 , R1,λT =


1 r1,(1−λ)T+1
...

...

1 r1,T

 , R1,(1−λ)T =


1 r1,1
...

...

1 r1,(1−λ)T

 ,
and

R2,λT =


1 r2,(1−λ)T+1
...

...

1 r2,T

 .
The partial sums in Section 1.1 can then be written as

g1,T (x, θ) =
1

T
Z>T (R1,T − ZT θ1) (24)

g1,(1−λ)T (x, θ) =
1

(1− λ)T
Z>(1−λ)T

(
R1,(1−λ)T − Z(1−λ)T θ1

)
(25)

g1,λT (x, θ) =
1

λT
Z>λT (R1,λT − ZλT θ1) (26)

g2,λT (x, θ) =
1

λT
Z>λT (R2,λT − ZλT θ2) (27)
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The short estimator is the solution to equations defined by setting (26) and (27) to zero.

This is the same as ordinary least squares (OLS) regression over the 1975–2005 period. The

adjusted-moment estimator requires an estimate of B21. In this context, this is a 2 × 2

matrix of coefficients of a multivariate regression of errors from the short-history moment

conditions on errors from the long-history moment conditions. To calculate this regression,

we first estimate the system using the short method and evaluate f1 and f2 at the short

estimates. We then have a sequence of observations on the errors for the moment conditions

from 1975–2005. Regressing the errors that correspond to f2 on the errors that correspond

to f1 yields the 4 entries of the matrix B̂21,λT . Given B̂21,λT , the adjusted-moment estimator

is the solution to equations defined by setting (24) and

g2,λT (x, θ) + B̂21,λT (g1,T (x, θ)− g1,λT (x, θ))

to zero. For the long-history asset, this corresponds to OLS regression over the 1881–2005

period. For the short-history asset, this corresponds to a regression over the later part of

the sample period, plus an adjustment which, as we show below, can be quite substantial.

While the adjusted-moment and short estimators are exactly identified, the over-identified

estimator is not, as its name suggests. Moment conditions for the over-identified estimator

are (25), (26) and (27). The weighting matrix is the inverse of an estimate of SI , which can

be calculated based on submatrices of an estimate of S as in (9). Below, we explain how

we estimate S.

Obtaining standard errors requires an estimate of the derivative matrix D0 and an

estimate for the variance matrix S. The results of Section 1 require only that we choose

estimators that are consistent. However, it is most in the spirit of our approach to use the

full data in constructing D̂T and ŜT . A consistent estimator of the derivative matrix D0

that makes use of the full sample is

D̂T = I2 ⊗
1

T
Z>T ZT ,

where I2 is the 2× 2 identity matrix.

To construct an estimate for ŜT that makes use of the full sample, we apply the procedure

outlined in Stambaugh (1997) for constructing a positive-definite variance-covariance matrix

for data of unequal lengths. We describe this procedure in Appendix D.
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2.3 Results

Prior to reporting the results for the predictive regressions, we briefly discuss the estimates

of the mean returns implied by our methods. The implementation for this estimation is very

similar to, and is less complicated than, the implementation of the predictability estimation

described above. Note that our estimators take the same form as those of Stambaugh (1997)

in the setting of estimating sample means.12

The first two columns of Table 1 report results and standard errors for the short esti-

mator; the second two columns report results and standard errors for the adjusted-moment

and over-identified estimators. Because these are numerically equivalent in the setting of

estimating means, we refer to them jointly as the efficient estimator. As the columns for

short show, the sample mean for excess returns on the S&P 500 in the 1975–2005 period

was 5.64% with a standard error of 3.16%. The sample mean over the full period is 3.96%

as the efficient column shows. It is also estimated much more precisely: the standard error

falls from 3.16% to 1.55%.

Introducing data from 1881–1975 also results in more precise estimates of the excess

return on short-history assets. For the EAFE index, the standard errors falls from 3.79 for

the short method to 3.09 for the efficient methods (the correlation between the S&P 500

and the EAFE portfolios is 0.67). It is this correlation that leads to the reduced standard

errors. In particular, the fact that the mean return for the S&P 500 was somewhat higher in

the later part of the sample than the earlier part implies that shocks during the 1975–2005

period had a positive mean on average. The efficients estimators therefore adjust the mean

excess return on the EAFE downward.

Estimation for the sub-indices also improves, more dramatically for the European indices

and less so for the Asia-Pacific index. While the correlation between the Asia-Pacific index

and the S&P 500 index is 0.43, the correlation between the European indices and the

S&P 500 exceed 0.70. As shown in Section 1.5, higher correlations between the moment

conditions lead to greater improvement for the short-history asset.

Table 2 reports results of estimating the predictive regressions. We show the coefficients

12In the i.i.d. normal setting of Stambaugh (1997), the estimate of the matrix B21 is comprised of regression
coefficients of the short-history series on the long-history series. This estimate will also be consistent under
more general distributional assumptions, including conditional heteroskedasticity. However, allowing for
serial correlation would require a different estimate of B21 (which could be derived from submatrices of S).
For the current application (which uses annual non-overlapping observations), allowing for serial correlation
is unlikely to have a large effect.
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on the predictive variable, the standard error on this variable, and the R2, computed as the

sample variance of the predicted return divided by the sample variance of the total return.13

In the short sample, the point estimates for all the portfolios are positive but insignificant:

t-statistics are below 1 for all portfolios. The R2 values are also small, e.g. 0.6% for the S&P

500. There is more evidence for predictability in the longer sample. For the S&P 500, the

adjusted-moment method leads to an estimated coefficient of 0.093 with a standard error

of 0.038 and an R2 of 4.2%. The over-identified method leads to an estimated coefficient of

0.065 and an R2 of 2.1%.

Well-known theoretical results demonstrate that ordinary least squares regression pro-

duces the best fitting regression estimates, given a single series of data. In this predictive

regression setting, OLS is equivalent to our short method. Our results show that one can im-

prove on OLS if one has data on a series for which a longer sample is available. Indeed, this

application shows that including the earlier period of the sample has a substantial impact on

the estimation for the EAFE and other short-history assets. The adjusted-moment method

leads to an estimated coefficient of 0.128, as opposed to 0.073 using the short method.

Moreover, the standard error on this estimate falls from 0.118 to 0.097. The implied R2 is

12%, up from 3.8% when the short method is used. Results for the over-identified estima-

tor are similar: the coefficient is 0.101 with an R2 of 7.3%. Similar effects are present for

sub-indices of the EAFE.

Essentially, our methods exploit the information that the evidence for predictability in

the U.S. is stronger in the full sample than over the latter half. Under the assumption of

stationarity, shocks to returns and to the predictive variable over the latter half of the sample

must be such that the predictive coefficient estimated over this data range is too small.

Because of the correlation between international returns and U.S. returns, OLS regression

for international returns over the same data range would also be likely to understate the

extent of predictability. Thus the efficient estimators adjust the OLS (short) estimate

upward. The resulting estimates have less noise, as represented by the smaller standard

errors in Table 2. While the annual data sample is still too short to comment on statistical

significance (except for the U.S.), it is clear that the economic significance of predictability

is a great deal higher when the early part of the sample is included.

13For each series, we use the data that are available in computing the R2.
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2.4 Efficient versus inefficient use of the full data

Finally, we use this application to contrast the efficient estimators with the long estimator,

which uses the full sample but in an inefficient way. In so doing, we illustrate the theoretical

results presented at the end of Section 1.5.

The results in Section 1.5 imply that the long estimate for the predictability coefficient

β1 is numerically identical to the adjusted-moment estimate and asymptotically equal to

the over-identified estimate of this coefficient. Both the long and the adjusted-moment

estimate are equal to the value obtained from an OLS regression of S&P 500 returns on

the predictor variable over the full sample of data. In contrast, the long estimate for β2

is not equal to the adjusted-moment or over-identified estimate. Rather it is equal to the

short estimate of 0.073 (in the case of the EAFE), which is the value obtained from an

OLS regression of EAFE returns on the predictor variable over the 1975–2005 period. The

adjusted-moment estimate and the over-identified estimate are substantially higher, at 0.128

and 0.101 respectively.

The efficient estimators differ from the long estimator in that they divide the data on

the S&P 500 into two moment conditions, one defined over 1881–1975 and one defined

over 1975–2005. Dividing the data in this way does not alter the estimate (asymptotically)

of the predictive coefficient for the S&P 500. However, this division does create more

information: it uncovers the fact that there is less predictability in the S&P 500 over the

1975–2005 period than over the full period. As discussed in the previous section, our efficient

estimators correctly incorporate this information to improve estimation of β2.

3 Monte Carlo Analysis

In the previous sections we introduced two methods of implementing GMM with unequal

sample lengths and showed that these methods lead to improvements in asymptotic effi-

ciency. More precise estimates can be obtained both for assets with data available for the

full period and, more surprisingly, for assets with data available for the later part of the pe-

riod. A natural question is whether these gains are present for the small-sample distribution

of the estimates.

In this section we answer this question using a Monte Carlo experiment modeled after the

estimation of predictability. It is particularly useful to investigate this case in a small-sample

setting, as it is well known that asymptotic properties can fail noticeably for predictive
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regressions when the regressors are persistent (e.g., Cavanagh, Elliott, and Stock (1995),

Nelson and Kim (1993), Stambaugh (1999)).14

We simulate from the system (20)–(21) using the adjusted-moment regression coefficients

to determine the data-generating process. We augment this system with an autoregression

for the log of the smoothed earnings-price ratio zt:

zt+1 = ρ0 + ρ1zt + εz,t+1. (28)

We assume that the shocks are iid and normally distributed. Estimates for ρ0 and ρ1 are

obtained using the full data set and are equal to -0.294 and 0.892 respectively. For each

index, we estimate the variance-covariance matrix of errors from (20), (21) and (28) using

the method described in Appendix D. Table 3 reports the variances and correlations. The

contemporaneous correlation between innovations to zt and to S&P 500 returns r1,t is -0.91:

this large negative value is due to the fact that price is in the denominator of the smoothed

earnings-price ratio. Innovations to zt are also negatively correlated with innovations to

returns on the short-history assets. For example, the correlation with innovations to returns

on the EAFE is -0.515. Innovations to returns on the S&P 500 are also highly correlated

with innovations to international returns: this correlation is 0.65 for the EAFE and over

0.70 for the European sub-indices. Therefore it is reasonable to expect that incorporating

the earlier data period will affect the precision of the estimates for the short-history assets.

For each international index, we simulate 50,000 samples of returns on the S&P 500,

values for the predictor variable, and returns on that index. The sample length for the S&P

500 (the long-history asset) and the predictor variable is 124 years; the sample length for the

short-history asset is 30 years. We repeat the short, adjusted-moment and over-identified

estimations in each. We report both the standard deviations of the estimates (Table 4),

and the bias (Table 5, measured as the difference between the mean estimated and the true

coefficient).

Table 4 shows that the asymptotic efficiency gains discussed in Section 2.3 also appear in

finite samples. For the long-history asset the standard deviation of the predictive coefficient

falls from 0.133 to 0.48 for both the adjusted-moment and over-identified methods. For the

short-history assets, there is improvement in all but one case (when this asset is calibrated

to the Asia-Pacific index). When the asset is calibrated to the EAFE for example, the short

method delivers a standard deviation of 0.156. The adjusted-moment method delivers

14In contrast, the small-sample standard errors for the means are nearly identical to the asymptotic ones.
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a standard deviation of 0.134, the over-identified method a standard deviation of 0.135.

When the asset is calibrated to the European index, the standard deviation of the estimate

falls from 0.156 to 0.116 for both the adjusted-moment and over-identified methods. In

each case, the improvement in the small-sample standard errors is of the same magnitude

as the asymptotic standard errors.

The theory presented in Section 1 is silent on the subject of bias. However, it is of

interest to compare the performance of the efficient estimators to the standard estimator

in this regard. It is not surprising that the bias is reduced under the adjusted-moment and

over-identified estimators for the long-history asset. Because these estimators are consistent,

introducing the longer data should result in a lower bias. Indeed, while the bias for long-

history asset is 0.120 under the short estimator, it is 0.028 under the adjusted-moment

estimator and 0.015 under the over-identified estimator.

More surprising is the reduction in the bias for the short-history assets. When the

short-history asset is calibrated to the EAFE, the bias is 0.083 under the short estimator.

Under both the adjusted-moment and over-identified estimators, the bias is about equal to

zero (it is in fact very slightly negative for the over-identified estimator). Similar results

are apparent when the short-history asset is calibrated to the other indices.

While a full investigation is outside the scope of this study, the form of the estimators

gives some insight into the source of the bias reduction. Both the adjusted-moment and

the over-identified estimator use the fact that the standard GMM estimates for the long-

history asset differ between the full sample and the later part of the sample. Because

standard GMM is consistent, some of this difference arises from the bias in the coefficient

(because the bias, on average, will be worse in the later part of the sample than in the full

sample). Given that the moment conditions are correlated, the bias in estimates for the

long-history asset (measured over the later part of the sample) is also likely to appear for

the short-history asset (measured over the same period). The estimators can then use the

information on the bias for the long-history asset to correct the bias in the short-history

asset.

4 Extensions

In this section we briefly outline how our estimators can be extended to more general

patterns of missing data. We focus on the over-identified estimator which has a direct
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extension.15

Consider intervals of the data defined by points in time where at least one sample

moment starts or ends. Say these points in time divide the sample up into disjoint intervals

1, . . . , n. Let λ1 denote the ratio of the length of the first region to the length of the entire

sample, λ2 the ratio of the length of the second region to the length of the entire sample,

etc. Note that
∑n

i=1 λi = 1. Define points t1, . . . tn so that the first data segment begins at

t1 + 1, the second data segment at t2 + 1, etc. Then

gλjT (θ) =
1

λjT

tj+λjT∑
t=tj+1

f(xt, θ), j = 1, . . . , n.

For the case described in Section 1, the first segment consist of points 1 to (1− λ)T , while

the second segment consists of points (1 − λ)T + 1 to T . We adopt the same notational

convention as in Section 1: λjt will refer to the length of the segment between tj + 1 and

tj + λjT , and the segment itself.

Let φi denote the set of moment conditions that are observed in data segment λi, and

let πi denote the number of such moment conditions. Define

fφj (xt, θ) =
(
fi1(xt, θ), . . . , fiπj (xt, θ)

)>
,

where {i1, . . . , iπj} ∈ φj and i1 < · · · < iπj . Then fφj are the components of f observed

over the segment λjT . Define the πj × 1 vector

gφj ,λjT (θ) =
1

λjT

tj+λjT∑
t=tj+1

fφj (xt, θ)

and the πj × πj matrices

Rφj (τ) = E
[
fφj (x0, θ0)fφj (x−τ , θ0)

>
]

and

Sφj =

∞∑
τ=−∞

Rφj (τ).

Define

hInT (θ) =
[
gφ1,λ1T (θ)>, gφ2,λ2T (θ)>, . . . , gφn,λnT (θ)>

]>
. (29)

15The extension for the adjusted-moment estimator as well as examples for various patterns of missing
data can be found in the working paper Lynch and Wachter (2004).
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The In superscript refers to the fact that these are moment conditions for the over-identified

estimator, and that there are n non-overlapping intervals. The T subscript refers to the

fact that the data length is T .16 Let SIn be the variance-covariance matrix and ŜInT be an

estimate of SIn . We can then define the extended over-identified estimator as

θ̂InT = argminhInT (θ)>
(
ŜInT

)−1
hInT (θ). (30)

The same consistency and asymptotic normality results go through for the extended over-

identified estimator as for the original over-identified estimator. Moreover,

SIn =


1
λ1
Sφ1 0 . . . 0

0 1
λ2
Sφ2 . . . 0

0 0
. . . 0

0 0 0 1
λn
Sφn


We now state a result analogous to Theorem 1. That theorem showed that including

the data segment for which some data were missing improved efficiency relative to standard

GMM. Here we show that including a new data segment improves efficiency relative to the

estimator that includes all data but this segment. Without loss of generality, we consider

the full over-identified estimator relative to the over-identified estimator defined over the

first n − 1 blocks of data. The proof (available from the authors) is similar to that of

Theorem 1.

Theorem 3. Assume the over-identified estimator θ̂InT is defined as (30). Then this esti-

mator is asymptotically more efficient than θ̂
In−1

(1−λn)T , the analogous estimator that is defined

over the first n− 1 blocks of data.

5 Conclusion

This paper has introduced two estimators that extend the generalized method of moments

of Hansen (1982) to cases where moment conditions are observed over different sample

periods. Most estimation procedures, when confronted with data series that are of unequal

length, require the researcher to truncate the data so that all series are observed over the

same interval. This paper has provided an alternative that allows the researcher to use all

the data available for each moment condition.
16This notation does not, of course, completely define the over-identified estimator. For that, one would

need the points at which the data intervals begin, t1, . . . , tn. These points in turn depend on λ1, . . . , λn and
T .
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Under assumptions of mixing and stationarity, we demonstrated consistency, asymptotic

normality, and efficiency over both standard GMM and an extension of GMM that uses the

full data in a naive way. Our base case assumed that the two series had the same end date

but different start dates. We then generalized our results to cases where the start date

and the end date may differ over multiple series. In all cases, using all the data produces

more efficient estimates. Moreover, the impact of including the non-overlapping portion

of the data is not limited to estimating moment conditions which are available for the full

period. As long as there is some interaction between the moment conditions observed over

the full period and those observed over the shorter period there will be an impact on all the

parameters. This interaction can be through covariances between the moment conditions,

or through the fact that some parameters appear in both the moment conditions available

over the full sample and those available over the shorter sample. In an application of our

methods to estimation of conditional and unconditional means in international data, we

show that this impact can be large.

Our two estimators are as straightforward to implement as standard GMM and have

intuitive interpretations. The adjusted-moment estimator calculates moments using all the

data available for each series, and then adjusts the moments available over the shorter series

using coefficients from a regression of the short-sample moment conditions on the full-sample

moment conditions. The over-identified estimator uses the non-overlapping data to form

additional moment conditions. These two estimators are equivalent asymptotically, and

superior to standard GMM, but differ in finite samples. We leave the question of which

estimator has superior finite-sample properties to future work.
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Appendix

A Independence results

Underlying all our results is the asymptotic independence and joint normality of sums taken

over disjoint intervals. To achieve this result, we rely on an assumption that is standard in

the econometrics literature, namely that the underlying process xt is mixing. That is, let

{xt}∞t=−∞ denote a p-component stochastic process defined over an underlying probability

space (Ω,F , P ). Let Fba ≡ σ(xt; a ≤ t ≤ b), the Borel σ-algebra of events generated

by xa, . . . , xb. Consider a function f : Rp × Θ → Rl for Θ, a compact subset of Rq.

The function f provides the restrictions that determine θ based on the observations of xt.

Following White and Domowitz (1984), define

α (F ,G) ≡ sup
{F∈F ,G∈G}

|P (FG)− P (F )P (G)|

for σ-algebras F and G, and

α(s) ≡ sup
t
α
(
F t−∞,F∞t+s

)
.

The process {xt} is said to be α-mixing if α(s)→ 0 as s→∞. This assumption guarantees

that autocovariances vanish at arbitrarily long longs. Mixing is a convenient assumption

because it allows a trade-off between the speed at which α(s) approaches zero and the

conditions required on the function f . An ARMA process, for example, entails relatively fast

convergence of α(s), and thus requires only weak conditions on f . For a precise statement

of these conditions (which we require to hold for f and its first derivatives), as well as other

standard assumptions (namely, stationarity of xt, uniqueness of θ0, and θ0 in the interior of

the set on which f is defined) see White and Domowitz.

Define

wt = f(xt, θ0).
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It is useful to slightly generalize the notation of Section 1. Let

gT (θ) =
1

T

T∑
t=1

f(xt, θ)

g(1−λ)T (θ) =
1

(1− λ)T

(1−λ)T∑
t=1

f(xt, θ)

gλT (θ) =
1

λT

T∑
t=(1−λ)T+1

f(xt, θ).

The following lemma states that partial sums taken over disjoint intervals are asymp-

totically independent.

Lemma A.1. Let F ∈ F0
−∞. Let µ be a 1× l vector, and let c be a scalar. Let

Pg = lim
T→∞

P
(√

TµgT (θ0) < c
)
.

Then

lim
T→∞

P
((√

TµgT (θ0) < c
)
F
)

= PgP (F ).

Proof. For any integer T ,

√
TgT (θ0) =

1√
T

b
√
T c∑

t=1

wt +
1√
T

T∑
t=b
√
T c+1

wt,

where b
√
T c is the largest integer less than the square root of T . Then

1√
T

b
√
T c∑

t=1

wt =
b
√
T c√
T

1

b
√
T c

b
√
T c∑

t=1

wt →a.s. 0

as T →∞, by Theorem 2.3 of White and Domowitz (1984). Because

1√
T

T∑
t=b
√
T c+1

wt ∈ F∞√T ,

∣∣∣∣∣∣P
 1√

T

T∑
t=b
√
T c+1

µwt < c

F
− P

 1√
T

T∑
t=b
√
T c+1

µwt < c

P (F )

∣∣∣∣∣∣ < α(
√
T ).
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White and Domowitz (1984) show that wt is α-mixing. Therefore α(
√
T ) goes to 0 as

T →∞. By the Slutsky theorem,

lim
T→∞

P
((√

TµgT (θ0) < c
)
F
)

= lim
T→∞

P

 1√
T

T∑
t=b
√
T c+1

µwt < c

F


= lim
T→∞

P

 1√
T

T∑
t=b
√
T c+1

µwt < c

P (F )

= PgP (F ),

where the second line follows because wt is α-mixing, and the last line follows from a second

application of the Slutsky Theorem.

Lemma A.2. As T →∞,

√
T

[ √
(1− λ)g(1−λ)T (θ0)√

λgλT (θ0)

]
→d N

(
0,

[
S 0

0 S

])
.

Proof. White and Domowitz (1984, Theorem 2.4) show√
(1− λ)Tg(1−λ)T (θ0)→d N(0, S) (31)

and
√
λTgλT (θ0)→d N(0, S). (32)

Stationarity of xt implies that random variables f(x−(1−λ)T+1, θ), . . . , f(xλT , θ) have the

same joint distribution as random variables f(x1, θ), . . . , f(xT , θ). Thus partial sums taken

over f(x−(1−λ)T+1, θ), . . . , f(xλT , θ) have the same distribution as the corresponding partial

sums taken over f(x1, θ), . . . , f(xT , θ). Define

g̃λT (θ) =
1

λT

λT∑
t=1

f(xt, θ)

g̃(1−λ)T (θ) =
1

(1− λ)T

(1−λ)T−1∑
t=0

f(x−t, θ).

It suffices to prove the results for g̃λT and g̃(1−λ)T .

LetN (c) denote the cumulative distribution function of the standard normal distribution

evaluated at c. Let µ1 and µ2 be 1× l vectors such that µ1µ
>
1 = µ2µ

>
2 = 1. By Lemma A.1,

lim
T→∞

P
(
µ1
√

(1− λ)TS−1g̃(1−λ)T (θ0) < c1, µ2
√
λTS−1g̃λT (θ0) < c2

)
=

lim
T→∞

P
(
µ1
√

(1− λ)TS−1g(1−λ)T (θ0) < c1

)
lim
T→∞

(
µ2
√
λTS−1g̃λT (θ0) < c2

)
= N (c1)N (c2)
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for scalars a and b. This shows g̃λT (θ0) and g̃(1−λ)T (θ0) are asymptotically independent, and

therefore that gλT (θ0) and g(1−λ)T (θ0) are asymptotically independent. The result follows

from (31) and (32).

B Deriving the Asymptotic Distribution

This Appendix derives the asymptotic distribution for the four estimators we consider. For

notational convenience, it is useful to define functions hk that give the moment conditions

for each estimator. Besides the assumptions stated in Appendix A, the results in this section

also require that the weighting matrices for each estimator converge to a positive definite

weighting matrix.

hST (θ) =
[
g1,λT (θ)> g2,λT (θ)>

]>
hLT (θ) =

[
g1,T (θ)> g2,λT (θ)>

]>
hAT (θ) =

[
g1,T (θ)>

(
g2,λT (θ) + B̂21,λT (1− λ)(g1,(1−λ)T (θ)− g1,λT (θ))

)>]>
hIT (θ) =

[
g1,(1−λ)T (θ)> g1,λT (θ)> g2,λT (θ)>

]>
,

where For k ∈ S,L,A, I, given a weighting matrix W k
T , let

θk = argminθ h
k
T (θ)>W k

Th
k
T (θ),

Theorem B.1. As T →∞,

√
λThkT (θ0)→d N(0, Sk),

where SS = S, and SL, SA and SI are defined in (7)–(9).

Proof. The result for the short estimator follows directly from Lemma A.2. To illustrate

the proof for the remaining matrices, we derive (8); the proofs of (7) and (9) are similar.

In what follows, the argument θ0 is suppressed and convergence is in the sense of almost

surely.

Stationarity implies that SA11 = λS11. By Lemma A.2,

lim
T→∞

E
[√

λT
(
λgi,λT + (1− λ)gi,(1−λ)T

)√
λT
(
gj,(1−λ)T − gj,λT )

)>]
= lim

T→∞

(
−E

[√
λTλgi,λT

√
λTg>j,λT

]
+ E

[√
λT (1− λ)gi,(1−λT )

√
λTg>j,(1−λ)T

])
= λSij − λSij = 0 (33)
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for i, j = 1, 2. Therefore,

SA12 = lim
T→∞

E
[√

λT
(
λg1,λT + (1− λ)g1,(1−λ)T

)√
λT
(
g2,λT +B21(1− λ)(g1,(1−λ)T − g1,λT )

)>]
= lim

T→∞
E
[√

λT
(
λg1,λT + (1− λ)g1,(1−λ)T

)√
λTg>2,λT

]
= lim

T→∞
E
[√

λTλg1,λT
√
λTg>2,λT

]
= λS12.

The second line follows from (33) and the third and fourth lines follow from Theorem A.2.

Using similar reasoning,

SA22 = lim
T→∞

E
[√

λTg2,λT
√
λTg>2,λT

]
− 2 lim

T→∞
(1− λ)E

[√
λTg2,λT

√
λTg>1,λT

]
B>21

+ lim
T→∞

B21(1− λ)2E
[√

λT (g1,(1−λ)T − g1,λT )
√
λT (g1,(1−λ)T − g1,λT )>

]
B>21

= S22 − 2(1− λ)S21S
−1
11 S12 + (1− λ)2

(
λ

1− λ
+ 1

)
S21S

−1
11 S12

= S22 − (1− λ)S21S
−1
11 S12,

which completes the derivation of (8).

Theorem B.2 establishes consistency of the estimators.

Theorem B.2. As T →∞, θ̂kT →a.s. θ0 for k ∈ {S,L,A, I}.

Proof. White and Domowitz (1984) show that under these assumptions

|gλT (θ)− Ef(xt, θ)| →a.s. 0

|g(1−λ)T (θ)− Ef(xt, θ)| →a.s. 0

as T →∞ uniformly in θ ∈ Θ. By the continuous mapping theorem,

hkT (θ)>W k
Th

k
T (θ)→a.s. E[f(xt, θ)]

>W kE[f(xt, θ)]

for k ∈ {S,L,A}, and

hIT (θ)>W IT h
I
T (θ)→a.s. E[f1(x1t, θ)

> f(xt, θ)
>]>W IE

[
f1(x1t, θ)

f(xt, θ)

]

uniformly in θ. The result then follows from Amemiya (1985, Theorem 4.1.1).
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For convenience, define the notation

Dk
0 = D0 k ∈ {S,L,A}

DI0 =
[
D>0,1 D

>
0,1 D

>
0,2

]>
.

The following theorem establishes asymptotic normality.

Theorem B.3.

√
λT (θ̂kT − θ0)→d N

(
0,
(

(Dk
0)>W kDk

0

)−1 (
(Dk

0)>W kSkW kDk
0

)(
(Dk

0)>W kDk
0

)−1)
.

Proof. Define

Dk
T (θ) =

∂hkT
∂θ

(θ)

for θ in the interior of Θ. For T sufficiently large, θ̂kT lies in the interior of Θ. By the mean

value theorem, there exists a θ̃k in the segment between θ0 and θ̂kT such that

hkT (θ̂kT )− hkT (θ0) = Dk
T (θ̃k)(θ̂kT − θ0).

Pre-multiplying by Dk
T (θ̂kT )>W k

T :

Dk
T (θ̂kT )>W k

T

(
hkT (θ̂kT )− hkT (θ0)

)
= Dk

T (θ̂kT )>W k
TD

k
T (θ̃k)(θ̂kT − θ0).

By the first-order condition of the optimization problem,

Dk
T (θ̂kT )>W k

TD
k
T (θ̃k)(θ̂kT − θ0) = −Dk

T (θ̂kT )>W k
Th

k
T (θ0).

Theorem 2.3 of White and Domowitz (1984) implies that

Dk
T (θ)→a.s. E

[
∂f

∂θ
(xt, θ)

]
for k ∈ {S,L,A}, and

DIT (θ)→a.s. E

[
∂f1
∂θ (x1t, θ)
∂f
∂θ (xt, θ)

]
uniformly in θ. Therefore by Theorem B.2 and Amemiya (1985, Theorem 4.1.5),

Dk
T (θ̂kT )→a.s. D

k
0

Dk
T (θ̃k)→a.s. D

k
0 .

The result follows from the Slutsky Theorem.
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As in Hansen (1982) choosing the weighting matrix that is a consistent estimator of the

inverse variance-covariance matrix is efficient for a given set of moment conditions.

Theorem B.4. Suppose W k
λT →a.s. Wk = (Sk)−1. Then

√
λT (θ̂kT − θ0)→d N

(
0,

(
(Dk

0)>
(
Sk
)−1

(Dk
0)

)−1)
.

Moreover, this choice of W k is efficient for each estimator.

C Proofs of the theorems in the text

Proof of Theorem 1

It suffices to compare the asymptotic variances of each estimator because the mean is the

same for all of them. That is, it suffices to show that the variance in these expressions is

equal for the adjusted-moment and over-identified estimators, and is smaller (in a matrix

sense) for these estimators than for the long and short estimator. Equivalently, we show(
[D>0,1 D

>
0 ]>

(
SI
)−1 [ D0,1

D0

])−1
=
(
D>0

(
SA
)−1

D0

)−1
≤
(
D>0 S

−1D0

)−1
, (34)

and (
D>0

(
SA
)−1

D0

)−1
≤
(
D>0

(
SL
)−1

D0

)−1
. (35)

where A ≤ B should be interpreted as stating that B −A is positive semi-definite.

We begin by showing the equivalence of the adjusted-moment and over-identified esti-

mators. From (9) and from the expression for the inverse of an invertible matrix it follows

that

(
SI
)−1

=

[
1−λ
λ S−111 0

0 S−1

]

=


1−λ
λ S−111 0 0

0 S−111 +B>21Σ
−1B21 −B>21Σ−1

0 −Σ−1B21 Σ−1

 .
Moreover, it follows from the formula for the matrix inverse (see Green (1997, Chapter 2))

that (
SA
)−1

=

[
1
λS
−1
11 +B>21Σ

−1B21 −B>21Σ−1

−Σ−1B21 Σ−1

]
.
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The equality in (34) follows.

To show the remaining statements, we note that it suffices to show SA ≤ S, and SA ≤

SL.17 To show SA ≤ S, note that

S − SA = (1− λ)

[
S11 S12

S21 S21S
−1
11 S12

]
.

For any l × 1 vector v = [v>1 , v
>
2 ]>,

v>(S − SA)v = (1− λ)
(
v>1 S11v1 + v>1 S12v2 + v>2 S21v1 + v>2 S21S

−1
11 S12v2

)
= (1− λ)(S11v1 + S12v2)

>S−111 (S11v1 + S12v2) ≥ 0

because S−111 is positive-semi-definite and λ < 1. To show that SA ≤ SL

SL − SA =

[
0 0

0 (1− λ)S21S
−1
11 S12

]

which is positive semi-definite by the same reasoning. The first statement of the theorem

then implies that θ̂IT is also more efficient than θ̂ST and θ̂LT .

Proof of Theorem 2

Define

U = WD0

(
D>0 WD0

)−1
.

By Theorem B.3, it suffices to show that U>SU −U>SAU and that U>SLU −U>SAU are

positive semi-definite. For any vector v,

v>(U>SU − U>SAU)v = (Uv)>(S − SA)Uv > 0

because S−SA is positive semi-definite. A similar argument shows that U>SLU −U>SAU

is positive semi-definite.

17For invertible matrices U1 and U2, if U1 −U2 is positive semi-definite, then U−1
2 −U−1

1 is positive semi-
definite (Goldberger (1964, Chapter 2.7)). It follows that for a conforming matrix M , (M>U−1

1 M)−1 −
(M>U−1

2 M)−1 is positive semi-definite.
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Derivation of the first-order conditions for the efficient estimators

Differentiating the objective function for the over-identified estimator with respect to θ

yields

1− λ
λ

g>1,(1−λ)TS
−1
11

∂g1,(1−λ)T

∂θ
+ g>1,λTS

−1
11

∂g1,λT
∂θ

+
[
g>1,λT g>2,λT

] [ B>21Σ
−1B21 −B>21Σ−1

−Σ−1B21 Σ−1

][
∂g1,λT
∂θ

∂g2,λT
∂θ

]
= 0,

which reduces to

1− λ
λ

g>1,(1−λ)TS
−1
11

∂g1,(1−λ)T

∂θ
+ g>1,λTS

−1
11

∂g1,λT
∂θ

+ (g2,λT −B21g1,λT )>Σ−1
∂

∂θ
(g2,λT −B21g1,λT ) = 0.

Differentiating the objective function for the adjusted-moment estimator with respect

to θ yields

1

λ
g>1,TS

−1
11

∂g1,T
∂θ

+
[
g>1,T

(
gA2,T

)>] [ B>21Σ
−1B21 −B>21Σ−1

−Σ−1B21 Σ−1

][ ∂g1,T
∂θ

∂gA2,T
∂θ

]
= 0,

which reduces to

1

λ
g>1,TS

−1
11

∂g1,T
∂θ

+ (B21g1,λT − g2,λT )>Σ−1
∂

∂θ
(B21g1,λT − g2,λT ) = 0.

D Estimating the spectral density matrix using the full data
set

Calculating the standard errors requires calculating the spectral density matrix for the

adjusted-moment and over-identified estimators. Section 1.2 shows that these matrices can

be written in terms of submatrices of S, the spectral density matrix corresponding to the

original system of equations. One could estimate S over the short sample using any of the

standard estimators, extract the submatrices and construct SA and SI accordingly.

However, it is more in the spirit of our approach to estimate S using the full data. Define

ŵit = fi(xt, θ̂), i = 1, 2,

where θ̂ could be any consistent estimator of θ. Let

Ŝ11,T =
1

T

T∑
t=1

ŵ1tŵ
>
1t.
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Note that Ŝ11,T is the White (1980) estimator of S11. Define

B̂21 =

T∑
t=(1−λ)T+1

ŵ2tŵ
>
1t

 T∑
t=(1−λ)T+1

ŵ1tŵ
>
1t

−1 .
Note that B̂12 is the matrix of regression coefficients from a regression of the second set of

moment conditions on the first. Finally, define

Σ̂ =
1

λT

T∑
t=(1−λ)T+1

(ŵ2t − B̂21ŵ1t)(ŵ2t − B̂21ŵ1t)
>.

Then Σ̂ is an estimator of the residual variance of the regression.

Assuming that the errors are serially uncorrelated (but, allowing for conditional het-

eroskedasticity),

B̂12 →a.s. S
−1
11 S12

and

Σ̂→a.s. S22 −B21S11B
>
21.

Therefore

ŜT =

[
Ŝ11,T Ŝ11,T B̂

>
21,λT

B̂21,λT Ŝ11,T Σ̂ + B̂21,λT Ŝ11,T B̂
>
21,λT

]
(36)

is a consistent estimator of S.

Of course, ŜT is not the only possible estimator of S that uses all of the data. One

could naively use all the data by using the full set of observations to estimate S11, but

only the last λT to estimate S12 and S22. However, this approach may not produce a

positive-definite matrix in finite samples. By contrast (36) is positive definite, as shown

by Stambaugh (1997), who makes use of it in a maximum likelihood context. The result

that ŜT is positive definite and consistent does not rely on the assumption of iid normal

observations. A related question is whether ŜT is an efficient estimator of S. Anderson

(1957) shows ŜT is the maximum likelihood estimator of the variance-covariance matrix

when errors are normal and iid. We leave the questions of the efficiency (and finite sample)

properties of ŜT in a more general GMM setting to future work.
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Table 1: Mean Excess Returns on International Indices

Means are estimated for excess returns on international indices. Returns are annual, con-
tinuously compounded and in excess of the riskfree rate. US refers to returns on the S&P
500; EAFE refers to returns on an index for Europe, Asia and the Far East; Asia-Pacific,
Europe, Europe without UK and Scandinavia are sub-indices of the EAFE. “Short” denotes
estimates obtained using standard GMM; “Efficient” denotes estimates obtained using the
adjusted-moment method or over-identified method, which are numerically identical in this
application. Results for the “Long” estimator (not shown) are equal to the results for Effi-
cient for the U.S. and the results for Short for all other assets. Standard errors are computed
using efficient estimates and are robust to conditional heteroskedasticity. Data for the US
span the 1881-2005 period; data for the other indices span the 1975–2005 period. Means
and standard errors are reported in percentage terms.

Short Efficient

Mean SE Mean SE

US 5.64 3.16 3.96 1.55

EAFE 5.29 3.79 3.95 3.09

Asia-Pacific 3.52 4.80 2.43 4.46

Europe 6.46 3.68 4.92 2.68

Europe without UK 5.40 4.17 3.69 3.09

Scandinavia 7.00 4.58 5.27 3.60
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Table 2: Predictive Regressions for Excess Returns on International Indices

Predictive regressions are estimated in annual data for excess returns on international in-
dices. The table reports the estimate of the coefficient on the predictor variable (Coef.),
the standard error (SE) on this coefficient and the R2 from the regression. The predictive
variable is the log of the smoothed earnings-price ratio. Returns are annual, continuously
compounded, and in excess of the riskfree rate. US refers to returns on the S&P 500; EAFE
refers to returns on an index for Europe, Asia and the Far East; Asia-Pacific, Europe,
Europe without UK and Scandinavia are sub-indices of the EAFE. “Short” denotes stan-
dard GMM; “AM” denotes the adjusted-moment method; “OI” denotes the over-identified
method. Results for the “Long” estimator (not shown) are equal to the results for AM for
the U.S. and the results for Short for all other assets. Standard errors are computed using
AM estimates and are robust to conditional heteroskedasticity. Data for the US span the
1881-2005 period; data for the other indices span the 1975–2005 period.

Short AM OI

Coef. SE R2 Coef. SE R2 Coef. SE R2

US 0.036 0.077 0.006 0.093 0.038 0.042 0.065 0.038 0.021

EAFE 0.073 0.118 0.038 0.128 0.097 0.117 0.101 0.097 0.073

Asia-Pacific 0.121 0.185 0.059 0.170 0.175 0.117 0.147 0.175 0.086

Europe 0.038 0.103 0.012 0.097 0.076 0.077 0.068 0.076 0.037

Europe without UK 0.018 0.114 0.002 0.080 0.088 0.040 0.050 0.088 0.016

Scandinavia 0.015 0.164 0.001 0.093 0.139 0.044 0.058 0.139 0.017
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Table 3: Monte Carlo Parameters for Predictive Regressions

Standard deviations and correlations are estimated in annual data for errors from predictive
regressions for use in constructing simulated data. Right-hand-side variables are the US
return, an international index return (EAFE or sub-index of the EAFE) and the predictor
variable, the log of the smoothed earnings-price ratio. Returns are annual, continuously
compounded, and in excess of the riskfree rate. US refers to returns on the S&P 500; EAFE
refers to returns on an index for Europe, Asia and the Far East; Asia-Pacific, Europe,
Europe without UK and Scandinavia are sub-indices of the EAFE. Data for the US span
the 1881-2005 period; data for the other indices span the 1975–2005 period. Predictive
coefficients for returns are reported in Table 2 under the heading “AM”. The coefficient for
the predictor variable is 0.89. Data on international index returns are annual and span the
1975–2005 period. Data on US returns are annual and span the 1881–2005 period.

Standard deviation Correlation with log(E/P ) Correlation with U.S.

log(E/P ) 0.179

US 0.170 -0.912

EAFE 0.207 -0.515 0.653

Asia-Pacific 0.259 -0.309 0.409

Europe 0.205 -0.616 0.775

Europe without UK 0.229 -0.666 0.769

Scandinavia 0.255 -0.578 0.710
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Table 4: Predictive Regressions in Repeated Samples

50,000 samples of returns are simulated assuming joint normality of excess returns and the
predictor variable. The table reports standard deviations of estimates of the predictive
coefficient. In each set of samples there is a long-history asset calibrated to the S&P 500
and a short-history asset calibrated to the EAFE or sub-index. The long-history asset has
124 years of data; the short-history asset has 30 years of data. Predictive coefficients are
reported in Table 2 under the heading “AM” and standard deviations and correlations of
errors in Table 3. The predictor variable has an autocorrelation coefficient of 0.89. “Short”
denotes standard GMM; “AM” denotes the adjusted-moment method; “OI” denotes the
over-identified method.

Short AM OI

US 0.133 0.048 0.048

EAFE 0.156 0.134 0.135

Asia-Pacific 0.193 0.196 0.197

Europe 0.156 0.116 0.116

Europe without UK 0.175 0.130 0.131

Scandinavia 0.194 0.156 0.157
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Table 5: Bias in Predictive Coefficients

50,000 samples of returns are simulated assuming joint normality of excess returns and the
predictor variable. The table reports the difference between the estimated mean of the
predictive coefficient and the true mean. In each set of samples there is a long-history asset
calibrated to the S&P 500 and a short-history asset calibrated to the EAFE or sub-index.
The long-history asset has 124 years of data; the short-history asset has 30 years of data.
Predictive coefficients are reported in Table 2 and standard deviations and correlations of
errors in Table 3. The predictor variable has an autocorrelation coefficient of 0.89. “Short”
denotes standard GMM; “AM” denotes the adjusted-moment method; “OI” denotes the
over-identified method.

Short AM OI

US 0.120 0.028 0.015

EAFE 0.083 0.008 -0.003

Asia-Pacific 0.063 0.004 -0.005

Europe 0.098 0.011 -0.002

Europe without UK 0.119 0.023 0.008

Scandinavia 0.115 0.015 0.001
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