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1 Introduction

There are many situations in which economists have data on relationships, including marriages between
men and women and partnerships between upstream and downstream firms. Economists wish to use
the data on the set of realized relationships to estimate the valuations of agents over the characteristics
of potential partners and other measured aspects of the relationships. This is a challenging task
compared to estimating valuations using more traditional data because we observe only the equilibrium
relationships and not each agent’s equilibrium choice set: the identity of the other agents who would
be willing to match with a particular agent. We must infer utility parameters from the sorting seen
in the data.

This paper presents an estimator for transferable utility matching games. Transferable utility
matching games feature prices (or transfers) for relationships. This paper primarily models the for-
mation of relationships as a competitive equilibrium to the matching model of Azevedo and Hatfield
(2015, Section 6), which uses a continuum of agents. This model is quite general and includes many
special cases of empirical interest.1 Equilibrium existence and uniqueness are generically satisfied.
The paper briefly considers the related model of Hatfield, Kominers, Nichifor, Ostrovsky and West-
kamp (2013), which uses a finite number of agents. In these models, a generalization of a match is
called a trade. A trade can include other aspects in addition to the identity of the match partners.
For example, in a labor market a trade could specify the number of hours an employee is to work per
week and the number of vacation days per year.

Using this structure, the paper explores the estimation of valuation functions, which represent the
structural preference of agents for matches or trades. Computational challenges are key in match-
ing and a computationally simple matching maximum score estimator is introduced to address the
computational challenges. In an application, the paper uses the matching maximum score estimator
to empirically answer questions related to the car parts industry. I first describe the methodological
contribution and then the empirical application.

Computational issues in matching games are paramount and, in my opinion, have limited the
prior use of matching games in empirical work. Matching markets often have hundreds of agents in
them, compared to, say, the two to five agents often modeled as potential entrants in applications of
Nash entry games in industrial organization. In the car parts data, there are 2627 car parts in one
so-called car component category. In Fox and Bajari (2013), we apply the estimator introduced in
this paper to the matching between bidders and items for sale in a FCC spectrum auction. There are
85 winning bidders and 480 items for sale in the auction application. Both the car parts and auction
datasets are rich. There is a lot of information on agent characteristics and unknown parameters that
can be learned from the observed sorting of car part suppliers to car assemblers or bidders to items
for sale. To take advantage of rich data sets, a researcher must use an estimator that allows for the
dimensionality of typical problems.

The solution in maximum score is to introduce inequalities that are computationally simple to
work with. The objective function is proportional to the number of inequalities that are true at a

1Some initial papers on one-to-one, two-sided matching with transferable utility are Koopmans and Beckmann (1957);
Gale (1960); Shapley and Shubik (1972); Becker (1973). This paper uses the term “matching game” to encompass a
broad class of transferable utility models, including some games where the original theoretical analyses used different
names.
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value for the unknown parameters in the valuation function. The inequalities involve only observable
characteristics of matches, trades and unknown parameters. While there are unobservables in the
true matching model, the maximum score inequalities do not require numerically integrating out
unobservables, as in simulation estimators (McFadden, 1989; Pakes and Pollard, 1989; Hajivassiliou
and McFadden, 1998). Therefore, the estimator does not suffer from computational issues due to
numerical integration. Further, the integrand of the integral in a simulation estimator for a game
theoretic model often involves a nested fixed point procedure to compute an equilibrium to the game
(for each simulation draw). No nested fixed point procedure is used in maximum score. Finally, only
a subset of the valid inequalities in maximum score can be included without losing the estimator’s
(point or set) consistency.

The curse of dimensionality for other estimators can be seen for a simple, one-to-one matching
market with 100 men and 100 women. If no agents can be unmatched, for simplicity, there are
1002 = 10,000 possible matches and 100! ≈ 10158 possible assignments. If there are match-specific
unobservables, the likelihood function involves a numerical integral of 10,000 dimensions and an in-
tegrand that involves computing whether 1 out of 10158 assignments occur. Of course, simulation
estimators (sometimes based on moment conditions chosen for tractability) can be used for matching
when required at least when markets are small and computational resources are large, as in Boyd,
Lankford, Loeb and Wyckoff (2013), Sørensen (2007), Agarwal and Diamond (2013) and Fox, Hsu
and Yang (2015).

The computational advantages of matching maximum score are also present in single agent, multi-
nomial choice maximum score (Manski, 1975; Matzkin, 1993; Briesch, Chintagunta and Matzkin, 2002;
Fox, 2007). Indeed, this paper shows that, under some assumptions, a single agent maximum score
estimator can be applied to matching data if the prices of matches or trades are observed in the data.
Akkus, Cookson and Hortacsu (forthcoming) and Fox and Bajari (2013, Section VI.B, Appendix C)
apply single agent maximum score estimators to matching data with prices. However, in many ap-
plications prices are not observed. For example, in marriage prices paid between men and women
are rarely observed and prices are private contractual details in the car parts industry studied here.
Without price data, a contribution of this paper is to propose matching maximum score inequalities
that do not use price data. The paper proves that the maximum score setup results at least in set
identification under the Azevedo and Hatfield (2015, Section 6) model with a continuum of agents and
other assumptions.

The use of a model with a continuum of agents as the true or limiting matching model dates to
the pioneering work on estimating matching games by Choo and Siow (2006). Choo and Siow studied
the case of one-to-one, two-sided matching or marriage. They assume that the unobservables have the
type I extreme value distribution, resulting in a logit choice model at the agent level and closed form
formulas for matching patterns.2 Chiappori, Salanié andWeiss (2015) and Galichon and Salanie (2012)
use the term separability to highlight a key assumption in Choo and Siow. Separability restricts how
agents’ unobservable components of valuations vary across matches or trades. The main results of this

2Dagsvik (2000) provides logit-based methods for studying matching games where other aspects of a relationship than
money are also part of the pairwise stable matching. Although he does not emphasize it, one-to-one matching games
with transferable utility are a special case of his analysis. Matching games with transfers are also related to models
of hedonic equilibria, where estimators typically use data on the prices of trades (Rosen, 1974; Ekeland, Heckman and
Nesheim, 2004; Heckman, Matzkin and Nesheim, 2010).
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paper also rely on separability and this assumption is discussed in some detail below. Separability fits
well into the matching model of Azevedo and Hatfield (2015, Section 6). Previous versions of this paper
introduced the matching maximum score estimator for many-to-many, two-sided matching and used
the closed form logit formulas from Choo and Siow to show the estimator’s consistency for the simpler
marriage model. However, it was Graham (2011, Theorem 4.1) who, in a survey article discussing
previous drafts of this paper, first proved set identification for the continuum marriage model under
semiparametric conditions nearly identical to those used for proving set identification for single agent
maximum score models (Manski, 1975; Matzkin, 1993; Briesch, Chintagunta and Matzkin, 2002; Fox,
2007). The current version of this paper introduces the matching maximum score estimator, uses the
setup of the quite general Azevedo and Hatfield (2015, Section 6) model and extends the argument of
Graham for marriage to the more general setting.

This paper was originally part of a larger project including Fox (2007) on maximum score methods
for single agent multinomial choice, Fox (2010) on nonparametric identification in matching games,
and Fox and Bajari (2013) on an empirical application of the matching maximum score estimator to
an FCC spectrum auction. Earlier working paper versions of this paper have circulated since 2005, at
the same time as drafts of these other papers. The methodological contribution of the current paper is
the introduction of the matching maximum score estimator and the discussion of its theoretical (set)
consistency using the high generality of the matching model of Azevedo and Hatfield (2015, Section
6). Earlier drafts of this paper focused on models of many-to-many, two-sided matching and special
cases thereof (such as one-to-one matching). The empirical work on car parts is also novel.

The matching maximum score estimator has been used in empirical work in many published papers
and circulating working papers by now. Citing many of them would risk offending those omitted,
but the breadth of applications to different fields of applied microeconomics and business shows the
usefulness of the maximum score approach to matching estimation. Graham (2011) and Chiappori
and Salanié (forthcoming), both mostly for marriage, as well as Mindruta, Moeen and Agarwal (2015),
for the academic field of strategy, are three published surveys that extensively discuss the matching
maximum score estimator. The Mindruta et al. survey is particularly useful for those wishing to
compare a matching game theoretic approach to working with relationship data to other empirical
approaches, such as so-called dyad regressions. I have made code for the matching maximum score
estimator available (Santiago and Fox, 2009).

I cite some other methodological papers on matching in the rest of the text. One paper that is
not cited below is Menzel (2015), who studies marriage and shows that a class of semiparametric
non-transferable utility matching models (not considered here) converge, as the market grows large,
to a parametric matching model with matching formulas quite similar to the matching formulas in
the logit transferable utility marriage matching model with a continuum of agents in Choo and Siow
(2006). The current paper consider the continuum matching model of Azevedo and Hatfield (2015,
Section 6) and the semiparametric assumptions are made in the continuum; in no sense is a parametric
model used as an approximation to the continuum.
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1.1 Empirical Application to Car Parts

A car is one of the most complex goods that an individual consumer will purchase. Cars are made
up of hundreds of parts and the performance of the supply chain is critical to the performance of
automobile assemblers and the entire industry. This paper investigates two related questions that are
relevant to policy debates on the car parts industry. The first question relates to the productivity
loss to suppliers from breaking up large assemblers of cars. During a recent large recession, North
American-based automobile assemblers went through financial distress. As a consequence, North
American-based assemblers divested or closed both North American brands (General Motor’s Saturn)
and European brands (Ford’s Volvo) and seriously considered the divestment of other brands (GM’s
large European subsidiary Opel). One loss from divesting a brand is that future product development
will no longer be coordinated across as many brands under one parent company. If GM were to divest
Opel, which was a serious policy debate in Germany in 2009, then any benefit from coordinating new
products across Opel and GM’s North American operations would be lost. This is a loss to GM, but
also to the suppliers of GM, who will no longer be able to gain as much from specializing in supplying
GM. I estimate the valuations to suppliers and to assemblers for different portfolios of car parts.

The second question this paper investigates is the extent to which the presence of foreign and in
particular Japanese and Korean (Asian) assemblers in North America improves the North American
supplier base. There is a general perception, backed by studies that I cite, that Asian automobile
assemblers produce cars of higher quality. Part of producing a car of higher quality is sourcing car
parts of higher quality. Therefore, Asian assemblers located in North America might improve North
American suppliers’ qualities. Understanding the role of foreign entrants on the North American
supplier base is important for debates about trade barriers that encourage Asian assemblers to locate
plants in North America in order to avoid those barriers. Trade barriers might indirectly benefit North
American assemblers by encouraging higher quality North American suppliers to operate in order to
supply Asian-owned assembly plants in North America. I place this investigation in an appendix as
the key parameter has a wide confidence region.

I answer both of the above questions using the identities of the companies that supply each car
part. The data list each car model and each car part on that model, and importantly the supplier of
each car part. The intuition is that the portfolio of car parts that each supplier manufactures informs
us about the factors that make a successful supplier. If each supplier sells car parts to only two
assemblers, it may be that suppliers benefit from specialization at the assembly firm level. If North
American suppliers to Asian-owned assemblers are also likely to supply parts to North American-
owned assemblers, it may be because of a quality advantage that those suppliers have.

This paper takes the stand that the sorting pattern of sellers (suppliers like Bosch and Delphi) to
buyers (assemblers like General Motors and Toyota) informs us about so-called valuation functions,
key components of total profits, generating the payoffs of particular portfolios of car part trades to
assemblers and to suppliers. In turn, the valuation functions for assemblers and suppliers help us
answer the policy questions about government-induced divestitures and foreign assembler plants in
North America. The loss to a supplier from GM divesting Opel occurs when supplying two car parts
to a large parent company generates more valuation than supplying one car part each to two different
assemblers. Thus, the valuation of a portfolio of trades is not necessarily the sum of the valuations
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from individual trades. The portfolio of trades of each firm is critical for valuations. Therefore,
valuation functions are not additively separable across multiple trades, as they are in most prior work
on matching not employing the maximum score estimator introduced in this paper.

I model the market for car parts as a two-sided, many-to-many matching game, with the two
sides being assemblers and suppliers. In a competitive equilibrium, each firm will form the trades, car
part transactions, that maximize its profits at the market-clearing prices. However, those prices are
confidential contractual details not released to researchers. This motivates the use of the matching
maximum score estimator without prices.

2 Example 1: Matching Maximum Score Estimator for Mar-

riage

I first introduce the matching maximum score estimator for the simple case of one-to-one, two-sided
matching, which I label Example 1. While many examples fit a one-to-one, two-sided matching setup,
the case getting the most attention in the structural empirical literature is heterosexual, monoga-
mous marriage. In order to communicate the implementation of the proposed method to empirical
researchers, this section discusses only the estimator that a researcher codes on the computer and does
not cover many underlying modeling details, such as unobservable terms. These modeling details are
introduced in Section 3.

The researcher has data on Ñ marriages. View these as a random sample of the marriages from
a larger market. For each marriage, the researcher observes some characteristics of the male jm and
some characteristics of the female jf . The researcher uses these characteristics to specify a joint
valuation function based on observable types X̃ (jm, jf )

′
θ, which is specified to be equal to a

finite vector of observables X̃ (jm, jf ) times a vector of unknown parameters θ. The vector X̃ (jm, jf )

is chosen by the researcher based on the available data on agent characteristics. The choice of the
elements of X̃ (jm, jf ) ideally should be informed by results on the nonparametric identification of
joint valuation functions in matching games, such as the discussion of Becker (1973) and Fox (2010)
below. Note that the researcher can construct the vector X̃ (jm, jf ) for a marriage that did not form
in the data by varying the observable characteristics of the male and female.

The underlying transferable utility matching model follows Becker (1973) and the large subsequent
literature and uses prices for marriage. Men pay women possibly negative transfers. However, consis-
tent with actual data and previous structural empirical work on transferable utility matching models
of marriage, prices are assumed not to be in the available data (Choo and Siow, 2006). Maximum
score estimation with price data is discussed below.

Let i index the male in a marriage and let f (i) index the female married to him in equilibrium.
So jim is the characteristics of male i and j

f(i)
f is the characteristics of female f (i). A competitive

equilibrium (equivalent in this model to a stable matching) to this transferable utility matching game
is efficient: it maximizes the sum of joint valuations across all marriages in the entire economy. If
there were no unobservables (and recall that there are in the true model), an implication of social
efficiency is that swapping spouses lowers the sum of joint valuations. Therefore, intuition suggests
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the following matching maximum score inequality should be useful in estimation:

X̃
(
ji1m, j

f(i1)
f

)′
θ + X̃

(
ji2m, j

f(i2)
f

)′
θ ≥ X̃

(
ji1m, j

f(i2)
f

)′
θ + X̃

(
ji2m, j

f(i1)
f

)′
θ. (1)

The inequality says that the sum of joint valuations of two observed matches should weakly exceed
the sum of the joint valuations from the two matches where the married couples exchange spouses:
male i1 is married to female f (i2) instead of his actual wife f (i1), for example. If single people are in
the data, one can normalize the valuation from being single to 0, add a constant term to X (jm, jf ),
and include being single as a “spouse” for males and females in matching maximum score inequalities.
Using data on singles would slightly complicate the notation for the summations below. Note that the
competitive equilibrium being efficient is used for intuition for motivating matching maximum score
inequalities in the main text. However, the formal proofs in the appendix do not rely on a competitive
equilibrium being efficient.

The matching maximum score objective function is

Ñ−1∑
i1=1

Ñ∑
i2=i1+1

1

[
X̃
(
ji1m, j

f(i1)
f

)′
θ + X̃

(
ji2m, j

f(i2)
f

)′
θ ≥ X̃

(
ji1m, j

f(i2)
f

)′
θ + X̃

(
ji2m, j

f(i1)
f

)′
θ

]
. (2)

The dependent variable here is the matches in the data, f (i) for man i. The matching maximum score,
or maximum rank correlation as explained below, objective function checks whether each matching
maximum score inequality is true. If an inequality is true for a guess of the parameter vector θ,
the objective function increases by 1. Not all inequalities will be true even at the true value of the
parameter vector θ because of unobservable variables present in the model, as introduced below.
The objective function is a step function. The code in Santiago and Fox (2009) uses the differential
evolution global optimization routine; other choices are possible. If the parameter θ in the maximum
score model is point identified (as discussed below), any maximizer of the objective function is a
consistent estimator. If the underlying parameter θ in the model is instead set identified, then a
valid 95% confidence set for the identified parameters should be reported. Note that point and set
identification as used here are properties of the probability limit (expectation) of the objective function,
not the objective function for a finite sample of data. More discussion of inference and point vs set
identification is below.

The matching maximum score objective function is easy to compute: it involves only addition,
multiplication and checking an inequality. There is no numerical integration over unobservables and
no nested fixed point computation of equilibria. There is no attempt to estimate a distribution of
unobservables using sieve methods or to estimate matching probabilities nonparametrically in a first
stage. Further, the objective function is written as if all possible inequalities will be used. But the
available inequalities can be randomly sampled and the estimator will still be consistent. Altogether,
I can say that the estimator does not suffer from a computational or data curse of dimensionality in
the size of the data on the matching market in question.

If the researcher has data on D independent matching markets (say different towns in the marriage
example), then the researcher merely adds an extra summation (and market indices d) to the objective
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function

D∑
d=1

Ñd−1∑
i1=1

Ñd∑
i2=i1+1

1

[
X
(
ji1,dm , j

f(i1,d)
f

)′
θ +X

(
ji2,dm , j

f(i2,d)
f

)′
θ ≥ X

(
ji1,dm , j

f(i2,d)
f

)′
θ +X

(
ji2,dm , j

f(i1,d)
f

)′
θ

]
.

(3)
Asymptotics could be in the number of markets D or, for fixed D, some notion Ñ of the number of
recorded marriages such that each Ñd = νd · Ñ for the fixed-with-Ñ market-specific proportionality
factors νd, as discussed below.

3 Matching Game

Matching games model relationship formation. This paper discusses estimation of the transferable
utility matching game with a continuum of agents in Azevedo and Hatfield (2015, Section 6), hence-
forth abbreviated as the AH model. An otherwise similar model with a finite number of agents in is
Hatfield, Kominers, Nichifor, Ostrovsky and Westkamp (2013). Valuations in the AH model encom-
pass valuations for a great many applications of empirical interest, including the previous example of
marriage and many-to-many, two-sided matching with valuations defined over sets of matches. This
generality is useful for scholars applying the matching maximum score estimator to matching games
other than marriage and the one estimated for the car parts industry later in this paper. I discuss
several special cases of the AH model below. The AH model has desirable properties: a unique
competitive equilibrium exists under fairly innocuous technical conditions.

The arguments in this section lead to an estimation approach that uses data on one large matching
market, as considered previously for one-to-one matching by Choo and Siow (2006) and the related
work cited in the introduction. The asymptotic argument increases the sample size as the number
of agents observed in the data grow large. In an early application, Fox and Bajari (2013) use the
matching maximum score estimator and the large market asymptotic argument to study a large
spectrum auction.

In the large market asymptotic argument, the limiting matching game, here the AH model, has
a continuum of agents. AH show that there exists a unique equilibrium to this matching game. The
equilibrium is deterministic in the aggregate. As a researcher collects more data, the asymptotic fiction
is that the researcher is observing more agents from this limiting game. Therefore, the asymptotic
fiction of collecting more data does not alter the outcome of the matching game in question; the
researcher is merely learning more about an existing market with a continuum of agents.

3.1 The AH Model

For compatibility with Azevedo and Hatfield (2015, Section 6), I borrow much of the terminology and
the notation of the AH model. I first lay out the general model and then discuss examples below.
Let there be a set of full agent types I and a finite set of trades Ω. An agent of type i ∈ I has
a valuation function vi (Φ,Ψ), where Φ ⊆ Ω is the set of trades for which agent i is a buyer and
Ψ ⊆ Ω is the set of trades for which agent i is a seller. The valuation function vi (Φ,Ψ) takes on values
in [−∞,∞). The empty set Ø refers to making no trades as, say, a buyer; vi (Ø,Ø) is normalized to
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0.
Consider a price pω for each trade ω ∈ Ω. Let pΩ = (pω)ω∈Ω be the price vector for all trades

ω ∈ Ω. Under transferable utility, the profit of an agent i who buys trades Φ and sells trades Ψ at
the prices pΩ is

vi (Φ,Ψ)−
∑
ω∈Φ

pω +
∑
ω∈Ψ

pω. (4)

As in AH, there is a measure η (i) over the set of agent types i ∈ I.3 An allocation A is a map
from the set of agent types I to the space of distributions over the product space formed by two power
sets of Ω,

P (Ω)× P (Ω) .

For each type i ∈ I, the allocation A specifies a distribution Ai (Φ,Ψ) over sets of trades as a buyer
Φ and as a seller Ψ; each Ai (Φ,Ψ) is the fraction of agents of full type i that conduct the trades Φ

and Ψ.
An arrangement

(
A, pΩ

)
is comprised of an allocation A and a price vector pΩ. The allocation

A is incentive compatible given the price vector pΩ if each agent maximizes its profits (4) in the
sense that Ai (Φ,Ψ) > 0 only if

(Φ,Ψ) ∈ arg max
Φ̃⊆Ω,Ψ̃⊆Ω

vi (Φ̃, Ψ̃
)
−
∑
ω∈Φ̃

pω +
∑
ω∈Ψ̃

pω

 .

The allocation A is feasible if the excess demand for each trade ω ∈ Ω,

∫
I

 ∑
Φ⊇{ω}

∑
Ψ

Ai (Φ,Ψ)−
∑

Ψ⊇{ω}

∑
Φ

Ai (Φ,Ψ)

 dη (i) , (5)

equals 0. In the definition of excess demand, the sums are over subsets of the finite set of trades Ω

and Φ ⊇ {ω} means sum over sets where the trade ω is an element. The arrangement (A, p) is a
competitive equilibrium if the allocation A is incentive compatible given the price vector pΩ and
is feasible.4

AH prove that a competitive equilibrium exists and is efficient in the sense of the allocation
component A being the supremum of the social welfare function

∫
I

(∑
Φ

∑
Ψ

vi (Φ,Ψ)Ai (Φ,Ψ)

)
dη (i) , (6)

where the supremum is taken over feasible allocations A. If the distribution of full types η (i) ensures
uniqueness of the maximizer of the social welfare function, then there is a unique allocation A corre-
sponding with a competitive equilibrium. Further, AH prove that if η (i) has full support in a precise

3I place the technical conditions from AH in footnotes. The measure η is defined with respect to some σ−algebra
and satisfies η (I) <∞. Further, the valuation function vi must be a measurable function of i.

4AH require two further technical conditions. Using their words and skipping their notation: 1) The integral of
absolute values of utility is finite as long as agents are not given bundles for which they have utility of −∞ and 2)
agents can supply any sufficiently small net demand for trades.
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sense then the price vector pΩ in the competitive equilibrium is unique. Given these relatively weak
conditions for equilibrium existence and uniqueness, I maintain existence and uniqueness in what
follows. What actually matters for the empirical approach is that the same competitive equilibrium
is being played by all agents in the continuum market.

3.2 Observable and Unobservable Types

The AH model has complete information in the sense that no attributes of a trade are privately
observed. Still, econometricians wish to distinguish between attributes of agents measured in the
data and attributes not measured in the data. Recall i indexes a full agent type in the AH model.
Let j index an observable agent type in a finite set of observable agent types J and let k index
an unobservable agent type in some, likely infinite, set K, so that each full agent type i uniquely
corresponds to a pair of agent types (j, k). This focus on observables and unobservable (in data) agent
types specializes the AH model but does not alter its properties mentioned before.

The set of trades Ω is finite in the AH model and here the set of observable agent types J is also
finite. Assume that the definition of a trade ω encodes the observable agent type b (ω) ∈ J for the
buyer on trade ω and the observable agent type s (ω) ∈ J for the seller on trade ω. In the AH model,
agents have preferences defined over trades. So an agent i ∈ I is allowed to have preferences over the
observable agent types j ∈ J of the counterparties to trades ω. In some examples of the AH model
below, a trade ω encodes only the observable agent types of the buyer b (ω) and seller s (ω). Trades
may encode other aspects, as also discussed below.

Trades ω do not encode unobservable types k. So agents are not allowed to have preferences over
the unobservable types k ∈ K of counterparties on trades ω. The set of unobservable (in data) agent
typesK is not required to be finite. Indeed, a finite set of observable agent types J and an uncountably
infinite set of unobservable agent types K in a model with a continuum of agents was first used in a
parametric empirical model for one-to-one, two-sided matching (specifically, marriage) by Choo and
Siow (2006). Later for one-to-one, two-sided matching, Galichon and Salanie (2012) and Chiappori,
Salanié and Weiss (2015) used the term “separability” for the implementation in Choo and Siow of
this sort of distinction between the cardinalities of observable and unobservable agent types. Like the
marriage literature on models with a continuum of agents, I will maintain separability in part to use
the AH model’s greater generality.

Separability in the AH model is defined as follows. Let the valuation of an agent of full type
i ∈ I corresponding to observable and unobservable types (j, k) ∈ J ×K be

vi (Φ,Ψ) = πj (Φ,Ψ) + εkΦ,Ψ,

where πj is the valuation function for observable agent type j over trades (Φ,Ψ) and εkΦ,Ψ
is the unobservable valuation component for unobservable agent type k and the set of trades
(Φ,Ψ). Under separability, πj is a function of only the observable agent type j and the sets of trades
Φ and Ψ. All aspects of a trade ω are in the data, including the observable agent types of the buyer
b (ω) ∈ J and seller s (ω) ∈ J .5 An agent of full type i also has an unobservable valuation component

5Let πj (Φ,Ψ) = −∞ if j is not b (ω) for any ω ∈ Φ or not s (ω) for any ω ∈ Ψ.
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over the trades Φ and Ψ, given by εkΦ,Ψ. The unobservable valuation components are separate for each
set (Φ,Ψ) and so vary for k based on the observable agent types b (ω) and s (ω) of the agents on the
other side of trades in (Φ,Ψ). However, εkΦ,Ψ does not depend on the unobservable agent types for
the counterparties on trades in (Φ,Ψ).

Recall the distribution η (i) over agent full agent types i ∈ I. Each full agent type i is also the
realization of an observable type j and the realization of an unobservable type k that itself indexes
a realization of the vector εk =

(
εkΦ,Ψ

)
Φ⊆Ω,Ψ⊆Ψ

. The vector εk is of finite length because the set of
trades Ω is finite.6 Therefore, η (i) induces a joint distribution (CDF) F

(
εk | j

)
for each observable

agent type j.7 By this notation, the vector εk is independently distributed across agents, conditional
on the observable types j ∈ J .

3.3 Examples

Example 1. Consider the monogamous, heterosexual marriage setting in Choo and Siow (2006),
Galichon and Salanie (2012) and Chiappori, Salanié and Weiss (2015), which uses separability and a
continuum of agents. This is an example of one-to-one, two-sided matching.8 The matching maximum
score estimator was already previewed for this example in Section 2. Divide agents into males and
females. Each observable agent type j corresponds to a sex (male or female) and other observable
demographic characteristics, such as age and race. Age is measured in integer years to have finite
support. A trade ω corresponds to a marriage: a male observable type jm = b (ω) and a female
observable type jf = s (ω). The price pω of a trade is exchanged between males and females. Define
πj (Φ,Ψ) to be −∞ if any agent is engaged in more than one marriage or married to an agent of the
same sex. Therefore, valuations for a male type i or (j, k) from matching with a female observable
type jf = s (ω) specialize to

πj (jf ) + εkjf ,

where πj (jf ) is the valuation function for males with observable demographics in j matching to
females with observable demographics jf and εkjf is the preference of a male of unobservable type k
for females with demographic characteristics jf . A symmetric valuation exists for females of type i.
Separability in the marriage setting means that males have preferences over female demographics, not
the unobservable type of the female they match with. While not considered in the cited empirical
literature, it is straightforward to include aspects other than demographics into a trade ω. For example,
a trade ω could specify the number of children or the hours of work of each spouse in a marriage.
Then the valuation for a male of type i or (j, k) for trade ω would be

πj (ω) + εkω.

6The notation εk means the unique realization of the vector of unobservables corresponding to the unobservable
agent type k. When k is a random variable, then so is εk.

7One can safely drop the εkΦ,Ψ for a particular j and (Φ,Ψ) when πj (Φ,Ψ) = −∞ for that j.
8The two-sidedness (heterosexual marriage) defines Example 1 and is used in the cited empirical literature. The AH

model can also be specialized to one-sided models of marriage: homosexual marriage or a model with both heterosexual
and homosexual marriage.
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A similar valuation exists for females. Empirical implementation of the more general notion of a trade
requires the extra elements to be observable in the data, as in data on labor supply and the number
of children for each marriage that occurs in the data.

Example 2. Say an agent is defined to be either a buyer or a seller ex ante, as in the empirical work
on the car parts industry later in this paper. Then this is an example of two-sided, many-to-many
matching. Define πj (Φ,Ψ) to be −∞ if an agent whose observable type j ∈ J corresponds to a buyer
conducts trades as a seller, and similarly for a seller type. A trade ω specifies the buyer observable
type b (ω) and the seller observable type s (ω) in addition to possible other attributes, such as the
quantity and quality of goods to deliver (if quantity and quality are specified on a finite grid and
observable in the data for actual matches). Under separability, a buyer of full type i or (j, k) then has
profits of

πj (Φ) + εkΦ −
∑
ω∈Φ

pω.

As in marriage, the buyer’s unobservable valuation component εkΦ depends on the trades and hence on
the observable types s (ω) ∈ J of the seller partners. Similarly, a seller full type i or (j, k) has profits
of

πj (Ψ) + εkΨ +
∑
ω∈Ψ

pω.

Recall that AH prove that a competitive equilibrium exists in this setting without ruling out em-
pirically relevant cases, such as a function πj (Φ) exhibiting complementarities across multiple trades
involving the same agent. Complementarities across multiple trades involving the same agent are vital
to the empirical application to the car parts industry.

The AH model requires that an agent’s valuation is directly a function of only the trades where
that particular agent is a buyer or a seller. The AH model assumes away externalities: valuations
defined over trades to which the agent does not participate. Competition for trades certainly affects
the price vector for trades, pΩ, although such competition for trades is not a valuation defined over
trades to which the agent does not participate. True externalities could be important in applications;
for example if buyers are retailers and sellers are wholesalers and buyers compete with each other
for retail customers (outside of the matching game) after matching to sellers. Baccara, Imrohoroglu,
Wilson and Yariv (2012) use the matching maximum score estimator introduced in this paper to
estimate a matching game with externalities.

Example 3. Consider mergers between agents. An agent is not restricted to be a buyer or a seller
ex ante. If an agent acquires other agents in equilibrium, it ends up conducting only trades as a
buyer although this is not specified ex ante. Likewise, an agent acquired by another agent ends up
conducting only a single trade as a seller (if partial acquisitions are not modeled). Therefore, mergers
are an example of one-sided matching, also called coalition formation. If desired, one can define
πj (Φ,Ψ) to be −∞ if an agent of type j conducts trades as both a buyer and a seller or if an agent
conducts two or more trades as a seller (target). The price pω of a trade ω captures the price the
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buyer (acquirer) pays the seller (target). A trade ω specifies the buyer observable agent type b (ω) ∈ J
and the seller (target) observable agent type s (ω) ∈ J . As in Uetake and Watanabe (2012), a trade
may also specify other observable attributes, such as the equity split of the post-merger firm or the
awarding of board seats to representatives of the acquirer and target. Akkus, Cookson and Hortacsu
(forthcoming) use a variant of the matching maximum score estimator with data on the prices of
trades pω to estimate a matching game of mergers.

As mentioned above, the AH model does not incorporate externalities such as changes in the post-
merger competition for customers between firms in the same industry. Therefore, the AH model is a
better model of mergers when focusing on, say, across-industry conglomerate mergers.

Example 4. Hatfield et al. (2013) mention the example of trading between dealers of used cars.
There is a lively secondhand market in used cars. Dealers may both buy and sell used cars to other
dealers. Here a trade ω specifies the observable attributes of the used car in question and buyer and
seller observable characteristics b (ω) , s (ω) ∈ J , including the dealer locations. A buyer might have
valuations defined over the location of a seller in order to minimize transportation costs. Dealers
might have complex preferences over the set of used cars on their lot. For example, valuations might
be higher from ending up with cars of only a certain brand or from having a diverse set of cars. The
AH model does not restrict the valuations of dealers over the set of observable trades they undertake.
The set of cars that a dealer is endowed with (and possibly does not trade) can be included in the
observable agent type j ∈ J .

4 Identification and Estimation

For expositional purposes, I first explore identification and estimation when data on the prices of
trades pΩ are available. This discussion introduces concepts from the literature on single-agent choice
and applies them here, although the mathematical results on single-agent choice are not novel. The
main purpose of this paper is to study identification and estimation for the case where data on the
prices of trades pΩ are not available. The majority of this section discusses the matching maximum
score estimator that does not use data on the prices of trades. This estimator was already introduced
for the example of marriage in Section 2.

4.1 Single Agent Maximum Score Using Price Data

Define the choice probability for observable type j (in equilibrium) to be

Āj (Φ,Ψ) =

∫
εk

1

(Φ,Ψ) ∈ arg max
Φ̃⊆Ω,Ψ̃⊆Ω

πj (Φ̃, Ψ̃
)

+ εk
Φ̃,Ψ̃
−
∑
ω∈Φ̃

pω +
∑
ω∈Ψ̃

pω

 dF (εk | j) . (7)

This is the same choice probability (or market share equation) from the literature on estimating
single agent multinomial choice models (McFadden, 1973). Note that while prices for trades pΩ are
determined in the equilibrium to the AH model, prices are not statistically endogenous in the sense
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of being statistically dependent with k (or εk). This is a key implication of the distinction between
the finite trades ω ∈ Ω and the infinite full agent types i ∈ I in the AH model and of the related
separability assumption. Because the price vector pΩ is fixed in a competitive equilibrium, the price
vector pΩ is not listed as an explicit argument to Āj (Φ,Ψ). Note also that the notation Āj (Φ,Ψ)

for choice probabilities for observable type j ∈ J is analogous to the allocation Ai (Φ,Ψ) for full type
i ∈ I. Āj (Φ,Ψ) is observable in the data (with an infinite data set) even when prices pΩ are not
observable and so one cannot use (7) to explicitly compute Āj (Φ,Ψ) given πj and F

(
εk | j

)
.

For this subsection only, say that prices pΩ for trades are in the data. Say also that the researcher
has data on the trades (Φi,Ψi) for a random sample (i.i.d.) of N agents. The trades involving agent
i give us i’s observable agent type j ∈ J . Then one can attempt to (point or set) identify πj for each
j up to location and scale normalizations using methods from the single agent multinomial choice
literature. To lead up to the matching maximum score estimator, I illustrate the use of single agent
methods with price data using multinomial choice maximum score (Manski, 1975; Matzkin, 1993; Fox,
2007).

I will focus on the semiparametric case, where the valuation function

πj (Φ,Ψ) = πθ (j,Φ,Ψ)

is known up to a finite vector of parameters θ (the “parametric” in “semiparametric”) and F
(
εk | j

)
is not known up to a finite number of parameters for each j (so is nonparametrically specified). If
the parameters in πj vary across j, collect them all in θ. I do not assume that F

(
εk | j

)
is common

across j, so heteroskedasticity is allowed. Allowing heteroskedasticity is a feature of maximum score
that is typically ruled out in other semiparametric approaches to discrete choice estimation. The
parameterization of πθ (j,Φ,Ψ) is for empirical convenience; Matzkin (1993) studies single agent,
multinomial choice maximum score estimation when each πj (Φ,Ψ) is nonparametrically specified and
Fox (2010) studies nonparametric identification of aspects of πj (Φ,Ψ) in a matching model without
price data, as discussed below.

To illustrate practical implementation, I further restrict the valuation function to be linear in the
parameters θ,

πθ (j,Φ,Ψ) = X (j,Φ,Ψ)
′
θ,

where X (j,Φ,Ψ) is a vector of observables chosen by the researcher.
As described in Fox (2007), some key conditions for (set) identification and hence (set) consistency

of a single agent maximum score estimator are that εk has full support in Rdim(εk) and that εk

has an exchangeable distribution for each j. Let ρ be a permutation of the elements of εk. An
exchangeable distribution satisfies F

(
εk | j

)
= F

(
ρ
(
εk
)
| j
)
for all such permutations ρ. Exchange-

able distributions allow certain types of equicorrelation across the elements of εk but rule out some
common empirical specifications, such as the random coefficients logit where θ is interpreted as the
mean of the random coefficients.

Fix the observable agent type j. Under full support and exchangeability of F
(
εk | j

)
, Goeree et al.

(2005) and Fox (2007) show, for the matching notation used here, that a single agent rank order
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property holds: Āj (Φ1,Ψ1) ≥ Āj (Φ2,Ψ2) if and only if

X (j,Φ1,Ψ1)
′
θ −

∑
ω∈Φ1

pω +
∑
ω∈Ψ1

pω ≥ X (j,Φ2,Ψ2)
′
θ −

∑
ω∈Φ2

pω +
∑
ω∈Ψ2

pω.

Roughly speaking, one can interpret X (j,Φ,Ψ)
′
θ as the mean valuation of the observable type j

and the rank order property says that choices with higher mean valuation plus prices are made more
often. The single agent rank order property is a statement about the properties of the exchangeable
distribution F

(
εk | j

)
and how the unobservables enter the choice model.

Assuming that the elements of X (j,Φ,Ψ) are linearly independent, Manski (1975) and Fox (2007)
show that θ is point identified if one element of the vector X (j,Φ,Ψ) has full support (equal to
R) conditional on the other elements of X (j,Φ,Ψ), on the price vector pΩ (which are not random
variables in a competitive equilibrium), and also on the vectors X (j,Φ,Ψ) for other sets of trades
(Φ,Ψ). In the AH model, the set of trades Ω is finite so that there is no story in the model where any
element of X (j,Φ,Ψ) could have support on an interval in R. Formally speaking, if Ω is indeed finite
than θ will be set identified. Bajari, Fox and Ryan (2008) estimate a multinomial choice maximum
score model and conduct inference allowing for set identification using the method of Romano and
Shaikh (2008). The empirical marriage matching model of Dupuy and Galichon (2014) allows for
continuous observable characteristics and hence θ could be point identified under that model.

Say agent i of observable type ji undertakes the trades (Φi,Ψi) in the data. The chosen sets of
trades (Φi,Ψi) represent the dependent variable in the multinomial choice model. Let B be a set of
sets of possible trades (Φ,Ψ). The single agent, pairwise maximum score objective function in Fox
(2007), which here uses data on prices pΩ, is then

N∑
i=1

∑
(Φ,Ψ)∈B

1

[
X (ji,Φi,Ψi)

′
θ −

∑
ω∈Φi

pω +
∑
ω∈Ψi

pω ≥ X (ji,Φ,Ψ)
′
θ −

∑
ω∈Φ

pω +
∑
ω∈Ψ

pω

]
. (8)

The estimator θ̂N is any vector that maximizes the objective function. The maximum score objective
function using price data is a step function and so a continuum of parameter values will maximize it;
any rule to pick one (such as letting a numerical optimization routine decide) leads to a consistent
estimator under point identification. Manski (1975) and Fox (2007) demonstrate the consistency of
the single agent estimator as N →∞. For the point identified case, Kim and Pollard (1990) present
the asymptotic distribution and Delgado, Rodriguez-Poo and Wolf (2001) discuss subsampling for
straightforward inference. As just mentioned, an inference method such as Romano and Shaikh
(2008) is applicable to the set identified case. Akkus, Cookson and Hortacsu (forthcoming) and,
later, Fox and Bajari (2013, Section VI.B, Appendix C) estimate matching models using single agent
maximum score estimators using price data and perform Monte Carlo studies. They do not formally
state assumptions on the competitive equilibrium for an underlying matching model, such as the
AH model, in order to motivate the consistency of the single agent maximum score estimator using
primitive assumptions on F

(
εk | j

)
.

The single agent maximum score estimator using data on prices pΩ has many of the same attrac-
tive computational properties as the matching maximum score estimator previewed in Section 2 for
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marriage without data on prices pΩ. Most notably, there is no numerical integration over the typically
very long vector εk and no nested algorithm to compute a competitive equilibrium. Also, there is no
data curse of dimensionality from estimating F

(
εk | j

)
using a sieve approximation (Chen, 2007) or

from estimating choice probabilities Āj (Φ,Ψ) in a nonparametric first stage.9 The maximum score
estimator using data on prices is consistent if B is not the set of all sets of trades (Φ,Ψ), which is
convenient as that set, P (Ω) × P (Ω), is typically quite large in the AH model and other matching
models (Fox, 2007). Itemizing all elements of P (Ω) × P (Ω) is computationally prohibitive in many
applications.

Discrete choice models require location and scale normalizations. The scale normalization for single
agent choice is that the parameters are in monetary units, as the price vector pΩ is observed. This
scale normalization will change when prices pΩ are not observed below. The location normalization
depends on whether the outside option of making no trades is included in the set B. If not, no constant
term should be included in X (j,Φ,Ψ) as the constant would be differenced out in the maximum score
inequalities. If the outside option of making no trades is both observed in the data (agents with no
trades are measured) and is normalized to have a profit of 0, then a constant term (possibly a separate
one for different classes of observable agent types j ∈ J , such as males and females in marriage) can
be included in X (j,Φ,Ψ).

4.2 Nonparametric Identification with Unobservable Prices

Nonparametric identification in a transferable utility matching game seeks to learn aspects of πj (Φ,Ψ)

without specifying πj (Φ,Ψ) up to a finite vector of parameters θ. Nonparametric identification when
prices of trades pΩ are unobservable in the data differs greatly from the analysis of nonparametric
identification of πj (Φ,Ψ) in single agent choice under maximum score like assumptions in Matzkin
(1993), at least under the AH model and the separability assumption.

Loosely speaking, the classic paper of Becker (1973) initiated the study of nonparametric identifi-
cation of aspects of the valuation functions using data on who matches with whom and where prices
are present in the model but are not in the data. Becker studied marriage, or one-to-one, two-sided
matching. In his model, each male and female has a scalar observable type on R, say jm for males
and jf for females. The scalar type could be schooling for males and schooling for females. There
is no unobservable type k. The observed, scalar types enter a joint valuation function g (jm, jf )

that, under transferable utility, is equal to πjm (jf ) + πjf (jm), the sum of the valuations of a male
and a female. Becker restricts attention to the case where either jm and jf are substitutes or they
are complements. The scalar types of two matched agents are complements when

∂2g (jm, jf )

∂jm∂jf
> 0

globally and substitutes when the cross-partial derivative is negative. In a special case of the ef-
ficiency result for the AH model mentioned earlier, Becker shows that complementarities lead to

9The distribution F
(
εk | j

)
is not estimated, as is standard in maximum score. Knowledge of such a distribution

is needed to compute marginal effects and elasticities. After θ is estimated using single agent maximum score, a sieve
maximum likelihood approach (under perhaps stronger assumptions such as no heteroskedasticity) could be used to
estimate the distribution of εk (Chen, Tamer and Torgovitsky, 2011).
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positive assortative matching: high jm males marry high jf females. Substitutes lead to neg-
ative assortative matching. Therefore, if a researcher observes positive assortative matching in
the data, then one might conclude that the cross-partial derivative of the joint valuation function is
positive. One can identify only the sign of the cross-partial derivative in Becker’s setup.

Fox (2010) studies nonparametric identification of joint valuation functions in a two-sided, many-
to-many matching game using a rank order property for matching games with a finite number of
agents. He uses data on who matches with whom but not prices. He extends the intuition in Becker
as well as some results in Matzkin (1993) on single agent choice to the many-to-many matching case
where each agent (or group of agents) has a vector of observable characteristics. For example, one
can identify the ratio of complementarities (cross partials) on two matched agent characteristics to
the complementarities on two other matched agent characteristics. One identifies the numerical value
of the ratio, not just the sign of the ratio. Identification results vary somewhat depending on whether
data on unmatched agents are used.

As Fox (2010) shows for two-sided, many-to-many matching, results on the nonparametric iden-
tification of aspects of πj (Φ,Ψ) in the AH model using data on trades and not prices do not always
equal results from using a single agent analysis with data on the prices of trades pΩ (Matzkin, 1993).
However, the current paper is on tractable semiparametric estimation of θ in the general setting of
the AH model, not nonparametric identification of aspects of πj (Φ,Ψ) in a more specific setting.
Ideally, the elements of X (j,Φ,Ψ) should be chosen based on intuition arising from formal results
on nonparametric identification of πj (Φ,Ψ) in the special case of the AH model being estimated.
In what follows, I formally establish only set identification of θ but am motivated by models where
the elements of X (j,Φ,Ψ) are specified in such a way that the coming matching maximum score
inequalities do not always difference out an element of the vector θ. Without data on prices, a scale
normalization on the vector θ is needed. I assume that one element of θ is either +1 or −1. The sign
of θ will typically be identifiable from the data.

4.3 Matching Maximum Score

To use a maximum score estimator without data on the prices of trades pΩ, in this subsection I use
intuition to define matching maximum score inequalities and the matching maximum score objective
function. In the next subsection, I prove a rank order property for matching without data on prices that
a further result uses to prove that the matching maximum score inequalities lead to set identification
of the parameter vector θ.

For intuition, a convenient property of the AH model is that the allocation portion A of any
competitive equilibrium

(
A, pΩ

)
is efficient in the sense of maximizing the social welfare function (6).

Therefore, any other allocation should weakly lower social welfare. First consider the full version of
the AH model where the same pair of two agents can undertake two different trades. In this case,
we can base an inequality around two specific trades, ω1 and ω2. The multi-set (allowing duplicates
in the set) of the buyer and seller observable types for trade ω1, b (ω1) , s (ω1) ∈ J , must equal the
multi-set of the buyer and seller observable types for trade ω2. The buyer observable type b (ω1) on
trade ω1 could be either the buyer or the seller observable type on trade ω2, although a particular
maximum score inequality fixes the role of b (ω1) on trade ω2
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The deviation from trade ω1 to trade ω2 for the two observable types b (ω1) , s (ω1) ∈ J is feasible
because there is both a buyer and a seller for each trade under both circumstances. On the left side
of the inequality, agent b (ω1) conducts the total trades

(
Φb(ω1),Ψb(ω1)

)
and agent s (ω1) conducts the

total trades
(
Φs(ω1),Ψs(ω1)

)
. Further, let

(
Φ̄s(ω1), Ψ̄b(ω1)

)
and

(
Φ̄s(ω1), Ψ̄s(ω1)

)
be the respective trades

when the agents b (ω1) , s (ω1) ∈ J switch from trade ω1 to ω2. Then a matching maximum score
inequality based on trades ω1 and ω2 (and on

(
Φb(ω1),Ψb(ω1)

)
and

(
Φs(ω1),Ψs(ω1)

)
) is

X
(
b (ω1) ,Φb(ω1),Ψb(ω1)

)′
θ+X

(
s (ω1) ,Φs(ω1),Ψs(ω1)

)′
θ ≥ X

(
b (ω1) , Φ̄b(ω1), Ψ̄b(ω1)

)′
θ+X

(
s (ω1) , Φ̄s(ω1), Ψ̄s(ω1)

)′
θ.

(9)
The intuition behind the inequality is that the social welfare for trade ω1 must be greater than the
social welfare when the agent observable types instead engage in trade ω2. This motivation is only
intuition as the inequality drops the unobservable agent types k (the unobservables in each εk) and so
we must prove a rank order property to show that a maximum score estimator based on this inequality
will set identify the true θ.

In some examples of applying the AH model, the inequality (9) will not be informative. Returning
to Example 1, consider one-to-one, two-sided matching (marriage) where trades ω encode only the
observable agent types of the buyer and the seller. As trades encode no other features than observable
types j ∈ J , a male observable type conducting a marriage trade ω1 ∈ Ω with a female observable
type cannot instead conduct a distinct marriage trade ω2 6= ω1 with that same female observable
type. Recall that Section 2 presents a matching maximum score inequality for marriage, (1). We now
introduce notation for a matching maximum score inequality that generalizes the inequality (1) for
the marriage example as well as the inequality (9) just introduced.

Let the more general matching maximum score inequality be indexed by g out of some finite set
G of possible inequalities. The set G is finite as the set of trades Ω is finite in the AH model. The set
of trades Ω might be infinite in some other matching model like Dupuy and Galichon (2014); this is
not a challenge for maximum score.

An inequality g will focus on the two trades ω1 and ω2 in the multi-set (allowing duplicates)
Ωg = {ω1, ω2} on the inequality’s left side and the two other trades Ω̄g = {ω3, ω4} on the inequality’s
right side. The trades can include the option of not making a trade in order to explore agents
dropping or adding trades. The set of observable types of agents should be the same for the left
and right sides: the multi-set Hg = {b (ω1) , s (ω1) , b (w2) , s (ω2)} should equal the multi-set H̄g =

{b (ω3) , s (ω3) , b (w4) , s (ω4)}. Further, there is some unique mapping between the agents in Hg and
H̄g in the case of identical observable agent types. For each observable type j ∈ Hg, let (Φj ,Ψj) be
j ∈ Hg’s total trades on the left side of the inequality; the corresponding trade ω ∈ Ωg where j is a
buyer or seller must be in (Φj ,Ψj). Likewise, each

(
Φ̄j , Ψ̄j

)
is j ∈ Hg’s total trades on the right side of

the inequality, where the corresponding trade ω ∈ Ω̄g where j is a buyer or seller must be in
(
Φ̄j , Ψ̄j

)
and

(
Φ̄j , Ψ̄j

)
must be equal to (Φj ,Ψj) for each j ∈ Hg except for the trade ω ∈ Ω̄g replacing the

corresponding trade ω ∈ Ωg.10 Given this notation, the matching maximum score inequality g

based on the trades ω1–ω4 and the corresponding sets (Φj ,Ψj) and
(
Φ̄j , Ψ̄j

)
for j ∈ Hg is defined to

10The trade sets (Φj ,Ψj) and
(
Φ̄j , Ψ̄j

)
should be subscripted by the inequality index g; this is dropped for conciseness.
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be

X
(
b (ω1) ,Φb(ω1),Ψb(ω1)

)′
θ+X

(
s (ω1) ,Φs(ω1),Ψs(ω1)

)′
θ+X

(
b (ω2) ,Φb(ω2),Ψb(ω2)

)′
θ+X

(
s (ω2) ,Φs(ω2),Ψs(ω2)

)′
θ ≥

X
(
b (ω1) , Φ̄b(ω1), Ψ̄b(ω1)

)′
θ+X

(
s (ω1) , Φ̄s(ω1), Ψ̄s(ω1)

)′
θ+X

(
b (ω2) , Φ̄b(ω2), Ψ̄b(ω2)

)′
θ+X

(
s (ω2) , Φ̄s(ω2), Ψ̄s(ω2)

)′
θ.

(10)

The inequality states that the sum of the valuation functions from the two trades in Ωg = {ω1, ω2} is
greater than the sum of the valuation functions from the two trades in Ω̄g = {ω3, ω4}.

If ω1 = ω2 and ω3 = ω4, this definition encompasses (9); the inequality (9) would be the appropriate
(10) divided by 2 on both sides. For the marriage example in Section 2, let

X̃ (jm, jf ) = X
(
b (ω1) ,Φb(ω1),Ψb(ω1)

)
+X

(
s (ω1) ,Φs(ω1),Ψs(ω1)

)
for trade ω1 where b (ω1) = jm and s (ω1) = jf . Hence the marriage matching maximum score
inequality (1) is a special case of (10).

The researcher chooses the set G of possible matching maximum score inequalities to use in es-
timation. A possible inequality g ∈ G becomes an actual inequality in estimation whenever the
configuration of observable agent types and sets of trades on the left side of the inequality (10) is
sampled in the data.

The researcher has a lot of freedom to choose the set G of possible matching maximum score
inequalities. However, for set identification, discussed below, there are some conditions needed on the
(asymptotic) choice of matching maximum score inequalities. Each inequality g1 ∈ G has a ≥ sign,
as in (10). Let g2 (g1) be the reverse-direction inequality: the same inequality with a < sign, which
is equivalent to switching the right and left sides of g1. The condition needed is that whenever the
inequality g1 ∈ G, then g2 (g1) ∈ G . In other words, g1 is included whenever the multi-sets of trades
Ωg1 (and (Φj ,Ψj)j∈Hg1

) are sampled in the data and likewise the reverse-direction inequality g2 (g1) is
included whenever the multi-sets of trades Ω̄g1 = Ωg2 (and

(
Φ̄j , Ψ̄j

)
j∈H̄g1

) are sampled in the data.11

The matching maximum score inequality g in (10) can be notationally simplified. The parameter
vector θ multiplies all four X vectors in the inequality. Therefore we can collect terms by defining the
vector

Zg =
∑
ω∈Ωg

(
X
(
b (ω) ,Φb(ω),Ψb(ω)

)
+X

(
s (ω) ,Φs(ω),Ψs(ω)

))
−

∑
ω∈Ω̄g

(
X
(
b (ω) , Φ̄b(ω), Ψ̄b(ω)

)
+X

(
s (ω) , Φ̄s(ω), Ψ̄s(ω)

))
.

Then the matching maximum score inequality g in (10) can be written as Z ′gθ ≥ 0.
The matching maximum score objective function for a sample of data on the trades (Φi,Ψi) of

11More formally, to rule out two otherwise mutually exclusive inequalities being true for the same parameter value θ
and neither being true, assign one of each pair g1 ∈ G and g2 (g1) ∈ G a weak inequality ≥ and the other one a strict
inequality >.
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i = 1, . . . , N agents, but not the prices of trades pΩ, is∑
g∈GN

1
[
Z ′gθ ≥ 0

]
, (11)

where GN are the inequalities to use for this sample. GN may be a multi-set as the same inequality
could appear multiple times if agents of the same observable type j ∈ J are observed. Computationally,
this linear-in-parameters form is the same form as the inequalities in single agent maximum score
and maximum rank correlation estimators (Manski, 1975, 1985; Han, 1987; Fox, 2007). As stated
before, the matching maximum score estimator avoids nonparametric estimates of choice probabilities
and distributions of unobservables, numerical integration, and algorithms to compute competitive
equilibria. The set G of possible inequalities can be chosen for computational convenience. Therefore,
the matching maximum score estimator is practical when certain alternatives are not.

The matching maximum score objective function (11) can be rewritten in a way that facilitates
calculating its expectation and its probability limit under i.i.d. sampling of the trades of agents i ∈ I.
With an appropriate normalizing constant, the matching maximum score objective function is also,
for N ≥ 4,(

N

4

)−1 N−3∑
i1=1

N−2∑
i2=i1+1

N−1∑
i3=i2+1

N∑
i4=i3+1

∑
g∈G

1
[
{(Φi,Ψi)}i=i1,i2,i3,i4 =

{(
Φgj ,Ψ

g
j

)}
j∈Hg

]
1
[
Z ′gθ ≥ 0

]
.

(12)
Here the outer four summations form all sets of four agents i in the sample. The inner sum is over
all matching maximum score inequalities g ∈ G. For each inequality g, the objective function checks
with the multi-set of trades of the four agents is equal to the multi-set of trades on the left side of the
inequality g. A trade ω contains the observable types of the buyer and seller, and so the objective
function also checks if the observable agent types match the inequality g. If the inequality checks
out, then the corresponding matching maximum score inequality is included in the maximum score
objective function as the indicator

1
[
{(Φi,Ψi)}i=i1,i2,i3,i4 =

{(
Φgj ,Ψ

g
j

)}
j∈Hg

]
(13)

equals 1 and so the inequality itself, Z ′gθ ≥ 0, enters the objective function. The model’s dependent
variable, the trades (Φi,Ψi) that are undertaken by the N agents in the data, enters the matching
maximum score objective function (12) through (13).

4.4 Rank Order Property and Set Identification

The parameter vector θ is set identified using data on trades and not the prices of trades pΩ when a
rank order property holds. The following proposition defines the rank order property for matching
without data on the prices of trades and states that it holds. Recall that Āj (Φ,Ψ) is the fraction or
choice probability of agents of observable type j ∈ J that conduct the trades Φ and Ψ. Let

Āj (Φ,Ψ | Φ1,Ψ1,Φ2,Ψ2) =
Āj (Φ,Ψ)

Āj (Φ1,Ψ1) + Āj (Φ2,Ψ2)
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be the probability that observable type j ∈ J picks the trades (Φ,Ψ) conditional on the event that j
picks either the trades (Φ1,Ψ1) or the trades (Φ2,Ψ2). Assume that F

(
εk | j

)
has bounded, continuous

derivatives, in addition to having full support on Rdim(εk) and being exchangeable, as before.

Proposition 1. The matching maximum score inequality (12) holds if and only if the following
inequality holds:

Āb(ω1)
(
Φb(ω1),Ψb(ω1) | Φb(ω1),Ψb(ω1), Φ̄b(ω1), Ψ̄b(ω1)

)
·Āb(ω2)

(
Φb(ω2),Ψb(ω2) | Φb(ω2),Ψb(ω2), Φ̄b(ω2), Ψ̄b(ω2)

)
≥

Āb(ω1)
(
Φ̄b(ω1), Ψ̄b(ω1) | Φb(ω1),Ψb(ω1), Φ̄b(ω1), Ψ̄b(ω1)

)
·Āb(ω2)

(
Φ̄b(ω2), Ψ̄b(ω2) | Φb(ω2),Ψb(ω2), Φ̄b(ω2), Ψ̄b(ω2)

)
.

(14)

The probability statement involves only buyer probabilities as buyer probabilities are related to
seller probabilities by feasibility, (5).12 It is important that the same two observable agent types’
choice probabilities are on the left and right sides of the probability statement (14). Recall that the
buyer on, for example, trade ω1 ∈ Ωg might be a seller on trade ω3 ∈ Ω̄g.

In words, the rank order property for matching without price data states that the conditional
probability of observing the configuration of trades on the left side of (10) is greater than the con-
ditional probability of observing the configuration of trades on the right side of (10) whenever the
sum of valuations involving observable types j and trades ω on the left side of (10) exceed those on
the right side of (10). The rank order property allows an estimator based on maximizing matching
maximum score inequalities involving only measured observable agent types j and trades ω to be (set)
consistent in the presence of unobservable types k, which index the vectors εk.

The matching maximum score inequality for Example 1, marriage without price data, is (1).
Applied to marriage, Proposition 1 states that the inequality (1) holds for observable types, in a slight
adjustment of notation, of the form jiim = j1

m if and only if

Aj
1
m
(
j1
f | j1

f , j
2
f

)
·Aj

2
m
(
j2
f | j1

f , j
2
f

)
≥ Aj

1
m
(
j2
f | j1

f , j
2
f

)
·Aj

2
m
(
j1
f | j1

f , j
2
f

)
where Ajm

(
j1
f | j1

f , j
2
f

)
is the probability of observable male type jm picking observable female type

j1
f conditional on picking either female type j1

f or female type j2
f . The simple matching maximum

score inequality for two trades without price data is (9). Using that inequality’s notation, Proposition
1 plus algebraic simplification states that the inequality (9) holds if and only if

Āb(ω1)
(
Φb(ω1),Ψb(ω1) | Φb(ω1),Ψb(ω1), Φ̄b(ω1), Ψ̄b(ω1)

)
≥ Āb(ω1)

(
Φ̄b(ω1), Ψ̄b(ω1) | Φb(ω1),Ψb(ω1), Φ̄b(ω1), Ψ̄b(ω1)

)
,

as there is only one trade on each side of the inequality (9).
The proof of Proposition 1 is in an appendix. A full proof of the proposition uses the assumption

from single-agent maximum score that F
(
εk | j

)
has full support and is an exchangeable distribution

for all j to apply the single agent rank order property for multinomial choice, mentioned above
(Manski, 1975; Fox, 2007). In addition to single agent maximum score results, the full proof of the
theorem also uses properties that only hold in competitive equilibrium; thus the proof uses matching

12The trades of sellers in the inequality g other than ω1–ω4 contribute to the sampling of inequalities in the data.
This does not affect the statement of the rank order property, as the proof indicates.
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theory in addition to manipulating the integrals in the definition of a choice probability (7). The
survey of Graham (2011, Theorem 4.1) was the first to prove that the rank order property holds in
a semiparametric model of marriage. The intellectual history of this is tangled. Previous circulating
working paper versions of the current paper, starting in 2004, introduced the matching maximum
score estimator. Later working paper versions pointed out that the rank order property was implied
by the closed form allocation (matching) probabilities in the parametric Choo and Siow (2006) model
of marriage, which uses the type I extreme value (logit) distribution for each element of the vector
εk. However, the proof idea for the rank order property for the semiparametric case originates in
Graham, who extends the results on one-to-one, two-sided matching with a continuum of agents to
the semiparametric setting, namely the assumption that F

(
εk | j

)
is an exchangeable distribution

for all j. Proposition 1 extends Graham’s result from marriage to the full generality of matching
with trades in the AH model. To clarify the intellectual contribution, the proof of Proposition 1 in
the appendix cites Graham’s result for marriage and shows how the inequalities in Graham can be
modified to derive the probability statement (14) in the AH model.13

Using the rank order property in Proposition 1, we can prove that the model is set identified,
meaning that the set of maximizers of the expectation of the maximum score objective function
contains the true parameter. The expectation is equal to the probability limit based on i.i.d. sampling
of agents i and their trades (Φi,Ψi).

Theorem 1. The set of maximizers θ of the expectation of the maximum score objective function (1)
contains the true parameter vector.

Say one further imposes that an element of the vector Zg has support on R conditional on other
elements of Zg, contradicting the finite set of trades Ω in the AH model, but not the marriage model of
Dupuy and Galichon (2014). The proof of the (point) consistency of maximum score would then verify
that set identification reduces to point identification and that other conditions in a general consistency
theorem for extremum estimators are satisfied (Newey and McFadden, 1994).14 Fox (2007) provides
such a proof for single-agent, multinomial choice maximum score and all the steps go through for the
matching case as well.

4.5 Inference in Matching Maximum Score

As mentioned previously, set inference can use a method such as the subsampling approach of Romano
and Shaikh (2008), which was used in single agent maximum score under set identification by Bajari,
Fox and Ryan (2008). An input into a procedure such as Romano and Shaikh is the rate of convergence
of the objective function.

At least under point identification, the rate of convergence will depend on how quickly the number

of inequalities increase with N . In (12), the number of inequalities is proportional to

(
N

4

)
, which

13Graham’s proof works by inverting choice probabilities. See the erratum Graham (2013). Note that Graham
(2011, Theorem 4.1) is stated for the marriage equivalent of independent and identical εkΦ,Ψ conditional on j instead
of an exchangeable F

(
εk | j

)
. The first two steps of Graham’s proof reproduce Manski (1975) and Fox (2007), so the

assumption of an exchangeable F
(
εk | j

)
can be used with little change, as in Fox (2007). Graham (2011, Theorem 4.1)

allows heteroskedasticity as well.
14Also, the elements of Zg should be linearly independent.
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is on the order of N4. The binomial coefficient

(
N

4

)
comes from sampling all sets of four unique

agents.
The matching maximum score objective function for marriage with data from a single market is

(2). In this example, the number of inequalities is proportional to

(
Ñ

2

)
, which is on the order

of Ñ2, where Ñ is the number of matches (marriages). This is smaller than

(
N

4

)
because, in

marriage, when one samples a husband one almost always samples the corresponding wife, so it is less
natural to view the husband and wife as independent draws from the population of all agents.

In both the objective functions (12) and (2), one can recognize that the objective function has the
same double (or more) summations as the maximum rank correlation objective function of Han (1987).
Consider the marriage case (2). Sherman (1993, 1994) shows that the maximum rank correlation
estimator is

√
Ñ consistent (under point identification) and asymptotically normal. The limiting

variance might be difficult to work with. Under point identification, Subbotin (2007) shows that the
bootstrap is valid for inference. Under set identification, the code of Santiago and Fox (2009) in part
implements the method of Romano and Shaikh (2008) to construct valid 95% confidence intervals
using the rate of convergence

√
Ñ as an input.

4.6 Multiple Markets

Let there now be data on D markets, indexed by d. Then the matching maximum score objective
function (11) has an extra summation over markets,

D∑
d=1

∑
g∈Gd

Nd

1
[
Z ′g,dθ ≥ 0

]
, (15)

where now the set of inequalities to include GdNd
is specific to market d.

Let us maintain the AH model: each market is truly a continuum of agents and we merely have data
on a subset of Nd agents from market d. There are two asymptotic arguments. The first asymptotic
argument fixed the number of markets D and increases the number of agents with recorded data Nd
for each d by some common amount N̄ such that Nd = νd ·N̄ , for the fixed-with-N̄ and market-specific
proportionality constants νd. Consider the marriage matching maximum score objective function with
multiple markets (3). This objective function has the “double summation” form for each market D
separately, and the estimator will have the maximum rank correlation asymptotics in some notion of
the number of agents in each market N̄ , meaning the rate of convergence will be

√
Ñ .15

Now consider fixing the number of agents with measured data Nd in each market. Each true
matching market is still a continuum. A second asymptotic argument makes the number D of markets
increase to infinity. Compared to the expectation of the single-market matching maximum score
objective function in the proof of Theorem 1, the expectation of (15) involves an outer expectation over

15When proving that the true parameter maximizes the probability limit of the objective function, as in Theorem 1,
one applies the rank order property in Proposition 1 to inequalities from each market separately.
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the distribution of full agent types ηd (i) for market d and hence the resulting competitive equilibrium.
This extra outer expectation over ηd (i) does not change the conclusion of Theorem 1: the true
parameter value is a global maximizer of the expectation of the objective function.

For the matching maximum score objective function for marriage in (2), the number of terms
in each double summation does not increase with D and so the estimator will have the maximum
score asymptotics in Kim and Pollard (1990). In the case of point identification, the estimator will
converge as the rate of D1/3. Delgado, Rodriguez-Poo and Wolf (2001) show that subsampling is valid
for inference. Under set identification, the code of Santiago and Fox (2009) in part implements the
method of Romano and Shaikh (2008) to construct valid 95% confidence intervals using the rate of
convergence D1/3 as an input.16

Maximum score estimators allow heteroskedasticity. In matching, even if observable type j ∈ J
has the same meaning across markets, the distribution of unobservables for j need not be the same
across markets. Notate the distribution of unobservables as F

(
εk | j, d

)
for observable type j ∈ J in

market d ∈ D.

4.7 Truly Finite Markets

The Azevedo and Hatfield (2015, Section 6) model with a continuum of agents has useful properties.
A competitive equilibrium always exists and is generically unique without strong restrictions on the
valuations of agents. The equivalent to the Azevedo and Hatfield (2015, Section 6) model for a market
with a truly finite number of agents is the model of Hatfield, Kominers, Nichifor, Ostrovsky and
Westkamp (2013). I write “truly finite” to emphasize that the issue with finiteness is not about the
data; the real equilibrium model in the data generating process has a finite number of agents. A
competitive equilibrium to the model of Hatfield et al. (2013) exists if the indirect utility versions of
the direct utility valuation functions vi (Φ,Ψ) are submodular, what the authors call a substitutes
condition. In one-to-one matching agents can make only one trade and so valuations are a function
of a single trade and so trivially submodular. In one-to-many and more complex forms of matching,
submodularity of the indirect valuation functions rules out many forms of complementarities across
multiple trades involving the same agent, such as the complementarities critical to the empirical
study of the car parts industry below. While any competitive equilibrium is efficient and hence the
corresponding allocation is unique if the maximizer of the social welfare function is unique, Hatfield
et al. demonstrate by example that a failure of the submodularity condition can lead to non-existence
of a competitive equilibrium.

As individual matching markets grow large, the finite-agent model of Hatfield et al. (2013) will
presumably converge to the continuum model of Azevedo and Hatfield (2015, Section 6), if the separa-
bility assumption is maintained. Therefore, a practical suggestion is to treat the matching maximum
score estimator as a large market approximation. Instead, Fox (2010) investigates nonparametric iden-

16For the example of single agent binary choice, sufficient conditions for set identification in the maximum score model
of Manski (1975) allow for heteroskedasticity (here F

(
εk | j

)
varies with j) while known sufficient conditions for set

identification in the maximum rank correlation model of Han (1987), applied to binary choice, require homoskedasticity
(here F

(
εk | j

)
does not vary with j). In matching, the “maximum score” and “maximum rank correlation” asymptotic

arguments both allow for heteroskedasticity, based on the rank order property in Proposition 1. The proof of Proposition
1 relies on the properties of competitive equilibrium and so the theorem is not an analog to the conditions for set
identification for binary choice in Han (1987).
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tification of aspects of the many-to-many joint valuation function in a truly finite market setting by
imposing a rank order property for matching without data on prices for the truly finite market setting.
While Fox does not discuss estimation or derive a rank order property using primitive conditions on
the distribution of unobservables, the rank order property in Fox would lead to the consistency of the
matching maximum score estimator in a truly finite market setting. That rank order property can
also be applied to the case where the market is truly finite but not all agents are recorded in the data.

5 Car Parts Industry

I now present an empirical application about the matching of assemblers to car parts suppliers in the
automobile industry. Automobile assemblers are well-known, large manufacturers, such as BMW, Ford
or Honda. Automotive suppliers are less well-known to the public, and range from large companies
such as Bosch to smaller firms that specialize in one type of car part. A car is one of the most
complicated manufacturing goods sold to individual consumers. Making a car be both high quality
and inexpensive is a technical challenge. Developing the supply chain is an important part of that
challenge. More so than in many other manufacturing industries, suppliers in the automobile industry
receive a large amount of coverage in the industry press because of their economic importance.

A matching opportunity in the automotive industry is an individual car part that is needed for
a car model. A particular trade ω ∈ Ω encodes an individual car part that is needed for a named
car model as well as buyer and seller observable types. Each car model itself has a brand. For the
Chevrolet Impala, Chevrolet is the brand and Impala is the model. There are multiple consummated
trades ω for the Chevrolet Impala because each model uses multiple parts. Finally, each brand is
owned by an assembler, in Chevrolet’s case General Motors. General Motors is the buyer observable
type b (ω) ∈ J on all the trades for car parts used on the Chevrolet Impala. The seller observable
type s (ω) ∈ J on each trade is a particular car parts supplier, like Bosch. Therefore, each named
firm represents a separate observable type in the AH model.17 In the AH model, there is one trade
ω ∈ Ω for the windshield on the Chevrolet Impala for each supplier s (ω) that supplies at least one
windshield for any of the models in the data and so could (according to the model) counterfactually
supply the windshield for the Impala.

I refer to Example 2 and model the car parts industry as an explicitly two-sided market, where
each supplier conducts trades only as a seller and each assembler conducts trades only as a buyer.
From an automotive engineering perspective, an assembler needs a specific set of car parts to make
a particular model. For example, each car model needs a single windshield.18 For an assembler i,
define vi (Φ) = −∞ for any set of trades Φ that do not contain exactly one trade for every car part
opportunity in the data. On the right side of a matching maximum score inequality (10), I drop
inequalities where vi

(
Φ̄
)

= −∞. Therefore, a counterfactual trade ω3 corresponds to, for example,
General Motors using a different supplier for the windshield for the Chevrolet Impala, not General

17The economic questions considered here focus on supplier and assembler specialization and so I need to allow each
firm to be its own observable type j ∈ J to properly measure specialization. The AH model uses a finite number of
trades ω ∈ Ω and a continuum of full agent types i ∈ I. In my empirical version of the AH model, the number of
observable types j ∈ J is also finite. Here, the fiction mapping the continuum AH model to the finite data is that there
is a continuum of firms of the General Motors observable type but only one such firm is sampled in the data.

18The data do not report back up or secondary suppliers for a part on a particular car model.
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Motors installing two different windshields on the Chevrolet Impala or replacing the windshield with
a tire. By the market definition discussed below, only suppliers that make at least one windshield in
the data can be the seller observable type on the counterfactual trade ω3 in a matching maximum
score inequality (10) based on swapping windshield suppliers.

The car parts data come from SupplierBusiness, an analyst firm. I merge them with car sales data
collected from several sources for the United States and several large countries in Western Europe. I
focus on 30 large component categories, such as air conditioning parts, body parts and transmission
parts. In the merged and cleaned data, there are 941 suppliers, 11 assemblers (parent companies),
46 car brands, 260 car models, and 34,836 car parts. While the data cover different model years, for
simplicity I ignore the time dimension and treat each market as clearing simultaneously.19 I treat each
component category as a statistically independent matching market.20 Therefore, I use the matching
maximum score objective function for multiple markets in (15).21

One of the empirical applications focuses on General Motors divesting Opel, a brand it owns in
Europe. In order to model the interdependence of the European and North American operations of
General Motors and suppliers to General Motors, the definition of a matching market is car parts
in a particular component category used in cars assembled in Europe and North America. Most
of the assemblers and many of the larger suppliers operate on multiple continents.22 However, the
point estimates found when splitting Europe and North America into separate matching markets are
similar to those presented here, suggesting that geographic market definitions do not play a large role
in identifying the parameters. Note that many of the estimated gains to specialization to a supplier
likely come from plant co-location: using one supplier plant to supply the same type of car part to
multiple car models assembled in the same plant or in nearby plants. Thus, an empirical regularity
of certain suppliers being more prevalent in one continent than another is consistent with the gains
to specialization that I seek to estimate.23 The data have poor coverage for car models assembled in
Asia, so I cannot include the corresponding car parts in the empirical work. I do focus heavily on car
parts used on cars assembled in Europe and North America by assemblers with headquarters in Asia.

The automotive supplier empirical application is a good showcase for the strengths of the matching
maximum score estimator. The matching markets modeled here contain many more agents than the
markets modeled in many non-marriage papers on estimating matching games. The computational
simplicity of maximum score, or some other approach that avoids repeated computations of model
outcomes, is needed here. I focus on specialization in the portfolio of matches for suppliers and

19Car models are refreshed around once every five years.
20The same supplier may appear in multiple component categories, and so a researcher might want to model spillovers

across component categories. Pooling component categories into one large market creates no new issues with the AH
model or the matching maximum score estimator. The history of the industry shows that many US suppliers were
formed in the 1910’s and 1920’s around Detroit (Klier and Rubenstein, 2008). Some firms chose to specialize in one or
a few component categories and others specialized in more component categories. The particular historical pattern of
what component categories each supplier produces lies outside of the scope of this investigation.

21The parameter estimates in this paper would presumably change if SupplierBusiness aggregated or disaggregated
car parts into component categories in different ways.

22Nissan and Renault are treated as one assembler because of their deep integration. Chrysler and Daimler were part
of the same assembler during the period of the data.

23A few suppliers are owned by assemblers. I ignore the vertical integration decision in my analysis, in part because
I lack data on supplier ownership and in part because vertical integration is just an extreme version of specialization,
the focus of my investigation. If a supplier sends car parts to only one assembler, that data are recorded and used
as endogenous matching outcomes. Vertical integration in automobile manufacturing has been studied previously
(Monteverde and Teece, 1982; Novak and Eppinger, 2001; Novak and Stern, 2008, 2009).
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assemblers. Along with my related use of the estimator introduced here in Fox and Bajari (2013),
an earlier draft of the current paper was the first empirical application to a many-to-many matching
market where the valuation from a set of matches (or trades) is not additively separable across the
individual matches. Finally, the prices of the car parts are not in publicly available data. The matching
estimator does not require data on the prices of trades, even though prices are present in the economic
model being estimated.

6 Costs of Assemblers Divesting Brands

6.1 General Motors and Opel

In 2009, General Motors (GM), the world’s largest automobile assembler for most of the twentieth
century, declared bankruptcy. As part of the bankruptcy process, GM divested or eliminated several
of its brands, including Pontiac and Saturn in North America and SAAB in Europe. Economists know
little about the benefits and costs of large assemblers in the globally integrated automobile industry
divesting brands. This paper seeks to use the matching patterns in the car parts industry to estimate
one aspect of the costs of divestment.

A major public policy issue during 2009 was whether General Motors should also divest its largest
European brands, Opel and Vauxhall.24 Opel is based in Germany and Vauxhall is based in the United
Kingdom. Consistent with the close link between Opel and Vauxhall, they will be grouped together
as one brand, Opel, in the empirical work. Over the period of the data, Opel also had assembly plants
in Belgium, Hungary, Poland, and Russia.

A major advocate of GM divesting Opel was the German government, which desired to protect
jobs at Opel assembly plants, at Opel dealers and at suppliers to Opel, but was reluctant to subsidize
a bankrupt North American firm. During most of 2009, the presumption by GM was that Opel would
be divested. Indeed, GM held an auction and agreed to sell Opel to a consortium from Canada and
Russia. In November 2009, GM canceled the sale and kept Opel as an integrated subsidiary of GM.
Opel and the North American operations of GM share many common platforms for basing individual
models on. One reason for keeping Opel integrated is that a larger, global assembler will have gains
from specialization in its own assembly plants and in the plants of suppliers. Increasing the gains to
suppliers from specializing in producing car parts for GM may indirectly benefit GM through lower
prices for car parts.

6.2 Valuation Functions of Observable Types

This section estimates the parameters in the valuation functions over observable types for assemblers
and suppliers for the portfolio of car part trades each firm buys or sells. Let the notation for the
observable type js emphasize that the firm in question is a supper or seller and the notation jb

emphasize that the firm is a buyer or assembler, as the car parts industry is an explicitly two-sided
market. I use the functional forms πθ

(
jb,Φ

)
= X

(
jb,Φ

)′
θb for buyers and πθ (js,Ψ) = X (js,Ψ)

′
θs

24GM has owned Opel since 1929, although its control temporarily lapsed during the second World War.
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for sellers, with θ =
(
θb, θs

)
. The elements of the vectors X

(
jb,Φ

)
and X (js,Ψ) are measures of how

specialized each portfolio of car part trades is at several levels.

6.2.1 Valuation Functions for Suppliers

For suppliers, X (js,Ψ) tracks specialization in four areas: parts (in the same component category)
for an individual car, parts for cars from a particular brand (Chevrolet, Audi), parts for cars from a
particular parent company or assembler (General Motors, Volkswagen) and parts for cars for brands
with headquarters on a particular continent (Asia, Europe, North America).

The choice of a measure of specialization is somewhat arbitrary. I use the Herfindahl-Hirschman
Index (HHI) because economists are familiar with its units, which range between 0 and 1. For example,
say the North American firms of Chrysler, General Motors and Ford are the only three assemblers.
Then the corresponding parent group scalar element XPG (js,Ψ) of the vector X (js,Ψ) is

XPG (js,Ψ) =

(
# Chrysler parts in Ψ

# total parts in Ψ

)2

+

(
# Ford parts in Ψ

# total parts in Ψ

)2

+

(
# GM parts in Ψ

# total parts in Ψ

)2

. (16)

As this specialization measure enters the valuation function for a supplier, XPG (js,Ψ) is 1 if the
supplier sells parts only to, say, GM and 1/3 if it sells an equal number of parts to each assembler.
The use of the HHI differs from antitrust; here the HHI is a measure of specialization for a portfolio
Ψ of car part trades for a particular supplier js and is not a measure of concentration in the overall
industry for car parts. The specialization measure XPG (js,Ψ) can be computed both for the trades
Ψ for a supplier in the data and in the counterfactual trades in a matching maximum score inequality
(10).25

When I consider the counterfactual of GM divesting Opel and making it an independent assembler
or parent company, the changes in total valuation will be generated by the estimated parameter
on the importance of specialization at the parent company level, relative to the values of the other
parameters.

The pattern of sorting across trades in the car parts market is used to measure the relative
importance of specializing at different levels of aggregation. The management literature has suggested
that supplier specialization may be a key driver of assembler performance (Dyer, 1996, 1997; Novak
and Wernerfelt, 2012).

By construction, two parts for the same car model also have the same brand, parent group and
continent. Two car parts for cars from the same brand are automatically in the same parent group and
the brand only has one headquarters, so the parts are from a brand with a headquarters in the same
continent as well. Two cars from the same parent group are not necessarily from the same continent,
as Opel is a European brand of GM and Chevrolet is a North American brand of GM.

The four specialization measures in X (js,Ψ) are highly correlated. Just as univariate linear least
25Many other upstream firm characteristics would be endogenous at the level of the competitive equilibrium considered

here. For example, many of the benefits of specialization occur through plant co-location and so suppliers and assembler
plant locations should be considered endogenous matching outcomes rather than exogenous firm characteristics. With
just-in-time production at many assembly sites, supplier factories are built short distances away so parts can be produced
and shipped to the assembly site within hours, in many cases. Plant location could be added as an extra element to a
trade ω in other work.
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squares applied to each covariate separately produces different slope coefficients than multivariate
linear least squares when the covariates are correlated, a univariate matching theoretic analysis (such
as Becker (1973)) on each measure in X (js,Ψ) separately will be inadequate here. A univariate
analysis of say XPG (js,Ψ) would just amount to saying that the corresponding element of θ is positive
when each supplier does more business with certain parent groups than others. In principle, even this
conclusion about the sign of the parameter could be wrong if the correlation with the other three
characteristics is not considered in estimation. Here I measure the relative importance of each of the
four types of specialization: at which level do the returns to specialization occur?

6.2.2 Valuation Functions for Assemblers

The valuation function of assemblers has a similar functional form, focusing on specializing in a small
number of suppliers. Let Φ be a portfolio of car part trades for buyer or assembler jb. I consider
parent group, brand and model specialization in the vector X

(
jb,Φ

)
. For conciseness, I do not include

a term for specialization at the continent of brand headquarters level.
Consider the Herfindahl index for the concentration of suppliers selling parts to an assembler.

Given a portfolio Φ, let s (Φ) be the set of distinct suppliers who sell at least one car part trade in Φ.
Then define the scalar

XPG

(
jb,Φ

)
=
∑
i∈s(Φ)

(
# trades sold by supplier i in Φ

# total trades in Φ

)2

.

Next, XBr

(
jb,Φ

)
is the mean of such a Herfindahl index computed for each brand separately. Consider

GM and say that the only two brands of GM are Chevrolet (Chevy) and Opel and let s (Φ,Opel) be
the set of suppliers selling parts to Opel in Φ. Then, for GM,

XBrand

(
jb,Φ

)
=

1

2

∑
i∈s(Φ,Opel)

(
# trades sold by supplier i to Opel in Φ

# total trades for Opel in Φ

)2

+
1

2

∑
i∈s(Φ,Chevy)

(
# trades sold by supplier i to Chevy in Φ

# total trades for Chevy in Φ

)2

. (17)

Likewise, XModel

(
jb,Φ

)
is the mean across car models sold by GM of the Herfindahl index calculated

for the sellers of parts to each car model separately. As with suppliers, the elements of X
(
jb,Φ

)
can

be computed for the counterfactual trades in the matching maximum score inequalities (10).
The matching maximum score inequalities used in estimation keep the number of car part trades

sold by each supplier (and, more obviously, the set of car parts needed on each car model) the same.
With strong returns to specialization, it may be more efficient to have fewer but individually larger
suppliers. The optimality of supplier size is not imposed as part of the estimator. Nor can the gains
from assembler scale be identified from matching maximum score inequalities where each car part and
each car model are weighted equally. This paper models the car parts industry, not the market for
corporate control of car brands and car models. Not imposing the optimality of supplier and assembler
sizes might be an advantage, as other concerns such as capacity constraints and antitrust rules could
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limit firm size. On the other hand, one of the benefits of GM not divesting Opel is keeping a larger
scale, and the matching maximum score inequalities used in estimation do not identify a pure scale
economy for GM owning Opel. Instead, the matching maximum score inequalities focus on the gains
to assemblers and particularly to suppliers from specialization, for a fixed number of car part trades.

6.3 Estimates for Valuation Functions

Table 1 presents the point estimates and confidence intervals for the parameter vector θ in the valuation
functions for observable types, for both assemblers and suppliers. I randomly sample a maximum of
10,000 matching maximum score inequalities (10) per component category. All theoretically valid
inequalities with two different suppliers are sampled with an equal probability. I use the set identified
subsampling procedure of Romano and Shaikh (2008) to construct confidence regions. See Appendix
B for details on estimation and inference.

The parameter on assembler (parent group) specialization for suppliers is normalized to be ±1. The
other parameters in Table 1 are interpreted relative to the parameter on parent group specialization.
One finding in that the point estimates of the assembler parameters have a much lower order of
magnitude than the supplier parameters and the parameters have wide confidence bands, always
including 0. For assemblers, the upper bounds of the confidence bands for parent group, brand and
model specialization are lower than the lower bounds for the analogous specialization measures for
suppliers. Therefore, for these specialization measures one can at least statistically conclude that
supplier specialization measures are more important. This difference between the point estimates
for assemblers and suppliers is not because of a difference in the units of X

(
jb,Φ

)
and X (js,Ψ);

the rightmost columns of Table 1 report the means and standard deviations of the specialization
measures for realized matches for both suppliers and assemblers. The specialization (HHI) measures
are about the same magnitudes for both suppliers and assemblers. What is possibly explaining the
small magnitude effects is that two economic forces may offset each other: assemblers prefer to have a
diverse supplier base to avoid placing their success in the hands of one supplier (hold up) while there
may be some manufacturing benefits from having a fewer number of suppliers. Regardless, the point
estimates show that assembler specialization is much less important than supplier specialization in
the valuation functions. One caveat is that the confidence intervals for assembler specialization at the
model levels do contain larger, in absolute value, coefficient magnitudes.

For suppliers, Table 1 shows that all four coefficients on supplier specialization are positive, meaning
as expected specialization on these dimensions increases the valuation of suppliers. The point estimates
show that a given level of specialization at the parent-group level is about as important in valuation
as the same level of specialization at the continent-of-brand-headquarters level. At the same time, the
standard deviation of parent-group-specialization HHI, across realized matches, is 0.18, meaning the
variation in parent-group specialization across suppliers is lower than for some other specialization
measures. A naive researcher might be inclined to interpret this level of dispersion as evidence parent-
group specialization is unimportant. This would be wrong: the matching maximum score estimator
accounts for the fact that more available matching opportunities occur across firm boundaries than
within them. An estimate of a structural parameter such as the coefficient on parent group tells us
the importance of parent group in the valuation from a set of trades.
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Table 1 also shows that supplier specialization at the brand and model levels is even more important
than specialization at the parent-group level, as the brand and model confidence intervals do not
contain +1. The high point estimate of 376 for model specialization possibly comes from supplier and
assembler plant co-location: car models of even the same brand may be built in separate plants and
some benefits from specialization may occur from saving on the need to have multiple supplier plants
for each model. Also, the technological compatibility of car parts occurs mainly at the model level.
Notice how the standard deviation of the HHI-specialization measure is about the same (0.26–0.28)
for the continent, brand and model measures, with parent group specialization being a little lower
at 0.18. Again, naive researchers might use the HHI means to conclude that specialization at the
model level is less important or use the standard deviations to conclude that specialization at the
continent, brand and model levels are equally important. The estimates of the valuation functions
give statistically consistent estimates of the relative importance of the types of specialization in the
valuation functions for supplier relationships.

Table 1 also shows that there are 298,272 inequalities used in estimation. Of those, 82% are satisfied
at the reported point estimates. The fraction of satisfied inequalities is a measure of statistical fit.
Appendix C presents estimates where the HHI specialization measures use different weighting schemes,
including weighting schemes using data on car model sales in Europe and North America. The
specifications in Appendix C result in lower numbers of inequalities being satisfied at the parameter
estimates. Therefore, these alternatives result in statistically worse fit and so are not presented in the
main text. However, a common finding in Appendix C is that the assembler parameters become more
important, particularly the parameter on assembler model specialization.

6.4 Supplier Valuation Loss From GM Divesting Opel

Encouraging General Motors to divest Opel was a major policy issue in Germany during 2009. The
revealed preference of GM to back away from selling Opel to outside investors suggests that GM felt
that Opel was important to its performance. One possibility is that GM feared a loss of economies
of scale (total size) or scope (strength in fuel efficient cars that could be transferred from Europe to
North America, say) from such a divestiture. Matching in the car parts industry is not necessarily
informative about assembler economies of scale and scope.

Using information from the car parts industry, and in particular in light of the minuscule point
estimates on assembler specialization above, the major estimated effect of GM divesting Opel will
come from suppliers to GM being less specialized as GM’s and Opel’s models technologically diverge.
This will hurt GM through equilibrium prices of trades: suppliers will charge higher prices to GM
for car parts. In each component category, I construct the counterfactual sum of valuations from
observable types to suppliers if Opel and the rest of GM are now treated as separate assemblers, or
parent groups. The same sellers supply the same car part trades to the same car models, but now the
Opel models are produced by an independent parent group. In (16), some car parts are transferred to a
new parent group and so the measure of parent group specialization weakly decreases for any supplier
that sells any parts to Opel. The decrease in the parent group specialization measure XPG (js,Ψ)

times its estimated parameter θsPG gives the decrease in the valuation for each supplier who sells at
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least one part to Opel. I focus on a percentage decrease measure

θsPG∆XPG (js,Ψ)

X (js,Ψ)
′
θ

,

for a particular supplier with the matches Ψ in the data. Note that this measure imposes a cardinal
(up to scale) interpretation of a supplier’s valuation function, as opposed to identifying a supplier’s
valuation function only up to a positive monotonic transformation. Fox (2010) proves that the cardinal
aspects of a related function are identified nonparametrically in a truly finite matching game with
transfers.

Table 2 reports statistics for the distribution of percentage changes in valuation for suppliers. A
supplier in the table is a real-life supplier in a particular component category. Only suppliers who
sell at least one part to Opel and one car part to another GM brand are affected and so included
in the table. The mean loss is tiny, at 0.04%. The other quantiles are tiny as well. This partly
reflects suppliers where either Opel is a small fraction of car parts or a very large fraction of parts,
so GM divesting Opel makes little difference in how specialized the supplier is. This result also
follows from the parameter estimates in Table 1, where the point estimates for the coefficients on
brand and especially model specialization are many times larger than the coefficient on parent group
specialization.26

6.5 International Trade Application

Appendix D contains estimates of a separate specification motivated by how barriers to international
trade may upgrade the quality of domestic suppliers.

7 Conclusions

This paper discusses the estimation of valuation functions in matching games with transferable utility.
A matching maximum score estimator is introduced for the matching with trades model of Azevedo
and Hatfield (2015, Section 6), which has many special cases of empirical relevance. The matching
maximum score estimator is computationally simple and semiparametric.

The empirical work answers two policy questions surrounding the automotive industry. First, the
paper estimates the relative loss in valuation to suppliers from decreased specialization from General
Motors divesting Opel. A forced divestiture ends up hurting most suppliers only a little as the point
estimates to the gains to specialization at model level, which is not affected by the divestment, are
higher than the gains to specialization at the parent group level. Second and in an appendix, the paper
estimates the gain to, say, North American suppliers from the presence of Asian-based assemblers in
North America. Both estimates are inferred from a new type of data, the portfolios of car part trades
from each supplier.

26I compute but do not report the small changes in GM’s and Opel’s valuations from divesting Opel. Because the
coefficient estimates on assembler specialization in Table 1 are small in magnitude, the overwhelming effect in profit
levels is estimated to be on suppliers.
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A Proofs

A.1 Proposition 1: Rank Order Property

The proof cites Graham (2011, Theorem 4.1). His theorem is stated for one-to-one, two-sided matching
or marriage and, in his notation, considers two observable types of men k and m and two observable
types of women l and n. Graham’s proof works by considering the so-called suballocation of the
two observable types of men and the two observable types of women, the suballocation klmn in his
notation. In the suballocation klmn, Graham considers the probability within the suballocation of
k and l matching, which is called rklmn. The probability of k matching with n is pklmn − rklmn,
the probability of m matching with l is qklmn − rklmn, and the probability of m matching with n is
1− pklmn − qklmn + rklmn.

The statement that drawing two matches between k and l and m and n are more likely than
drawing two matches between k and n and m and l is

(
1− pklmn − qklmn + rklmn

)
rklmn >

(
pklmn − rklmn

) (
qklmn − rklmn

)
. (18)

Algebra at the end of Section 4.3.2 in Graham, after correcting typos, shows that this inequality is
equivalent to rklmn > pklmnqklmn. The conclusion of Theorem 4.1 on the same page of Graham can
be rewritten to state that

δmn + δkl ≥ δml + δkn (19)

if and only if rklmn > pklmnqklmn, which as just said is equivalent to the inequality (18). The inequality
(19) can be seen as a matching maximum score inequality (10). Therefore, Graham (2011, Theorem
4.1) is a rank order property for one-to-one, two-sided matching without data on prices.

The setup in the AH model is more general than the model of one-to-one, two-sided matching or
marriage in Graham. However, the extra generality can be handled by conditioning. In an matching
maximum score inequality g ∈ G in my notation, there are the two observable agent types of buyers
and the two observable agent types of sellers in Hg = {b (ω1) , s (ω1) , b (ω2) , s (ω2)}. While the AH
model does not necessarily assign roles of buyers and sellers ex ante, a matching maximum score
inequality (10) does condition on these roles on the left side of the inequality and the right side of the
inequality. A complication is the observable type b (ω1) that is the buyer on ω1 on the left side of the
inequality could be a seller on, say, trade ω3 on the right side of the inequality. This switch of roles
of buyer and seller does not change the proof in Graham.

Likewise, agents in the AH model make sets of trades (Φ,Ψ). This can be handled by conditioning
on the set of trades (Φj ,Ψj) other than ω1–ω4 for all four observable agent types in j ∈ Hg. In other
words, condition on the joint event C that b (ω1) picks either

(
Φb(ω1),Ψb(ω1)

)
or
(
Φ̄b(ω1), Ψ̄b(ω1)

)
, s (ω1)

picks either
(
Φs(ω1),Ψs(ω1)

)
or
(
Φ̄s(ω1), Ψ̄s(ω1)

)
, and similarly for b (ω2) and s (ω2).

In what follows, abbreviate Āb(ω1)
(
Φb(ω1),Ψb(ω1) | Φb(ω1),Ψb(ω1), Φ̄b(ω1), Ψ̄b(ω1)

)
with Āj

(
Φb(ω1),Ψb(ω1) | g

)
.

When forming choice probabilities conditional on the joint event C mentioned just above, the con-
ditional choice probabilities for say b (ω1) will multiplicatively factor into Āb(ω1) (Φ,Ψ | g) and three
choice probabilities for the other three agents. In an inequality such as the probability statement (14)
in the statement of the proposition, the choice probabilities for the other three agents are the same
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multiplicative correction for Āb(ω1)
(
Φb(ω1),Ψb(ω1) | g

)
and Āb(ω1)

(
Φ̄b(ω1), Ψ̄b(ω1) | g

)
and cancel out on

either side of the inequality. The choice probabilities multiplicatively factor as the choice probabilities
of agents are mutually independent conditional on the observable type j ∈ J in the continuum AH
model.

Divide, on the left and right sides of (18),
(
1− pklmn − qklmn + rklmn

)
and

(
qklmn − rklmn

)
by

the constant (
1− pklmn − qklmn + rklmn

)
+
(
qklmn − rklmn

)
.

This changes those terms into, in my notation, the conditional choice probabilities Āb(ω1)
(
Φb(ω1),Ψb(ω1) | g

)
and Āb(ω1)

(
Φ̄b(ω1), Ψ̄b(ω1) | g

)
, respectively, after canceling out the multiplicatively factorable choice

probabilities for the three agents other than b (ω1) for conditioning on the joint event C, as just dis-
cussed. A similar argument applies to give Āb(ω2)

(
Φb(ω2),Ψb(ω2) | g

)
and Āb(ω2)

(
Φ̄b(ω2), Ψ̄b(ω2) | g

)
.

Therefore, the probability statement (18) becomes the probability statement (14) in the statement of
the proposition. Hence, we have proved the rank order property for the AH model without data on
the prices of trades.

A.2 Theorem 1: Set Identification

In what follows, abbreviate Āb(ω1)
(
Φb(ω1),Ψb(ω1) | Φb(ω1),Ψb(ω1), Φ̄b(ω1), Ψ̄b(ω1)

)
with Āj

(
Φb(ω1),Ψb(ω1) | g

)
.

By the law of iterated expectations, the expectation of the matching maximum score objective function
(11) can be written

1

2

∑
g1∈G

Pr [g1 or g2 (g1) included]·
{
Āb(ω1)

(
Φb(ω1),Ψb(ω1) | g1

)
· Āb(ω2)

(
Φb(ω2),Ψb(ω2) | g1

)
· 1
[
Z ′g1θ ≥ 0

]
+

Āb(ω1)
(
Φ̄b(ω1), Ψ̄b(ω1) | g1

)
· Āb(ω2)

(
Φ̄b(ω2), Ψ̄b(ω2) | g1

)
· 1
[
Z ′g1θ < 0

]}
.

By a requirement in the main text, if g1 ∈ G, then g2 (g1) ∈ G. The 1/2 is to remove double
counting: counting g1 once as g1 in the summation as once as g2 (g′1) for g′1 = g2 (g1). The calculation
Pr [g1 or g2 (g1) included] is over the four observable types of i1–i4 in (11) and all the trades except
ω1–ω4 in inequality g1 and, hence, the reverse direction inequality g2 (g1). Further, one of those
actually enters with a strict > instead of the weak ≥. So the forward direction inequality Z ′g1θ ≥ 0 is
mutually exclusive with Z ′g1θ < 0. Only one of the two inequalities can enter the objective function
with nonzero weight for a given parameter θ. By the rank order property in Proposition 1, the
maximum of the two products of conditional choice probabilities of the form

Āb(ω1)
(
Φb(ω1),Ψb(ω1) | g1

)
· Āb(ω2)

(
Φb(ω2),Ψb(ω2) | g1

)
will be included at the true parameter value for θ. Any other parameter value θ results in either the
same objective function value or a lower objective function value where some smaller weight contributes
to the objective function value. Therefore, the matching maximum score objective is (perhaps not
uniquely) globally maximized at the true parameter value.
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B Estimation and Inference for the Car Parts Empirical Work

I first describe point estimation and then inference. I sample 10,000 inequalities for each of 29 matching
markets given by component categories. For the 30th component category, I use the maximum number
of inequalities, 8,272, for that market. To create one of the 10,000 inequalities for a market, I randomly
sample two car parts from different suppliers and include the resulting matching maximum score
inequality where the two car parts are exchanged between the suppliers.

I use the numerical optimization routine differential evolution, in Mathematica. For differential
evolution, I use a population of 250 points and a maximum of 15,000 iterations. The numerical
optimization is run 20 times with different initial populations of 250 points. For the specification in
Table 1, all 20 runs found the same objective function value and the same point estimates, up to two
significant digits.

In the maximum score objective function, an inequality is satisfied if the left side plus the constant
+0.0000000001 exceeds the right side. This small perturbation to the sum of profits on the left
side ensures that inequalities such as 0 > 0 are counted as being satisfied consistently, rather than
inconsistently because of some numerical-approximation error resulting in, say, 2.0 × 10−15 > 1.0 ×
10−15.

I use the inference procedure of Romano and Shaikh (2008), which is valid under both set identifi-
cation and point identification. Let Θ0 be the identified set for the parameter θ. The authors provide
a subsampling procedure to construct a confidence region C called, by those authors, a “confidence
region for the identifiable parameters that is uniformly consistent in level”, under the conditions of
their Theorem 3.3. This definition of the properties of a confidence region is equation (3) of their
paper. Under easier to verify conditions, their procedure produces “confidence regions for identifiable
parameters that are pointwise consistent in level”, or their equation (2). Computationally, I implement
equations (12) and (10) in their paper.

I have 30 component categories. I treat these component categories as separate markets for the
industry-specific reasons discussed in the main text. I perform asymptotics in the number of suppliers
in the market, as this is an explicitly two-sided market where a supplier cannot also be an assembler,
as in Example 2. Subsampling requires a choice of subsample size. Unfortunately, the literature has
not provided a data driven method to pick this tuning parameter. I use 33% of the suppliers from
each of the 30 component categories. Given each subsampled set of suppliers, that subsample uses
only matching maximum score inequalities where both suppliers whose valuation functions are in the
inequality are in the subsample. I use 500 subsamples; in experiments results are robust when using
more subsamples.

In the car parts empirical work, the maximum score or maximum rank correlation objective func-
tion is, for D = 30 component categories,

Q (θ) =

(
N

2

)−1 D∑
d=1

Nd−1∑
i1=1

Nd∑
i2=i1+1

∑
g∈Gd

i1,i2

1
[
Z ′g,dθ ≥ 0

]
,

where Gdi1,i2 is the set of included matching maximum score inequalities where i1 and i2 exchange one
car part each. Romano and Shaikh (2008) is written where one minimizes a function and where the
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population objective function’s minimum value is 0. In maximum score, one maximizes the objective
function value and the value of the population objective function can only be estimated using the
finite sample objective function. Following the suggestion at the beginning of their Section 3.2, I work
with the objective function −Q (θ)− (−maxθ Q (θ)).

I define the “sample size” for the entire procedure to be N = maxd∈DNd. This choice is arbitrary
and does not impact the reported confidence regions. I implement the procedure of Romano and
Shaikh (2008) using the rate of convergence for the objective function of

√
N , following the results of

Sherman (1993) for the case of point identified maximum rank correlation estimators.
The confidence regions reported in tables are projections onto the axes of the confidence region

C from Romano and Shaikh (2008). Computationally, the lower bound for the confidence region for
a scalar parameter θ1 is found by minimizing the parameter θ1 subject to the constraint that the
entire parameter vector θ is in C . Likewise, the upper bound for the confidence region θ1 is found by
maximizing the parameter θ1 subject to the entire parameter vector being in C .

C Alternative Weighting Schemes for Specialization Measures

This appendix discusses versions of the estimates in Table 1 where the included HHI specialization
measures use different weighting schemes, many involving data on car sales for car models in Europe
and the United States. These alternative weighting schemes result in worse statistical fit than the
estimates in Table 1, in the sense that fewer inequalities are satisfied. For this reason, I report the
estimates in this appendix instead of the main text.

In terms of sales, car models primarily sold in Europe are matched to European sales from Western
Europe and car models primarily from North America are matched to sales from the United States.
Note that all weighting schemes affect the HHI specialization measures. I do not explore weighting
the maximum score inequalities in the objective function, although that could be pursued.

Let wc be a weight for a particular car part c. The example parent group supplier HHI measure
in (16) becomes

XPG (js,Ψ) =

(
sum Chrysler weights in Ψ

sum all weights in Ψ

)2

+

(
sum Ford weights in Ψ

sum all weights in Ψ

)2

+

(
sum GM weights in Ψ

sum all parts in Ψ

)2

.

Analogous schemes are used for other supplier HHI specialization measures and for assembler special-
ization at the parent group level. The example brand assembler HHI measure in (17) becomes

XBrand

(
jb,Φ

)
= w̄Opel

∑
i∈s(Φ,Opel)

(
sum weights sold by supplier i to Opel in Φ

sum weights for Opel in Φ

)2

+

w̄Chevy

∑
i∈s(Φ,Chevy)

(
sum weights sold by supplier i to Chevy in Φ

sum weights for Chevy in Φ

)2

,

where, for example,

w̄Chevy =
sum weights for Chevy in GM

sum weights in GM
.
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Note that the brand weights like w̄Chevy are not recomputed for counterfactual trades Φ, as indeed
Chevrolet and other brands still produce the same car models with the same need for car parts in the
counterfactuals in matching maximum score inequalities.

Table 3 reports the estimates with weights. There are three specifications, each with different
weights. Note that the parameters multiply different explanatory variables across the three specifi-
cations, so the parameters have slightly different interpretations. However, the means and standard
deviations of the weighted HHI measures are qualitatively similar to those reported in Table 1 for the
baseline specification.

The first weighting scheme in Table 3 does not use sales data; it sets

wc =
1

# car parts for model in market d
.

This scheme weights a car part on a car model with more parts in a component category less, in order
to equalized the contribution of car models to HHI calculations. The second weighting scheme uses
the weights

wc = sales of car model.

The third weighting scheme combines the previous two, as in

wc =
sales of car model

# car parts for model in market d
.

Compared to Table 1, Table 3 shows less of a role for supplier model specialization and much more
of a role for assembler model HHI specialization. In all three of the specifications, the lower bound for
the confidence region for supplier HHI model specification is negative and large in magnitude relative
to the +1 normalization for supplier parent group specialization. The point estimate is negative in
two of the three specifications. In all three specifications, the upper bound of the confidence region for
assembler model specialization is unbounded. The point estimate for assembler model specialization
is unbounded in two specifications and still quite large, at 202, for the other specification.

Also compared to Table 1, there is now statistical uncertainty about the sign of supplier brand
specialization, although the point estimate is about the same as for parent group specialization, which
is normalized to +1. Similarly to Table 1, 0 is still in the confidence regions for assembler parent
group and brand specialization.

Overall, I emphasize Table 1 in the main text because of its higher statistical fit.

D Benefits to Domestic Suppliers From Foreign Assemblers

European and North American countries have imposed formal and political-pressure based trade
barriers to imports of automobiles from Asia. Consequently, most Asian assemblers who sell cars
in Europe and North America also assemble cars in Europe and North America. While some car
parts are imported from Asia, Asian assembly plants in Europe and North America use many parts
produced locally as well (perhaps because of more political pressure). As Klier and Rubenstein
(2008) document for Asian assemblers in North America, a key part of operating an assembly plant
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is developing a network of high-quality suppliers.
Despite some occasional quality setbacks, the magazine Consumer Reports and other sources

routinely record that brands with headquarters in Asia (Japan, Korea) have higher quality automobiles
than brands with headquarters in Europe or North America. The parts supplied to higher-quality cars
must typically also be of higher quality. Liker and Wu (2000) document that suppliers to Japanese-
owned brands in the US produce fewer parts requiring reworking or scrapping, for example. Because
of this emphasis on quality, the suppliers to, say, Toyota undergo a rigorous screening and training
program, the Supplier Development Program, before producing a large volume of car parts for Toyota
(Langfield-Smith and Greenwood, 1998). Indeed, there is a hierarchy of suppliers, with more trusted
Toyota suppliers being allowed to supply more car parts (Kamath and Liker, 1994; Liker and Wu,
2000).

It is possible that the need by Asian assemblers for higher-quality suppliers benefits the entire
domestic supplier bases in Europe and North America. If a supplier is of high-enough quality to deal
with an Asian assembler, non-Asian assemblers that also source parts from that supplier may also
benefit. If this potential effect is causal (the suppliers were not of sufficiently high quality before the
Asian assemblers’ entry), it is evidence that trade barriers that promote Asian-owned assembly plants
in Europe and North America may indirectly aid non-Asian (domestic) assemblers, as those producers
now have access to higher-quality suppliers. This is an underexplored channel by which foreign-direct
investment in assembly plants may raise the quality of producers in upstream markets. Indeed, there
is evidence in the management literature that Asian assemblers do causally upgrade the quality of
their suppliers: the Supplier Development Program mentioned above, for example (Langfield-Smith
and Greenwood, 1998).

This section complements the management literature by providing evidence from sorting in the
market for car parts that might be consistent with suppliers to Asian assemblers being higher quality
than other suppliers. Measures of car part quality by individual suppliers are presumably observed
by assemblers, but are not publicly available. In this section, a measure of quality will be a supplier’s
share of the market for supplying parts to Asian assemblers. If Asian assemblers together demand
100 parts in a particular component category, and one supplier sells 30 of them, its quality measure
will be 0.30. In notation, one aspect of an observable firm type js for a supplier is

jsAsia =
# Asian assembler parts supplied

total # Asian assembler parts all suppliers
.

This is not a specialization measure, as a firm could sell many parts to Asian assemblers and many
parts to non-Asian assemblers. This quality measure jsAsia is treated as an aspect of observable firm
type js of a supplier. If it were recomputed for new portfolios Φ without interactions in a valuation
function, it would difference out of the matching maximum score inequalities (10). Instead, the vector
X (js,Ψ) contains a new element that is the interaction of the above Asian quality measure with
specialization by the continent headquarters of the brand, discussed earlier:

XAsiaCont (js,Ψ) = jsAsia ·XCont (js,Ψ) .

The interpretation of the corresponding supplier parameter in θ, if it is estimated to be negative, is
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that suppliers with higher jsAsia (greater shares of the industry for supplying Asian assemblers) gain
less benefit from selling car parts to only one continent of assembler than suppliers with lower jsAsia.
Thus, suppliers with higher Asian shares can go out and win business from non-Asian assemblers,
which is consistent with those firms have a competitive edge (possibly from higher quality parts) over
other suppliers. The empirical pattern in the data might be that suppliers with high jsAsia have diverse
(across continents of assembler origin) portfolios of car parts that they supply. This diversity might
be interpreted as a sign of quality.

Even if the parameter on XAsiaCont (js,Ψ) is negative and economically large in magnitude, it does
not prove that the presence of Asian assemblers causally upgrades the quality of suppliers in Europe
and North America. It could have been that the suppliers with high jsAsia were of high quality before
the creation of plants outside Asia by Asian assemblers. However, when combined with the evidence
from the management literature about supplier development programs, it does seem as if some portion
of supplier quality differences are due to the presence of the Asian assemblers.

A separate concern is that this approach treats jsAsia as an economically exogenous characteristic,
rather than recomputing the Asian market share for counterfactual sets of trades Φ in the right
sides of matching maximum score inequalities. I have explored the specification where notationally
jsAsia is replaced by XAsia (js,Ψ), which is recomputed for counterfactual sets of trades Ψ. The
corresponding point estimate on the interaction is ≈ 0, with a wide confidence interval in terms
of economic magnitudes. An explanation for the point estimate close to 0 is that a new effect is
introduced to the model: the inequalities ask why more suppliers do not choose to supply parts to
Asian assemblers if there is some quality upgrade from doing so? A reason outside of the model
why this does not happen is the fixed cost of having an additional supplier participate in a supplier
development program. Having explored an alternative, I return to the preferred specification, where
a supplier’s competitive advantage is an economically exogenous supplier characteristic jsAsia.

Table 4 presents the point estimates from the preferred specification. The other covariates are the
assembler and supplier specialization measures in Table 1, which have similar point estimates. The
scale normalization is still on parent group specialization. With the interaction term XAsiaCont (js,Ψ)

involving continent specialization, the normalization can only be understood by substituting a typ-
ical value for jsAsia into the interaction term XAsiaCont (js,Ψ) and comparing also the coefficient on
continent specialization without an interaction.

The new addition to Table 4 is the estimate on the interaction term XAsia (js,Ψ), which would use
an estimated decrease in the importance of specialization at the continent-of-brand level for suppliers
to Asian brands’ assembly plants in Europe and North America as evidence that suppliers to Asian
assemblers have higher quality. These suppliers possibly can win business from non-Asian assemblers.
The estimate of the parameter on XAsia (js,Ψ) is -0.261 and the mean and standard deviation of jsAsia,
not listed in the table, are 0.069 and 0.102, respectively. Therefore, a one-standard deviation change
in jsAsia creates a change of −0.261 · 0.102 = −0.0266 in the coefficient on the degree of specialization
at the continent-of-brand level. A car parts supplier with a market share among Asian assemblers
that is one standard deviation higher than the mean, a share of 0.171, will have a total coefficient on
continent-of-brand specialization of +1.03− 0.261 · 0.171 = 0.985, or approximately 1. This is a small
magnitude change. Now that the confidence region for the interaction parameter is huge, from -30 to
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32. The data do not pin down this effect.
With a bigger in absolute value and more precisely estimated effect, the interpretation would

have been that suppliers to Asian assemblers can go out and win business from non-Asian assemblers
as well, but suppliers to European and North American assemblers cannot win as much business
from assemblers from other continents. Thus, the evidence from sorting in the market for car parts
would have suggested that domestic suppliers to assemblers with headquarters in Asia are in a unique
competitive position, consistent with them having a quality advantage. While the cross-sectional
empirical work alone cannot identify whether a quality increase causally occurred after the entry
of Asian-based assemblers to Europe and North America, the estimates and the evidence from the
management literature together would have suggested that having higher quality assemblers in Europe
and North America raises the quality of suppliers. Thus, in the automotive industry there might have
been evidence of indirect benefits to domestic suppliers and assemblers from the trade barriers that
encourage Asian assemblers to locate in Europe and North America.
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Table 1: Specialization By Suppliers and Assemblers

Valuation Function Estimates Sample Statistics for HHI Measures
HHI Measure Point Estimate 95% CI Set Identified Mean Standard Deviation

Suppliers
Parent Group +1 Superconsistent 0.35 0.28
Continent 1.04 (0.0482,9.45) 0.76 0.18
Brand 23.9 (1.29,121) 0.25 0.27
Model 376 (278,933) 0.17 0.26

Assemblers
Parent Group -0.007 (-1.30,0.202) 0.14 0.11

Brand -0.005 (-1.99,0.705) 0.35 0.33
Model -0.003 (-3.36,33.5) 0.58 0.60

# Inequalities 298,272
% Satisfied 82.3%

The parameter on parent group specialization is fixed at +1. Estimating it with a smaller number of inequalities
always finds the point estimate of +1, instead of −1. The estimate of a parameter that can take only two values is
superconsistent, so I do not report a confidence interval. See Appendix B for details on estimation and inference.

Table 2: Percentage Valuation Change By Suppliers From GM Divesting Opel

Quantile
0 -0.0032

0.10 -0.0014
0.25 -0.0008

0.50 (median) -0.0004
0.75 -0.0002
0.90 -0.00008
1 ~0

This table uses the point estimates from Table 1 to calculate the valuations from observable types of suppliers before
and after GM divests Opel. In the model, Opel becomes a separate parent group. For each supplier, selling one or more
parts to Opel and one or more cars to another GM brand, I calculate θsPG∆XPG(js,Ψ)

X(js,Ψ)′θ . Each supplier that operates in
multiple component categories (markets) is treated separately in each component category.
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Table 3: Specialization By Suppliers and Assemblers with Different Weighting Schemes

Weights→ 1 Divided by #Parts Sales Sales Divided by #Parts
HHI Measure Point Estimate 95% CI Point Estimate 95% CI Point Estimate 95% CI

Suppliers
Parent Group +1 Supercon. +1 Supercon. +1 Supercon.
Continent 0.982 (0.405,4.66) 0.733 (0.582,1.29) 0.717 (0.298,3.12)
Brand 0.988 (-0.154,8.52) 0.967 (0.158,3.19) 0.894 (-0.52,6.06)
Model 0.0806 (-8.79,2.52) -1.97 (-4.14,-1.31) -1.88 (-6.18,-0.374)

Assemblers
Parent Group 0.474 (-0.0902,4.70) ≈ 0 (-0.0318,0.0654) -0.0448 (-0.36,0.0333)

Brand -0.380 (-3.77,1.79) ≈ 0 (-0.0435,0.556) 0.0462 (-0.212,1.2)
Model 202 (100,+∞) +∞ (+∞,+∞) +∞ (+∞,+∞)

# Inequalities 298,272 298,272 298,272
% Satisfied 76.3% 74.4% 74.3%

The parameter on parent group specialization is fixed at +1. Estimating it with a smaller number of inequalities
always finds the point estimate of +1, instead of −1. The estimate of a parameter that can take only two values is
superconsistent, so I do not report a confidence interval. See Appendix B for details on estimation and inference.

Table 4: Supplier Competitive Advantages From Asian Assemblers

Valuation Function Estimates
HHI Measure Point Estimate 95% CI

Suppliers
Parent Group +1 Superconsistent
Continent 1.03 (0.045,13.7)
Brand 24.2 (1.09,235)
Model 388 (363,898)

Competitive Advantage -0.261 (-30.0,32.2)
Assemblers

Parent Group -0.0101 (-1.50,0.224)
Brand -0.00789 (-2.07,0.831)
Model -0.00437 (-3.64,34.2)

# Inequalities 298,272
% Satisfied 82.3%

The parameter on parent group specialization is fixed at +1. Estimating it with a smaller number of inequalities
always finds the point estimate of +1, instead of −1. The estimate of a parameter that can take only two values is
superconsistent, so I do not report a confidence interval. See Appendix B for details on estimation and inference.
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