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ABSTRACT
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Application is made to the evaluation of monetary policy rules.

William A. Brock
Department of Economics
University of Wisconsin
1180 Observatory Drive
Madison, WI   537061393
wbrock@ssc.wisc.edu

Steven N. Durlauf
Department of Economics
University of Wisconsin
1180 Observatory Drive
Madison, WI  53706-1393
and NBER
sdurlauf@ssc.wisc.edu

Giacomo Rondina
Department of Economics
University of California at San Diego
La Jolla, CA 92093
grondina@ucsd.edu



 1

1. Introduction 
 
    
 This paper explores a set of constraints on the effects of control policies on 

fluctuations from the perspective of the frequency domain.  Aspects of these constraints 

were initially discussed in Brock and Durlauf (2004,2005) and Brock, Durlauf, and 

Rondina (2008a) but otherwise do not appear to have been previously explored in 

economics contexts.  The constraints we study represent fundamental limits on the effects 

of alternative policies in the sense that they describe how frequency-specific tradeoffs in 

volatility generically apply to linear feedback rules. 

Frequency-specific fluctuations represent an aspect of the effects of policies that 

has received little attention from economist. Suppose one is considering how different 

controls affect the stochastic process of a state variable tx .  Underlying the statistic 

( )var tx C , the variance of the process given a control C , is the spectral density of x  

given the control, ( )xC
f w , because the variance is the integral of the spectral density, i.e.  

 

 ( ) ( )var
t xC
x C f d

p

p
w w

-
= ò . (1) 

 

In fact, the spectral representation of the variance of the state means one can understand 

the state variance as the sum of the variances from random and orthogonal sines and 

cosines of different frequencies.  By implication, calculations of the effects of a rule on 

the overall variance mask the effects on fluctuations at the different frequencies in 

[ ],p p- .  Further, eq. (1) hints at the idea that a rule that minimizes the overall variance 

may exacerbate fluctuations at certain frequencies.  A major goal of this paper is to 

determine under what circumstances this must happen and what forms such fundamental 

tradeoffs take. In the control literature, these tradeoffs are known as design limits.   

 Design limits are a well established area of study in control theory.1  An important 

class of results of this type are sometimes known as Bode integral constraints, after 

                                                 
1Our description of linear systems owes much to the formulation in Kwakernaak and 
Sivan (1972), especially chapter 6, and Skogestad and Postlethwaite (1996), as well as 
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Hendrik Bode who first proposed them in the 1930’s. One methodological contribution of 

this paper is that we derive frequency tradeoffs for multiple-input multiple-output 

(MIMO) systems for both forward and backward looking systems.   Some of our discrete 

time results for backwards-looking systems appear to be new to economics, although they 

naturally follow from existing results.  In contrast, the work on forward looking systems 

is entirely new. We defer consideration of systems with arbitrary dimensions to future 

work, noting here that the 2 2´  cases we study capture a range of important contexts, 

most notably the evaluation of macroeconomic stabilization policy.   

In addition to presenting abstract results on frequency specific tradeoffs, we apply 

our methods to the analysis of monetary policy rules. This work provides a supplement to 

studies such as Judd and Rudebusch (1998) which focus on regime-specific tradeoffs 

between overall inflation and output gap volatility.  Here we engage in two exercises. 

First, we examine the frequency by frequency differences in the effects of the monetary 

policy rules followed by Arthur Burns, Alan Greenspan, and Paul Volcker. As a positive 

exercise, we are able to show how differences in the inflation and the output gap in the 

different regimes involve specific tradeoffs frequency by frequency. One example of an 

insight gained from our approach is that the Volcker regime’s major difference from the 

other two regimes involves the reduction of inflation at the cost of increased low 

frequency output gap volatility.  Second, we demonstrate how one can supplement the 

conventional inflation/output gap Phillips curve with frequency-specific Phillips curves.  

The frequency-specific Phillips curves allow one to assess the monetary policy regimes in 

terms of their efficiency, as measured by their distance from the trade-off frontier.  These 

exercises, of course, are dependent on an assumed model of the joint proves of inflation 

and output determination. We in fact consider different models indexed by the role of 

expectations.  The behavior of the rules across different models is also informative. For 

example, the Volcker low frequency output gap “sacrifice” is inefficient when  

expectations of future inflation on current inflation are small, but is efficient when these 

expectations matter.  

                                                                                                                                                 
Seron, Braslavsky, and Goodwin (1997) and various articles, e.g. Chen and Nett (1993, 
1995) and Wu and Jonckheere (1992). 
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 In addition to providing new positive insights into the structure of tradeoffs 

between different stabilization objectives, we further believe that frequency-specific 

tradeoffs have normative interest in evaluating monetary policies.  One reaction to the 

recognition that a Central Bank face frequency-by-frequency constraints might be that 

these constraints are irrelevant if the objective of a policymaker is to minimize the overall 

variance of some combination of states and controls of the system, Such loss functions 

are standard in the literature on evaluating monetary policy rules. We argue that our 

results are of interest for several reasons.  First, there is no principled reason why a 

Central Bank’s loss function should only depend on the overall variances of variables of 

interest, and in fact time-nonseparable preferences can lead to the assignment of different 

loss function weights across frequency-specific fluctuations.  Examples of this property 

are found in Otrok (2001) and Otrok, Ravikumar, and Whiteman (2002).  Second, 

differences in the approximation value of a given model to fluctuations at different 

frequencies may lead to a focus on higher versus lower frequency fluctuations using a 

model to assess policies; this type of reasoning is developed in Onatski and Williams 

(2003).  Third, frequency-specific fluctuations can matter for structural reasons. Meltzer 

(2003 pg. 65-66) describes how a major reason for the creation of the Federal Reserve in 

1914 was the magnitude of seasonal fluctuations associated with the agricultural sector.  

Diminution of these types of fluctuations thus had distributional consequences in the 

reduction of risk for farmers.  More interesting for contemporaneous issues, as we will 

see, different monetary policy rules, because of design limits, can reduce overall variance 

at the expense of enhancing the role of low frequency fluctuations and so provide a 

different perspective on whether high booms and busts are persistent. Fourth, there are 

classes of problems for which the frequency restrictions matter, even if loss functions 

only depend on unconditional variances.  Specifically, evaluating the robustness of policy 

rules in the face of model uncertainty may be facilitated using the constraints we 

describe; an initial example of such an analysis is Brock and Durlauf (2005).   

In our judgment, the most important contribution of this paper is its introduction 

of the idea that macroeconomic stabilization policies involve tradeoffs that are hidden 

when a policy is evaluated by calculation of its effects on the variances of the standard 

macroeconomic aggregates.  This kind of result is sometimes also called a “conservation 
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law” or “waterbed” result in the engineering literature.  Indeed we will exhibit various 

conservation laws and waterbed results and illustrate their consequences for a set of two 

sector macroeconomic models of inflation and the output gap that are commonly used in 

the macroeconomics literature.  

 The use of frequency domain methods is not original per se, of course. One 

classic example is Hansen and Sargent’s (1980,1981) use of z -transform methods to 

translate time domain expectations into the frequency domain and thereby solve for 

testable restrictions of rational expectations models.  Another important contribution is 

Bowden’s (1977) and Whiteman’s (1985,1986) work on spectral utility and the frequency 

domain analysis of the effects of policies; Whiteman’s work is close in spirit to ours, 

although it does not address the issue of frequency-specific tradeoffs.  More recently, 

frequency methods have proven to be important in the development of the growing 

macroeconomic literature on robustness, cf. Sargent (1999), Kasa (2000), Hansen and 

Sargent (2007, Chapter 8)).  That being said, frequency domain approaches continue to 

be far less popular than time domain methods for analyzing macroeconomic dynamics.  

We believe the methods developed here complement these other papers in demonstrating 

that frequency domain approaches have an important role in understanding stabilization 

policy. While, in principle, one can always translate results from the frequency domain to 

the time domain and vice versa, the results we exploit are an example in which working 

in the frequency domain is relatively straightforward whereas it would appear that the 

same analysis in the time domain may well be intractable.2  

 Section 2 provides design limits for a general two equation linear system.  Section 

3 applies our methods to the evaluation of monetary policy rules.  Section 4 contains 

summary and conclusions.  An Appendix follows which contains proofs of our main 

theorems. 

 

2. Design limits in multivariate systems 

 

i. Basic ideas 

                                                 
2The Bode integral constraint, which we exploit in our analysis, has an extremely 
convoluted time domain representation, cf. Iglesias (2001) equation 3.2.  
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Before proceeding to formal propositions, we outline the basic ideas underlying 

the construction of design limits.  Letting tx  denote a 2 1´  vector of states, tu  a 2 1´  

vector of controls, and te  a 2 1´  vector of disturbances that is second-order stationary 

across time, the canonical law of motion we study is the system  

 

 ( ) ( )0 1 1t t t t t t
A x E x A L x B L ub e+ -= + + + . (2) 

 

where b  is a 2 2  matrix, ( )t
E ⋅  is the expectational operator conditional on information 

up to time t 3 and  ( )A L , ( )B L  are polynomial matrix lag operators in non-negative 

powers of L .  We assume te  can be written in the moving average form  below where 

the second order stationary stochastic process 
t
w  has mean vector zero and identity 

variance matrix,  

 

 ( )t tW L we = , (3) 

 

with ( )W L  a rational polynomial matrix lag operator in non-negative powers of L . We 

do not require the moving average representation to be fundamental.  The reason for this 

is that our interpretation of the model is that it is a structural description of a system as 

opposed to vector autoregression representation.  We note that there is now a long 

tradition of working with linear or log linear approximations to microfounded 

macroeconomic models which take the form (2), Woodford (2003, Chapter 8) is a good 

example.  Other examples in which microfounded linear systems are studied include the 

backwards looking model in Onatski and Stock (2002) and forwards-looking model in 

Giannoni (2002)4.  

                                                 
3 We do not need to be specific about the information set upon which the expectational 
operator in (2) conditions upon. Our results apply under any information set at time t  as 
long as it contains at most the entire state of the world up to time t . 
4Work on the general use of these approximations starts with Magill (1977).  
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We study feedback rules of the form 

 

 ( ) 1t tu U L x -= . (4) 

 

where ( )U L  is a polynomial matrix lag operator in non-negative powers of L . We 

assume that the elements of ( )A L , ( )B L , ( )W L  and ( )U L  can always be written as the 

ratio of two finite degree polynomials.  

Under rational expectations, the equilibrium law of motion of this system will 

possess a moving average representation5 

 

 ( )= U

t t
x D L w . (5) 

 

where ( )UD L  is a rational polynomial matrix lag operator in non-negative powers of L , 

and associated spectral density matrix 

 ( ) ( ) ( )w w w
p

¢= S
|

1

2
U U

xU w
f D D , (6) 

where wS  is the variance covariance matrix of w  and    U U iD D e   . Note that for 

any matrix function N , N ¢  is its conjugate transpose.  Each choice of the polynomial 

( )U L  produces an associated spectral density matrix for the state variable vector.  We 

restrict ourselves to feedback rules for which the spectral density matrix ( )w|xU
f  exists.  

 One way to understand the effects of a control rule is by considering the way that 

( )w|xU
f  depends on the feedback rule ( )U L .  The feasible set of control rules, i.e. those 

of the form (4) and for which a spectral density matrix exists, determines the feasible 

spectral density matrices for the state variables.  Our goal is to use the feasible set for 

                                                 
5 The superscript U  denotes the dependence of the function ( )D L  on a specific feedback 

rule ( )U L . 
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( )w|xU
f  to understand the opportunity set faced by a policymaker; design limits refer to 

restrictions on this opportunity set.  Since our objective is to compare policies, we state 

our theorems in terms of how different policy rules affect state variables relative to some 

baseline control rule ( ) ( )= BU L u L .  The baseline system is characterized by  

 

 ( ) ( ) ( )0 1 1 1

B

t t t t t t
A x E x A L x B L u L xb e+ - -= + + + . (7) 

 

and the solution B

t
x  (when it exists and is unique) will have a moving average 

representation 

 ( )B B

t t
x D L w= . (8) 

 
and spectral density 

 ( ) ( ) ( )1

2
B B

wx B
f D Dw w w

p
¢= S . (9) 

 

From the vantage point of a baseline rule, one can think of policy comparisons as 

deriving from  

 

 ( ) ( ) ( )( ) ( )0 1 1 1
( )B C

t t t t t t
A x E x A L B L u L x B L u L xb e+ - -= + + + + . (10) 

 

where ( )Cu L  denotes the deviation of a feedback rule from ( )Bu L 6.  We assume that 

the baseline rule has eliminated unit or explosive roots7.  Each choice of ( )Cu L  will 

produce an associated process 

                                                 
6The control theory literature typically treats the baseline as ( ) 0Bu L =  and so compares 

controlled and uncontrolled systems. We do not follow this convention both because we 
wish to provide tools for policy comparisons and because no control systems can exhibit 
unit or explosive roots; these roots are uninteresting in terms of policy comparison since 
any sensible policy will eliminate them. Note that by employing 
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 ( )C

t t
x D L w= , (11) 

 

and spectral density matrix 

 

 ( ) ( ) ( )1

2
C C

wxC
f D Dw w w

p
¢= S . (12) 

 

From the vantage point of rule-specific spectral density matrices for the state 

variables, deviations from ( )Bu L  may be interpreted as the transformation of  ( )x B
f w  

into ( )xC
f w .  To understand this transformation, we follow the control theory literature 

and define a sensitivity matrix ( )S L  via the way in which the control transforms ( )BD L  

into ( )CD L , i.e.  

 ( ) ( ) ( ) 1C BS L D L D L
-

= , (13) 

 

which in turn implies that  

 

 ( ) ( ) ( ) ( )i i

xC x B
f S e f S ew ww w- - ¢= . (14) 

 

                                                                                                                                                 

( ) ( ) ( ) ( )= + BA L A L B L u L  and treating (10) as application of control ( )Cu L  to the 

“uncontrolled” system with autoregressive polynomial ( )A L
 
one can usefully think of 

the baseline as an uncontrolled system. 
7The design of controls that eliminate a unit or explosive root is subjected to frequency 
specific tradeoffs that can be characterized using the same approach that we employ in 
this paper (see Freudenberg and Looze (1988)). By restricting ourselves to comparing 
tradeoffs across classes of policies that have already achieved the stabilization of a 
system we abstract from frequency specific tradeoffs that originate solely from 
stabilization.  
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This formulation makes clear why, in the control literature, the sensitivity function is said 

to shape the behavior of the state vector.   As each ( )CD L  corresponds to some ( )S L , 

one can think of the choice of a control relative to the baseline as the choice of a 

sensitivity function; any constraints on ( )CD L  in turn may be translated into constraints 

on ( )S L . 

The theory of design limits involves identifying restrictions on ( )S L .  Assuming 

variance at any frequency and any state variable is undesirable, it is obvious that a 

policymaker would want to choose a control so that ( ) 0S L = .  Such a control would 

assume that the policymaker can condition on the current shock e
t
 before it affects 

t
x . 

By construction we have assumed that no feedback rule can alter the effect of e
t
 on 

t
x , 

which makes the above control unfeasible. Our assumption is meant to capture the idea 

that a policymaker is facing some irreducible uncertainty when implementing a policy, 

which is clearly a feature of real world policymaking. One might consider more 

sophisticated (i.e. less reduced form) setups to introduce uncertainty about the state of the 

economy on the part of the policymaker.  As long as perfect conditioning on the current 

state is not possible, the results we present will immediately extend to such setups.  Our 

analysis will provide a full characterization of the set of feasible sensitivity functions and 

thereby indicate what limits a policymaker faces in the shaping the spectral density of 

state variables.  

In our analysis we distinguish between the performance and the fragility of a 

policy. The performance of a policy relates to what the policy can achieve in terms of the 

objective function that is it designed to optimize. The fragility of a policy relates to the 

way a policy modifies the frequency structure of a system to achieve a given 

performance. In sections 2.ii and 2.iii we provide our two main theorems on design limits 

in MIMO systems. In section 3 we put our theorems to work in a linear dynamic 

monetary economy. 

 

ii. design limits in MIMO systems: the backwards looking case 
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 In this section, we provide a result for purely backwards looking versions of (2). 

This result is mathematically new as it concerns backwards looking system in discrete 

time. A continuous time version of the result has been already established (see Skogestad 

and Postlethwaite, 1996). We are able to provide a discrete time result by extending the 

results in Wu and Jonckheree (1992) to multivariate systems. In isolation, the 

mathematical advance is a minor one. However, it serves two purposes. First, it allows us 

to formulate design limits in ways that are relevant to the economics literature, which has 

focused on discrete time systems.  Second, it will lead us to formulate a more general 

result on systems with both forwards and backwards elements, which is an unexplored 

direction relative to all existing results. 

 

Theorem 1. Design limits in a backwards-looking MIMO model 

 

Assume 0b = . The sensitivity function, ( ) ( ) ( ) 1C BS L D L D L
-

= , where ( )BD L  and  

( )CD L
 
are as in (8) and (11) respectively, must obey 

 

 ( )
2

log det 0iS e d
p

w

p
w-

-

æ ö÷ç =÷ç ÷çè øò , (15) 

 

for all stabilizing controls ( )Bu L  and ( )Cu L .  

 
Proof: See Appendix. 

 

The proof of Theorem 1 relies on showing that 

 

 ( )
2

log det U iD e d K
p

w

p
w-

-

æ ö÷ç =÷ç ÷çè øò  (16) 
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where K is a constant that does not depend on the control parameters ( )U L . Theorem 1 

immediately suggests a corollary. 

 

Corollary 1.  Conservation law of fragility in backwards-looking MIMO models 

 

Under the assumptions of Theorem 1 

 

 ( )( ) ( )( )p p

p p
w w w w

- -
=ò òlog det log det

xC x B
f d f d  (17) 

 

for all stabilizing controls ( )Bu L  and ( )Cu L .  

            

Proof:  Since 

  

( )( ) ( ) ( )( )2

log det log det log det ,i

xC x B
f d S e d f d

p p p
w

p p p
w w w w w-

- - -

æ ö÷ç= +÷ç ÷çè øò ò ò  

 

(17)  follows immediately from (15). 

 

Theorem 1 and Corollary 1 give the following substantive conclusions.  First, in 

the scalar case, (17) implies that any change in control from a baseline control that 

decreases power on some set of frequencies will end up magnifying spectral power at 

some other set of frequencies.  We call this result a “conservation law of spectral power”; 

sometimes is also referred to as “waterbed effect”. Second, for the multivariate case, (17) 

still implies a type of conservation law of spectral power, albeit in a somewhat weaker 

sense (hence the term “fragility”).  Recall that the spectral density matrix ( )xC
f w  is a 

positive semi-definite Hermitian matrix (Priestley (1981, page 668)) and    

 

( ) ( ) ( ) ( ) ( )| | ,11 | ,22 | ,12 | ,21
det

xC xC xC xC xC
f f f f fw w w w w= - , 
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where ( )| ,11xC
f w  and ( )| ,22x C

f w  are the spectral densities for the stochastic variables in 

the vector 
C

t
x , while ( )| ,12xC

f w  and ( )| ,21xC
f w  are cross-spectral densities. Corollary 1 

says that the integral over all frequencies of the log of the modulus of the determinant 

( )( )det
xC
f w  is constant for all stabilizing controls ( )Cu L .  

In most applications, the focus of a policy is in minimizing some linear 

combination of the spectral densities ( )| ,11xC
f w  and ( )| ,22x C

f w . One might think that if 

control ( )Cu L  dominates control ( )Bu L  in the sense that 

 

 ( ) ( )w w<
| ,11 | ,11

 
xC x B
f f  and ( ) ( )w w<

| ,22 | ,22xC x B
f f  (18) 

 

at all frequencies w p pé ùÎ -ê úë û, , then ( )Cu L  would contradict Corollary 1.  However, this 

is not so.  A control ( )Cu L
 
that reduced ( )w| ,11x C

f  and ( )w| ,22x C
f  can in principle be 

offset by changes in ( )w| ,12x C
f  or ( )w| ,21x C

f  so that Corollary 1 is satisfied even when 

dominance of the form (18) holds.  Of course if the cross spectral densities are zero at all 

frequencies, then dominance cannot occur because it would contradict Corollary 1.  

Projecting this result into an economic framework, one can think at the existing 

correlation across the elements of 
t
x  as, for instance, the slope of the Phillips curve in a 

canonical monetary policy model. Corollary 1 warns that such slope can substantially 

influence the ability to reduce both the variance of inflation and output over the same 

frequency range. The application in Section 3 shows that this can well be the case. 

 The conservation law of fragility emerging from Theorem 1 can be thought as 

being the consequence of the policymaker being unable to condition on the current 

realization of shocks that are perturbing the economy. If such a policy rule was feasible, 

then it would be possible to isolate the dynamics of the system from any stochastic 

variation. In absence of such a rule, the policymaker is bound to allocate the variation 

across frequencies in search for a desirable outcome. 
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We turn now to a closely related design limit. To fix ideas it is useful to isolate 

the steady state response of the controlled system to a vector input under the baseline 

policy when the baseline system consists of fluctuations at a single frequency w , i.e. let 

 

( ) ww=B B i t

t
x x e , 

 

where ( ) ( ) ( )( )1 2
,B B Bx x xw w w=  is a vector of real numbers8.  When the input B

t
x  is fed 

into the system represented by ( )S L  one obtains the vector output C

t
x ; formally this can 

be expressed as 

  

( ) ( ) ( )ww w-=C i Bx S e x , 

 

where wi te  does not appear as it cancelled on both sides. Defining ( ) ( ) ( )
2

x x xw w w¢º , 

we have the following result. 

 

Lemma 1. Singular values of sensitivity matrix 

 

Let s  and s  denote, respectively, the minimum and the maximum singular values9 of 

the sensitivity matrix ( )w-iS e . Then 

 

                                                 
8We have implicitly assumed that the phase of the two components of the vector x  is 
equal to zero. This does not have to be the case, and usually it is not, but the presence of a 
phase shift does not affect the interpretation of the singular values of the sensitivity 
matrix and so, for simplicity, we omit its consideration. See Kwakernaak and Sivan 
(1972, page 457) on this point.  
9Recall that any matrix M may be factored so that  M N V where  is diagonal and N
and V are unitary matrices, i.e. each multiplied by its conjugate transpose produces an 
identity matrix. The elements of  are the singular values of the matrix.  



 14

( )( ) ( )
( )

( )( )w w
w

s s
w

- -£ £

2

2 2

2

C

i i

B

x
S e S e

x
. 

Proof: See Appendix. 

 

To see the relevance of Lemma 1 for our purposes, notice that the total steady 

state variance over the frequency band ( )w w w+, d  for the stationary process U

t
x  is 

 

 ( ) ( ) ( ) ( ) ( )( )
2 2 2

1 2 | ,11 | ,22

U U U

xU xU
x d x x d f f dw w w w w w w wæ ö÷ç= + = +÷ç ÷è ø

, (19) 

 

where ( )| ,11xU
f w  and ( )| ,22xU

f w  are, once again, the spectral densities of the individual 

elements of U

t
x . The interpretation of the bounds imposed by the singular values of the 

sensitivity matrix in Lemma 1 relies on the notion of “input direction”. Given the spectral 

power of the input at a given frequency, one can think of allocating that spectral power in 

any proportion across the input variables at that particular frequency. The vector that 

describes the allocation weights is known as the input direction in control theory. For 

example, using (19) we can write the lower bound of Lemma 1 as 

 

( )( ) ( ) ( )( ) ( ) ( ){ } ( ) ( )( )
2

| ,11 | ,22 | ,11 | ,221
inf ' .i i i

x B x B x B x Bv
S e f f d v S e S e v f f dw w ws w w w w w w- - -

=
¢+ = +

 

 

This expression says that, given the sum of the spectral densities of the variables in Bx at 

a particular frequency, if one were to consider allocating such spectral power in any 

proportion (i.e. in any direction v ) across the two variables in Bx at the same frequency, 

the minimum total spectral power of the controlled system Cx  at that frequency would be 

proportional to the initial sum of the spectral densities in reason of the minimum singular  

value of the sensitivity matrix.  
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 Loosely speaking, the notion of direction is not immediately related to the 

probability measure of the input variables, Bx  in our case, but more so to the support of 

such probability measure. The variables in Bx can realize in a particular direction at a 

given frequency, with an intensity bounded by the total spectral power of the vector at 

that frequency, but with a probability that is not necessarily related to the total spectral 

power. The lower bound given by Lemma 1 can then be interpreted as providing the best 

case scenario for the alternative policy performance at a given frequency. If the direction 

of the system under the benchmark policy happens to be equal to the direction that 

delivers the minimal response under the alternative policy, the total spectral power of the 

control system will be at its minimum. On the other hand, the upper bound of Lemma 1 

informs about the worst-case scenario for the alternative policy performance. If the 

direction of the system under the benchmark policy happens to be equal to the direction 

that corresponds to the maximal response, the performance of the alternative policy can 

achieve the upper bound. In this sense, the upper bound can be considered as a measure 

of the fragility of the controlled system to a particular combination of events. For 

instance, an alternative policy that keeps the upper bound low across a set of frequencies 

is robust to any possible realizations of the benchmark system within that frequency 

range.  On the other hand, an alternative policy that allows a high value of the upper 

bounds at a specific frequency range is fragile to a combination of shocks that happens to 

realize in that specific direction. In section 3 we will apply this criterion to evaluate the 

performance of alternative monetary policy rules. This type of exercise is completely 

novel to the monetary policy literature. 

Lemma 1 will be useful in interpreting the following Corollary, which follows 

immediately from Theorem 1 and the fact that  
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Corollary 2. Design bounds for a backwards looking MIMO model. 

 

Under the assumptions of Theorem 1, 
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where ( )( )ws -iS e  and ( )( )ws -iS e  are the singular values of the sensitivity matrix 

( )w-iS e .  

Considering the above interpretation for the singular values of the sensitivity 

matrix, Corollary 2 describes the following design limit: if a policy is designed so to 

reduce the response of the system at a particular frequency range – for any direction of 

the output under the original policy (e.g. 1s <  over a frequency range) – then one 

cannot avoid: (i) an increase in the minimal response of the system at the same frequency 

at any direction (a higher s  at the same frequency range); (ii) an increase in the maximal 

response of the system at any direction outside the targeted frequency range (a higher s  

at a different frequency range). In terms of a monetary policy application, if a policy 

regime is designed to work well under a given realization of shocks – say a shock to 

inflation at low frequencies – then the same policy could be fragile to shocks to output at 

business cycle frequencies. The evaluation of the singular values of the sensitivity matrix 

across frequencies will provide such valuable information.  

In addition, since 
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one sees that there exists a “fragile” set of frequencies where total variance over that set 

is magnified if application of control happened to be in the direction that delivers the 

maximal response to the benchmark system according to Lemma 1. In interpreting the 

results of our application in section 3, it will be useful to think of the design limits 

characterized by (20) as a restriction in the achievable performance under the alternative 

policy, while interpreting equation (21) as measuring the fragility intrinsic in a particular 

control policy. Notice that, under such an interpretation, a given policy can achieve a 
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performance improvements (a situation where s  is very low) together with a fragility 

enhancement (by simultaneously making s  very high). Corollary 2 also suggests that a 

similar tradeoff can obviously appear not only at a given frequency but also across 

frequencies. 

 

iii. design limits in MIMO systems: the role of forward looking expectations 

 

We now turn to the case where expectations affect the state variables, i.e. 0b ¹ .  

We have the following result. 

 

Theorem 2. Design limits for a general MIMO model 

 

Assume that a Rational Expectations Equilibrium (REE) solution ( )UD L  exists and is 

unique under both the baseline control ( )Bu L  and the alternative control ( )Cu L . The 

sensitivity function, ( ) ( ) ( ) 1C BS L D L D L
-

= , where ( )BD L  and ( )CD L  are as in (8) 

and (11) respectively, must obey 
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where ( | )C BK u u  denotes a constant that depends on both the baseline and the 

alternative control rules. 

Proof: See Appendix.  
 

The proof of Theorem 2 relies on showing that, contrary to the case with b = 0 , 
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where ( )K U  is now a constant that depends upon the control parameters in ( )U L . In 

contrast with Theorem 1, Theorem 2 implies that for forward looking systems, the 

constant ( | )C BK u u  is not restricted to be non-negative. In particular, conditional on 

stability being ensured, a set of policies can result in positive values for ( | )C BK u u , 

while another set of policies can result in negative values. As a consequence, while an 

analogue to Corollary 1 is not available for forward looking systems, Theorem 2 still 

provides a useful metric to evaluate alternative dynamic policies. Consider a scalar case 

first. Theorem 2 implies that there exist policies under which the spectral power of the 

output variable can be reduced at all frequencies. It still remains true that a policy cannot 

reduce the variance of the states to 0 (this follows from the fact that the policymaker 

cannot condition on current shocks), so a conservation law of spectral power is still 

present in some form, but cannot be characterized as sharply as for the 0b =  case.   

 The intuition behind the difference between the results of Theorems 1 and 2 can 

be found in the interplay between the forward looking behavior of the agents and the 

possibility of committing to a policy rule. As it was the case for Theorem 1, the 

policymaker is still unable to condition on the current realizations of the shocks in setting 

her control policy. In contrast to the earlier situation, however, by committing to a 

permanent application of the rule, the policymaker can affect the expectations of agents 

about the future behavior of the economy. Since agents can condition on current shocks 

when forming their expectations, the policymaker can indirectly condition on such shocks 

and escape some of the unavoidable tradeoffs faced in Theorem 1. 

To elaborate further on this, notice that the constant ( )K U  depends on the control 

parameters.  This dependence is induced through the forward looking behavior of the 

equilibrium moving average coefficients ( )UD L .  One might think that this dependence 

implies that the design limit constraint imposes no restrictions on the change in spectral 

power induced by a change in control.  However, since the space of possible control 

changes is higher dimensional while ( )K U  is one dimensional, Theorem 2 provides a 

metric that partitions the space of possible control changes into “equivalence classes” 
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each with the same value of ( )K U . Within each equivalence class, the design limits 

characterized by Theorem 1 and Corollary 2 continue to hold. We can state an 

“equivalence class” result analogue to Corollary 2 as follows. 

 

Corollary 3.  Design bounds for a general MIMO model. 

 

Under the assumptions of Theorem 2, for all the control rules ( )Cu L  belonging to the 

equivalence class K , i.e. such that  =( | )C BK u u K ,  
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where ( )( )ws -iS e  and ( )( )ws -iS e  are the singular values of the matrix ( )w-iS e .  

 

An immediate implication of Corollary 3 is the following 
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The interpretation of the bounds identified by (24) and (25) parallels the one outlined for 

Corollary 2, both in terms of performance and fragility of alternative policy rules. The 

difference is that the evaluation of the performance and the fragility is now conditional to 

the rules belonging to a given equivalence class K . Hence, we should still expect a 

“conditional waterbed” type of result to hold when conducting simulations of the impact 

of a change of control in models with forward looking components. In terms of our 

application, Theorem 2 and Corollary 3 suggest that the characterization of design 

bounds for alternative policy rules should be complemented by the analysis of the 

“structure” of the space of equivalence classes as the parameters of the policy rules are 

changed. For example, within a given class, one policy rule could be preferred to another 

because it achieves a more desirable balance in terms of performance and fragility. As a 
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consequence, in presence of two rules that display either a similar performance or similar 

fragility across frequencies but belong to two different classes, the above results suggest 

that the policymaker should look for a third policy within each class that might improve 

upon the original one in both performance and fragility.  

 

 

3. Application: monetary policy regimes and design limits 

 

Much of the modern literature on monetary policy evaluation involves the 

analysis of linear systems of the type we have abstractly characterized; see Taylor and 

Williams (2010) for a recent review that illustrates how systems of the form (2) are 

canonical in the monetary policy evaluation literature. We illustrate the value of design 

limits analysis by considering the frequency domain implications of deviations from the 

Taylor Rule for monetary policy. Specifically, we compare the Taylor Rule to the actual 

monetary policy regimes that have prevailed in the United States. The last 40 years of 

monetary policy can to some extent be understood as consisting of three periods: the pre-

1979 or Burns period, the 1979-1987 or Volcker period and the post-1987 or Greenspan 

period10.  We study the performance of the three regimes with respect to the original 

Taylor rule (henceforth “OTR”) in order to expose the “hidden tradeoffs” forced by the 

conservation laws derived in section 2. We develop our exercise as follows. First, we 

compute the performance of the three regimes at different frequency bands to show how 

the usual focus on the overall unconditional variance masks interesting frequency specific 

effects of alternative monetary policies. Second, we use the underlying model of the 

economy to define equivalence classes of monetary policy rules according to the fragility 

measure they entail as formalized by Theorems 1 and 2.  We then categorize the three 

                                                 
10We follow Judd and Rudebusch (1998) and Sims and Zha (2006) in working with 
distinct Volcker and Greenspan regimes rather than Clarida, Gali and Gertler (2000) or 
Taylor (1999) who combine them into a common one. There is no consensus on the 
number of monetary policy regimes for the post-war US.  Sargent, Williams, and Zha 
(2006) provide evidence that changes in government beliefs about the nature of the 
Phillips curve explain changes in monetary policy; their evidence on time series of these 
beliefs suggests that it is sensible to distinguish between the Volcker and Greenspan 
years  
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policy regimes above according to the class they belong. Finally, we provide a design 

bounds analysis, using Corollaries 2 and 3, to evaluate the location and the magnitude of 

the fragility implicit in each of the three regimes above.  

We explore the limits encountered by a policymaker trying to design the response 

of output and inflation at different frequencies conditional on the now standard two-

equation New-Keynesian class of inflation/output models.  In what follows p
t
 denotes 

inflation, 
t
y  denotes output gap, 

t
r  denotes the real interest rate and 

t
i  denotes the 

nominal interest rate.  The system consists first of a Phillips curve equation 
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where the error term is assumed to be AR(1), 
1 1t t t
vee r e -= + , and of an Euler-IS 

equation for output, 

 

 ( )
4

1
1

1
t f t t f i t i t t

i

y E y y rd d d s h+ -
=

= + - - +å . (27) 

 

The error term is also assumed to be AR(1),
1 2

  
t t t

vhh r h -= + .  

 We focus on two forms of this model.  The first specification we consider is the 

backwards-looking model elaborated by Rudebusch and Svensson (1999) which sets 

0m= , imposes 
4

1

1
i

i

a
=

=å  to ensure a long run vertical Phillips curve, and measures the 

real interest rate as ( )p- -
=

= -å
4

1

.25
t t i t i

i

r i . We employ their parameter estimates.  The 

second specification, comprehensively studied in Woodford (2003), assumes 0m > , 

0 
i

ia = "  (which essentially rules out any exogenous persistence to the inflation rate), 

and p
+

= -
1t t t t

r i E .  For this model specification, which we will refer to as “hybrid”, we 

take parameter estimates for the Phillips curve from Gali, Gertler and Lopez-Salido 
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(2005, Table 1) and parameter estimates of the IS equation from Linde (2005, Table 5).  

Table 1 reports the parameter values for the two cases.    

 In order to operationalize the comparison of the regimes, we employ estimates 

due to Judd and Rudebusch (1998) that describe these different monetary policy regimes 

in terms of changes in the parameters of interest rate rules. Judd and Rudebusch (1998) 

consider two specifications of the monetary policy rule for each regime. One is a 

generalized Taylor rule 

 

 pp - - -
= + +

1 1 1 2 2
,

t t y t y t
i g g y g y  (28) 

 

which does not contain any persistence of the policy instrument. They interpret this as a 

“recommended rule” (henceforth “RR”) for interest rates.  They consider both the case 

where the Federal Reserve can implement its recommended rule as well as a second 

“measured” rule (henceforth “MR”) of the form 

 

 
1 1 1 2 2 1 1 2 2t t y t y t i t i t

i g g y g y g i g ipp - - - - -= + + + +   . (29) 

 

The use of 2 lags in interest rates, following Judd and Rudebusch, is done to allow for the 

possibility that the observed interest rate does not coincide with the policymaker’s 

preferred interest rate, but rather adjusts towards this preferred interest rate via an error 

correction model.  In addition, interest rate inertia may have desirable stabilization 

properties. The values of the coefficients for (29) and (30) for the three regimes are 

reported in Table 2. We follow Judd and Rudebusch (1998, p. 4) and omit any discussion 

of the William Miller’s time as FRB chairman (1978.Q2-1979.Q2) because of his short 

tenure.  The main reason to consider both forms of the regimes (with and without interest 

rate persistence) is to study the effect of the persistence in interest rate on the design 

limits tradeoffs. The original Taylor rule takes the form of (29) with 1.5gp = , 
1

0.5
y
g =

and 
2

0
y
g = . 

Tables 3 reports the behaviors of output and inflation variances under the three 

regimes.  Note that the variances under the Burns reaction function are infinite as the 
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model evaluated at the Burns reaction function is nonstationary.  This finding is 

consistent with Judd and Rudebusch (1998, Table 2, page 12) where they observe that the 

model did not converge for their estimated Burns reaction function. Convergence does 

occur for the hybrid case.  Contrasts are also drawn with the original Taylor rule, which 

plays the role of the baseline rule in our theoretical results. 

To put our discussion in context, we review the performance properties of the 

three regimes across the two models for the economy. As indicated by Table 3, for the 

backwards model both Greenspan and Volcker perform better than OTR.  However, most 

of the difference in Volcker’s performance is due to lower inflation volatility – 9.6 

against 12.2 – while output volatility is essentially the same as OTR – 5.4 against 5.6. On 

the other hand, Greenspan’s better performance is split between lower inflation volatility 

and lower output volatility, 11.3 against 12.2 and 4.6 against 5.6, respectively. Turning to 

the hybrid model, for both the preferred and recommended cases, one finds that the 

Volcker regime performs slightly better in terms of inflation volatility but much worse in 

terms of output volatility than the Burns and Greenspan regimes.  The OTR performs 

very similarly to Volcker’s regime.  We note that for the hybrid model the distinction 

between the preferred and measured rules is second-order, in particular in terms of 

inflation variance implications. 

How do the different monetary regimes compare when frequency-specific effects 

are considered?  To answer this question we turn to Table 4. We consider the backwards 

case first. For the RR rule, the Volcker regime outperforms OTR at low frequencies for 

inflation and at business cycle frequencies for output; while it underperforms in output at 

low frequencies. According to Theorem 1, the deterioration in performance at low 

frequencies in output variance (.5) is the price the Volcker regime pays with respect to 

OTR to achieve a better performance at other frequencies (2.6 in inflation variance at low 

frequencies and .6 in output variance at business cycle). For the Greenspan regime the 

variance in inflation at low frequencies is only slightly below OTR, which results in a 

gain of performance at low frequencies in output and an equivalent performance at 

business cycle frequencies in both output and inflation with respect to OTR.  The 

tradeoffs highlighted by the MR case are very similar to the RR case with the only 

difference that now the tradeoff between inflation at low frequencies and output at low 
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frequencies is much more severe. For an improvement of .5 in inflation variance at low 

frequencies, Volcker now pays 1.6 in output variance at low frequencies. In this 

particular case, persistence in the policy rule worsens the design limits.  

Next we consider the hybrid case. Theorem 2 states that tradeoffs in this case 

depend on the specific policy under consideration. An immediate example of this 

principle can be found in comparing the performance of the Burns regime and the 

Greenspan regime with respect to OTR. In both cases the variance for inflation both at 

low and business cycle frequencies is maintained very close to OTR while both regimes 

clearly outperform OTR in the variance of output at low and business cycle frequencies. 

Although tradeoffs are policy dependent in the hybrid case, they can still be severe at the 

margin. This is illustrated by the Volcker regime performance for the hybrid case. 

Volcker obtains a gain in the volatility of inflation at low frequencies of .3 compared to 

OTR, but the price to pay is an increase of 3.1 in the variance of output at low 

frequencies.  

Corollary 2 offers an additional perspective on the overall tradeoffs across 

different frequencies in a multivariate system. Figures 1 and 2 report the behavior of the 

lowest and the highest singular values of the sensitivity matrices for the three regimes 

with respect to the benchmark policy OTR. Focusing on the RR rule under the Volcker 

regime (Figure 1, upper left panel) one can clearly see that the regime increases the 

performance compared to OTR at frequencies between 2 to 8 years. As Corollary 2 

suggests, this comes at a price: a lower performance at cycles shorter than 2 years and at 

cycles around 16 years. Interestingly, the upper and lower bounds never diverge more 

than .2 in value, which means that the Volcker regime does not really operate an increase 

in fragility compared to OTR. Looking at the Greenspan regime (Figure 1, lower left 

panel) one sees that there is a remarkable increase in performance at cycles between 4 

and 16 years. In this range s  is very close to 1, while s  is constantly declining. The 

improved performance comes at a price, per Corollary 2. Such price takes two forms. On 

the one hand, there is a mild deterioration of performance at frequencies between 2 to 4 

years.  On the other hand there is an important increase in fragility at low frequencies, 

where s  and s  spread out by a value of .9 with s  reaching an increase of around 55% 

at the lowest frequency. When the measured rule is considered for the Volcker regime the 
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same type of features can be noticed: improved performance at 4 to 8 years cycles, with 

deterioration at 16 years cycles, but no increased fragility. For the Greenspan regime it is 

more difficult to argue for an improved performance at cycles of duration 4 years and 

higher, while the increase in fragility is now bigger: depending on the relative relevance 

of inflation and output shock at low frequencies under OTR, the Greenspan regime can 

almost completely annihilate such shock or amplify it by a factor of almost 5.  

 When the hybrid model is considered, Theorem 2 together with Corollary 3 

suggest that tradeoffs are still possible, but that their importance is related to the 

equivalence class to which a regime is associated. An examination of the different policy 

regimes compared to the benchmark represented by OTR allows us to operationalize the 

idea of equivalence classes suggested by the result of Theorem 2. Theorem 1 defines one 

equivalence class, that of policies that deliver a stationary solution and that, as a 

consequence, face design limits summarized by = 0K . Theorem 2, on the other hand, 

defines an equivalence class for any value of K , in particular for values of < 0K . Table 

5 reports the values for K  across different regimes, models and policy rule 

representations. Interestingly, the Volcker and the Greenspan regimes belong to a very 

similar class as the values for K  is -.41 and -.46 in the RR case and -.11 and -.19 in the 

MR case. Overall, a negative value for K  indicates a class of policies that face looser 

design limits.  The values for K  reported in Table 5 are consistent with the results of 

Figure 2 when compared to those of Figure 1. Both the Volcker and Greenspan regimes 

do not imply an increase in fragility as strong as for the backwards case. Remarkably, the 

Greenspan regime under the RR case operates a reduction in fragility across all 

frequencies. Both performance and fragility deteriorate under the MR representation, 

which is consistent with higher values for K , for both the Greenspan and Volcker 

regime. Finally, the Burns regime seems to belong to a different equivalent class. In 

particular, the Burns regime under RR belongs to a similar class as Volcker and 

Greenspan under MR. This is in line with the bounds reported in Figure 2 where the RR 

panel for Burns looks very similar to the MR panels for Volcker and Greenspan.  

We turn next to the analysis of the performance of the monetary policy regimes 

with respect to a frequency-specific Phillips curve. The original Phillips hypothesis of a 

long-run negative tradeoff between the level of inflation and the level of output has been 
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fundamentally modified by theoretical and empirical advances since Phillips’ time.  

Contemporary research focuses on the existence of a tradeoff between variance of 

inflation and the variance of output deviations from its natural level.  As policies are 

computed to minimize different linear combinations of variance for the output gap and 

inflation, a negatively sloped frontier emerges. Any point in the frontier corresponds to 

the unconditional variance of inflation and output that emerges for a given value for l  

under the policy that minimizes the value for the loss function J .  From the perspective 

of design limits, it is natural to ask how whether a similar frontier exists at different 

frequency ranges and how the monetary regimes locate with respect to such frontiers. 

To compute the variance tradeoff frontiers for inflation and output we proceed as 

follows.  For each point on the frontier, parameters are chosen for the interest rate rule 

 

 
1 1 1t t y t i t

i g g y g ipp - - -= + +  (30) 

 

so that feedbacks are restricted to 1t -  levels of output, inflation, and the interest rate.  

Points on the frontier are chosen to minimize 

 

 ( ) ( ) ( )var 1 var
t t

J yl p l= + - . (31) 

 

By varying l  between 0 and 1, one traces out the efficient frontier of inflation/output 

variance pairs from which a policymaker may choose.  For each point on the frontier we 

report an associated decomposition of the variance values into components corresponding 

to the same division between low frequencies (cycles of 8 years or more), business cycle 

frequencies (cycles of 2 to 8 years), and high frequencies (cycles of less than 2 years).  

The resulting frequency-specific Phillips curves are reported in Figures 3 and 4. The 

frequency-specific tradeoffs in these Figures indicate how the unconditional variance 

frontier contains additional frontiers where efficiency no longer applies.  The shape of the 

frontier is obviously related to the structural model acting as a constraint on the 

optimization problem of the policy maker.  The existence of design limits shapes the 

frontiers at different frequencies.   
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We consider first the frontiers under the backwards looking model in Figure 3. 

The general shape of the overall variance tradeoff found for the backwards model is 

replicated for the variance at the low frequency bands, but not for the others. The 

frequency interval tradeoffs indicate some unpleasant implied tradeoffs at the business 

cycle frequencies and high frequencies. Suppose that the policy rule is initially optimally 

set by a policymaker D (for “Dove”) who possesses a relative distaste for output variance 

over inflation variance, so that 0.05l = .  Suppose that a new policymaker H (for 

“Hawk”) replaces the first policymaker and that H possesses a relative distaste for 

inflation variance over output variance, so that 0.95l = . As one would expect, the 

transition from D to H moves along the frontier as indicated in the upper left panel of 

Figure 3 as lower inflation variance is substituted for higher output variance. This overall 

tradeoff masks interesting frequency-specific effects. For low frequencies, the qualitative 

finding of an inflation/output variance tradeoff is preserved, although a substantially 

larger reduction in inflation variance may be obtained from a given increase in output 

variance when the low frequencies are considered in isolation. Tradeoffs are very 

different for the business cycle frequencies, as shown in the lower left panels of Figure 3.  

Both the variance of inflation and output increase as the policy shifts from D to H.  While 

it is relatively cheap to reduce inflation variance at low frequencies (measured in terms of 

low frequency output variance), a price is paid at the business cycle frequencies, where 

the variance of inflation is increased. At high frequencies, on the other hand, both 

inflation and output variances decline when the policy shifts from D to H, although the 

magnitude is very small compared to the rest of the spectrum.  

Figure 4 reports the same exercise when a policymaker faces a hybrid model. 

Note that while the shape of the variance frontier at low frequencies is similar to the 

backwards looking case, the shape of the business cycle and high frequency frontiers are 

now different. With respect to overall variance, the qualitative difference between the 

backwards and hybrid models is that the marginal rate of substitution between output and 

inflation variance is considerably smaller than the backwards-looking case. In other 

words, moving along the variance frontier entails a smaller cost under the hybrid model. 

The upper right and lower left panels of Figure 4 shows that this difference in costs is a 

consequence of differences in the tradeoffs associated with the business cycle 
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frequencies. For this case, as the variance of inflation is reduced at low frequencies, a 

similar reduction happens at business cycle frequencies since the frontier is now 

downward sloping. The cost of reducing the variance for inflation is higher at high 

frequencies but the relative importance of those frequencies in terms of overall variance 

remains small. 

How do the monetary policy regimes perform relative to the inflation/output 

variance frontiers?  Figures 3 and 4 include the locations of outcomes under the Burns 

(when Burns converges), Volcker and Greenspan rules relative to the inflation/output 

frontiers.  In terms of overall variance there are no surprises except possibly the 

domination of Burns by Greenspan in the hybrid model.  For the hybrid model the 

performance of all three regimes is about the same for the implied frontier at high 

frequencies.  But the “conservation law of fragility” suggests that the volatility must end 

up somewhere at the business cycle frequencies and the lower frequencies.  For the 

hybrid model the important difference shows up at the low frequencies.  Burns suppresses  

output volatility in return for a high price in terms of inflation volatility at low 

frequencies while Volcker does almost the exact opposite; from this perspective 

Greenspan may be regarded as a compromiser between the two.  Note that, at business 

cycle frequencies for the hybrid model, the three chairmen are much closer together.  

These important contrasts and similarities are completely masked by the standard 

frontier.   

To conclude our discussion we turn to study the behavior of  K  across different 

policy parameter values. Figure 5 reporst surface plots of K  against values for the policy 

parameter on inflation and on output. The upper panel considers the case of a zero 

persistence in the interest rate, while the lower panel is derived under a positive 

persistence of the interest rate. For simplicity, when the combination of parameter values 

is such that the system has no stationary solution or multiple solutions, the value assigned 

to K  is arbitrarily high (to denote the undesirability of such a situation). Consider the 

upper panel first. Interestingly, from Figure 5 it is clear that the value for the inflation 

policy parameter pg  
does not affect much the severity of the design limits faced by the 

policymaker. On the other hand, the design limits become more severe for low values of 
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the output policy parameter 
y
g . Overall, a weak response of the interest rate to both 

inflation and output seems to be the worst possible combination in terms of the severity 

of the design limits across frequencies. Consider now the lower panel of Figure 5. 

Introducing persistence in the policy parameter improves the ability to achieve a better 

tradeoff across the board as the entire surface essentially shifts down. Because we do not 

allow persistence in the output policy parameter, the interst rate persistence is achieving 

the improvement by essentially increasing the steady state reaction to both output and 

inflation. In addition, interest rate inertia tends to loosen the design limits for the hybrid 

model homogeneously across the other two dimensions of monetary policy as the shape 

of the surface in the lower panel is essentially equal to the shape in the upper panel. 

Finally, the bold light countour lines in the top panel of Figure 5 represent the set 

of policies that are equivalent to, respectively, the regimes under the backwards model 

(for = 0K ), and the Volcker and Greenspan regime under the hybrid model (for 

= -0.45K ). Notice how the set of policies that are equivalent, in a design limits sense, 

to the Greenspan and Volcker regimes under the hybrid model, are those for which a 

increase in the inflation policy parameter is counterbalanced by only a small decrease in 

the output policy parameter. In other words, the design limits are much more sensitive to 

the policy reaction to output than to the reaction to inflation in both regimes. 

Summarizing, the application of the results of section 2 to a standard dynamic 

monetary economy revealed some novel insights in terms of monetary policy rules 

evaluation. For the class of rules with no interest rate inertia (RR), the Greenspan regime 

displays an excellent control performance at all frequencies with respect to OTR, and it 

displays a remarkable low level of fragility in presence of forward looking components, 

while fragility is really high at low frequencies in absence of those components. On the 

other hand, for the class of rules with interest rate inertia (MR) the Greenspan regime 

maintains desirability in terms of performance, but it displays remarkable fragility at 

business cycle frequencies in presence of forward looking components and at low 

frequencies in the absence of those components. In summary, because of the existence of 

design limits, if the policymaker was particularily concerned about shocks at business 

cycle frequencies, the above analysis would suggest that the Greenspan regime would 

make the outcome much more fragile with respect to such shocks compared to OTR or 
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even the Volcker regime when the economy is believed to behave according to the hybrid 

model. However, such fragility might be unavoidable as the price to pay to achieve a 

remarkable improvement in the performance at lower frequencies for any combination of 

shocks. 

 

 

4. Summary and conclusions 

 

This paper has argued the case for introducing macroeconomics to the theory of 

design limits in control theory.  The general theory of design limits (e.g. Skogestad and 

Postlewaite (1996)) stresses limitations on the ability of control design to move variance 

across frequencies (expressed in the form of various “conservation laws”) as well as 

limitations on the ability of control design to cope with measurement error and 

robustification against various forms of model uncertainty.  We have only touched on one 

feature of the general theory of design limits in this paper in that we have focused all 

attention on the basic conservation laws which give precise content to the intuitive idea 

that attempts to reduce variance down at one frequency band can cause variance to 

increase at some other frequency band.  

 Many outstanding questions exist.  For example, we have said nothing about 

good designs to cope with measurement error.  While the sensitivity function, ( )iS e w- , is 

the function from which one can design good policies to cope with outside shocks to the 

dynamics, the complementary sensitivity function, ( )iT e w- , is relevant in coping with 

separate issues that arise in the presence of measurement error.  See Skogestad and 

Postlethwaite (1996, Section 2.2.2 and Section 6.2) for the definition of ( )iT e w-  as well 

as the design limits constraint, ( ) ( )i iS e T e Iw w- -+ =  and its use in uncovering design 

limits constraints in the presence of measurement error.  The constraint 

( ) ( )i iS e T e Iw w- -+ =  plays a key role in showing that measurement error results in 

another type of conservation law that constrains placement of volatility across different 
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frequency bands.  We are developing this line of research in a sequel to the current paper.  

Further, there is a close connection between the robust control literature (e.g. Hansen and 

Sargent (2007)) and the theory of design limits.  Design limits theory focuses on control 

design to robustify against (i.e. moderate) outside shocks.  Robust control theory focuses 

on control design to robustify against a lack of confidence in analyst’s ability to specify 

the dynamics of the system under study.  Design limits theory should be useful to robust 

control theorists because it uncovers frequency bands where model uncertainty can do the 

most damage to the designer’s goal.  Thus, using this information, the designer can 

design a control to mitigate damage at the most vulnerable frequency bands; Brock and 

Durlauf (2004) provide an example. Yet another important set of questions concern the 

generalization of design limits theory to nonlinear systems; Pataracchia (2008) provides 

an analysis of this type for switching regime models.  For these reasons we believe that 

design limits theory is an unusually rich area for future research.  
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Table 1. Model Parameter Values 

 

 Phillips Curve  Output Equation 

 Backwards Hybrid   Backwards Hybrid  

1

2

3

4

2

v

e

m
g
a
a
a
a
r

s

 

0

0.14

0.70

0.10

0.28

0.12

0

1.009


 

0.635

0.013

0

0

0

0

0.75

0.7957

 

1

2

3

4

2

f

h

u

d
d
d
d
d
s
r

s

 

0

1.16

0.25

0

0

0.10

0

0.819



 

0.430

1.275

0.253

0.012

0.012

0.087

0.35

0.4006



 

 

Table 2. Monetary Policy Regimes 

 

 RR MR 

 gp   2y
g

 gp  1y
g  

2y
g  

1i
g

 2i
g

 

Burns 0.85 0.16 0.72 0.16 0.09 0.40 0.69 -0.25 

Volcker 1.69 2.40 -2.04 2.40 0.86 -0.73 0.56 0.08 

Greenspan 1.57 1.10 -0.12 1.10 0.30 -0.03 1.16 -0.43 

 

Table 2 reports the measures of the Burns (1970Q1-1978Q1), Volcker (1979Q3-1987Q2) 

and Greenspan (1987Q3-1997Q4) regimes of Judd and Rudebush (1998).  

 

  

1y
g
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Table 3. Overall Regime Performance 

 

 Backwards Hybrid 

  tv    tv y   tv    tv y  

Taylor (OTR) 12.2 5.6 3.1 9.4 

 Recommended Rule (RR) 

Burns     3.4 4.1 

Volcker 9.6 5.4 2.8 10.9 

Greenspan 11.3 4.6 3.2 4.5 

 Measured Rule (MR) 

Burns     3.4 4.7 

Volcker 11.7 6.8 2.6 14.4 

Greenspan 12.1 5.5 3.1 6.6 

 

Note: Table 3 reports the unconditional variances for Inflation and Output computed 
using the backwards and hybrid models under 4 alternative policy rules.  The first row 
reports the results for the Original Taylor Rule. Rows 2-4 report the results for the 3 
regimes - Burns, Volcker and Greenspan - under the specification RR for the policy rule 
(see Table 2). Rows 5-7 report the results for the three regimes under the specification 
MR for the policy (see Table 2). 
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Table 4. Frequency-Specific Regime Performance 

 

 Backwards Hybrid 

  tv    tv y   tv    tv y  

 Low BC Low BC Low BC Low BC 

Taylor (OTR) 11.0 0.7 3.0 2.2 1.3 1.4 4.1 4.8 

 Recommended Rule(RR) 

Burns         1.5 1.5 1.2 2.3 

Volcker 8.4 0.6 3.5 1.6 1.0 1.4 7.2 3.4 

Greenspan 10.1 0.6 2.0 2.2 1.4 1.4 1.8 2.3 

 Measured Rule (MR) 

Burns         1.5 1.5 1.3 2.7 

Volcker 10.5 0.6 4.6 1.8 0.8 1.4 8.9 5.1 

Greenspan 10.8 0.7 2.4 2.8 1.4 1.3 2.1 3.9 

 

Note: Table 4 reports the variance for Inflation and Output computed using the 
backwards and hybrid model under 4 alternative policy rules at different frequency 
ranges.  Low stands for the variance generated at cycles of period 8-year and longer; BC 
stands for the variance generated at cycles of period 2 to 8 years. The first row reports the 
results for the Original Taylor Rule. Rows 2-4 report the results for the 3 regimes - Burns, 
Volcker and Greenspan (see Table 2). Rows 5-7 report the results for the three regimes 
under the specification MR for the policy (see Table 2). 
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Table 5. Equivalence Classes, Values for K 

 

 Backwards Hybrid 

 Recommended Rule 

Burns 0 -.12 

Volcker 0 -.46 

Greenspan 0 -.41 

 Measured Rule 

Burns 0 .04 

Volcker 0 -.11 

Greenspan 0 -.19 

 

Note: Table 5 reports the values for ( | )C BK u u  of Theorem 2 where Bu  is the original 

Taylor Rule and Cu  are in turn the Burns, Volcker and Greenspan regimes as specified in 
Table 2. 
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Figure 1: Design Bounds for Backwards Looking Model 

Recommended Rule Measured Rule 
Volcker Regime 

Greenspan Regime 

 

Note: Figure 1 and Figure 2 plot the maximum and the minimum singular values for the 

sensitivity matrix, ( )( )iS e ws -  and ( )( )iS e ws - , under the three different policy regimes 

Cu of Table 2 (provided a given regime implies stationary behavior for Inflation and 

Output Gap). The benchmark policy Bu  is the original Taylor rule. To facilitate the 
reading of the plots, the frequency range for Figure 1 is from cycles of 1 year (4 quarters) 
and cycles of arbitrary duration, while the range from Figure 2 is from cycles of ½ year 
(2 quarters) and cycles of arbitrary duration.  
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Figure 2: Design Bounds for Hybrid Model 
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Figure 3. Frequency-Specific Phillips Curves: Backwards Model 

 

 

Note: The four panels report aspects of the inflation and output processes that correspond 
to the minimization of the loss function (66) as   is varied between 0 and 1, under the 
backwards-looking model. The upper left panel reports the frontier for the overall 
variance of inflation and output. The upper right panel reports the implied tradeoffs for 
the variance of inflation and output at frequency of 8 years or more for the different pairs 
in the variance frontier. The bottom panels report the implied tradeoffs for the variance of 
inflation and output at business cycle frequencies (2-8 years) and at higher frequencies 
(less than 2 years). Each panel also locates the variances of output and inflation for the 
relative frequency range that result under five policy rules: (i) the Original Taylor Rule 
(circle), (ii) the “Dove” Optimal Policy (diamond), (iii) the “Hawk” Optimal Policy 
(star), (iv) the Volcker regime, (v) the Greenspan Regime. The Burns regime results in a 
non-stationary system and therefore is not reported. The optimal policies correspond to 
rules of the form (66) with coefficients chosen to minimize (66) with 0.05  (D) and 

0.95    (H). The coefficients are derived using a grid search over the space 
 0.0,10.0g  ,  0.0,10.0yg   and  0.9,0.9ig   . The two policies are 

4,  8.2,  0.9y ig g g     (D) and 10.0, 4.0, 0.3y ig g g      (H). 
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Figure 4. Frequency-Specific Phillips Curves: Hybrid Model 

 

Note: The four panels report aspects of the inflation and output processes that correspond 
to the minimization of the loss function (66) as   is varied between 0 and 1, under the 
hybrids model. The upper left panel reports the frontier for the overall variance of 
inflation and output. The upper right panel reports the implied tradeoffs for the variance 
of inflation and output at frequency of 8 years or more. The bottom panels report the 
implied tradeoffs for the variance of inflation and output at business cycle frequencies (2-
8 years) and at higher frequencies (less than 2 years). Each panel also locates the 
variances of output and inflation for the relative frequency range that result under five 
policy rules: (i) the Original Taylor Rule (circle), (ii) the “Dove” Optimal Policy 
(diamond), (iii) the “Hawk” Optimal Policy (star), (iv) the Volcker regime, (v) the 
Greenspan Regime and (vi) the Burns regime. The optimal policies correspond to rules of 
the form (65) with coefficients chosen to minimize (66) with 0.05  (D) and 0.95    
(H). The coefficients are derived using a grid search over the space  0.0,10.0g  ,

 0.0,10.0yg   and  0.9,0.9ig   . The optimal policies are  0.1, 10.0, 0.0y ig g g     (D) and 

1.6, 1.0, 0.5y ig g g     (H). 
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Figure 5: Equivalence Classes for the Hybrid Model 

= 0
i
g  

 
 

= 0.5
i
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Figure 3 displays the values for K across different policy parameters of the monetary 
policy rule pp - - -= + +

1 1 1t t y t i t
i g g y g i  applied to the hybrid model. For combination of 

parameters such that the underlying model is either non-stationary or it displays multiple 
solutions an arbitrarily high value for K  is assigned.  

 0.45K  

 0K
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Appendix  

 

Many of our derivations employ the following lemma, due to Wu and Jonckheere 

(1992), which we report for convenience.  

 

Lemma A.1. (Wu and Jonckheere) 

 

 
2 2

log 0 if 1;   2 log  if 1.ie r d r r r
p

w

p
w p

-
- = £ = >ò  (A.1) 

 
The original proof of this result is a substantial simplification of an alternative approach 

that would employ contour integration and the Cauchy’s Integral Theorem to achieve the 

same conclusion. We direct the interested reader to the paper for details. Here we notice 

that one can think of the above integral as measuring the Wold fundamental innovation 

variance of a stochastic process with dynamics given by 1 Ll- .11 Below we will 

compute the integral of  
2

log 1 ie wl -- . In the complex domain the integral takes the 

form 

 

( )( ) ( ) ( )1 11 1 1
log 1 1 log 1 log 1

2 2 2

dz dz dz
z z z z

i z i z i z
l l l l

p p p
- -é ù- - = - + -ê úë ûò ò ò    

 

For 1l <  the first term on the RHS is zero by Cauchy’s residue theorem since the 

argument is analytic inside the unit disk. The second term might seem more problematic, 

but with the change of variable 1v z->  the argument is also analytic inside the unit disk, 

with the direction of the integration reversed. The case of 1l > instead implies a 

positive residue. In this case the innovation implicit in the process represented by 1 Ll-

is non-fundamental in the Wold sense. To transform the innovation into a fundamental 

one it is enough to apply the Blaschke factor 
1

z

z

l
l

-
-

. Because the Blaschke factor has 

                                                 
11 We are thankful to a referee for pointing out this interesting connection. 
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measure 1 under contour integration, the only factor left to integrate will be 

( )( )2 1 1 1log 1 1z zl l l- - -- -  which will result in 
2

2 logp l  by the Cauchy residue 

theorem, which is exactly what (A.1) is stating. 

 
Proof of Theorem 1. 

 

Without loss of generality assume  =
0
A I . We may write the controlled system 

as ( )( ) ( ) ( )
-

= - =
1

U U

t t t
x I C L L W L w D L w  where ( ) ( ) ( ) ( )º +UC L A L B L U L . 

Since ( )( ) ( ) ( ) ( )( )
-æ ö÷ç - = -÷ç ÷çè ø

1

det det / detU UI C z z W z W z I C z z , we consider each 

term in turn. By the fundamental theorem of algebra 

 ( )( ) ( )l
=

- = -
1

det 1
UC

U

m

U C
j

j

I C z z z  (A.2) 

where UC
m  is the degree of the characteristic polynomial of the system controlled by 

( )U L  and 
UC
i

l  are the eigenvalues of ( )UC L .  Since the system is stable, all 

eigenvalues are inside the unit circle in the complex plane, i.e. l < 1
UC
j

 for  

= 1,2,.. UC
j m .  Lemma A.1 applied to (A.2) when w-= iz e  gives 

 
p p

w w

p p
l w l w-

- -
= =

- = - =åò ò
2 2

1 1

log 1 log 0
UU CC

U U

mm

C i i C
j j

j j

e d e d . (A.3) 

 

Given our assumptions on the structure of ( )W L  we have 

( ) ( )
( )r

=

=

P -
=

P -
1

1

1
det

1

MA

AR

w

j j

w

j j

w z
W z w

z
 

where w  is a real constant, r
i
’s are the autoregressive roots of the characteristic 

polynomial of ( )W z
 
and 

i
w ’s  the moving average roots. Since ( )W L  is assumed 
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second-order stationary, r < 1
j

 for  = 1,2,..
AR

j w . On the other hand, ( )W L  is not 

necessarily fundamental and so it might display moving average roots with modulus 

greater than one. From Lemma A.1 it follows that 

2

2 1

2

1

1
log 4 log 4 log  , { } if 1

1

MA

j
AR

j

w i
j j

u j j
w i u
j j

w e
w d w w j u w

e

w
p

p w
w p p

r

-
=

- -
=

P -
= + Î >

P -
åò  

Let ( )
p

w

p
w-

-
º ò

2

log det iK W e d ; because the constant does not depend on the control 

parameters in ( )U L
 
it  cancels out when computing (15) and the result of Theorem 1 

follows.  

 

 

Proof of Lemma 1 

 

Adapting the result of Skogestad and Postlethwaite (1996, pages 71-72, Appendix A) to 

our setting one can show that 

 

( )( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( )
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2 2 2
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and 

( )( ) ( ) ( ) ( ) ( ){ }
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2 2 2
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sup '
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i B B i i

v

B i i B

C

S e x x v S e S e v

x S e S e x

x

w w w

w w

s w w

w w

w

- - -
=

- -

¢=

¢³

=

 

 

Combining these inequalities produces the Lemma. 

 

 
Proof of Theorem 2.   
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Let  

                      

( ) ( ) ( ) ( )
( ) ( )

( )
( )

( )
( )

( )
( )

( )
( )

,11 ,12

1 11 12 ,11 ,12

21 22 ,21 ,22
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n n

d d

n n

d d

v L v L
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V L V W L
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æ ö÷ç ÷ç ÷ç ÷æ ö ç ÷÷ çç ÷÷ ç ÷ç= = =÷ ç ÷ç ÷ ÷çç ÷ç ÷çè ø ÷ç ÷ç ÷ç ÷÷çè ø

          (A.4) 

where ( ) =0V I . Using Whiteman (1983) solution procedure (for a more detailed 

description see Brock, Durlauf and Rondina (2008b)) the unique REE solution ( )UD L  

can be written as 
  

( ) ( )

( )
( ) ( )

( )
( ) ( )

( )
( ) ( )

( )
( ) ( )
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U UU
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where ( )U

d
d L  is a finite degree polynomial in non-negative powers of L  with all the 

roots inside the unit circle and ( ),

U

n ij
d L  are finite degree polynomials in non-negative 

powers of L  with unrestricted roots. It follows that 

( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
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And, therefore,  
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The stationarity of the solution and the stationarity of the innovation process together 

with Lemma A.1 imply that ( )
p

w

p
w-

-
=ò

2
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log 0U i
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on the other hand, might contain roots inside the unit circle, and, more interestingly, such 

roots are now a function of the control parameters in ( )U L , unlike the backwards 

looking case. Let ( ) ( ) ( ) ( ) ( ),11 ,22 ,21 ,12 ,
1

1
Um

U U U U U U

n n n n n n j
j

d z d z d z d z d d z
=

- = -  where U

n
d is a 

positive constant and Um  is the degree of the polynomial. Using Lemma A.1 and letting 

( ) , ,
4 log 4 log , { } if 1
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U U U

n n u j n u
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K U d d j u dp pº + Î >å  one obtains (23). Finally,  
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where the last step defines the constant ( | )C BK u u  of Theorem 2. 
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