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ABSTRACT

The recent withdrawal of Cox-2 Inhibitors has generated debate on the role of information in drug
diffusion: can the market learn the efficacy of new drugs, or does it depend solely on manufacturer
advertising and FDA updates? In this study, we use a novel data set to study the diffusion of three
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articles, and pharmaceutical advertising, allows us to model individual prescription decisions. Second,
we distinguish across-patient learning of a drug's general efficacy from the within-patient learning
of the match between a drug and a patient. Our results suggest that prescription choice is sensitive
to many sources of information. At the beginning of 2001 and upon Bextra entry in January 2002,
doctors held a strong prior belief about the efficacy of Celebrex, Vioxx, and Bextra. As a result, the
learning from patient satisfaction is gradual and more concentrated on drug-patient match than on
across-patient spillovers. News articles are weakly beneficial for Cox-2 drug sales, but academic articles
appear to be detrimental. The impact of FDA updates is close to zero once we control for academic
articles, which suggests that FDA updates follow academic articles and therefore deliver little new
information to doctors. We find that drug advertising also influences the choice of a patient's medication.
A number of counterfactual experiments are carried out to quantify the influence of information on
market shares.

Pradeep Chintadunta
University of Chicago
pradeep.chintagunta@chicagogsb.edu

Renna Jiang
Graduate School of Business, Marketing Dept
University of Chicago
5807 South Woodlawn Avenue, Chicago IL 60637
rjiang1@gsb.uchicago.edu

Ginger Z. Jin
University of Maryland
Department of Economics
3105 Tydings Hall
College Park, MD  20742-7211
and NBER
jin@econ.umd.edu



1 Introduction

Information plays a critical role in evaluating a prescription drug: before a drug goes on a market,

the Food and Drug Administration (FDA) requires clinical trials, which are often conducted on

a limited number of human volunteers, in comparison with a placebo, and during a period that

is appropriate to determine the drug’s short-run efficacy and safety. After the FDA approval,

more information is available from long-term clinical trials and actual everyday usage. The

post-marketing information, especially those from clinical trials, may lead to new indications,

new warnings, or a complete withdrawal.

The withdrawal of Vioxx (and other blockbuster drugs) triggered intensive scrutiny about

post-marketing surveillance. Unlike before-marketing clinical trials, post-approval evaluation

isn’t required for every drug and there is “a lack of criteria for determining what safety actions to

take and when to take them” (GAO 2006). According to the Tufts Center for the Study of Drug

Development (TCSDD 2004), although 73% of new drugs approved in 1998-2003 involved post-

marketing trials, only one-third were mandated and the trial completion rate was as low as 24%

(many voluntary trials are conducted by manufacturers in hope of new drug indications). The

official post-approval surveillance system, the FDA MedWatch, depends on voluntary reporting

as well (from healthcare professionals and consumers).1

Experts are concerned that, in this setting, neither drug manufacturers nor the FDA is

well positioned to monitor drug safety: drug sales introduce an obvious conflict of interest for

manufacturers, and it is difficult to expect the FDA to seek post-marketing evidence to prove

that its initial approval was wrong (Fontanarosa 2004).2 These criticisms have led to multiple

proposals for FDA reform (GAO 2006, Ray and Stein 2006, Grassley 2005, NCL 2005, US PIRG

2006), an overall evaluation of the FDA (IOM 2007), and finally a new legislation that grants

the FDA more power and resources to overhaul post-marketing surveillance.3

Many of the proposed reforms, for example utilizing databases from health organizations,

regulating post-marketing clinical trials, convening professional findings, making an active use

of the FDA MedWatch, and communicating emerging information in a timely manner, depend
1The system is designed to detect suspected, rare adverse events. Source: www.fda.gov/medwatch/What.htm.

See Slater (2005) for a more comprehensive description of the FDA system.
2See Medscape news “Reform of Postmarketing Drug Surveillance System Needed, Experts Say” Nov. 30,

2004 and USA Today news “Report questions FDA’s safety procedures” April 23, 2006 for a brief summary on

the debate about FDA post-approval surveillance.
3Food and Drug Administration Amendments Act of 2007 (HR3580).
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on how doctors process available information and how they employ such information in their

prescriptions. At one extreme, if every doctor strictly follows the FDA guidelines and ignores the

information generated from daily practice, we must ensure that the FDA gathers all the relevant

information and processes it in a timely manner. At the other extreme, doctors may have

learned from the experience of their own patients, made inferences from drug advertising, talked

to other doctors, read newspapers, and followed all the updates from the medical literature. If

so, regulatory resources are better used for facilitating information flow throughout the market

and alerting emerging information that is unavailable from other channels.

Using Cox-2 Inhibitors as an example, this paper provides a detailed empirical account of

how the market learns about young drugs after approval but before withdrawal. The information

issues arising from Cox-2 Inhibitors are dramatic and unusual, but the lessons learned from this

class are potentially relevant for every drug that has been or is to be approved by the FDA.

Between 1998 and 2001, the FDA approved three Cyclooxygenase-2 (Cox-2) Inhibitors:

Celebrex (Dec. 1998), Vioxx (May. 1999), and Bextra (Nov. 2001). All of them were heavily

advertised as safer alternatives to then existing pain killers. By September 2004, the class had

more than 10 million patients, annual sales had reached $6 billion in 2003, and total advertising

dollars spent in 2003 were as high as $400 million. After a clinical trial associated Vioxx with

severe cardiovascular (CV) risks, Merck withdrew the blockbuster drug in September 2004. CV

risks and enhanced concerns on skin irritation led to the withdrawal of Bextra in April 2005. As

of today, Celebrex is the only Cox-2 Inhibitor remaining on the market, with warnings added in

April 2005.

Because the Vioxx withdrawal is likely to raise concerns about the other Cox-2 inhibitors4,

we believe the role of information has changed dramatically before and after the Vioxx with-

drawal. To better characterize the diffusion of new drugs, this paper focuses on the prescription

decisions made before the end of 2003. The nine-month lag between the end of 2003 and the

Vioxx withdrawal should be long enough to avoid any contamination from the withdrawal deci-

sion.

More specifically, we study how physicians learn about overall drug quality (across-patient

learning) as well as how well each drug in the category matches the needs of a specific patient

(within-patient learning). For this purpose, we use a unique data set obtained from a marketing
4The first official claim of CV risks being a class effect is documented by FDA in April 2005. When we focus

on the period of 2001-2003, we count a medline article as applicable to all the Cox-2 inhibitors available on the

market if the article does not specify drug brand in the abstract.
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research company, IPSOS. IPSOS tracked a national representative sample of patients from 1999

to 2005. Not only did IPSOS report every NSAIDS (nonsteroidal anti-inflammatory drugs) pre-

scription received by the sampled patients (including traditional NSAIDS and Cox-2s), it started

to keep a longitudinal record of patient satisfaction with these prescriptions from January 2001.

These satisfaction measures, together with FDA udpates, media coverage, academic articles, and

manufacturer advertising, allow us to associate individual prescriptions with various sources of

information.

Note that information content may differ across sources: for example, heart attack is rare

and often urgent when it occurs. Patients that suffered from such an adverse event may not

have time and opportunity to report this in the next doctor’s visit. However, these events may

be reviewed in an article published later on in the mass media or in academic journals. The

accumulation of such events may also lead to some FDA actions. In comparison, minor side

effects such as stomach upset and skin rash are noticeable to individual patients and are more

likely incorporated in their satisfaction report. These potential differences motivate us to treat

each information source differently.

Our study is different from the existing literature in three ways: first, existing studies

have focused on either learning across patients (Ching 2005, Coselli and Shum 2004, Narayanan

et al. 2005) or learning within patients (Crawford and Shum 2005) but not both. We believe

that these two types of learning are linked: doctors are not only uncertain about the average

quality of a drug, they also have imperfect information on the specific match between a drug and

a patient. Both uncertainties are embodied in one single report of patient satisfaction, hence

ignoring any one of them is likely to introduce estimation bias. As shown in our model, we

assume the average drug quality is learned from the experiences of all patients (within a census

division) while the patient-drug match is learned from a specific patient’s own experience.

Second, our data are better-suited to modeling the across- and within-patient learning

because we observe patients’ satisfaction signals. Equipped with the patient satisfication data,

we assume doctors held a prior belief about Cox-2 inhibitors at the end of 2000, which summa-

rizes all the information up to 2000. Starting Jan. 2001, doctors received patient satisfaction

information on a daily basis and used them to form posterior beliefs in a Bayesian fashion. To

our knowledge, all the existing studies on drug learning have no direct data on patient feedback

signals. Instead, authors assume that the unobserved signals conform to a given statistical distri-

bution. They then model prescription choice as a result of random draws from that distribution.

Since we observe the realization of feedback signals, we can (a) impose fewer identification re-
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strictions, (b) eliminate the computational burden of using simulation to approximate the real

signals; and (c) make the model more parsimonious by eliminating the need to estimate the true

drug qualities.

Despite the benefits associated with our data, they are still imperfect for integrating the

two types of learning because we do not observe physician identities. Thus, we need to make

assumptions on the mechanism by which information is shared across patients. In particular,

we assume that doctors in the same geographic area (in our case, census division) exchange

opinions and learn from each others’ patients experiences. To mitigate the effect of arbitrary

assumptions regarding the geographic area of information exchange, we investigate the scope of

information pooling by changing the definition of geographic area and assessing model fit.

Our third contribution lies in collecting factors other than patient satisfaction that could

potentially influence a doctor’s prescription decision. Specifically, we allow FDA updates, manu-

facturer advertising5, news reports and academic articles to enter the utility function directly and

therefore influence doctors’ relative preference across drugs.6 These data allow us to distinguish

the impact of patient satisfaction from other factors.

Our results suggest that prescription choice is sensitive to many factors. At the beginning

of 2001 and upon the Bextra entry in January 2002, doctors held a strong prior belief about the

efficacy of Celebrex, Vioxx, and Bextra. As a result, the learning from patient satisfaction is

gradual and more concentrated on drug-patient match than on across-patient spillovers. We also

find that advertising is beneficial for drug sales, so are news articles. But academic articles appear

to be detrimental. The impact of FDA updates is close to zero once we control for academic

articles, which suggests that FDA updates follow academic articles and therefore deliver little

news to doctors.

Consistent with the estimation results, our counterfactual predictions suggest that sup-

pressing FDA updates has no impact on market shares. Setting up a nationwide database of

patient feedback encourages doctors to switch from traditional NSAIDS to Cox-2s, but increas-

ing academic publications about Cox-2s steers market share away from Cox-2s. This suggests

that patient feedback and academic articles may reflect different dimensions of drug quality, and

hence do not substitute for each other.
5Which includes detailing, direct-to-consumer advertising, and journal advertising.
6These factors are too lumpy (i.e., only observed at the aggregate market level) relative to the patient level

prescription data to accurately identify learning from these sources in a Bayesian updating framework. For more

details please see Section 4.
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The rest of the paper is organized as follows. Section 2 provides detailed information on

the background of Cox-2 Inhibitors. Section 3 describes and summarizes the data. Section 4

presents the econometric model. In Section 5, we report empirical estimates, discuss robustness

checks, and perform counterfactual predictions. Conclusions are offered in Section 6.

2 Background

Cox-2 Inhibitors were initially introduced to reduce the gastrointestinal (GI) risks of conventional

non-steroidal anti-inflammatory drugs (NSAIDS) while maintaining the same efficacy in pain

relief. Traditional NSAIDS, such as Aspirin, ibuprofen (Motrin) and naproxen (Naprosyn), block

Cox-1 and Cox-2 enzymes and therefore impede the production of the chemical messengers

(prostaglandins) that cause inflammation. However, since some Cox-1 enzyme exists in the

stomach and its production of chemical messengers protects the inner stomach, blocking Cox-1

enzymes tends to reduce the mucus lining of the stomach, causing GI problems such as stomach

upset, ulceration, and bleeding. In comparison, the Cox-2 enzyme is located specifically in

the areas that cause inflammation and not in the stomach. By selectively blocking the Cox-2

enzyme, Cox-2 inhibitors have the potential to reduce GI risks.7

Before FDA approval, clinical trials presented evidence that all three Cox-2s (Celebrex,

Vioxx and Bextra) reduce the incidence of GI ulcers visualized at endoscopy compared to certain

non-selective NSAIDS. But up to April 2005, only Vioxx demonstrated a reduced risk for serious

GI bleeding in comparison with naproxen (FDA 2005). After FDA approval, all three Cox-2s

were heavily marketed as being equally effective as traditional NSAIDS but with less adverse

effects on the GI system.

The diffusion of Cox-2 inhibitors was very fast: according to the National Ambulatory

Medical Care Survey (NAMCS) and the National Hospital Ambulatory Medicare Care Survey

(NHAMCS), in 1999 (the first year of Cox-2 introduction), the number of ambulatory visits

resulting in Cox-2 prescriptions were 15 million, slightly more than half of the visits that resulted

in the prescriptions of traditional NSAIDs. By the end of 2000, the number of Cox-2 visits had

exceeded those for traditional NSAIDS, reaching an estimate of 31.5 million. This growth

continued in 2001, but at a much lower rate (Dai et al. 2005, Table 2).
7For a complete layperson description of Cox-2 inhibitors, readers can refer to www.medicinenet.com.

5



In terms of prescriptions, according to the New Product Spectra (NPS)8, the total number

of new Cox2 prescriptions grew sharply from 61,066 in January 1999 to 2 million in December

2000, but leveled off after January 2001. The number of all Cox2 prescriptions (including new

and old) demonstrated a similar pattern. Since Bextra was not approved until November 2001,

its introduction was mainly market stealing (from Celebrex and Vioxx) rather than market

expanding.

As NPS does not track drugs beyond five years of the launch, it does not cover Celebrex

after 2003 and does not tell us the prescription trends for traditional pain-relievers. To develop

a rough understanding of these trends, we plotted the monthly count of prescriptions observed

in the individual-level IPSOS data for each Cox-2 as well as for traditional pain relievers as

a whole by aggregating over individual prescription in each month. Although the number of

individuals included in IPSOS is much smaller than those in the NPS, the diffusion patterns

of Cox-2s between 1999 and 2003 obtained was very similar to that obtained from the NPS

above. The aggregate IPSOS data also suggest that Cox-2s initially stole some market share

from traditional pain killers, but the whole market expanded considerably between 2000 and

2003 before returning to the 1999 level at the end of 2005. The most obvious decline started in

2004 and accelerated with the withdrawal of Vioxx and Bextra.

After a three-year placebo-controlled clinical trial9 showed that taking Vioxx 25 mg once

daily doubles the risk of serious adverse cardiovascular (CV) events, Merck withdrew Vioxx on

September 30, 2004. In April 2005, FDA’s Arthritis and Drug Safety and Risk Management

Advisory Committees reviewed the available data and concluded that (1) the increased CV

risk is a class effect applying to all the Cox-2s and traditional NSAIDS; (2) Aside from the

CV risk, Bextra is associated with an increased rate of serious and potentially life-threatening

skin reactions and should be withdrawn from the market; (3) the overall benefits of Celebrex

exceeded its potential risks, which allowed Celebrex to remain on the market but the label had

to be revised to carry explicit warnings on potential CV and GI risks (FDA 2005). The FDA

did not rank the three Cox-2s by their CV risks, but the evidence underlying the withdrawal

requests suggests that the overall quality of Celebrex was better than the other two, with Vioxx

being better than Bextra since only the latter was associated with skin irritations.

The adverse information about Cox-2 did not come all at once. Before the final withdrawal
8NPS is a database provided by IMS Health that tracks monthly number of prescriptions (new and refills)

dispensed by pharmacists and monthly advertising activities of pharmaceutical manufacturers up to 60 months

after initial launch.
9The clinical trial was called the Adenomatous Polyp Prevention on Vioxx (APPROVe).
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of Vioxx and Bextra, the FDA had taken several decisions regarding the side effects of each Cox-

2 brand. As shown in Table 1, FDA initiated a label change for Celebrex in June 2002 because

a long term clinical trial could not distinguish the amount of GI risk between Celebrex and

traditional NSAIDS (ibuprofen or diclofenac). This reverses the original understanding that

Celebrex is safer because of lower GI risks. In comparison, Vioxx received new warnings about

increased cardiovascular risk as early as April 2002. The first FDA warning of skin irritations

applied to Bextra on Nov. 2002, and more Bextra warnings came in Dec. 2004 for both skin

irritations and cardiovascular risk. One task of our study is to detect whether these FDA updates

have any impact on the prescription decisions made by doctors before the Vioxx withdrawal.

3 Data Summary

This section describes our data sources, summarizes the raw data, and presents simple data

patterns that suggest across- and within-patient learning.

3.1 Data Description

We combine four data sources: (1) patient-level prescription and satisfaction data from the

IPSOS patient diary database (IPSOS-PD), (2) monthly advertising expenditures obtained from

the New Product Spectra (NPS) database, (3) the number of news articles covering Cox-2s

derived from Lexis-Nexis for the period 1999 to 2005, and (4) the number of academic articles

covering Cox-2s from Medline from 1999 to 2005.

In 1997, IPSOS created a national representative sample of 16,000 households and tracked

their drug purchasing month by month.10 The patient diary covers all the individuals within

the sampled household. Each individual, if observed in the data, is viewed as one patient. Each

record in the patient-level IPSOS data corresponds to one purchase of ethical drugs, including

prescription and over-the-counter medications. The data used in this paper include all the indi-

vidual records that IPSOS collected on traditional NSAIDS as well as on Cox-2s from January

1999 to December 2005.

Each record provides information on the patient’s prescription date, age, sex, race, house-
10Detailed description is available at http://www.ipsos.ca/product.cfm?id=66&name=Healthcare&fn=health&fl=reid

and Bowman et al. (2004).

7



hold income, education, copay, insurance status, and residential location defined by nine Census

divisions and more than 200 DMAs (Designated Market Areas). Since over 80% of patients

have health insurance and the self-reported copays are noisy and sometimes inconsistent with

the reported drug insurance, we ignore price/copay information but include insurance status in

the empirical analysis.

Specifically, IPSOS collects information on three types of insurance variables: i) a simple

indicator of whether the patient has health insurance or not at the time of prescription (referred

to as HEALTHINS); ii) an indicator of whether the patient has an insurance plan outside of

Medicare or Medicaid (referred to as INSPLAN); and iii) an indicator of whether the patient

has any coverage for drug insurance (referred to as DRUGINS). One puzzling aspect of the data

is that the correlations among the three insurance variables are between 0.12 to 0.24, which is

not as high as expected. However, as we see later, they do seem to have some power explaining

prescription behavior. We include all three variables in the model but only as controls. Our

conversations with drug companies and insurers suggest that a majority of insurers excluded

all Cox-2s from preferred formulary tiers. If this applies to every insurer, the lack of formulary

information should not undermine our estimation results, although it may explain why drug

insurance makes a difference in the prescription choice between Cox-2s and non-Cox2s.

Starting from January 2001, the data also provide five satisfaction measures, reflecting

patients’ self reports on the effectiveness of the prescribed drug, its side effects, whether the

drug works quickly, how long it lasts, and whether it is easy to take. Each satisfaction measure

is obtained on a scale from 1 to 5, with 1 denoting extremely satisfied and 5 denoting extremely

dissatisfied.

The 1999-2005 IPSOS sample involves 28,601 patients and 136,950 observations of tra-

ditional NSAIDs and Cox-2s. Since many traditional NSAIDS (say Motrin) are available over

the counter, we focus on prescriptions only. Out of the 57,942 filled prescriptions, 20.3% are

for Celebrex, 13.6% for Vioxx, 3.9% for Bextra and the rest 62.2% for traditional NSAIDS. To

ensure that this sample is indeed nationally representative, we calculate the number of COX-2

prescriptions and drug-specific market shares from the sample and compare their trends with

those reported in the NPS. They are similar. We also regress the number of new COX-2 patients

in our sample and the number of new COX-2 prescriptions in the NPS on various advertising

variables, the regression coefficients and significance are comparable. These results reassured us

about proceeding with the IPSOS data.

The sample is further reduced to 8,077 patients and 27,326 prescriptions after we (1) focus
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on the records with non-missing values in all five satisfaction questions, (2) delete observations

that have missing Census division indicators, and (3) restrict the sample to 2001-2003 when

advertising data are available from NPS. The reduction is largely due to the fact that IPSOS did

not collect satisfaction data until 2001. Between 2001 and 2003, the reporting rate for satisfaction

measures is 94.8%.11 To best fit a model of how doctors learn from patient satisfaction, we focus

on new patients that first appear in the data set on or after January 1, 2001. The main reason

for discarding old patients is because doctors may have formed patient-specific priors based on

their satisfaction before 2001, on which we have no information. Fortunately, there are not too

many of them: 6,577 out of the 8,077 patients (with non-missing satisfaction scores) are new

since 2001, and these new patients account for 17,329 prescriptions.

We define a “run” as a sequence of one or more prescriptions of a single drug. For example,

if a patient receives a prescription sequence A,A,A,B,C, we say that he has three runs, the length

of each being 3, 1, 1. By this definition, the final sample of 17,329 prescriptions are classified

into 7,998 runs. An average run consists of 2.17 prescriptions, and an average patient has 1.22

runs in our data. The corresponding numbers are 2.37 and 1.23 in Crawford and Shum (2005).

By definition, new patients are likely to have fewer runs and fewer prescriptions per run,

which explains why the number of prescriptions declined by 36.6% when we exclude old patients

but the number of patients only goes down by 18.6%. The experiences of older patients may have

contributed to doctor beliefs about average drug quality as of January 1, 2001. The contribution

of this information will be captured in the model since we estimate the prior as of January 1,

2001. What is ignored is how the old patients’ satisfaction reported after 2001 contributes to

the across-patient learning after 2001. We leave this issue for future research.

Conditional on the final sample of 6,577 new patients and 17,329 prescriptions, Figure 1

shows that 56% of the patients were involved with prescription NSAIDS only once, and the vast

majority (96%) occurred for no more than 10 times. Table 2 presents the number of prescription

switches between traditional NSAIDS and the three Cox-2s. By definition, switch does not occur

unless a patient has at least two prescriptions. On average, the switching rate of traditional

NSAIDS (9%) is lower than that of Celebrex (16%), Vioxx (19%) and Bextra(23%). This is

partly because we aggregate different brands of traditional NSAIDS into one category.

Table 3 summarizes satisfaction scores by drug and satisfaction questions. On average

(across all five questions which we denote as satisf12345), patients are more satisfied with all three

Cox-2s than they are with traditional NSAIDS, although the specific satisfaction for effectiveness
11From 2001 to 2003, there are 28,866 NSAIDS prescriptions, of which 27,359 report all five satisfaction scores.
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is the lowest for Bextra. Within Cox-2s, Celebrex is the best in all five questions, with Vioxx

being the worst in side effects and Bextra the worst in the other four. These patterns are

hardly significant at conventional levels, but they are consistent with the fact that FDA kept

Celebrex on the market but requested withdrawals of both Vioxx and Bextra. Another possible

interpretation is that those who got Bextra are those who are more resistant to other Cox-

2s and doctors prescribed Bextra to them as the last resort. The five satisfaction measures

are highly correlated (the correlations range from 0.87 to 0.97), so we will use their average

satisf12345 in the final structural models. Averaging across the five satisfaction measures also

allows us to smooth the discreteness in each single measure and therefore to get closer to the

distributional assumption needed in the Bayesian model. We will revisit this issue when we

present the structural results.

All three Cox-2s were heavily marketed. The average monthly advertising expenditures

(pooling detailing, journal advertising, and direct-to-consumer advertising) were 20.3M, 21.4M,

and 10.5M dollars during the time period of 2001 to 2003 for Celebrex, Vioxx and Bextra,

respectively. Although not reported here, the flow of advertising expenditure was comparable

across drugs and even over time. Also, the trend of total advertising is quite similar to the trend

of total prescriptions described previously. Since traditional NSAIDS involve a large number of

brands and most of them had been on the market for a long time, we do not obtain advertising

data for traditional NSAIDS. This is equivalent to assuming traditional NSAIDS have zero

advertising since the start of our sample period.

To complete the picture, we also count the number of news and journal articles related to

Cox-2s from 1999 to 2005. Specifically, news articles are obtained from the Lexis-Nexis search

of keywords Cox 2, Cox-2, Cox2, celebrex, vioxx, bextra, Cyclooxygenase-2, Cyclooxygenase2,

and Cyclooxygenase 2 across all the U.S. newspapers and magazines. For each relevant article,

we record title, publication date, publication region, and the news source. To focus on Cox-2

inhibitors, we delete articles that talk about Cox-1 and Cox2 enzyme but not inhibitors. Lexis-

Nexis classifies articles into four regions: Midwest, Northeast, Southeast and Western. They

are matched with the nine Census divisions (used in the IPSOS data) by the standard Census

definition.12 To account for the fact that some newspapers and magazines are read more often

than others, we obtain the total circulation from the Audit Bureau of Circulations. Whenever

applicable, we distinguish circulation on weekdays, Saturday and Sunday, and use the one that
12Except for Southeast, the names of Lexis-Nexis regions match perfectly with those of Census regions. We

interpret “Southeast” in Lexis-Nexis as “South” in Census. The crosswalk between the four Census regions and

the nine Census divisions is available at www.census.gov.
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matches best with the publication date of the article. Articles that do not specify source or do

not have circulation data for the specified source are excluded.

From article titles, we define dummy variables indicating whether the article sounds neg-

ative, positive or neutral. For example, “Cox-2s increase the risk of ..” is counted negative but

“Celebrex is easier on stomach” is counted positive. If the title includes both positive and neg-

ative words (or neither), it is counted neutral. The article title also tells us whether the article

focuses on a particular Cox-2 brand or not. If yes, the article is only matched with the specific

brand. If no, the article is presumably applicable to all the Cox-2s available on the market.

In total, the Lexis-Nexis search results in 973 articles with valid circulation information, which

includes 92 positive, 122 neutral and 756 negative articles.

Academic articles about Cox-2 are gathered from Medline search of the same keywords,

covering all the domestic and international journals in Medline. For each search result, we

record title, abstract, publication date, and the name of the publishing journal. To focus on

human subjects, we rule out articles that examine Cox-2 effects on animals only. Since most

Medline journals are monthly or bi-monthly, we take the first day of the first issue month as the

publication date. For example, both “April” and “April-June” issues are coded as published on

April 1. Medline offers no regional distinction and more than 80% of articles do not focus on a

specific brand name, so we assume all the non-specific articles applies to all the Cox-2s available

on the market. The brand-specific articles are applied to the mentioned brand only.

Medline journals also differ greatly in terms of impact. To address this, we weigh each

journal with the 2002 Science Gateway Impact Factor.13 In total, we collect 1064 medical articles

between 1999 and 2005, 950 of which have a valid impact factor. Missing impact factor is imputed

by the mode of all the non-missing impacts. Like in Lexis-Nexis, we use title and abstract to

classify Medline articles into negatives (13.44%), positive (28.19%) and neutral (58.36%). Note

that the percent of negative titles is much lower for Medline articles than for news reports (78%).

This suggests that the main effect of Medline articles is likely to come from the non-negatives.

To simplify estimation, we pool positive and neutral as non-negatives but distinguish negatives

and non-negatives for both types of articles.

As a robustness check, we also record whether article authors are affiliated with a pharma-

ceutical company, a university, or other institutions, and whether the article talks about efficacy,

side effects, or both. These variables are highly correlated with each other: for example articles

affilated with pharmaceutial companies are more likely to be non-negative and focus on efficacy.
13http://www.sciencegateway.org/impact/if02a.html.
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The high correlation prevents us from identifying the impact of each variable separately. In-

stead, we focus on negatives and non-negatives in the main specification, but discuss the effects

of the other variables via a robustness check.

Figure 2 plots the weighted monthly counts where the weight is circulation for news ar-

ticles and journal impact factor for Medline articles. Figures 3 and 4 decompose article counts

into negative and non-negatives. One pattern that stands out most is the dramatic difference

before and after 2004. Before the Vioxx withdrawal, the 1999-2003 period was characterized by

occasional news and journal articles, in stable flow, and at most times non-negative in nature.

In 2004 and 2005, huge spikes of negative news appear around the Vioxx withdrawal, the first

lawsuit against Vioxx, and the withdrawal of Bextra. Medline articles also show a negative spike

at the beginning of 2005, which we interpret as a lag effect of the Vioxx withdrawal in Sept.

2004. Based on these figures, we suspect the learning process may have changed substantially

after the Vioxx withdrawal. In this paper, we focus on the pre-withdrawal period (2001-2003),

while leaving the post period (2004-2005) for future research.

Finally, on the basis of Table 1, we create three dummy variables to indicate the FDA

updates that occurred in our analysis period (2001-2003). Namely, new warnings added on Apr.

11, 2002 for Vioxx, new warnings added on Nov. 15, 2002 for Bextra, and label change as of

Jun. 7, 2002 for Celebrex.

So far we have documented five sources of information: patient satisfication, manufacturer

advertising, news articles, Medline articles, and FDA updates. The time-series correlation across

the five categories are no more than 0.3.14 Such low correlation suggests that different sources

may contain different types of information and it is possible to identify their impacts separately

in a single model.

3.2 Basic Evidence of Learning

Since patient satisfaction is unique to our data, it is important to demonstrate its link with

prescription decisions. In particular, if doctors learn anything from patient satisfaction, satis-

faction scores should correlate with drug market shares and drug switches within patient. To

confirm this intuition, we run a logit regression on whether the drug prescribed to patient p in

time t is different from p’s last prescription (changes within the non-Cox2 NSAIDS are counted
14One complication in calculating the correlations is that all these measures are in different time units. We

choose to aggregate up to a monthly level, and then calculate correlations among the monthly level quantities.
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as non-switch). The key independent variable is the satisfaction scores patient p reported for

the drug taken on the last prescription. Since this regression focuses on drug switch, we exclude

first prescription (per patient) from our cleaned data, which leaves 2,887 patients and 13,637

prescriptions in the logit sample.

As shown in Table 4 Column (1), the more satisfied a patient is with the current prescrip-

tion (i.e. the lower score of satisf12345), the less likely she switches to other brands. Decompos-

ing satisfaction into different dimensions, Column (2) shows that the key effect of satisfaction is

driven by drug efficacy (satisf134) instead of “side effects” (satisf2) or “easy to take” (satisf5).

Table 4 Column (3) adds other sources of information into the switch regression. Since

advertising may potentially have an s-shape impact on drug diffusion, we use the inverse of the

cumulative total advertising expenditure since FDA approval (i.e. detailing + journal advertising

+ DTC advertising). This mimics the reciprocal model of advertising in the marketing literature

(Lilien et al. 1992). Results are qualitatively similar if we use the total advertising in linear

form. Aside from advertising, we also include Medline and Lexis-Nexis article counts up to t,

and whether t is after the FDA update for the drug of p’s last prescription. The coefficient of

satisf12345 is comparable to that in Column (1). As we expect, advertising and non-negative

news articles deter switch but the other coefficients are either insignificant (the FDA update

dummy and negative news articles) or counterintuitive (the negative and non-negative Medline

articles). Note that this regression focuses on the information related to the last prescription

taken by the same patient but ignores information of other available brands. This shortcoming

will be corrected in our full model.

Another unique feature of our study is the distinction between across- and within-patient

learning. Does the raw data contain evidence for both types of learning? The simplest way

to demonstrate across-patient learning is tracking nationwide market shares by drug-month.

If across-patient learning exists, the market shares should stabilize over time. To quantify the

stabilization, we compute the standard deviation of the monthly market share within 2001, 2002,

and 2003 separately for each drug. Although not shown, we find that the standard deviation

of monthly share declines year by year for all drugs, suggesting that the market shares become

more stable over time.

Because we do not observe the identity of the doctor, we have to assume that the across-

patient information is shared within a specific geographic area. In the IPSOS data, the most

detailed geographic area that yields a sufficient number of prescriptions for information sharing is

census division. If information sharing is restricted to within each of the nine census divisions,
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we should observe significant heterogeneity of market shares across regions. In contrast, if

information sharing is nationwide, market shares should be homogenous across regions. To test

for these two extremes, we regress the number of prescription at a month-drug-division level on a

full set of drug dummies and a full set of division dummies. The joint test of all division dummies

having the same coefficient is rejected with a p-value less than 1e-4. A more detailed look at

the division coefficients suggest that each division is different from another, which motivates us

to model across-patient learning by census division.15

To better detect within-patient learning, we examine the number of switches in different

phases of treatment. Taking each patient as the unit of analysis, we find that the number of

switches in the first half of a patient’s treatment regimen is always greater than the number of

switches in the second half. This suggests that significant learning has taken place within each

patient.

4 Econometric Model and Identification

4.1 Model

Consider a situation in which doctor d has concluded that patient p needs a pain relieving

prescription of a fixed length starting from time t, but has not determined which drug is the

best choice. More specifically, the choice set includes traditional NSAIDS and whatever Cox-2s

that are available at t. In making such choice, the doctor maximizes the patient’s expected

utility for this single prescription.

Here we make three assumptions: in reality the doctor-patient relationship involves a

number of information and incentive issues, and the doctor may not act as a perfect agent

for the patient. We ignore such imperfections because we have no data on individual doctors.

Second, we consider all the traditional NSAIDS as one drug and do not distinguish brands within

this group. The main reason is that traditional NSAIDS involve dozens of brands and we do not

have advertising and article reports for each specific brand. Treating traditional NSAIDS as one

outside good helps us focus on the tradeoff between traditional NSAIDS and the three brands

of Cox-2 Inhibitors. Third, we assume that each doctor is myopic and focuses on the current

prescription. As detailed below, we assume that a doctor considers all the drug information
15In a later section we assess the robustness of this assumption.
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available to her up to t , but she does not consider how experience learned from the current

prescription would affect her future prescription choice on the same or other patients. For more

discussion on forward-looking behavior, see the robustness checks section (and Crawford and

Shum 2005).

We assume that patient p’s CARA utility from a prescription of drug j can be written

as:16

Ṽpjt =
[
1− e−γ

(
Q̃pjt+βxjXpt+βzZjt+εpjt

)]
/γ

where

Q̃pjt = doctor’s belief about drug j’s quality for patient p at time t;

γ = risk aversion parameter, non-negative. A zero γ implies risk neutrality;

Xpt = patient p’s characteristics at time t;

Zjt = drug j’s characteristics at time t;

εpjt = extreme value error.

The information process is modeled as follows. Doctors are uncertain about Q̃pjt, which

can be decomposed into two parts: the general quality of drug j that applies to every patient

(referred to as Qj); and the specific match value between drug j and patient p (referred to as

qpj). The true effect of drug j on patient p is therefore

Qpj = Qj + qpj .

This term is fixed but unknown to the doctor or the researcher. Over the entire population,

we assume qpj is independent and identically distributed according to a normal distribution

N(0, σ2
q0

).

When drug j is first introduced to the market (or at the beginning of our data set), all

doctors share two priors: for the general quality of drug j , the prior is

Q̃j0 ∼ N(Q̄j0, σ
2
Qj0

).

The prior for the patient-drug match (qpj) is mean independent of Qj0 and can be written as:

q̃pj0 ∼ N(0, σ2
q0

).

Together, the prior for the specific quality of drug j on patient p is

Q̃pj0 = Q̃j0 + q̃pj0 ∼ N(Q̄j0, σ
2
Qj0

+ σ2
q0

).

16As γ goes to zero, the utility function becomes linear.
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We allow both Q̄j0 and σQj0 to be drug-specific. This reflects the fact that the initial

information about the average drug quality, whether it is from FDA guidelines, medical research,

or patient experience, may differ across drugs. For example, the prior on Celebrex and Vioxx

is defined as of January 1, 2001 and the prior on Bextra is defined as of March 1, 2002 (the

first date that Bextra appears in our data set). Since doctors may have learned about Celebrex

and Vioxx before 2001, the prior should be less dispersed for them than for Bextra. Since we

put no restrictions on σQj0 , we can test this conjecture in the data. For simplicity, we assume

the amount of patient heterogeneity (captured by σq0) is the same across all three drugs. We

assume that doctors prior belief on the distribution of patient heterogeneity coincides with the

actual distribution.

We assume doctors located in the same geographic area (say a Census region, a Census

division, or a DMA) share information immediately and extensively. Assuming each prescription

generates one signal, patient p’s satisfaction with drug j at time t, denoted as Rpjt, is a noisy

but unbiased indicator of the true quality:

Rpjt = α0 + αR · (Qj + qpj) + υpjt

where α0 and αR equalize the scales of R and Q, and the signal noise υ conforms to N(0, σ2
υ).

Let nR
pjt denote the number of satisfaction reports from patient p on drug j up to time t,

and R̄pjt denote the average satisfaction across these nR
pjt reports. At time t, doctors in the same

area will use all the nR
pjt signals across all local patients to update their beliefs on the average

drug quality Qj . However, because patients are independent from each other, the experience of

patients other than p does not contain any information about qpj .

With all the patient satisfaction information up to t, doctor’s posterior on the effect of

drug j on patient p can be decomposed into two parts: (1) doctor’s posterior about the general

quality of drug j, and (2) doctor’s posterior about the specific match between drug j and patient

p. That is:

Q̃pjt = Q̃jt + q̃pjt.

According to the Bayes rule (DeGroot 1970): Q̃jt

q̃pjt

 ∼ N(

 Q̄jt

q̄pjt

 ,Σ)

16



where

Q̄jt =

∑
p

nR
pjt · αR · (R̄pjt − α0)
σ2

υ + nR
pjt · α2

R · σ2
q0

+ Q̄j0

σ2
Qj0∑

p

nR
pjt · α2

R

σ2
υ + nR

pjt · α2
R · σ2

q0

+
1

σ2
Qj0

q̄pjt =
σ2

q0
· nR

pjt · αR · (R̄pjt − α0 − αR · Q̄jt)
σ2

υ + nR
pjt · α2

R · σ2
q0

Σ−1 =

 s11 s12

s21 s22


s11 =

∑
p

nR
pjt · α2

R

σ2
υ

+
1

σ2
Q0

s12 = s21 =
nR

pjt · α2
R

σ2
υ

s22 =
nR

pjt · α2
R

σ2
υ

+
1

σ2
q0

Note that the two posterior beliefs, Q̃jt and q̃pjt, are correlated because both make use

of the satisfaction information from patient p. While the above formula focuses on one patient,

note that as more patients become involved with the drug over time, the length of the quality

vector increases over time. That is, the size of Σ−1 increases over time. We can show that

the across-patient terms in Σ−1 are all zero. We exploit this special structure and analytically

invert it to get Σ. Inverting Σ−1 implies that the posterior of q̃pjt is no longer independent

across patients. This is because all the updates of qpj rely on the update of Qj , which in turn

relies on satisfaction reports from all patients.

Equipped with the posterior updates, the expected utility is given by:

E
[
Ṽpjt

]
=

[
1− e−γ(βxjXpt+βzZjt+εpjt)E

[
e−γQ̃pjt

]]
/γ

=

[
1− e−γ(βxjXpt+βzZjt+εpjt)e

−γQ̄pjt+
1
2
γ2σ2

Q̃pjt

]
/γ

=

1− e
−γ

(
Q̄pjt− 1

2
γσ2

Q̃pjt

+βxjXpt+βzZjt+εpjt

) /γ
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Thus, maximizing the expected utility is equivalent to maximizing the following,

Upjt = Ūpjt + εpjt = Q̄pjt −
1
2
γσ2

Q̃pjt
+ βxjXpt + βzZjt + εpjt

The standard logit probability (McFadden 1973) for patient p getting drug j at time t is:

PRpjt =
exp(Ūpjt)
J∑

j=1

exp(Ūpjt)

.

From the prescribing probabilities, we can estimate parameters by maximizing the log

likelihood function:

ln(L) =
∑
p,j,t

1data=pjt · ln(PRpjt).

4.2 Estimation Issues

The model presented above focuses on one type of signal, patient satisfaction. In reality, there

are many types of signals. FDA updates, media reports, academic articles and manufacturer

advertising could all be viewed as noisy signals of the average drug efficacy that affects doctor’s

Bayesian update. However, estimating the Bayesian role of these signals requires each one of

them have enough variation over time and across patients. In a Bayesian world, lack of variation

adds to the difficulty in estimating the precision of a signal. When we allow both advertising and

patient satisfaction to enter the Bayesian updating process, the model estimation has trouble

converging. When it does converge, the variance term corresponding to advertising is extremely

large, suggesting that the monthly advertising data may not provide enough variation to identify

the variance. Given that FDA updates and article data have even less variation than advertising,

it is difficult to model all of them in the framework of Bayesian learning.

To address this computation problem, we model patient satisfaction as a signal that con-

tributes to the Bayesian learning but treat all the other factors as drug attributes (Zjt) that

directly enter the utility function. This does not imply that we assume advertising is solely

persuasive. Rather, both informative and persuasive advertising, if they exist, are captured in

the coefficient of advertising.17

Specifically, the model described above circumvents the estimation difficulty but still allows

all types of factors to play a role in prescription choice. The disadvantage is that we can no
17See Ackerberg 2001 and 2003 for a detailed model that separates informative and persuasive advertising.

18



longer rely on the Bayesian structure to describe how historical information in FDA updates,

advertising, news report and Medline articles affect a patient’s expected utility. Rather, we define

Zjt as a vector, where each non-advertising element corresponds to the log of the cumulative sum

of one factor. To better capture a potential s-shape impact of advertising, we use the inverse

of cumulative total advertising (detailing + journal advertising + DTC) instead of advertising

itself (Lilien et al. 1992).

Since the model treats patient satisfaction and other sources of information differently,

the magnitudes of their structural coefficients are not directly comparable. As shown below, we

evaluate their relative importance by (1) comparing models with and without certain informa-

tion, and (2) using our preferred model to predict drug diffusion in (hypothetical) scenarios that

vary by information structure.

Another estimation issue is whether we should treat traditional NSAIDS, Celebrex, Vioxx

and Bextra as four branches in a simple logit, or assume a nested logit structure where a doctor

first chooses between traditional NSAIDS and Cox-2, and then decides which brand is the best

within the nest of Cox-2. We have estimated both, results are almost identical (in both likelihood

value and coefficient magnitude). The parameter that describes the substitutability of the two

nests is estimated at 0.99, which implies that the nested logit is analytically the same as the

simple logit. In light of this finding, we only report the results based on the simple logit model.

4.3 Identification

Overall, the econometric model includes four sets of parameters: [βxj , βz] capture the effects of

individual demographics and drug attributes, [Q̄j0, σQj0 , σq0 ] capture doctor’s prior, [α0, αR, συ]

capture the importance of patient satisfaction, and γ captures doctor’s risk preference. As

discussed above, FDA updates, inverse of manufacturer advertising, news reports, and Medline

articles are treated as drug attributes, and their impact on patient utility are captured in βz.

The identification of βxj comes from the time-invariant prescription pattern across pa-

tients. For example, if Cox-2 prescriptions tend to be concentrated in the elderly, it translates

into a significant and positive coefficient corresponding to the interaction of Cox-2 and age.

Similarly, βz is identified from the co-movements of drug market shares and various drug infor-

mation. In principle, causality could go either way for advertising: on the one hand, advertising

may trigger sales; on the other hand, historical or predicted sales patterns may motivate changes

in advertising intensity. This implies that the coefficient for advertising is better interpreted as
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the correlation between advertising and sales rather than a causal effect.

The prior means of drug quality, Q̄j0, are identified from initial market shares. Because

we include traditional NSAIDS as the outside good whose efficacy is well-known to doctors, we

normalize its Q as zero. The prior of the three Cox-2s are all identified relative to the traditional

NSAIDS. However, patient satisfaction R is reported in absolute terms. Apparently, the noise

in R, denoted by συ, is determined by the heterogeneity in R. Since we assume R equals a

linear function of true quality Qpj plus noise, we can derive συ by regressing Rpjt on a full set of

patient-drug dummies and calculating the standard deviation of the residuals. This procedure

does not require any prescription data, so we estimate συ and fix it when estimating the full

model.

Parameters, α0 and αR, describe the scale difference between satisfaction R and true

quality Qpj . However, since we do not know Qpj , they must be proxied by the posteriors, which

are in turn reflected in evolving market shares. If the diffusion path is flat for each drug, the

lack of updating implies that patient satisfaction has little impact, which amounts to αR = 0. If

drug j’s diffusion path is positively related to drug j’s average satisfaction over time, it implies

a significant, positive αR. The other term, α0, is simply an intercept that is derived from the

relative scale of R and Q.

The dispersion on the prior of the average quality of drug j, namely σQj0 , is identified by

the speed of diffusion. According to the Bayesian formula, the mean of the posterior, Q̄jt, is

essentially a weighted average between R and the prior mean Q̄j0, while the weights are inversely

related to the amount of noise in the two terms. Since we already identify the noise of R, a

relatively small (large) σQj0 implies that doctors believe the prior is relatively precise (noisy)

and therefore put less (more) weight on patient satisfaction, which results in slow (fast) learning.

Similarly, the dispersion on the prior of patient-drug match, namely σq0 , is identified by

how fast doctors update their patient-specific beliefs. Small (large) σq0 implies that patient p’s

doctor is reluctant (eager) to revise her prior after she receives p’s satisfaction report, because

she thinks the report is relatively noisy (precise).

The risk aversion parameter, γ, is identified by a functional form restriction. As noted in

Coscelli and Shum (2004), the data only tell us about the term Q̄pjt− 1
2γσ2

Q̃pjt
. The fact that we

assumed a CARA utility function leads to a linear decomposition into the mean and variance

terms.
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5 Results

As described in Section 3, we focus on the patients that first appear in the data on or after

January 1, 2001. The analysis sample ends at December 31, 2003 and is conditional on the

prescriptions that come with valid answers for all five satisfaction questions. The final sample

involves 6,577 patients and 17,329 prescriptions.

5.1 Benchmark Model without Learning

Before estimating the structural model, we check two benchmark models. These benchmarks

utilize a discrete choice framework but do not incorporate a learning structure. Comparing them

with our structural model will help us understand the importance of the learning structure.

Specifically, Benchmark I estimates the prescription choice within traditional NSAIDS and the

three brands of Cox-2s, assuming that the utility of patient p using drug j is:

Upjt = βj0 + βssatisf jt + βxjXpt + βzZjt + εpjt.

Here satisf jt denotes the average satisfaction reported for drug j up to time t. To capture the

fundamental difference across drugs, we also include a set of drug dummies, whose impacts on

utility are captured by coefficients βj0.

Benchmark II omits patient satisfaction in the utility function so that a comparison of the

two benchmark models would highlight the role of patient satisfaction. Specifically, the utility

function for Benchmark II is:

Upjt = βj0 + βxjXpt + βzZjt + εpjt.

Assuming logit errors, we can write out the probability of patient p choosing drug j and

maximize the overall likelihood. We normalize the satisfaction measure as 6 − satisf12345 so

that a positive coefficient on patient satisfaction implies that the more satisfied patients are,

the better the drug choice is. Since the benchmark models do not incorporate the learning

structure, in order to capture all the information available up to the study period, we compute

the satisfaction variable as the average of all satisfaction reports up to one month before the

prescription month.

To be consistent with the structural model, we use the inverse of total advertising cu-

mulated from the day of drug entry up to one month before the prescription month. We have
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tried other definitions, including the cumulative sum itself (with or without log), the advertising

flow (instead of cumulative sum), and the monthly average of the cumulative sum. Results are

qualitatively similar.

To estimate the extent to which doctors prescribe based on observable patient demo-

graphics, we allow the coefficient of patient demographics (βxj) to vary by whether drug j is a

traditional NSAIDS or a Cox-2. In other words, these coefficients capture doctors’ preferences

between traditional NSAIDS and Cox-2s, but not within Cox-2s. Allowing βxj to vary by Cox-2

brand does not change the results.18

As shown in Table 5, when we include patient satisfaction and other sources of information

in Benchmark I, patient satisfaction has a positive and significant impact for all three Cox-2s.

The satisfaction coefficient is larger for Bextra, probably because Bextra is newer than the other

two drugs. In terms of other information, the coefficient of inverse advertising is negative as

expected but indistinguishable from zero at the 95% confidence level. The coefficients for Lexis-

Nexis articles are significantly positive (and more prominent in the non-negative ones), but both

coefficients for negative and non-negative Medline articles are insignificant. In contrast, the

coefficient of FDA updates is positive (and marginally significant), which is surprising given the

fact that most FDA updates have negative content. The three intercepts suggest that Celebrex

and Vioxx are viewed better than Bextra, everything else being equal. This reflects the fact

that Bextra has the smallest market share among the three Cox-2s. In demographics, older,

high-income males with private health insurance are more likely to receive Cox-2 prescriptions.

Omitting patient satisfaction leads to a worse fit in Benchmark II. In comparison with

Benchmark I, advertising appears to be much more important in this case. Further, the coef-

ficient of the Bextra dummy is no longer worse than those of Celebrex and Vioxx. As we see

below, these results suggest that a discrete choice model without patient satisfaction is subject

to omitted variable bias.

5.2 Model with Learning

The results on the two benchmark models encourage us to think more systematically about

patient satisfaction. Accordingly, the structural model adds a Bayesian learning structure on

top of the classical discrete choice framework.
18Another way to address patient demographics is including them as concomitant variables, as suggested in

Dayton and Macready (1988).
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Recall that each individual satisfaction measure is discrete but the five satisfaction mea-

sures are very closely correlated (with correlation coefficient ranging between 0.87 and 0.97).

These high correlations motivate us to use satisf12345 as a continuous measure of Rpjt. As dis-

cussed in Section 4.2, we estimate the structural model in two steps: first, we regress Rpjt on a

full set of patient-drug (pj) dummies, and compute the residuals’ standard deviation. According

to our model, this standard deviation gives us an unbiased estimate of συ. With R-square 0.697,

the regression produces συ = 0.496. Ideally, we need the residual to be normally distributed so

that the model can yield close solutions to the posterior belief. Although not shown here, a plot

of the histogram of these residuals shows that the distribution is symmetric and close to the bell

shape. In the second step, we set συ at 0.496 and search for the best parameters that maximize

the overall log likelihood.

Results reported below assume that doctors talk to each other within a census division.

As discussed in Secton 3, we observe significant heterogeneity of market shares across divisions,

which suggests that information is not fully shared across divisions. As a confirmation, we also

run the structural model assuming nationwide information pooling and find that it generates a

significantly worse fit to the data.

Table 6 presents three sets of structural results: Column (1) presents a BASIC model that

incorporates all sources of information. To gauge the relative importance of within-patient and

across-patient learning, Column (2) ignores within-patient learning (by setting σq0 = 0) and

Column (3) ignores across-patient learning (by setting σQj0 = 0).

All three models set the risk parameter as zero (which implies risk-neutrality). When

we estimate the full model with risk preference, the risk parameter is extremely close to zero

(γ̂ = 1.2e − 23 with t-stat less than 0.01). This implies that prescription choice has little to

do with risk preference: a patient stays on the old prescription not because her doctor is afraid

of trying a new brand. Rather, it is probably because the patient is satisfied with the old

prescription, or because the other sources of information do not produce any significant news

against the old brand. Since including the risk parameter prolongs estimation a great deal and

all the other parameters do not change much when we set γ = 0, we only report results that

assume risk neutrality.

Three findings stand out in Table 6. First, there is significant learning from patient

satisfaction. On the one hand, the positive, significant estimate of αR suggests that doctors

believe the satisfaction reports from patients are correlated with drug efficacy and therefore

use them to update the prior. On the other hand, the magnitudes of σQj0 are much smaller
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than both the noise in the satisfaction report (i.e. συ) and the dispersion of patient-drug match

(i.e. σq0). This suggests that doctors hold strong priors about the average efficacy of the three

drugs. As a result, although they value the satisfaction reports, the updating on the general

drug quality is slow. In comparison, the learning on the specific match between a drug and a

patient is faster, because the magnitude of σq0 is much closer to that of συ.

This interpretation is consistent with the comparison across Columns (1), (2) and (3). The

overall likelihood in Column (1) (-11376) is significantly better than that in Columns (2) and

(3) (-17259, -11565), suggesting that both across- and within-patient learning are important

in our data. However, the likelihood (and point estimates) in Column (3) is much closer to

Column (1). This implies that a larger part of the data variation is driven by within-patient

learning, the same conclusion as we have inferred from the relative magnitudes of σq0 , σQj0 ,

and συ. Along the same lines, we note that structural models including within-patient learning

(Columns (1) and (3)) fit the data much better than the benchmark models in Table 5, but αR

becomes insignificant when we ignore within-patient learning in Column (2).

Coefficients corresponding to other sources of information are mixed. As we expect, inverse

of advertising is significantly negative. However, since drug manufacturers may change advertis-

ing intensity according to predicted sales change in the near future, this coefficient may capture

some demand factor that manufacturers observe but we do not. The concern of endogeneity

prompts us to treat advertising as a pure control and not as having any causal effect.

News articles have a positive influence on prescriptions, no matter whether these titles

sound negative or non-negative. This suggests that the major role of news articles is informing

doctors/patients of the existence of Cox-2s, rather than revealing the quality of Cox-2s. Statis-

tically speaking, negative news are even more significant, probably because most news articles

are negative. In contrast, a medical article about Cox-2s has a significant negative impact on

prescription sales, even if its title and abstract are non-negative. Note that most of the non-

negative articles are neutral, which mentions both positive and negative effects of Cox-2s. Our

findings suggest that doctors lay more emphasis on the negative contents of Medline articles,

or tend to interpret Medline publication as a negative signal against Cox-2s. The coefficient of

FDA update is negative as we expect, but statistically indistinguishable from zero. One possible

explanation is the FDA updates lag behind Medline articles and therefore deliver little new

information to doctors.

To better understand the relative importance of information, Table 7 re-estimates the BA-

SIC model by excluding news reports (Column (2)) or medical articles (Column (3)). Comparing
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Column (3) with the BASIC model (results repeated in Table 7 Column (1)), we find that ex-

cluding Medline articles does not affect the qualitative role of patient satisfaction, but it makes

the coefficient of the FDA updates much more negative than in the BASIC model (-0.6988, with

t-stat -14.97) versus -0.0803 (with t-stat -1.05). The coefficient magnitude for advertising also

increases substantially. In comparison, excluding news reports alone (Column (2)) produces

more similar results to the BASIC model. FDA updates seem to be a redundant follow-up from

the medical literature: once we control for Medline articles, the coefficient of FDA updates is

close to zero. But negative news articles continue to have a positive impact on drug prescription,

with or without the control of Medline articles. This suggests that news articles (even if with

negative titles) probably inform patients about the availability of Cox-2s. Patients then bring

this information to the doctor’s notice, and this informative role is not closely correlated with

professional opinion about Cox-2s.

Comparing estimates within the three Cox-2s, we find the prior mean (Q0) of Bextra is

always smaller than that of Vioxx and Celebrex. This is consistent with the small market share

of Bextra. In all specifications, the prior dispersion (σQ0) is greater for Bextra than for Celebrex

and Vioxx. This finding reflects the late entry of Bextra.

Some sensitivity occurs in the absolute magnitude of Q0: the three Q0s are positive in the

BASIC model; but when we exclude Medline articles, they all turn negative (Table 7 Column

(3)). This seemingly sensitive result is indeed sensible: because the BASIC model controls for

the number of Medline articles in the utility function, Q0 should be interpreted as the prior

mean of a Cox-2 conditional on non-zero Medline articles. When we omit Medline articles, the

estimated Q0 represents the prior mean of a Cox-2 conditional on its average count of Medline

articles. Since most Medline articles have a negative effect on the probability of choosing Cox-2,

this explains why Q0 turns negative if we exclude Medline articles.

The coefficients of demographics are stable across specifications. Results suggest that

older, better-income, and better educated males have a greater tendency of receiving Cox-2.

Different insurance variables have different signs: being privately insured is associated with

a greater likelihood of receiving Cox-2, but drug insurance is negatively correlated with Cox-

2 prescription. The latter may be explained by the non-favorable formulary status of Cox-2

relative to traditional NSAIDS. However, the potential for measurement errors in these insurance

variables suggest that we regard these variables as pure controls rather than ascribe any specific

economic meaning. All these findings are similar to what we have seen in the benchmark models

without learning (Table 5).
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Overall, results suggest that patient satisfaction, advertising, news reports and the medical

literature are all important in prescription choice. Specifically, at the beginning of 2001 and upon

the Bextra entry in January 2002, doctors held a strong prior belief about the efficacy of Celebrex,

Vioxx, and Bextra, and learned gradually from patient satisfaction. We find evidence for both

across- and within-patient learning, but within-patient learning explains much more variation in

the data. Other sources of information are important as well: news articles and advertising are

positively correlated with prescription, but Medline articles appear to be detrimental for drug

sales. The impact of FDA updates is close to zero once we control for Medline articles. This

suggests that the contents of FDA updates have already been included in Medline articles and

therefore deliver little new information to doctors.

5.3 Model with Learning and Unobserved Heterogeneity

One may argue that a doctor observes more patient-specific information than just her satisfaction

before writing any prescription. Such information, including the patient’s medical history and

the nature of her demand for pain relief, may inform the doctor about whether the patient is

suitable for a specific drug. Because we as researchers do not observe such information, we might

mis-attribute some unobserved heterogeneity to learning.

To address this issue, we add patient-drug random effects θpj to the utility function:

E
[
Ṽpjt

]
= −e−γ(θpj+βxjXpt+βzZjt+εpjt)E

[
e−γQ̃pjt

]
.

We estimate three models with random effects, the first two assume θpj conforms to

a discrete distribution that includes two or three “types” of patients, while the third model

assumes θpj is normal (N(0, σθj
), i.i.d. across patients). 19

As shown in Table 8 Columns (2) and (3), allowing two or three distinct patient types

improves the model fit a great deal (log L changes from -11376 to -10181 and -10086) but the

main results remain stable. Similar to the BASIC model, doctors learn from patient feedback

and the learning is more within-patient than across-patients. Inverse advertising still has a

negative coefficient, but news articles are no longer significant. In comparison, the coefficients

of medical articles remain negative and highly significant. In fact, controlling for 3 patient types

increases the magnitudes of the medical article coefficients by about 50% (as compared to the

BASIC model), implying that ignoring unobserved heterogeneity may lead to biased estimates.
19For the third model, we use simulated MLE with 20 draws.
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The model with normal random effects (Table 8, Column (4)) produces qualitatively sim-

ilar parameter estimates and the log likelihood is worse than what we get with two patient

types. Thus, the three-patient-type model captures most unobserved heterogeneity. In addi-

tion, the BIC criterion favors the 3-type model, too. Therefore, we denote the 3-type model as

our preferred model and use it for counterfactual simulations at the end of this section.

5.4 Robustness Checks

In this subsection we discuss several robustness checks on the BASIC model.

Forward-looking behavior of physicians: In contrast to several other researches that

have studied forward-looking behavior (Crawford and Shum 2005, Ching 2005, Erdem and Keane

1996), our model assumes that each doctor focuses only on the current prescription situation.

We do not model forward-looking not only because it simplifies the econometric model, but also

because of the nature of the product category that we look at. In the data, a large proportion

of patients have only one prescription and the potential risk of malpractice is likely to prevent

doctors from experimenting. In addition, we carried out the following simple test and did not

find evidence supporting the forward-looking hypothesis.

Consider a risk neutral patient who is completely new to the Cox-2 category after all

three Cox-2s become available. Since Bextra is the newest member in the category, it is by

definition the least known alternative. If the patient’s doctor is forward looking, the motivation

to experiment would lead him to first prescribe Bextra to collect information. If on the other

hand the prescription is driven by what the doctor has already learned about the drug quality,

then he is more likely to prescribe either of the two older drugs that on average have greater

posterior mean quality than Bextra. Indeed, among 1,255 such new patients, only 200 were given

Bextra as their first prescription while the remaining majority were prescribed either Celebrex

or Vioxx.

Therefore, we believe that although experimentation might be relevant for some product

categories, it is unlikely to be a key issue for our study.

Sampling weights: While our data contain a nationally representative sample of house-

holds, we do not observe the whole population. In reality, doctors may use the experience of all

patients to form beliefs about drug quality. Intuitively, ignoring part of the population tends to

miss part of the across-patient learning and therefore mis-characterize the importance of across-
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and within-patient learning.

To address this issue, we make use of sampling weights that are available to us in the data.20

If individual A has a sampling weight of 100, we assume doctors (in A’s Census division) observe

100 patients whose demographics, prescription history, and satisfaction index are identical to

A’s. By this assumption, we inflate the individual records by sampling weights and then re-

estimate the BASIC model. Statistically speaking, this is equivalent to asserting that, when

doctors summarize patient feedback into the posterior belief, they assign more importance to

the patients who represent more of the population in our original data.

Results incorporating sampling weight are presented in Table 9 Column (2). 21 Compared

with the unweighted results (Table 9 Column (1)), adding sampling weights does not change

qualitative conclusions: αR is still positive and highly significant, implying that doctors learn

from patient feedback. Like before, estimated σq0 is much larger than the three σQ0 . This

indicates that the prior of patient-drug match is more dispersed than the prior of average drug

quality, hence doctors learn faster within a patient than across patients. In fact, adding sampling

weights enlarges the difference between σq0 and σQ0 , which suggests that our unweighted results

may even underestimate the importance of within-patient learning. This change is intuitive be-

cause across-patient learning is identified from prescription correlations across different patients.

When we inflate the data by sampling weights, we attenuate the observed correlation among

a greater population, which reduces the amount of learning obtained from each single patient.

Parameters on demographics and the other information variables hardly change. Since the log

likelihood (-11375) is extremely similar to what we get from the unweighted model (-11376), we

are confident that our main results (unweighted) are robust to including sampling weights.

Functional form of advertising: In the BASIC model, we use the inverse of total

cumulative advertising, which entails three assumptions: first, drug diffusion follows a reciprocal

model as dictated by the inverse of advertising; second, advertising does not depreciate over time;

third, different forms of advertising are pooled together.
20IPSOS has a sophisticated program that assigns weights to panelists. The weights change with time. So we

obtained weights for the time period that is relevant for our study. These weights reflect the overall representa-

tiveness of each panelist during a specific time period.
21We are able to obtain sampling weights for only a subset of individuals in our data. We use two steps to

impute the missing weights. First, focusing on the individuals that have sampling weights, we regress the reported

weights on a polynomial function of demographic variables and whether the studied individual has returned the

diary on a regular basis. In the second step, we use the predicted relationship to predict sampling weights for the

rest of the sample. Results reported in Table 9 are based on the imputed weights.
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Strictly speaking, all three assumptions are subject to question. Since any functional form

of advertising is arbitrary, we re-estimate the BASIC model with many alternative specifications:

(1) using advertising or log advertising instead of the inverse; (2) using detailing and DTCA

separately instead of the total of detailing, journal advertising and DTCA; (3) using flow of

advertising instead of the cumulative sum; (4) estimating monthly depreciation rates for detailing

and DTCA; and (5) lagging advertising by 3,6,9 and 12 months.

Across these specifications, the qualitative results on all the non-advertising variables are

similar to what we had before, but the coefficient(s) on advertising is sensitive to specifications.

As shown in Table 9 Column (3), when we include log(detailing) and log(DTCA) separately,

both coefficients are significant but detailing is positive while DTCA is negative. We suspect

the negative sign of DTCA is due to endogenous determination of DTCA or omitted variable

bias. In theory, the same concern exists for any other type of advertising. Because we do not

have valid instruments to control for such endogeneity, we treat advertising as a control and do

not interpret its coefficient as having a causal effect. Fortunately, the effects of all the other

variables are stable across specifications. Since these non-advertising variables are beyond the

control of drug manufacturers, they are immune from reverse causality.

Patient demographics: Strictly speaking, patient demographics may play two roles in

prescription decisions: first, doctors may have a fixed view of drugs that match best with various

demographic characteristics. To fully account for such practice, we should allow the coefficients

of each patient’s demographics (βxj) to vary by brand for each of the 4 alternatives, instead

of Cox-2s versus traditional NSAIDS. Given the large number of demographics included in the

basic model, we estimate brand-specific βxj on the demographic variable that has the most

predictive power in prescription decision – patient age. The re-estimated basic model does not

show much improvement in the likelihood (from -11376 to -11374) and the magnitude of the

age coefficient is similar across the three Cox-2 brands. At the same time, results on all the

information variables remain unchanged.

Another channel for patient demographics to influence prescription decisions is through

the learning structure. It is not difficult to see that doctors may be more likely to apply the

experience of elderly male patients to other elderly males than to young females. However, it is

extremely difficult to account for demographic-specific learning in the structural model, because

some key demographic variables are continuous (say age) and any demographic grouping seems

arbitrary. Keeping this caveat in mind, we emphasize that the learning estimates presented in

this paper represent the average amount of learning across all demographic groups.
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Medline articles: The negative coefficient on non-negative medline articles is counter-

intuitive. To better understand the statistical forces underlying this coefficient, we conduct a

number of robustness checks.

First, we reestimate the basic model by decomposing the non-negative medline articles

into positive and neutral articles. Results suggest that the negative coefficient of non-negative

articles is primarily driven by a negative response to positive articles. Once we control for

positive articles separately, the response to neutral articles becomes positive but insigificant

with 95% confidence level.

To address the suspicion that doctors may view a positive article from a pharmaceutical

company employee as a negative signal, we conduct a second robustness check by including

variables for author affilation. Results suggest a strong negative response to company affilation

and including affiliation reduces the significance of the responses to positive/negative/neutral

articles. In comparison, including variables describing whether an article focues on efficacy or

side effects generate very noisy results. Among a number of specifications we have tried, only

in one case do we observe negative and significant response to side-effects articles. The efficacy

indicator is never significant.

We suspect many of the noisy results are driven by the high correlations across the different

sets of variables: for example, company-affiliated articles are more likely to be positive and

positive articles are more likely to focus on efficacy instead of side effects. Thus including all of

them in one specification is likely to generate a collinearity problem. Given that all the other

information variables do not change much when we try different specifications on the medline

articles, we believe the basic model is a reasonable simplification.

5.5 Model Fit and Counterfactual Predictions

This subsection examines the relative importance of different sources of information. Treating

the BASIC model with 3-patient-type random effects (Table 8 Column (3)) as our preferred

model, we predict the number of prescriptions for four scenarios and compare them with the

actual data.

The first scenario is our preferred model, which takes all sources of information as given

and reports the predicted prescription counts by drug-month. This scenario indicates a good

fit to the data: As shown in Table 10, for each of the 17,329 prescriptions considered in our
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estimation sample, we are able to predict the actual prescription choice correctly 85.5% of the

time. In comparison, the percentage of correct prediction is 61.2% for the logit model without

learning structure, 79.0% for the basic model, 78.4% for the basic model with within-patient

learning only, and 60.6% for the basic model with across-patient learning only. Another measure

of model fit is the percent of market share deviations from the actual data. Taking month-drug

as the unit of observation, our preferred model has an average absolute percentage deviation of

26.5% if we focus on the prediction of Cox-2s, or 20.7% if the calculation includes non-Cox2s.22

This suggests that, on average, our prediction of a Cox-2’s monthly market share deviates from

its actual share by 26.5%.

The second scenario assumes that FDA did not issue any updates during the study period

(2001-2003). The third scenario assumes that patient feedback is shared nationwide instead of

within a census division. This scenario reflects a recent proposal of FDA setting up a nationwide

database to share patient feedback among doctors (Salter 2005). The fourth scenario assumes

double counts of medical articles. Since our article counts are weighted by journal impact

factor, we can achieve these changes by publishing the same articles in more important journals.

Readers can also interpret the last scenario as a greater intensity of “academic detailing”, which

has also been proposed as a potential improvement in FDA’s post-marketing surveillance (Ray

and Stein 2006).

Comparing the three hypothetical scenarios against the actual data, Table 11 reports the

predicted percentage change in the market share of Celebrex, Vioxx, Bextra and non-Cox2s

from January 2001 to December 2003. Excluding FDA updates makes virtually no change. This

confirms the conclusion that FDA updates tend to follow the medical literature and therefore

deliver no new information. Expanding census division learning to the national level makes a

big difference: because patients report higher satisfaction for Celebrex than for Vioxx, Bextra,

or traditional NSAIDS (see summary in Table 3), a nationwide database encourages switching

towards Cox-2 inhibitors. The percentage change of market share is the lowest for Celebrex

because Celebrex has the largest sales among the three Cox-2 inhibitors. The effect of more

Medline publications is opposite to pooling patient feedback: compared to the actual market

shares , doubling Medline articles would increase the market share of traditional NSAIDS by

17.03%, while depressing the market share of Cox-2 inhibitors by 25-30%.
22For each month-drug, absolute percentage deviation is defined as abs(predicted number of RX - actual number

of RX) / actual number of RX. We then average this index across all month-drugs for each Cox-2 (which yields

26.5%) or for all four drugs (which yields 20.7%).
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6 Conclusion

Acquiring information about drug efficacy is not only at the center of FDA regulations, but also

the key element driving each prescription decision in doctor’s office. Using a unique data set

from patient diaries, we estimate how patient satisfaction and other factors affect the diffusion

of Cox-2 inhibitors from 2001 to 2003. Our results suggest that prescription choice is sensitive

to many sources of information, including patient satisfaction, Medline articles, news report

and manufacturer advertising. In comparison, the impact of FDA updates is close to zero once

we control for Medline articles. This suggests that the contents of FDA updates have already

been included in Medline articles and therefore deliver no new information to doctors. This also

confirms the view that FDA postmarketing surveillance lags behind the medical literature and

has room to improve.

According to our counterfactual predictions, suppressing FDA updates has no impact

on market shares. In contrast, setting up a nationwide database of patient feedback encourages

doctors to switch from traditional NSAIDS to Cox-2s, but increasing Medline publications about

Cox-2s steals market share away from Cox-2s. This suggests that patient feedback and academic

articles may reflect different dimensions of drug quality, and these two sources of information

do not necessarily substitute for each other.

Despite our efforts devoted at gathering every piece of information about Cox-2, our results

are subject to several limitations: first of all, the patient diary data do not contain doctor

identities and only represents a sample of all the Cox-2 patients. Both tend to undermine our

ability to precisely estimate how doctors learn across patients. Second, our patient satisfaction

data are self-reported. This does not necessarily generate a specific bias as compared to the

patients’ real experiences, but it does put more weight on the symptoms that patients can

observe easily and care to report to their doctors. Third, although our model of patient-drug

match already incorporates heterogeneity reflected in the satisfaction data, it is possible that

there remain some patient attributes observable to doctors but not to researchers. We use

patient-drug random effects to control for such unobserved heterogeneity, but we might still be

ignoring some sources of heterogeneity. Finally, manufacturers may advertise more in a period

that they expect to have low sales, thus introducing an endogeneity problem. This suggests that

the coefficients of advertising should be interpreted as the correlation between advertising and

prescription choice, rather than as having a causal impact.

In summary, this is a first attempt at using actual consumer (or patient) feedback infor-
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mation in the context of a learning model. Future research can look at including other sources

of information within the formal learning framework proposed here.
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Figure 1: Number of Rx's per Patient

 
Source: IPSOS patient diary data on NSAIDS prescriptions. Total 6,577 patients and 17329 
prescriptions.  
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Source of Figures 2-4: Lexis-Nexis 1999-2005 for news articles. Medline 1999-2005 for journal articles. 
News articles are weighted by newspaper circulations reported by the Audit Bureau of Circulations 
(www.accessabs.com). Journal articles are weighted by the 2002 impact factor from Science Gateway 
(http://www.sciencegateway.org/impact/if02a.html). Positive, neutral and negative are defined by authors' 
reading of article title and abstract. 
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Table 1: Regulatory history of Cox-2s 
 
Brand Date FDA Decision 
Celebrex Dec. 31, 1998 Approval for rheumatoid and osteoarthritis 
 Dec. 23, 1999 Approval for reducing the number of intestinal polyps 

in patients with familial adenomatous polyposis (FAP) 
 Jun. 7, 2002 Labeling change because the Celecoxib Long-term 

Arthritis Safety Study (CLASS) does not associate 
Celebrex with significantly less GI risk as compared to 
traditional NSAIDS (ibuprofen or diclofenac) 

 Dec. 23, 2004 Issuing a Public Health Advisory on an increased 
cardiovascular risk in association with Cox-2s and 
traditional NSAIDS based on long-term clinical trials 

 Apr. 7, 2005 New labeling that highlights cardiovascular risk 
Vioxx May 20, 1999 Approved for osteoarthritis and pain
 Apr. 11, 2002 Approved for rheumatoid arthritis

New warnings concerning reduced GI risk and 
increased cadiovascular risk based on the Vioxx 
Gastrointestinal Outcomes Research (VIGOR) 

 Sept. 30, 2004 Withdrawal (voluntary by Merck)
Bextra Nov. 16, 2001 Approved for osteoarthritis and rheumatoid arthritis 
 Nov. 15, 2002 New warnings on life-threatening skin irritations 
 Dec. 9, 2004 More warnings on skin irritations and cardiovascular 

risk 
 Dec. 23, 2004 Issuing a Public Health Advisory on an increased 

cardiovascular risk in association with Cox-2s and 
traditional NSAIDS based on long-term clinical trials 

 Apr. 7, 2005 Withdrawal (by Pfizer)
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Table 2: Switching matrix 
 

 Frequency Celebrex Vioxx Bextra AllothRx Switching rate 
Celebrex 1949 100 41 237 0.16 

Vioxx 96 1598 47 229 0.19 
Bextra 25 22 389 71 0.23 

AllothRx 228 228 97 5395 0.09 
 
Note: Switches are from row to column. Conditional on patients who started after Jan.1, 2001 
and had at least two NSAIDS prescriptions before the end of 2003. 
 
 
 
 
 
Table 3: Mean and standard deviation of satisfaction scores  
(total: 6,577 patients 17,329 observations)  
 
(1=extremely satisfied, 5=extremely dissatisfied) 
 
  allothRx Celebrex Vioxx Bextra

Effectiveness 1.90
(1.11) 

1.81
(1.03) 

1.83
(1.03) 

1.94
(1.13) 

Side effects 1.98
(1.14) 

1.81
(1.06) 

1.89
(1.12) 

1.82
(1.06) 

Works quickly 2.03
(1.10) 

1.94
(1.04) 

1.99
(1.06) 

2.00
(1.09) 

How long does it last? 2.04
(1.11) 

1.93
(1.04) 

1.96
(1.06) 

1.98
(1.06) 

Easy to take 1.51
(1.01) 

1.38
(0.87) 

1.38
(0.89) 

1.40
(0.92) 

Average effectiveness 
(satisf134) 

1.99
(1.04) 

1.89
(0.97) 

1.93
(0.98) 

1.97
(1.04) 

Average across five 
(satisf12345) 

1.90
(0.94) 

1.77
(0.87) 

1.81
(0.88) 

1.83
(0.91) 
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Table 4: Logit model on brand switching 
 
Dependent Variable: switch=1 if switch brand from the last period (taking all traditional NSAIDS as one brand) 
Independent Variables:  satisfaction scores (1=extremely satisfied, 5=extremely dissatisfied) reported in the last period, 

advertising (measured as the inverse of cumulative sum of total advertising expenditures up to 
the previous month), article counts (measured as the log of cumulative sum of weighted articles 
up to the previous day), and FDA update dummy  

 
  (1)   (2)   (3)   
  Coefficients   Coefficients   Coefficients   
  [t-stat]   [t-stat]   [t-stat]   
Overall satisfication (satisf12345) 0.1269 *** 0.1406 *** 
  [4.1958] [4.5999]  
Drug effectiveness (satisf134)   0.1318 ***   
  [3.0934]   
Side effects (satisf2) 0.0399   
    [1.0477]    
Ease to take (satisf5) -0.0666 *   
  [-1.7272]   
Inverse of Advertising     0.8509 * 
  [1.8357]  
Medline article (neg) -0.6724 ** 
     [-2.4953]  
Medline article (non-neg) 1.0848 ** 
 [2.5531]  
Lexis article (neg)     0.037  
 [0.7903]  
Lexis article (non-neg) -0.0852 * 
     [-1.7889]  
After FDA updates 0.0088  
 [0.0572]  
Intercept -2.1172 *** -2.1241 *** -5.3796 *** 
  [-33.1160] [-32.4455] [-3.4811]  
Log likelihood -4189.9 -4186.9 -4092.7   
# of patients 2887  2887  2887   
# of prescriptions 13639  13639  13639   

Source: IPSOS patient diary data 2001 – 2003.  
T-statistics in brackets. ***p<0.01, ** p<0.05, * p<0.10. 
  



Table 5: Benchmark models – Discrete choice model without learning structure 
 (1) (2) 

 Coefficients Coefficients 
 [t-stat]  [t-stat]  
Intercept of Celebrex -4.6079 *** -2.1321 ***
 [-5.3824] [-2.8039] 
Intercept of Vioxx -3.5984 *** -2.2336 *** 
 [-4.1337]  [-2.8906]  
Intercept of Bextra -9.8366 *** -2.8402 ***
 [-9.2781]  [-3.6176]  
(6-Satisf12345) for Celebrex 0.5446 ***   
 [7.8586]  
(6-Satisf12345) for Vioxx 0.2870 ***   
 [4.4635]    
(6-Satisf12345) for Bextra 1.6105 ***  
 [10.519]    
Inverse of Advertising -0.2749  -2.0548 *** 
 [-1.0472] [-5.6204] 
Cox2 * Age 0.0333 *** 0.0337 *** 
 [30.273]  [30.6364]  
Cox2 * Sex -0.0967 *** -0.1086 ***
 [-2.8441]  [-3.157]  
Cox2 * low income -0.1319 *** -0.1225 *** 
 [-3.961] [-3.5714] 
Cox2 * low education -0.0089  -0.0136  
 [-0.2618]  [-0.3988]  
Cox2 * HEALTHINS 0.0606 0.0698 
 [0.8301]  [0.9790]  
Cox2 * INSPLAN 0.6539 *** 0.6653 *** 
 [11.911] [11.9443] 
Cox2 * DRUGINS -0.1759 *** -0.1729 *** 
 [-5.0986]  [-4.9119]  
Medline article (neg) -0.2032 -0.1867 
 [-1.623]  [-1.6179]  
Medline article (non-neg) 0.1910  0.1457  
 [0.8534] [0.6912] 
Lexis article (neg) 0.0626 *** 0.0606 *** 
 [3.3122]  [3.1563]  
Lexis article (non-neg) 0.0903 *** 0.0889 ***
 [4.8548]  [4.7287]  
After FDA update 0.0969 * 0.1091 * 
 [1.7211] [1.8746] 
Log likelihood -17226 -17315 
# of patients 6577  6577  
# of prescriptions 17329 17329 
Notes: Throughout Tables 5 to 9, the default drug is traditional NSAIDS. T-statistics in brackets. 
Satisfaction is measured by 6-satisf12345, computed as the average of all patient satisfaction up to the 
month before prescription. Advertising variable is measured as the inverse of cumulative sum of advertising 
expenditures up to the previous month. Articles are measured as the log of cumulative sum of weighted 
articles up to the previous day. ***p<0.01, **p<0.05, * p<0.1. 
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Table 6: Models with different learning structure 
  (1) (2) (3) 

Basic model Basic model with 
across- learning only 

Basic model 
with within- learning only 

 α 0 -16.7348 *** -78.2229 -5.6142 **
  [-4.4589]  [-0.4911]  [-2.1568]  
 α R 2.5693 *** 103.279 2.3425 ***
  [7.6483]  [0.4823]  [8.1898]  

  σ v 0.4960  0.4960  0.4960 
γ (absolute risk aversion) Set at 0 Set at 0 Set at 0 
Q0_celebrex 2.6971 *** -0.1770  -0.2610  
  [2.8217]  [-1.0656]  [-0.2746]  
Q0_vioxx 2.3237 ** -0.0496 -0.3616 
 [2.3099]  [-0.2453]  [-0.3718]  
Q0_bextra 2.3090 ** -1.3623 * -0.8229  
  [2.2647] [-5.9807] [-0.8335] 
σ q0 0.3066 ***   0.2927 *** 
 [7.4460]    [8.1967]  
σ Q0 celebrex 0.0177 *** 0.0006  
  [7.0597]  [0.4727]    
σ Q0 vioxx 0.0199 *** 0.0004    
  [7.1608] [0.4748]  
σ Q0  bextra 0.0294 *** 0.0009    
  [6.7797]  [0.4759]    
Inverse of Advertising -0.5673 *** -0.6465 * -0.9521 ***
  [-2.7105]  [-2.3424]  [-4.3958]  
Cox2 * Age 0.0177 *** 0.0337 * 0.0174 *** 
  [13.3565] [28.6727] [12.0504] 
Cox2 * Sex -0.1219 *** -0.1052 * -0.1291 *** 
  [-2.9104]  [-3.001]  [-3.1486]  
Cox2 * low income -0.2007 *** -0.1208 * -0.2033 ***
  [-4.8697]  [-3.5537]  [-5.0342]  

* Cox2 * low education -0.0684  -0.0174  -0.0739 
  [-1.6274] [-0.5031] [-1.7888] 
Cox2 * HEALTHINS -0.0015  0.0741  -0.0069  
  [-0.0174]  [1.0262]  [-0.0821]  
Cox2 * INSPLAN 0.4330 *** 0.674 * 0.4171 ***
 [6.5639]  [12.2724]  [6.3665]  
Cox2 * DRUGINS -0.2277 *** -0.1833 * -0.1923 *** 
 [-5.3704] [-5.246] [-4.6508] 
Medline article (neg) -0.7520 *** -0.0555  -0.4343 *** 
 [-4.4846]  [-0.5389]  [-2.8955]  
Medline article (non-neg) -0.9671 *** -0.4621 * -0.2654 
 [-3.511]  [-7.4174]  [-0.9925]  
Lexis article (neg) 0.0911 *** 0.0797 * 0.1099 *** 
 [3.7882] [4.1067] [4.6372] 
Lexis article (non-neg) 0.0173  0.0897 * 0.0086  
 [0.7274]  [4.7318]  [0.362]  
After FDA update -0.0803 -0.0689 0.0161 
 [-1.0502]  [-1.1513]  [0.2325]  
Log likelihood -11376 -17259 -11565 
# of patients 6577 6577 6577 
# of prescriptions 17329  17329  17329  

 
.
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Table 7: Learning models with and without medical and news articles 
  (1) (2) (3)

Basic model Basic model with 
Medline only 

Basic model 
with Lexis only 

 α 0 -16.7348 *** -17.7292 *** -2.2200 ***
  [-4.4589] [-6.0502] [-2.7177] 
 α R 2.5693 *** 2.6205 *** 2.5611 ***
  [7.6483]  [8.7214]  [8.0841] 
 σ v 0.4960 0.4960 0.4960 
γ (absolute risk aversion) Set at 0  Set at 0  Set at 0  
Q0_celebrex 2.6971 *** 2.8960 *** -2.3770  *** 
  [2.8217] [2.8864] [-21.0303] 
Q0_vioxx 2.3237 ** 2.5121 ** -2.3183 *** 
 [2.3099]  [2.3804]  [-20.3324] 
Q0_bextra 2.3090 ** 2.4614 ** -2.5121 *** 
  [2.2647]  [2.2928]  [-20.5037] 
σ q0 0.3066 *** 0.2979 *** 0.2963 ***
 [7.4460] [8.4998] [8.1301] 
σ Q0 celebrex 0.0177 *** 0.0175 *** 0.0122 ***
  [7.0597]  [7.7912]  [7.4432] 
σ Q0 vioxx 0.0199 *** 0.0195 *** 0.0120 ***
  [7.1608]  [8.1070]  [7.4906] 
σ Q0  bextra 0.0294 *** 0.0276 *** 0.0003 
  [6.7797] [7.5103] [1.5751] 
Inverse of Advertising -0.5673 *** -0.5594 ** -1.1450 ***
  [-2.7105]  [-2.5702]  [-4.552] 
Cox2 * Age 0.0177 *** 0.0176 *** 0.0181 ***
  [13.3565]  [13.1596]  [13.9286] 
Cox2 * Sex -0.1219 *** -0.1219 *** -0.1234 ***
  [-2.9104] [-2.9018] [-3.0968] 
Cox2 * low income -0.2007 *** -0.1995 *** -0.1974 ***
  [-4.8697]  [-4.8751]  [-4.8776] 
Cox2 * low education -0.0684 -0.0641 -0.0682 *
  [-1.6274]  [-1.5144]  [-1.6595] 
Cox2 * HEALTHINS -0.0015  -0.0032  0.0285 
  [-0.0174] [-0.0377] [0.3349] 
Cox2 * INSPLAN 0.4330 *** 0.4323 *** 0.4291 ***
 [6.5639]  [6.6111]  [6.6021] 
Cox2 * DRUGINS -0.2277 *** -0.2252 *** -0.2643 ***
 [-5.3704]  [-5.2828]  [-6.5615] 
Medline article (neg) -0.7520 *** -0.6739 ***  
 [-4.4846] [-3.9215]  
Medline article (non-neg) -0.9671 *** -1.0345 ***  
 [-3.511]  [-3.6034]   
Lexis article (neg) 0.0911 *** 0.0601 **
 [3.7882]    [2.5662] 
Lexis article (non-neg) 0.0173    -0.0112 
 [0.7274] [-0.4759] 
After FDA update -0.0803  -0.068  -0.6988 ***
 [-1.0502]  [-0.8983]  [-14.9698] 
Log likelihood -11376  -11387  -11539 
# of patients 6577 6577 6577 
# of prescriptions 17329 17329 17329 
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Table 8: Learning models with unobserved heterogeneity
  (1) (2) (3) (4)

Basic model Basic model 
plus 2-type 

random effects 

Basic model  
plus 3-type random 

effects 

Basic model plus 
normal random 

effects 
 α 0 -16.7348 *** -16.7665 ** -15.062 *** -10.075 *** 
  [-4.4589] [-2.3868] [-3.5513]  [-2.9900] 
 α R 2.5693 *** 2.8871 *** 1.9062 *** 1.7146 ***
  [7.6483]  [4.3816]  [7.3826]  [7.2924]  
σ v 0.4960 0.4960 0.4960  0.4960
γ (absolute risk aversion) Set at 0 Set at 0 Set at 0  Set at 0
Q0_celebrex 2.6971 *** 1.5902  4.1650 ** 3.5070 ** 
  [2.8217] [1.0334] [2.4419]  [2.1934]
Q0_vioxx 2.3237 ** 1.2475 3.7237 ** 3.1889 *
 [2.3099]  [0.7738]  [2.0994]  [1.8939]  
Q0_bextra 2.309 ** 1.2234 3.8992 ** 3.1233 *
  [2.2647] [0.7508] [2.1668]  [1.8424]
σ q0 0.3066 *** 0.2748 *** 0.3913 *** 0.6977 *** 
 [7.4460] [4.2553] [7.0522]  [5.4915]
σ Q0 celebrex 0.0177 *** 0.0214 *** 0.0330 *** 0.0557 ***
  [7.0597]  [4.1597]  [6.8166]  [5.3064]  
σ Q0 vioxx 0.0199 *** 0.0243 *** 0.0372 *** 0.0620 ***
  [7.1608] [4.1382] [6.8097]  [5.3305]
σ Q0  bextra 0.0294 *** 0.0331 *** 0.0491 *** 0.0921 *** 
  [6.7797] [4.0741] [6.4683]  [5.0416]
Inverse of Advertising -0.5673 *** -0.5303 ** -0.5321 ** -0.7083 ***
  [-2.7105]  [-2.3151]  [-2.3092]  [-2.6497]  
Cox2 * Age 0.0177 *** 0.0492 *** 0.0591 *** 0.0409 ***
  [13.3565] [19.2723] [17.8998]  [17.7789]
Cox2 * Sex -0.1219 *** -0.2491 *** -0.3748 *** -0.2620 *** 
  [-2.9104] [-3.5346] [-4.2314]  [-4.2175]
Cox2 * low income -0.2007 *** -0.2969 *** -0.4637 *** -0.2380 ***
  [-4.8697]  [-3.4475]  [-3.9185]  [-3.4795]  
Cox2 * low education -0.0684 -0.1103 -0.1254  -0.0220
  [-1.6274] [-1.2236] [-1.1796]  [-0.3115]
Cox2 * HEALTHINS -0.0015  0.1170  0.1276  0.0999  
  [-0.0174] [0.6776] [0.7203]  [0.7562]
Cox2 * INSPLAN 0.4330 *** 0.6913 *** 0.8165 *** 0.6453 ***
 [6.5639]  [6.1174]  [6.2004]  [6.5212]  
Cox2 * DRUGINS -0.2277 *** -0.4658 *** -0.2257 ** -0.1558 **
 [-5.3704] [-5.4517] [-2.1169]  [-2.2431]
Medline article (neg) -0.7520 *** -0.9028 *** -1.1146 *** -0.8561 *** 
 [-4.4846] [-3.7983] [-4.4816]  [-3.2479]
Medline article (non-neg) -0.9671 *** -1.2490 *** -1.4297 *** -1.4646 ***
 [-3.511]  [-2.8952]  [-3.0832]  [-3.2011]  
Lexis article (neg) 0.0911 *** 0.0590 0.0278  0.1308 ***
 [3.7882] [1.5536] [0.6364]  [3.1384]
Lexis article (non-neg) 0.0173  0.0177  -0.0519  -0.0011  
 [0.7274] [0.5646] [-1.5106]  [-0.0267]
After FDA update -0.0803 -0.0607 -0.0666  -0.1233
 [-1.0502]  [-0.6458]  [-0.6900]  [-1.1698]  

To be continued on the next page 
   
   

 43



Table 8 (Continued)    
 (1) (2) (3) (4)

Basic model Basic model 
plus 2-type 

random effects 

Basic model  
plus 3-type random 

effects 

Basic model plus 
normal random 

effects 
θ_celebrex of type 2  4.1771 *** -2.7667 *** 
   [44.343]  [-13.048]    
θ_vioxx of type 2   3.9791 *** -2.8848 ***   
  [42.811] [-14.102]  
θ_bextra of type 2   4.3559 *** -2.0819 ***   
   [31.646]  [-6.5969]    
Probability of type 1  0.5846 *** 0.2731 *** 
   [48.141]  [12.079]    
θ_celebrex of type 3     3.3490 ***   
  [24.0066]  
θ_vioxx of type 3     3.0855 ***   
     [21.7766]    
θ_bextra of type 3  3.3047 *** 
     [18.506]    
Probability of type 2     0.4025 ***   
  [18.9100]  
σ ind-celebrex RE       2.4923 ***
       [25.0627] 
σ ind-vioxx RE   2.3108 ***
       [25.7732] 
σ ind-bextra RE       2.0277 ***
   [17.7305]
Log likelihood -11376 -10181 -10086  -10577
# of patients 6577  6577  6577  6577 
# of prescriptions 
BIC 

17329
22967  17329

20616  17329 
20465  17329

21398 
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Table 9: Robustness check on sampling weights 
  (1) (2) (3) 

Basic model Basic model plus Basic model  
α 0 -16.7348 *** -16.8017 *** -19.2098 *** 
  [-4.4589] [-7.4687] [-3.9187]  

*** α R 2.5693 *** 2.5797 *** 2.6403 
  [7.6483] [11.9663] [6.1506]  

  σ v 0.4960 0.4960 0.4960 
 γ (absolute risk aversion) Set at 0 Set at 0 Set at 0 

***Q0_celebrex 2.6971 *** 2.7038 *** 3.3535 
  [2.8217] [4.7383] [2.9303]  

***Q0_vioxx 2.3237 ** 2.3324 *** 3.2387 
 [2.3099] [3.9314] [2.7111]  

***Q0_bextra 2.309 ** 2.3078 *** 2.4873 
  [2.2647] [3.7378] [1.1891]  

***σ q0 0.3066 *** 0.3063 *** 0.2910 
 [7.4460] [13.1666] [6.0368]  

***σ Q0 celebrex 0.0177 *** 0.0066 *** 0.0170 
  [7.0597] [9.8280] [5.8207]  

***σ Q0 vioxx 0.0199 *** 0.0075 *** 0.0185 
  [7.1608] [10.0908] [5.8224]  

***σ Q0  bextra 0.0294 *** 0.0111 *** 0.0265 
  [6.7797] [9.5648] [5.4660]  

 Inverse of Advertising -0.5673 *** -0.5655 ***  
  [-2.7105] [-2.8889]   

** Log total detailing  0.2486 
  [2.1864]  

***Log total DTCA  -0.1704 
  [-4.6389]  

***Cox2 * Age 0.0177 *** 0.0177 *** 0.0177 
  [13.3565] [13.2926] [13.2303]  

***Cox2 * Sex -0.1219 *** -0.1217 *** -0.1191 
  [-2.9104] [-2.8713] [-2.8355]  

***Cox2 * low income -0.2007 *** -0.2007 *** -0.2042 
  [-4.8697] [-4.8256] [-4.9374]  

 Cox2 * low education -0.0684 -0.0677 -0.0667 
  [-1.6274] [-1.5916] [-1.5834]  

 Cox2 * HEALTHINS -0.0015 -0.0011 0.0062 
  [-0.0174] [-0.013] [0.0717]  

***Cox2 * INSPLAN 0.433 *** 0.4331 *** 0.4294 
 [6.5639] [6.5698] [6.4765]  

***Cox2 * DRUGINS -0.2277 *** -0.2276 *** -0.2293 
 [-5.3704] [-5.272] [-5.3778]  

***Medline article (neg) -0.752 *** -0.7481 *** -0.5583 
 [-4.4846] [-6.0478] [-2.9170]  

***Medline article  -0.9671 *** -0.9683 *** -1.3000 
 [-3.511] [-5.9626] [-4.0813]  

***Lexis article (neg) 0.0911 *** 0.0903 *** 0.1079 
 [3.7882] [3.7466] [4.4297]  

 Lexis article (non-neg) 0.0173 0.0178 0.0277 
 [0.7274] [0.7513] [1.1587]  

* After FDA update -0.0803 -0.0811 -0.1296 
 [-1.0502] [-1.0566] [-1.6721]  
Log likelihood -11376 -11375 -11367  

 # of patients 6577 6577 6577 
# of prescriptions 17329 17329 17329  
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Table 10: Model fit: % of correct prediction of the actual RX choice  
(based on the estimation sample of 17,329 RXs) 
 
 
Discrete choice 
model without 
learning 
structure 

 
Basic model Basic, within-

patient learning 
only 

Basic, across-
patient learning 
only 

 
Basic + 3 
patient-types 
(preferred) 

 
61.17% 

 
78.96% 78.35% 60.58% 

 
85.49% 

 
  
Table 11: Counterfactuals 
 
 
 
Counterfactual 
Scenarios 

% Change in the market share of 
 

Celebrex 
 

Vioxx Bextra All others 

 
#1: No FDA 
update 

 
1.07% 0.78% 1.58% -0.63% 

 
#2: Nationwide 
sharing of patient 
feedbacks 

 
15.01% 20.82% 21.05% -10.74% 

 
#3: double 
academic articles 

 
-30.44% -25.36% -27.11% 17.03% 

 
 


