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1 Introduction

In this paper I propose to augment the toolkit for modeling economic dynamics and econo-

metric implications with methods that reveal the important economic components of long-

term valuation in economies with stochastic growth. These tools enable informative de-

compositions of a model’s dynamic implications for valuation. They are the outgrowth of

my observation of and participation in an empirical literature that aims to understand the

low frequency links between financial market indicators and macroeconomic aggregates.

Current dynamic models that relate macroeconomics and asset pricing are constructed

from an amalgam of assumptions about preferences (such as risk aversion or habit per-

sistence, etc), technology (productivity of capital or adjustment costs to investment), and

exposure to unforeseen shocks. Some of these components have more transitory effects

while others have a lasting impact. In part my aim is to illuminate the roles of these model

ingredients by presenting a structure that features long run implications for value. By value

I mean either market or shadow prices of physical, financial or even hypothetical assets.

These methods are designed to address three questions:

• What are the long-term value implications of nonlinear economic models with stochas-

tic growth?

• To which components of the uncertainty are long-run valuations most sensitive?

• What kind of hypothetical changes in preferences and technology have the most

potent impact on the long run? What changes are transient?

Although aspects of these questions have been studied using log-linear models and log-linear

approximations around a growth trajectory, the methods I describe offer a different vantage

point. These methods are designed for the study of valuation in the presence of stochastic

inputs that have long-run consequences. While the methods can exploit any linearity, by

design they can accommodate nonlinearity as well. In this paper I will develop these tools,

as well as describe their usefulness at addressing these three economic questions. I will

draw upon some diverse results from stochastic process theory and time series analysis,

although I will use these results in novel ways.

There are a variety of reasons to be interested in the first question. When we build

dynamic economic models, we typically specify transitional dynamics over a unit of time

for discrete-time models or an instant of time for continuous time models. Long-run impli-

cations are encoded in such specifications; but they can be hard to decipher, particularly
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in nonlinear stochastic models. I explore methods that describe long-run limiting behavior,

a concept which I will define formally. I see two reasons why this is important. First some

economic inputs are more credible when they target low frequency behavior. Second these

inputs may be essential for meaningful long-run extrapolation of value. Nonparametric sta-

tistical alternatives suffer because of limited empirical evidence on the long-run behavior

of macroeconomic aggregates and financial cash flows.

Recent empirical research in macro-finance has highlighted economic modeling successes

at low frequencies. After all, models are approximations; and applied economics necessarily

employs models that are misspecified along some dimensions. In this context, then, I hope

these methods for extracting long-term implications from a dynamic stochastic model will

be welcome additional research tools. Specifically, I will show how to deconstruct a dynamic

stochastic equilibrium implied by a model, revealing what features dominate valuation over

long time horizons. Conversely, I will formalize the notion of transient contributions to

valuation. These tools will help to formalize long-term approximation and to understand

better what proposed model fixups do to long-term implications.

This leads me to the second question. Many researchers study valuation under uncer-

tainty by risk prices, and through them, the equilibrium risk-return tradeoff. In equilib-

rium, expected returns change in response to shifts in the exposure to various components

of macroeconomic risk. The tradeoff is typically depicted over a single period in a discrete-

time model or over an instant of time in a continuous time model. I will extend the

log-linear analysis in Hansen et al. (2008a) and Bansal et al. (2008) by deriving the long-

run counterpart to this familiar exercise. Specifically, I will perform a sensitivity analysis

that recovers prices of exposure to the component parts of long-run (growth-rate) risk. I

will define formally risk prices in nonlinear models as they depend on the investment hori-

zon, and in particular characterized their limiting behavior. These limits are basic inputs

into the study of the term structure of risk prices. Given my focus on valuation, these

same methods facilitate long-run welfare comparisons in explicitly dynamic and stochastic

environments.

Finally, consider the third question. Many components of a dynamic stochastic equilib-

rium model can contribute to value in the long run. Changing some of these components

will have a more potent impact than others. To determine this, we could perform value

calculations for an entire family of models indexed by the model ingredients. When this is

not practical, an alternative is to explore local changes in the economic environment. We

may assess, for example, how modifications in the intertemporal preferences of investors
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alter long term risk prices and interest rates. The resulting derivatives quantify these and

other impacts and can inform statistical investigations.

1.1 Overview

There are a variety of applications of the dynamic value decomposition (DVD) methods

that I describe. They can be used to

i) construct model-based measures of consumption or cash-flow duration;

ii) construct risk-adjusted measures of long-term premia;

iii) characterize long-term risk-exposure dynamics;

iv) characterize of the long-term risk-price dynamics;

v) make local and global model comparisons.

A valuation model assigns prices to consumption processes or cash-flows for each hypo-

thetical payoff horizon. Cash flows that make substantial contributions to value far into the

future are said to have high duration. This duration depends on how the cash flow grows

and how that cash flow is discounted. There is a premia for a cash flow at each horizon

relative to a riskless counterpart. The risk premia depend on the risk exposures (the cash

flow’s dependence on the underlying shocks) and on the risk prices (the marginal compen-

sation to investors that bear the risk associated with these shocks). In my applications I

feature long-term risk-price dynamics and model comparisons.

My characterization of risk-price dynamics is based on a valuation counterpart to the

impulse-response functions featured in macroeconomic dynamics. I construct a risk-price

trajectory by computing a derivative for each payoff horizon, which is the marginal change

in a risk premia induced by a marginal change in risk exposure of a cash flow constructed

from underlying macroeconomic shocks. To feature risk-price dynamics while abstracting

from risk-exposure dynamics, I value martingale cash flows built from alternative shocks.

By design, the expected future cash-flows are independent of the prediction horizon.

In one of my applications in section 7, I compare the risk price implications for a model

in which investors have power utility to a counterpart model with recursive utility using

a risk-sensitive parameterization of preferences. For analytical simplicity I restrict the

elasticity of intertemporal substitution of the investors to be unity for this second model.
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The investors in this model care about the intertemporal composition of risk in contrast

to those in the first model. I show how the limiting risk prices are the same for the two

models by setting appropriately the parameters of investor preferences.

Following Bansal and Yaron (2004), I consider a model with predictability in consump-

tion growth rates. While I consider a three shock specification, the analysis of the shock

to the consumption growth rate is particularly revealing. Such a shock has an impact

that builds gradually as is reflected in the continuous-time impulse response function for

the logarithm of consumption depicted in the top panel of figure 1. When investors have

time-separable power utility, the risk-price trajectory also builds gradually over the alter-

native investment horizons as depicted by the dashed line in the lower panel of figure 1.

It converges to a limit that I will characterize. The convergence is slower than for the im-

pulse response function. In this example economy, the impulse-response function converges

exponentially. In contrast, I will show that the risk-price trajectory displays a hyperbolic

convergence. Notice that the risk price trajectory eventually becomes almost coincident

with the hyperbolic curve depicted by lower solid line in figure 1. I will provide formal

characterizations of both the limit point of the risk-price trajectory and the hyperbolic

curve that approximates the trajectory as the payoff horizon becomes long. While much of

asset pricing literature focuses on short-term or local risk prices, the methods in this paper

reveal pricing features for longer payoff horizons.

In addition to exposing the pricing dynamics for a given model, DVD methods facilitate

model comparisons. Investor preferences are forward looking in the recursive utility model,

and this is reflected in a larger and flatter risk-price trajectory depicted as the solid line

in figure 1. Even though the model with power utility investors has the same long-term

limiting risk price, its risk-price trajectory starts near zero and only approximates its limit

for extremely long payoff horizons.2

1.2 Game plan

My game plan for the technical development in this paper is as follows:

i) Underlying Markov structure (section 2): I pose a Markov process in continuous time.

The continuous-time specification simplifies some of our characterizations, but it is not

essential to our analysis. I build processes that grow over time by accumulating the

impact of the Markov state and shock history. The result will be functionals, additive

2Details about computations including the parameter choices are given in section 7 and appendix C
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Figure 1: Impulse responses and risk price trajectories for the growth-rate shock. The
horizontal axis is given in quarterly time units. The top panel gives the impulse-responses
of the logarithm of consumption using the same parameter values as in figure 4. The
bottom panel reproduces risk prices depicted in figure 4. The lower solid curve in the
bottom panel is the trajectory for a model with power utility investors, the upper solid
curve is for a model with recursive utility investors, and the dashed curve is the hyperbolic
approximation to this trajectory.
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or multiplicative. Additive functionals are typically logarithms of macro or financial

variables and multiplicative functionals are levels of these same time series.

ii) Decomposition of Additive functionals (section 3): An additive functional accumulates

the impact of a Markov state over time via summation or integration. I produce a

familiar decomposition of an additive functional Y into three components:

Yt = νt + Ŷt −g(Xt) + g(X0)

↑ ↑ ↑
linear trend martingale difference.

(1)

This decomposition nests decompositions from the macroeconomic time series liter-

ature and the stochastic process literature on central limit approximation. This de-

composition identifies permanent shocks as increments to the martingale component.

Such shocks dominate the stochastic component of growth over long-horizons and re-

flect exposure to risk that have long-term consequences for valuation.

iii) Multiplicative processes and valuation (section 4): I build multiplicative functionals

by exponentiating additive ones. Thus I work with levels instead of logarithms as

in the case of additive functionals. Alternative multiplicative functionals can capture

stochastic discounting or stochastic growth. The stochastic discount factor processes

are deduced by economic models and designed to capture both pure discount effects and

risk adjustments. The multiplicative construction reflects the effect of compounding

over intervals of time. Growth fluctuations are modeled by accumulating local stochas-

tic growth exponentially over intervals of time. I study valuation in conjunction with

growth by constructing families of operators indexed by the valuation horizon. The

operators will map the transient components to payoffs, cash flows or Markov claims

to a numeraire consumption good. As special cases I will study growth abstracting

from valuation and valuation abstracting from growth. I use multiplicative functionals

constructed from the underlying Markov process to represent the previously described

family of operators.

iv) Long-run approximation (section 5): I measure long-run growth and the associated

decay in value through the construction of principal eigenvalues and principal eigen-

functions. I use an extended version of Perron-Frobenius theory to establish a multi-
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plicative analog to decomposition (1):

Mt = exp (ρt) M̂t

[
e(X0)
e(Xt)

]
↑ ↑ ↑

exponential trend martingale ratio.

(2)

where M is the exponential of an additive functional and is chosen to represent valua-

tion in the presence of stochastic growth. This gives a decomposition of the valuation

dynamics (DVD). Although superficially similar, factorization (2) is distinct from (1)

because the exponential of a martingale is not itself a martingale. In performing cal-

culations, I use the martingale to change the underlying probability measure in a way

that supports a convenient characterization of long-run behavior in valuation. In my

applications, M ’s will be constructed from explicit economic models and hypothetical

changes in stochastic growth trajectories.

v) Sensitivity and long-run pricing (section 6): Of special interest is how the long-run

attributes of valuation change when I make small alterations in a) growth processes

or b) stochastic discount factors used to represent valuation. I show formally how to

conduct a sensitivity analysis with these two applications in mind. The applications

I feature show how marginal changes in the risk exposure of hypothetical growth pro-

cesses alter risk premia. This calculation gives me an operational way to construct risk

prices as a function of the investment horizon. Analogous calculations applied to the

stochastic discount factor show how long-term values and rates of return are predicted

to change as the attributes of the economic environment are modified.

vi) Applications to the asset-pricing literature (section 7): I apply the methods to study

some existing models of asset pricing and to compare their long-run implications. While

the methods are much more generally applicable, I sidestep some numerical issues by

exploring specifications for which there are quasi-analytical characterizations. In the

applications I produce pricing counterparts to impulse functions familiar in literature

on economic dynamics. Impulse responses characterize how economic variables respond

over time to the underlying shocks. In contrast, I assess the valuation consequences for

consumption trajectories or cash flows that are “exposed” to macroeconomic shocks. I

assign risk prices to shocks at alternative investment horizons by valuing hypothetical

cash flows constructed from the respective macroeconomic shocks. Such price calcula-
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tions require economic models that are “structural” to give me the necessarily latitude

to extrapolate value implications. The methods accommodate nonlinearities present

in the underlying Markov dynamics. The pricing consequences of these nonlinearities

are revealed by the methods I describe.

The ideas developed in this paper have important antecedents from a variety of liter-

atures. Rather than provide a comprehensive literature review at the outset, I will point

out important prior contributions as I develop results.3

2 Probabilistic specification

While there are variety of ways to introduce nonlinearity into time series models, for

tractability we concentrate on Markovian models. For convenience, we will feature contin-

uous time models with their sharp distinctions between small shocks modeled as Brownian

increments and large shocks modeled as Poisson jumps. Let X denote the underlying

Markov process summarizing the state of an economy. We will use this process as a build-

ing block in our construction of economic relations.

2.1 Underlying Markov process

I consider a Markov process X defined on a state space E . Suppose that this process can

be decomposed into two components: Xc + Xd. The process X is right continuous with

left limits. With this in mind I define:

Xt− = lim
u↓0

Xt−u.

I depict local evolution of Xc as:

dXc
t = µ(Xt−)dt+ σ(Xt−)dWt

where W is a possibly multivariate standard Brownian motion. The process Xd is a

jump process. This process is modeled using a finite conditional measure η(dx∗|x) where∫
η(dx∗|Xt−) is the jump intensity. That is, ε

∫
η(dx∗|Xt−) is the approximate probability

3Alternative and distinct approaches to characterizing asset price dynamics with similar motivations
can be found in Daniel and Marshall (2005), Dybvig et al. (1996) and Otrok et al. (2002).

8



that there will be a jump for small time interval ε. The conditional measure η(dx∗|x) scaled

by the jump intensity is the probability distribution for the jump conditioned on a jump

occurring. Thus the entire Markov process is parameterized by (µ, σ, η).

I will often think of the process X as stationary, but strictly speaking this is not neces-

sary. As I will next show, nonstationary processes will be constructed from X.

2.2 Convenient functions of the Markov process

Consider the frictionless asset pricing paradigm. Asset prices are depicted using a stochas-

tic discount factor process S. Such a process cannot be freely specified. Instead restrictions

are implied by the ability of investors to trade at intermediate dates. The use of a Markov

assumption in conjunction with valuation leads us naturally to the study of multiplica-

tive functionals or their additive counterparts formed by taking logarithms. I will also

use multiplicative functionals to depict growth components of cash flows or consumption

processes.

An additive functional Y is constructed from the underlying Markov process such that

that Yt+τ−Yt = φτ (Xu for t < u ≤ t+τ) for any t ≥ 0 and any τ ≥ 0. For convenience, it is

initialized at Y0 = 0. Notice that what I call an additive functional is actually a stochastic

process defined for all t ≥ 0. Even if the underlying Markov process is stationary, an

additive functional will typically not be. Instead it will have increments that are stationary

and hence the Y process can display arithmetic growth (or decay) even when the underlying

process X does not. An additive functional can be normally distributed, but I will also

be interested in other specifications. Conveniently, the sum of two additive functionals is

additive.

I consider a family of such functionals parameterized by (β, ξ, χ) where:

i) β : E → R and
∫ t

0
β(Xu)du <∞ for every positive t;

ii) ξ : E → Rm and
∫ t

0
|ξ(Xu)|2du <∞ for every positive t;

iii) χ : E × E → R, χ(x, x) = 0.

Yt =

∫ t

0

β(Xu)du+

∫ t

0

ξ(Xu−) · dWu +
∑

0<u≤t

χ(Xu, Xu−) (3)

The additive functional Y in (3) has three components, each of which accumulates linearly

over time. The first component is a simple integral,
∫ t

0
β(Xu)du, and as a consequence it
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is locally predictable. The second component is a stochastic integral,
∫ t

0
ξ(Xu) · dWu, and

it reflects how “small shocks” alter the functional Y . These small shocks are modeled as

Brownian increments. This component is a local martingale, and I will feature cases in

which it is a martingale. Recall that the best forecast of the future value of a martingale

is the current value of the martingale. The third component shows how jumps in the

underlying process X induce jumps in the additive functional. If X jumps at date t, Y

also jumps at date t by the amount χ(Xt, Xt−). The term
∑

0≤u≤t χ(Xu, Xu−) thus reflect

the impact of “large shocks”. This component is not necessarily a martingale because the

jumps may have a predictable component. The integral

β̃(x) =

∫
E
χ(x∗, x)η(dx∗|x). (4)

captures this predictability locally. Integrating β̃ over time and subtracting it from the

jump component of Y gives an additive local martingale:

∑
0<u≤t

χ(Xu, Xu−)−
∫ t

0

β̃(Xu)du.

I will be primarily interested in specifications of χ for which this constructed process is a

martingale. In summary, an additive functional grows or decays stochastically in a linear

way. Its dynamic evolution can reflect the impact of small shocks represented as a state-

dependent weighting of a Brownian increment and the impact of large shocks represented

by a possibly nonlinear response to jumps in the underlying process X.

The logarithms of economic aggregates can be conveniently represented as additive

functionals as can the logarithms of stochastic discount factors used to represent economic

values.4 I next consider the level counterparts to such functionals.

While a multiplicative functional can be defined more generally, I will consider ones

that are constructed as exponentials of additive functionals: M = exp(Y ). Thus the ratio

Mt+τ/Mt is constructed as a function of Xu for t < u ≤ t + τ .5 Multiplicative functionals

are necessarily initialized at unity.

Even when X is stationary, a multiplicative process can grow (or decay) stochastically

in an exponential fashion. Although its logarithm will have stationary increments, these

4For economic aggregates, it is necessary to subtract of the date zero logarithms in order that Y0 = 0.
5This latter implication gives the key ingredient of a more general definition of a multiplicative func-

tional.
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increments are not restricted to have a zero mean.

3 Log-linearity and long-run restrictions

A standard tool for analyzing dynamic economic models is to characterize stochastic steady

state relations. These steady states are obtained by deducing a scaling process or processes

that capture growth components common to many time series. Similarly, the econometric

literature on cointegration is typically grounded in log-linear implications that restrict

variables to grow together. Error-correction specifications seek to allow for flexible transient

dynamics while enforcing long-run implications. Economics is used to inform us as to which

time series move together. See Engle and Granger (1987).6 Relatedly, Blanchard and Quah

(1989) and many others use long-run implications to identify shocks. Supply or technology

shocks broadly conceived are the only ones that influence output in the long run. These

methods aim to measure the potency of shocks while permitting short-run dynamics.

Prior to studying multiplicative functionals, I consider the decomposition of an additive

functional. My initial investigation of additive functionals is consistent with the common

practice of building models that apply to logarithms of macroeconomic or financial times

series. While there are alternative ways to decompose time series, what follows is closest

to what I will be interested in. An additive functional can be decomposed into three

components:

Yt = νt + Ŷt −g(Xt) + g(X0)

↑ ↑ ↑
linear trend martingale difference.

(5)

This decomposition gives a way to identify shocks with “permanent” consequences. Recall

that the best forecast of the future values of a martingale is the current value of that mar-

tingale. Thus permanent shocks are reflected in the increment to the martingale component

of (5). It helps to isolate the exposure of economic time series to macroeconomic risk that

dominates the fluctuation of Y over long time horizons.

The remainder of this section is organized as follows. I first verify formally the martin-

gale property Ŷ , and then I give operational ways to construct this decomposition. I end

the section with two examples. The first example gives the continuous-time counterpart to

6Interestingly, Box and Tiao (1977) anticipated the potentially important notion of long run co-
movement in their method of extracting canonical components of multivariate time series.
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this decomposition for a model with linear stochastic dynamics. This example illustrates

the construction of permanent shocks that is typically used in conjunction with vector au-

toregressive methods. The second example introduces stochastic volatility. This example

allows for volatility to fluctuate over time in a manner that can be highly persistent. Thus

a particular form of nonlinearity is introduced into the analysis, a form that has received

considerable attention in both the macroeconomics and asset-pricing literatures.

My first formal statement of decomposition (5) is:

Theorem 3.1. Suppose that Y is an additive functional with increments that have finite

second moments. In addition, suppose that

lim
τ→∞

1

τ
E (Yτ |X0 = x) = ν,

and

lim
τ→∞

E (Yτ − ντ |X0 = x) = g(x),

where the convergence is in mean square. Then Y can be represented as:

Yt = νt+ Ŷt − g(Xt) + g(X0). (6)

where {Ŷt} is an additive martingale.

Proof. Let Y ∗t = Yt− νt. Let Ft be the sigma algebra generated by the X process between

time 0 and time t. As a consequence of the Law of Iterated Expectations and the mean-

square convergence,

g(Xt) + Y ∗t = lim
τ→∞

E
(
Y ∗t+τ − Y ∗t |Xt

)
+ Y ∗t

= lim
τ→∞

E
(
Y ∗t+τ − Y ∗t |Ft

)
+ Y ∗t

= lim
τ→∞

E
(
Y ∗t+τ |Ft

)
= lim

τ→∞
E
[
E
(
Y ∗t+τ − Y ∗t+ε|Ft+ε

)
+ Y ∗t+ε|Ft

]
= E

[
g(Xt+ε) + Y ∗t+ε|Ft

]
Thus {Y ∗t + g(Xt)} is a martingale with initial value g(X0). After subtracting g(X0),

Ŷt = Y ∗t + g(Xt)− g(X0)

remains a martingale, but it has initial value zero as required for an additive functional.
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I next show how to use the local evolution of the additive functional to construct the

components of this decomposition. Recall the representation given in (3):

Yt =

∫ t

0

β(Xu)du+

∫ t

0

ξ(Xu−) · dWu +
∑

0≤u≤t

χ(Xu, Xu−),

and the construction of β̃ in formula (4). Then

Ỹt =

∫ t

0

ξ(Xu) · dWu +
∑

0≤u≤t

χ(Xu, Xu−)−
∫ t

0

β̃(Xu)du (7)

is a local martingale. In what follows let

β̂ = β + β̃.

I now have the ingredients for the following result.

Theorem 3.2. Suppose

i) X is a stationary, ergodic Markov process;

ii) Ỹ given in (7) is a square integrable martingale;

iii) β̂(Xt) has a finite second moment;

iv) There is a solution g to

g(x) =

∫ ∞
0

E
(
β̂(Xt)− E

[
β̂(Xt)

]
|X0 = x

)
dt;

Then Ŷ given by Yt− νt+ g(Xt)− g(X0) is a martingale with stationary, square integrable

increments with ν = E
[
β̂(Xt)

]
.

This theorem gives an algorithm for computing ν from the local evolution of Y and the

stationary distribution for X. It remains to compute the function g of the Markov state.

Since Ŷ is a martingale, its increments should not be predictable. As a consequence,

β̂(x)− ν + lim
t↓0

1

t
E [g(Xt)− g(x)|X0 = x] = 0, (8)
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which gives an equation for g that depends on the local evolution of X. The calculation of

the expected time derivative:

lim
t↓0

1

t
E [g(Xt)− g(x)|X0 = x] = Ag(x)

defines the so called generator A for the Markov process. Specifying a generator A is one

way to represent the transition dynamics for Markov process. In the case of a multivariate

diffusion, this equation is known to be a second-order differential equation as an implication

of Ito’s Lemma. There are well known extensions to accommodate jumps. Using the

generator, in light of (8) the function g satisfies

Ag = ν − β̂. (9)

For the diffusion model, this leads to solving:

∂g(x)

∂x
· µ(x) +

1

2
trace

[
σ(x)σ(x)′

∂2g(x)

∂x∂x′

]
= ν − β̂(x). (10)

The local evolution of the martingale Ŷ is given by:

ξ(Xt)dWt +

[
∂g(Xt)

∂x

]′
σ(Xt)dWt,

where the first term is contributed by the local evolution of Ỹ and the second term by the

local evolution of g(X).

More generally, to obtain a solution g to a long-run forecasting problem, it suffices to

solve equation (9) depicted using the local evolution of the Markov process. Much is known

about such an equation. As argued by Bhattacharya (1982) and Hansen and Scheinkman

(1995), when X is ergodic this equation has at most one solution. When X is exponentially

ergodic, there always exists a solution.7

Following Gordin (1969), by extracting a martingale we can produce a more refined

7These references suppose that X is stationary. Hansen and Scheinkman (1995) use an L2 notion of
exponential ergodicity using the implied stationary distribution of X as a measure. Bhattacharya (1982)
establishes a functional counterpart to the central limit theorem using these methods. In both cases strong
dependence in X can be tolerated provided there exists a solution to (9).
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analysis. Specifically, an implication of the Martingale Central Limit Theorem is that

lim
t→∞

1√
t
(Yt − νt) ≈

1√
t
Ŷt ⇒ normal

is normally distributed with mean zero.8 In addition to central limit approximation, there

are other important applications of this decomposition. For linear time series, Beveridge

and Nelson (1981) and others use this decomposition to identify Ŷt as the permanent com-

ponent of a time series. When there are multiple additive functionals under consideration

and they have common martingale components of lower dimension, then one obtains the

cointegration model of Engle and Granger (1987). Linear combinations of the vector of

additive functionals will have a time trend and martingale component that are identically

zero. Blanchard and Quah (1989) use such a decomposition to identify permanent shocks.

The martingale increments are innovations to supply or technology shocks.

I now consider some examples.

Example 3.3. Suppose that

dXt = AXtdt+BdWt,

dYt = νdt+HXtdt+ FdWt

where A has eigenvalues with strictly negative real parts and W is a multivariate standard

Brownian motion. In this example β̂(x) = ν + Hx, and g satisfies the partial differential

equation:
∂g(x)

∂x
· (Ax) +

1

2
trace

[
BB′

∂2g(x)

∂x∂x′

]
= −Hx

which is a special case of (10). This equation has a linear solution:

g(x) = −HA−1x

The surprise movement or “innovation” to g(Xt) is −HA−1BdWt. Thus in this example,

Ŷt =

∫ t

0

(
F −HA−1B

)
dWu

is the martingale component.

8See Billingsley (1961) for the discrete-time martingale central limit. Moreover, there are well known
functional extensions of this result.

15



Next I consider a model with stochastic volatility.

Example 3.4. Suppose that X and Y evolve according to:

dX
[1]
t = A11X

[1]
t dt+ A12(X

[2]
t − 1) +

√
X

[2]
t B1dWt,

dX
[2]
t = A22(X

[2]
t − 1)dt+

√
X

[2]
t B2dWt

dYt = νdt+H1X
[1]
t dt+H2(X

[2]
t − 1)dt+

√
X

[2]
t FdWt.

Both X [2] and Y are scalar processes. The process X [2] is an example of a Feller square root

process, which I use to model the temporal dependence in volatility. I restrict B1B2
′ = 0

implying that X [1] and X [2] are conditionally uncorrelated. The matrix A11 has eigenvalues

with strictly negative real parts and A22 is negative. Moreover, to prevent zero from being

attained by X [2], I assume that A22 + 1
2
|B2|2 < 0. I have parameterized this process to have

mean one when initialized in its stationary distribution, which for my purposes is essentially

a normalization. In this example g solves the partial differential equation:

∂g(x1, x2)

∂x
·

[
A11x1 + A12(x2 − 1)

A22(x2 − 1)

]
+
x2

2
trace

([
B1B1

′ 0

0 |B2|2

]
∂2g(x1, x2)

∂x∂x′

)
= −H1x1−H2(x2−1),

which is a special case of (10). The solution is:

g(x1, x2) = −H1(A11)
−1x1 −

[
H2 −H1(A11)

−1A12

]
(A22)

−1(x2 − 1).

The local innovation in g(Xt) is

√
X

[2]
t [−H1(A11)

−1B1 − [H2 −H1(A11)
−1A12] (A22)

−1B2] dWt.

Thus in this example the martingale component for Y is given by:

Ŷt =

∫ t

0

√
X

[2]
u

[
F −H1(A11)

−1B1 −
[
H2 −H1(A11)

−1A12

]
(A22)

−1B2

]
dWu.

This example has the same structure as example 3.3 except that the Brownian motion

shocks are scaled by

√
X

[2]
t to induce volatility that varies over time. While example 3.3 is

fully linear, example 3.4 introduces a nonlinear volatility factor. More generally, additive

functionals do not have to be linear functions of the Markov state or linear functions of

Brownian increments. Nonlinearity can be built into the drifts (conditional means) or the

diffusion coefficients (conditional variances). Under these more general constructions, the

function g used to represent the transient component will not be a linear function of the
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Markov state.9

Even when such nonlinearity is introduced, conveniently the sum of two additive func-

tionals is an additive functional. Moreover, the sum of the martingale components is the

martingale component for the sum of the additive functionals provided that the construc-

tions use a common information structure.

As I have already argued, the additive decomposition is valuable for identifying shocks

with durable consequences or for characterizing long-run consequences of shocks. Additive

decompositions have direct ties to the study of log-linear relations, either exact or approx-

imate, are convenient for many purposes. For the purposes of valuation, in what follows

I will use multiplicative functionals. Such functionals can be represented conveniently as

the exponentials of additive functionals. One strategy at my disposal is first to decompose

additive functionals and then to exponentiate the components. Thus for Mt = exp(Yt):

Mt = exp(νt) exp
(
Ŷt

) exp[−g(Xt)]

exp[−g(X0)]

for the decomposition given in (6). While such a factorization is sometimes of value, for

the purposes of my analysis, it is important that I construct an alternative factorization.

Except in degenerate examples, the exponential of a martingale is not a martingale. If

the process is lognormal, then this assumption can be used to transform exp(Ŷ ) into a

martingale by scaling it by an exponential function of time. Later I will illustrate this

outcome. More generally, I will construct an alternative multiplicative decomposition via

a different approach that will be of direct use.10

Prior to our development of an alternative decomposition, I discuss some limiting char-

acterizations that will interest us.

4 Limiting characterizations of stochastic growth or

discounting

In this section I describe the relation between a local growth rate of a multiplicative func-

tional M and its long-term or asymptotic counterpart. The local growth rate is defined

9The Markov assumption is also not necessary for such a decomposition.
10While the additive decomposition is linked to a Law of Large Numbers and a Central Limit Theorem,

this alternative decomposition has much closer ties to the Theory of Large Deviations.
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as:

β∗(x) = lim
t↓0

E (Mt|X0 = x)− 1

t

provided that this limit exists. Since Mt = exp(Yt) and

Yt =

∫ t

0

β(Xu)du+

∫ t

0

ξ(Xu−) · dWu +
∑

0≤u≤t

χ(Xu, Xu−)

as in (3), the local growth rate is computed to be

β∗(x) = β(x) +
1

2
|ξ(x)|2 +

∫
(exp[χ(y, ·)]− 1) η(dy|x) (11)

using, when necessary, continuous-time stochastic calculus. Notice that direct exposure to

Brownian motion risk and jump risk contributes to this local growth rate.

By contrast, define the asymptotic growth (or decay) rate as:

lim
t→∞

1

t
logE [Mt|X0 = x] = ρ(M)

provided that this limit is well defined. Compounding has nontrivial consequences for the

long-term growth rate when the local growth rate is state-dependent. I will characterize

this asymptotic limit and explore the relation between the average local growth rate and the

asymptotic growth rate. Here I am interpreting growth liberally so as to include discounting

as well. For instance, what I develop in this section is also germane to the study of long-

term implications of compounding of short-term discount rates that are state dependent.

This topic has been explored in the study of climate policy (see for instance Newell and

Pizer (2003, 2004)) and in the study of the long-term behavior of stochastic discount factors

(see for instance Alvarez and Jermann (2000)).

4.1 A revealing special case

Prior to a more general development, I illustrate calculations using an environment with

an underlying continuous-time Markov chain that visits only a finite number of states.

I characterize long-run stochastic growth (or decay) by posing and solving an approxi-

mation problem using what is called a principal eigenvector and eigenvalue. The principal

eigenvector has positive entries. As I will illustrate, there is a well-defined sense in which

this eigenvector dominates over long valuation horizons. The approximation problem I
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will study more generally its origins from what is known as Perron-Frobenius theory of

matrices.

Example 4.1. When a Markov process has n states, the mathematical problem that we

study can be formulated in terms of matrices. To model a jump process, consider a matrix

N with all nonnegative entries as a way to encode the conditional measure η(dx∗|x). Recall

that this measure encodes both the jump intensity (the likelihood of a jump) of the underlying

Markov state X and the jump distribution (conditioned on a jump, where the process will

jump to). The matrix of transition probabilities for X over an interval of time t is known

to be given by exp(tA) where

A = N− diag {N1n}

where 1n is an n-dimensional vector of ones and diag{·} is a diagonal matrix with the

entries of the vector argument located in the diagonal positions. Notice in particular that A
has all positive entries in the off-diagonal positions, and it satisfies A1n = 0n. This property

is the local counterpart to the requirement that the entries in any row of exp(tA) are the

transition probabilities conditioned on the state associated with the selected row. That is,

exp(tA)1n = 1n.

For a multiplicative functional associated with an n-state jump process, state dependent

growth or decay rates are modeled using β and χ. Recall that β dictates the growth or

decay absent any jump and χ dictates how the multiplicative function jumps as a function

of the jumps in the underlying Markov process. For this discrete-state problem, I represent

the function β as vector b. Similarly, I represent function exp[χ(x∗, x)] as an n by n matrix

K with positive entries. Form an n by n matrix B

B = K× N− diag {N1n}+ diag {b}

where× used in the matrix multiplications denotes element-by-element multiplication. This

construction of B modifies A to include state dependent growth (or decay) associated with

the corresponding multiplicative functional. The off-diagonal entries of B are all positive,

but typically B1n is not equal to 0n in contrast to A1n. I form an indexed family of

operators, in this case matrices, indexed by the time horizon by exponentiating the matrix

tB:

Mt = exp(tB).

The date t matrix Mt reflects the expected growth, discounting or the composite of both
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over an interval of time t. The entries of Mt are all nonnegative, and I presume that for

some time horizon t, the entries are strictly positive. The matrix Mt is typically not a

probability matrix in our applications, however. (Column sums are not unity.) Instead

Mt reflects continuous compounding of stochastic growth or discounting over a horizon t.

The matrix B encodes the instantaneous contributions to growth or discounting, and it

generates the family of matrices {Mt : t ≥ 0}. Specifically, the vector

β∗ = B1n

contains the state dependent growth rates defined more generally in formula (11).

Given an n × 1 vector f , Perron-Frobenius theory characterizes limiting behavior of
1
t

log Mtf by first solving:

Be = ρe.

where e is a column eigenvector restricted to have strictly positive entries and ρ is a real

eigenvalue. Consider also the transpose problem

B′e∗ = ρe∗ (12)

where e∗ also has positive entries. Depending on the application, ρ can be positive or

negative. Importantly, ρ is larger than the real part of any other eigenvalue of the matrix

B.

Taking the exponential of a matrix preserves the eigenvectors and exponentiates the

eigenvalues. As a consequence, Mt has an eigenvector given by e and with an associated

eigenvalue equal to exp(ρt). The multiplication by t implies that the magnitude of exp(ρt)

relative to the other eigenvalues of Mt becomes arbitrarily large as t gets large. As a

consequence,

lim
t→∞

1

t
log Mtf = ρ (13)

lim
t→∞

(log Mtf − tρ) = log(f · e∗)1n + log e (14)

for any vector f for which f ·e∗ > 0, where I have normalized e∗ so that e∗ ·e = 1. Formally,

(13) defines ρ as the long-run growth rate of the family of matrices {Mt : t ≥ 0}. In the

remainder of this section, I develop and apply a generalization of this limit. After adjusting

for this growth rate, (14) gives an example of a more refined approximation that I explore
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in section 5. The logarithm of the eigenvector e exposes the impact of state-dependent

compounding of growth or discounting over long horizons.

To accommodate continuous Markov states, I will use operators in place of the matrices.

These operators are introduced in the next subsection section. They have a complicated

eigenvalue structure because I allow a more general specification of the underlying Markov

process. For instance, there may be multiple eigenvalues associated with distinct positive

eigenfunctions. Typically at most one of these eigenvalue-eigenfunction pairs is of interest

to us. As in the finite-state example, the resulting eigenvalue ρ(M) is referred to as the

principal eigenvalue and the associated eigenfunction e is the principal eigenfunction.

4.2 Operator families

A key step in my analysis is the construction of a family of operators from a multiplicative

functional M . Formally, with any multiplicative functional M we associate a family of

operators:

Mtf(x) = E [Mtf(Xt)|X0 = x] (15)

indexed by t. When M has finite first moments, this family of operators is at least well

defined on the space of bounded functions.11

I use alternative constructions of M where is sometimes the product of multiple compo-

nents. The stochastic process components have explicit economic interpretations including

stochastic discount factor processes, macroeconomic growth trajectories, or growth pro-

cesses used to represent hypothetical financial claims to be priced. My use of stochas-

tic discount factor processes to reflect valuation is familiar from empirical asset pricing.

For instance, see Hansen and Richard (1987), Cochrane (2001), and Singleton (2006). A

stochastic discount factor for a given payoff horizon discounts the future and it adjusts for

risk when used to assign values to a future payoff. A stochastic discount factor process

assigns values to a cash flow process such as a consumption process that will be realized

in future dates or a dividend process on an infinitely-lived security. This process typically

decays asymptotically. Such decay is needed for an infinitely-lived security with a growing

cash flow to have a finite value as in the case of equity. In contrast to this earlier literature,

I am interested in the stochastic process of discount factors over alternative horizons t as

a way to study the dynamics of valuation in the presence of stochastic growth.

11See Hansen and Scheinkman (2008) for a a more general and explicit formulation of the domain of
such operators.
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Why feature multiplicative functionals? The operator families that interest us are nec-

essarily related. They must satisfy one of two related and well known laws: the Law of

Iterated Expectations and the Law of Iterated Values. The Law of Iterated Values im-

poses temporal consistency on valuation. In the case of models with frictionless trade at

all dates, it is enforced by the absence of arbitrage. In the frictionless market model prices

are modeled as the output from forward-looking operators:

Stf(x) = E [Stf(Xt)|X0 = x] .

In this expression S is a stochastic discount factor process and f(Xt) is a contingent claim

to a consumption numeraire expressed as a function of a Markov state at date t and Stf
depicts its current period value. Thus Mt = St and M = S. The Law of Iterated Values

restricted to this Markov environment is:

StSτ = St+τ (16)

for t ≥ 0, τ ≥ 0 where S0 = I, the identity operator. To understand this, the date t price

assigned to a claim f(Xt+τ ) is Sτf(Xt). The price of buying a contingent claim at date 0

with payoff Sτf(Xt) is given by the left-hand side of (16) applied to the function f . Instead

of this two-step implementation, consider the time zero purchase of the contingent claim

f(Xt+τ ). Its date zero purchase price is given by the right-hand side of (16).

Alternatively, suppose that Et is a conditional expectation operator for date t associated

with a Markov process. This is true by construction when M = 1, because in this case:

Etf(x) = E [f(Xt)|X0 = x]

I will show that other choices of M can give rise to expectation operators provided that

we are willing to alter the implicit Markov evolution. The Law of Iterated Expectations or

the Chain Rule of Forecasting implies:

EtEτ = Et+τ

for τ ≥ 0 and t ≥ 0. In the case of conditional expectation operators, Et1 = 1 but this

restriction is not necessarily satisfied for valuation operators.

These laws are captured formally as a statement that the family of operators should be
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a semigroup.

Definition 4.2. A family of operators {Mt} is a (one-parameter) semigroup if a) M0 = I
and b) MtMτ = Mt+τ for t ≥ 0 and τ ≥ 0.

I now answer the question: Why use multiplicative functionals to represent operator

families? I do so because a multiplicative functional M guarantees that the resulting

operator family {Mt : t ≥ 0} constructed using (15) is a one parameter semigroup.

In valuation problems, stochastic discount factors are only one application of multi-

plicative functionals. Multiplicative functionals are also useful in building cash flows or

claims to consumption goods that grow over time. While X may be stationary, the cash

flow

Ct = Gtf(Xt)G̃0

displays stochastic growth when G is a multiplicative functional. I include the adjustment

G̃0 because I normalized the the growth process to be one at date zero. Scaling by G̃0 is

a way to ensure that the initialization G0 = 1 is indeed only a normalization. Moreover,

shifting the vantage point from time zero to time τ ,

Ct+τ

Gτ G̃0

=

(
Gt+τ

Gτ

)
f(Xt+τ ).

I study cash flows of this type by building an operator that alters the transient contri-

bution to the cash flow f(Xt). This leads us to study

Ptf(x) = E [StGtf(Xt)|X0 = x] .

The value assigned to Ct is given by G̃0Ptf(X0) because G̃0 is presumed to be in the date

zero information set. Importantly, it is the product of two multiplicative functionals that

we use for representing the operator Pt: M = SG. Exploiting the recursive and time

invariant nature of Markov pricing, the value assigned to Ct+τ at time τ is Gτ G̃0Ptf(x).

4.3 Products and co-dependence

Covariances play a prominent role in representing risk premia in asset valuation. I will

suggest a long-run counterpart that is motivated by studying the behavior of products of

multiplicative functionals. While the product of two multiplicative functionals is multi-
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plicative,

ρ
(
M [1]M [2]

)
6= ρ

(
M [1]) + ρ(M [2]

)
.

Co-dependence is important when characterizing even the limiting behavior of the product

M [1]M [2]. In fact the discrepancy:

ρ
(
M [1]M [2]

)
− ρ

(
M [1])− ρ(M [2]

)
. (17)

will be used to give a long-run version of a risk premium. If M
[1]
t and M

[2]
t happen to

be jointly log normal for each t, then (17) is equal to the limiting covariance between the

corresponding logarithms:

lim
t→∞

1

t
Cov

(
Y

[1]
t , Y

[2]
t

)
where M [j] = exp(Y [j]) for j = 1, 2. While this illustrates that co-dependence plays a

central role in ρ
(
M [1]M [2]

)
, we will not require log-normality in what follows.

Here is an application of this apparatus to a dynamic extension of a familiar asset

pricing problem. The risk premium on a cash-flow Gtf(Xt) paid out at date t and valued

at date zero is measured by:

1
t

logE [Gtf(Xt)|X0 = x] − 1
t

logE [StGtf(Xt)|X0 = x] + 1
t

logE [St|X0 = x]

log log log

expected payoff − price − riskfree return

(18)

where f is specified such that the respective logarithms are well defined. The term:

E [Gtf(Xt)|X0 = x]

E [StGtf(Xt)|X0 = x]

is the expected return on the investment over the horizon t, and

1

E [St|X0 = x]

is the expected return on a riskless investment.

By letting t shrink to zero and computing marginal changes in the risk exposure, I

reproduce the local risk premia familiar in the continuous-time asset pricing literature. In

contrast, the purpose of the methods described in this paper is to study the limit as the

investment horizon is made arbitrarily long and to explore the corresponding changes in
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risk exposure. Provided that f is inconsequential to the limit, the long-horizon limit is

risk premium = ρ(G) + ρ(S)− ρ(SG). (19)

In the log-normal case this limiting risk premia will turn out to be the negative covariance

of the increments in the martingale components of logG and logS (see calculations in

example 5.2 in subsection 5.2).

Prior to proceeding, I comment a bit on the previous literature. The study of the dy-

namics of risk premia is familiar from the work of Wachter (2005), Lettau and Wachter

(2007) and Hansen et al. (2008a). Hansen et al. (2008a) characterize the resulting lim-

iting risk premia and the associated risk prices in a log-linear environment.12 Hansen

and Scheinkman (2008) extend this approach to fundamentally nonlinear models with a

Markov structure. The perturbation method of section 6 gives a way to compute risk prices

in nonlinear Markov environment.13 Later I will extend this characterization to produce

long-term risk prices and long-term risk return tradeoffs.

4.4 Local versus global

In the decomposition of an additive functional, the linear trend coefficient averages the

local state dependent growth rate: ν = E [β∗(Xt)]. I now explore the relation between the

local, state dependent growth rate and the long-run counterpart ρ(M).

Consider for the moment a special class of multiplicative functionals:

Mt = exp

[∫ t

0

β(Xu)du

]
.

Such functionals are special because they are smooth, or locally riskless. The multiplicative

12Hansen et al. (2008a) also consider the limiting behavior of holding period returns. This limit includes
contributions from the principle eigenfunction and the principal eigenvalue of the associated valuation
operator for pricing cash flows with stochastic growth components.

13Wachter (2005) develops a computational approach based on pricing what she calls “zero-coupon”
equity, which in our notation is E [StGtf(Xt)|X0 = x]. Her algorithm has component prices that converge
to zero as the horizon is extended. By using an adaptation of the so-called “power method”, these prices
can be rescaled to have nondegenerate limit. The limiting function is a principal eigenfunction of the type
that I have described. The power method rescales each iteration and hence adjusts for the asymptotic
decay. The limit of this rescaling reveals the eigenvalue. Using this more refined characterization of the
limit could improve computational performance by providing an approximation for the infinite sum of
terms starting from a given horizon forward. The results of Hansen and Scheinkman (2008) described in
section 5 provide justification for the limit approximation.
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functional has a state dependent growth rate given by β(x). If β(x) were constant (state

independent), then the long-run growth rate ρ(M) and the local growth rate would coincide.

When β fluctuates, log(Mt) will have a well-defined average growth rate η, but Jensen’s

inequality prevents us from just exponentiating this average to compute ρ(M).

The limit ρ(M) in this special case is a key ingredient in the study of large deviations.

While 1
t

∫ t
0
β(Xu)du obeys a Law of Large Numbers and converges to its unconditional

expectation η, more can be said about small probability departures from this law. Large

Deviation Theory seeks to characterize these departures by evaluating expectations under

the stationary distribution for an alternative probability measure assigned to X. The same

tools used in Large Deviation Theory allow me study the link between β and ρ where β is

the local growth or decay rate and ρ is the asymptotic counterpart.

Let Q be a probability distribution over the state space E of the Markov process X.

Following Donsker and Varadhan (1976), Dupuis and Ellis (1997) and others, construct a

rate function J(Q) to measure the discrepancy between the original stationary distribution

and Q. See appendix A for a construction of this measure and for a discussion of how it

relates to some of my discussion that follows. The function J is convex in the probability

measure Q, and it is used to construct what is called a Laplace principle that characterizes

the limit:

Problem 4.3.

ρ(M) = sup
Q

∫
β(x)dQ− J(Q) ≥ E [β(Xt)]

The inequality follows because J(Q) = 0 when Q is the stationary distribution of the

Markov process X.

This optimization problem is inherently static, with the dynamics loaded into the con-

struction of convex function J. The function J is constructed independent of the choice

of β. Recall that β is the local growth rate of M and its associated semigroup. The

long-run limiting growth rate of a multiplicative functional and its associated semigroup

exceeds on average the local growth rate integrated against the stationary distribution of

the underlying Markov process. Optimization problem (4.3) characterizes formally this

difference.14

14Large deviation theory exploits problem (4.3) because ρ(M) implies a bound of the form:

Prob
{

1
t

∫ t

0

β(Xu) ≥ k
}
≤ exp (t [ρ(M)− k])
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This analysis applies to stochastic growth and to stochastic discounting provided that

the associated multiplicative functional is locally predictable. For instance, these methods

provide a general way to characterize the link between short-term and long-term discount-

ing as posed by Newell and Pizer (2003, 2004). In this application −β is the instantaneous

discount rate and −ρ is the long-term discount rate used in policy evaluation. Motivated

by problems in climate policy analysis, they study discounting abstracting from stochastic

growth and adjustment for risk. Their focus is on the long-run consequences for valu-

ation of fluctuations in short-term discount rates. Specifically they argue that −ρ can

be substantially smaller than −Eβ. Optimization problem 4.3 gives a general statement

characterization this inequality for Markov valuation problems. This optimization problem

shows that in the long-run it is a distorted average of −β(Xt) that is germane for discount-

ing. Given the maximization over alternative probability distributions, −ρ(M) will be less

than the average of −β. The magnitude of this discrepancy depends on the potency of the

convex penalty function J(Q).15 As we will see the resulting penchant for small long-term

discount rates can be undermined by taking account of risk.

Recall from (11) that for more general multiplicative functional M that local growth

rate β∗ includes adjustments for local exposure to Brownian motion and jump risk. The

multiplicative functional M can be decomposed into two component multiplicative func-

tionals:

Mt = exp

(∫ t

0

β∗(Xu)du

)
M∗

t (20)

where M∗ is a local martingale.16 Both components are multiplicative functionals. When

this local martingale is a martingale, it is associated with a distorted probability distribution

for X.17 The probability twisting associated with M∗ preserves the Markov structure.

The entropy measure discussed previously is now constructed relative to the probability

for large t. This bound is only revealing when k > ρ(M). Our interest in ρ(M) is different, but the
probabilistic bound is also intriguing.

15While this analysis allows for nonlinearity in the Markov dynamics, it does not include the case in
which the process {β(Xt)} is nonstationary except through a sequence of approximating models.

16In the case of supermartingales, this decomposition can be viewed as a special case of one obtained by
Ito and Watanabe (1965). They show that any multiplicative supermartingale can be represented as the
following product of two multiplicative functionals:

Mt = M `
tM

d
t

where {M `
t : t ≥ 0} is a nonnegative local martingale and {Md

t : t ≥ 0} is a decreasing process whose only
discontinuities occur where {Xt : t ≥ 0} is discontinuous.

17Applied to valuation problem without growth this distorted probability distribution is the risk neutral
distribution familiar from mathematical finance.
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distribution associated with M∗. This extension permits M processes that are not locally

predictable, provided that we change probability distributions in accordance with M∗. The

long-run growth rate ρ(M) remains the solution to a convex optimization problem:

Problem 4.4.

ρ(M) = sup
Q

[∫
β∗(x)dQ− J∗(Q)

]
where J∗ is constructed using the change in probability measure.18

While optimization problem 4.4 guarantees that ρ(M) exceeds an average of β∗, this

average is computed using a change of measure. Thus the average local growth rate could

be greater than the long-run growth rate computed under the original probability mea-

sure when there the multiplicative functional is exposed locally to risk. In this sense the

variability channel featured by Newell and Pizer (2003, 2004) could be even be more than

offset by the presence of local exposure of the discount or growth factors to risk.19 For

instance, the “exposure” of the stochastic discount factor to risk is what captures local risk

premia, that is risk-premia for short-term investments, as I will characterize shortly. Risk

adjustments also have long-term consequences as reflected in the formula:

ρ(GS)− ρ(S)

for the long-term risk-adjusted rate of return.

Instead of directly solving problem 4.4, in the next section I will develop a method to

compute ρ because this method will also provide a more refined characterization of the

valuation dynamics.

5 Multiplicative factorization

So far, I have focused on the behavior of growth or decay rates. Since convergence will be

slow in some example economies, and as a consequence it is important to develop a more

refined approximation. I now propose a refinement based on a multiplicative factorization

of stochastic growth or discount functionals with three components: a) an exponential

18The link between this optimization problem and the eigenvalue problem is well known in the literature
on large deviations in the absence of a change of measure, for instance see Donsker and Varadhan (1976),
Balaji and Meyn (2000) and Kontoyiannis and Meyn (2003).

19This offset is important to produce an upward sloping term structure of interest rates.
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function of time, b) a positive martingale, c) a ratio of function of the Markov process at

zero and t:

Mt = exp (ρt) M̂t

[
e(X0)
e(Xt)

]
↑ ↑ ↑

growth or martingale state

decay change in probability dependence

(21)

This decomposition constitutes provides the ingredients for a decomposition of value dy-

namics (a DVD). Component a) governs the long-term growth or decay. It is constructed

from a principal eigenvalue. I will use component b), the positive martingale, to build an

alternative probability measure.20

The dynamics of risk pricing and premia are best understood in terms of this alternative

measure as reflected in the formula:

log Mtf(x)− ρt = log e(x) + log Ê [f(Xt)ê(Xt)|X0 = x] (22)

where Ê is used to denote the expectation operator under the twisted measure and ê = 1
e
.

Thus after adjusting for the growth (or decay) rate ρ, the implied values of a cash flow as

a function of the investment horizon is represented conveniently in terms of the dynamics

under the twisted probability measure.

This alternative probability measure gives me a framework for a formal study of long-

term approximation on which I can use the existing toolkit for the study of Markov processes

that are “stochastically stable.”

Definition 5.1. The process X is stochastically stable under the measure ·̂ if

lim
t→∞

Ê [f(Xt)|X0 = x] = Ê [f(Xt)] (23)

for any f for which Ê(f) is well defined and finite.21

Under this stochastic stability, the limit as the investment horizon t becomes large of

20As an alternative approach, Rogers (1997) proposes a convenient parameterization of a martingale
from which one can construct examples of multiplicative functionals of the form (21). Given my interest
in structural economic models of asset pricing and in products of stochastic discount factor and growth
functionals, I will instead explore factorizations of pre-specified multiplicative functionals.

21This is stronger than ergodicity because it rules out periodic components. Ergodicity requires that
time series averages converge but not necessarily that conditional expectation operators converge.
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(22) is

lim
t→∞

[log Mtf(x)− tρ] = log e(x) + log Ê [f(Xt)ê(Xt)] . (24)

The second term on the right-hand side computes the unconditional expectation of f ê

under the twisted probability measure, provided of course that this expectation is finite

and positive. This generalizes result (14) for the finite-state Markov chain example 4.1.

Limit (24) gives a hyperbolic approximation for log Mtf(x) as a function of the investment

horizon:
1

t
log Mtf(x) ≈ ρ+

1

t

(
log e(x) + log Ê [f(Xt)ê(Xt)]

)
.

By applying this approximation to M = SG, I have an operational method for character-

izing how a DVD converges to its limit value.

Component c) is built directly from the principle eigenfunction e. It captures state

dependence and it provides a way to characterize the convergence to the limiting growth

(or decay) rate ρ. The choice of f contributes a constant term log Ê [f(Xt)ê(Xt)], while

the principle eigenfunction e determines the state dependence independent of f . At this

juncture I call this component transient by analogy to the decomposition of an additive

functional. Later I will relate this term to components of models that are transient from

the standpoint of valuation.

Multiplicative factorization (21) is also a decomposition of a stochastic growth or dis-

count process. All three components are themselves multiplicative functionals, but with

very different behavior. The term exp(ρt) is not stochastic. The multiplicative martingale

has expectation unity for all t and thus is not expected to grow. When applied to stochastic

discount factor processes, Alvarez and Jermann (2000) interpret the martingale as reflect-

ing the role of permanent macroeconomic shocks in understanding the term structure of

interest rates. The third component appears “transient” when the underlying Markov pro-

cess X is stationary. While the stochastic inputs of the martingale M̂ will be long lasting,

perhaps the same is not true for this third component.22

This component-by-component analysis turns out to be misleading. The components

are correlated and this correlation can have an important impact on the long-run behavior

of the original M process. Thus I am led to ask: Q1: Is factorization (21) unique? Q2:

When is this factorization useful? The answers to these two questions are intertwined. The

remainder of the section answers these questions and develops more fully the construction

22Although positive, the martingale component of the factorization will typically not converge to a
limiting random variable with unit expectation.
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and implications of (21).

5.1 Factorization

I build the factorization as follows. First I solve:

E [Mte(Xt)|X0 = x] = exp(ρt)e(x) (25)

for any t where e is strictly positive as in (12). The function e can be viewed as a princi-

pal eigenfunction of the semigroup with ρ being the corresponding eigenvalue. Since this

equation holds for any t, it can be localized by computing:

lim
t↓0

E [Mte(Xt)|X0 = x]− exp(−ρt)e(x)

t
= 0, (26)

which gives an equation in e and ρ to be solved. The local counterpart to this equation is

Be = ρe, (27)

where

lim
t↓0

E [Mte(Xt)− e(x)|X0 = x]

t
= Be(x)

The operator B is the so-called generator of the semigroup constructed with the multi-

plicative functional M . It is an operator on a space of appropriately defined functions.

Heuristically, it captures the local evolution of the semigroup. In the case of a diffusion

model, this generator is known to be a second-order differential operator:

Bf =

(
β +

1

2
|ξ|2
)
f + (σξ′ + µ) · ∂f

∂x
+

1

2
trace

(
σσ′

∂2f

∂x∂x′

)
.

It is convenient to express the corresponding eigenvalue equation in terms of log e after

dividing the equation by e:

ρ =

(
β +

1

2
|ξ|2
)

+ (σξ′ + µ) · ∂ log e

∂x
+

1

2
trace

(
σσ′

∂2 log e

∂x∂x′

)
+

1

2

(
∂ log e

∂x

)′
σσ′

(
∂ log e

∂x

)
We have seen the finite-state counterpart to this equation in section 4.1.

Typically it suffices to solve the local equation (27) to obtain a solution to (25). See

Hansen and Scheinkman (2008) for a more detailed discussion of this issue. In the finite-
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state Markov model of section 4.1, convenient and well known sufficient conditions exist for

there to be a unique (up to scale) positive eigenfunction satisfying (25). More generally,

however, this uniqueness will not hold. Instead I will obtain uniqueness from additional

considerations.

Given a solution to (25), I construct a martingale via:

M̂t = exp(−ρt)Mt

[
e(Xt)

e(X0)

]
,

which is itself a multiplicative functional. The multiplicative decomposition (21) follows

immediately by letting ê = 1
e

and solving for M in terms of M̂ , ρ and ê.

5.2 Additive versus multiplicative decomposition

There are important differences in the study of additive and multiplicative functionals and

decompositions. For instance, principal eigenfunction e in the multiplicative factorization

(21) is not the exponential of the the function g used in the additive decomposition (5):

exp[g(x)] 6= e(x).

In special cases, however, the two are related.

Example 5.2. Consider again example 3.3 and recall the additive functional:

dYt = νdt+HXtdt+ FdWt.

Form

Mt = exp(Yt).

While the exponential of a martingale is not a martingale, in this case the exponential of the

additive martingale will become a martingale provided that we multiply the additive mar-

tingale by an exponential function of time. This simple adjustment exploits the lognormal

specification as follows:

M̂t = exp

(
Ŷt −

t

2
|F −HA−1B|2

)
.
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is a martingale. The growth rate for M is:

ρ(M) = ν +
|F −HA−1B|2

2

In this example it is easy to go from a martingale decomposition of an additive func-

tional to that of a multiplicative functional. An equivalent way to proceed is to build e as an

exponential of a linear function of x, and to seek a solution to (27). It may be verified that

e(x) = exp(−HA−1x) = exp[g(x)] is the solution to this equation for ρ = ν + |F−HA−1B|2
2

.

Thus e is obtained by exponentiating the function g used in the additive martingale con-

struction. The eigenvalue ρ includes an extra volatility adjustment. This is typical in

log-normal models. In this case the relevant variance, |F −HA−1B|2, is that of the addi-

tive martingale scaled by the time interval of evolution.

This adjustment illustrates both the discount-rate reduction of Newell and Pizer (2003,

2004) in a special case and the ambiguity of this comparison in general. When M is

a discount factor process constructed with F = 0, the long-term discount rate is −ν −
|HA−1B|2

2
and the short-term (instantaneous) rate is −ν −HXt. On average, the long-term

rate is smaller, consistent with the outcome of problem 4.3. If, however, the stochastic

discount factor has F 6= 0, the long-term rate is −ν − |F−HA
−1B|2

2
and the short-term rate

is −ν −HXt− |F |
2

2
. The ordering of short-term and long-term discount rates now depends

on the relative magnitude of the instantaneous volatility, |F |, and the long-term volatility,

|F −HA−1B|, of the logarithm of the stochastic discount factor process.

Consider now two log-normal functionals M [1] and M [2] parameterized by (ηi, Fi, Hi)

for i = 1, 2. A simple calculation reveals that

ρ(M [1]M [2])− ρ(M [1])− ρ(M [2]) = (F1 −H1A
−1B) · (F2 −H2A

−1B),

which is the covariance of the increments to the martingale components of logM [1] and

logM [2]. When M [1] is a stochastic discount factor and M [2] is a stochastic growth factor,

from formula (19) it follows that the negative of this covariance is the long-term risk

premium.

In log-normal example 5.2 there is a simple link between the additive decomposition

and the multiplicative factorization. My next example shows that this link breaks down

when volatility is state dependent.
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Example 5.3. Consider again Example 3.4, and recall the additive functional:

dYt = νdt+H1X
[1]
t dt+H2(X

[2]
t − 1)dt+

√
X

[2]
t FdWt.

Form

Mt = exp(Yt).

Guess a solution e(x) = exp (α · x) where x =

[
x1

x2

]
and α =

[
α1

α2

]
. To compute ρ(M), I

solve a special case of (27):

ν + x1
′ (A11

′α1 +H1
′) + (x2 − 1) (A12

′α1 + A22α2 +H2) +
1

2
x2|α′B + F |2 = ρ.

which I derive as a special case of (27). Thus the coefficients on x1 and x2 are zero when:

A11
′α1 +H1

′ = 0

A12
′α1 + A22α2 +H2 +

1

2
|α1
′B1 + α2B2 + F |2 = 0. (28)

The first equation can be solved for α1 and the second one for α2 given α1. The solution to

the first equation is:

α1 = −(A11
′)−1H1

′

The second equation is quadratic in α2, so there may be two solutions. Specifically,

α2 =−
(
B2 · F + A22

|B2|2

)
±
√
|B2 · F + A22|2 − |B2|2 (|F −H1(A11)−1B1|2 + 2H2 − 2H1(A11)−1A12)

|B2|2
, (29)

provided that the term under the square root sign is positive. Notice in particular that this

term will be positive for sufficiently small |B2|. Finally,

ρ = ν − (A12
′α1 + A22α2 +H2).

In contrast to example 5.2, e is not the exponential of the function g used in the additive

martingale construction in example 5.3. Moreover, in example 5.3 there are two possible

solutions for e that are exponentials of linear functions of the state vector. I will have cause
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to select one of these solutions as the interesting one to use in approximation. Finally, twice

the difference between ν and ρ is no longer interpretable as a long-run variance.

5.3 Martingales and changes in probabilities

Why might positive multiplicative martingales be of interest? A positive martingale scaled

to have unit expectation is known to induce an alternative probability measure. This trick

is a familiar one from asset pricing, but it is valuable in many other contexts. Since M̂ is

a martingale, I form the distorted or twisted expectation:

Ê [f(Xt)|X0] = E
[
M̂tf(Xt)|X0

]
.

For each time horizon t, I define an alternative conditional expectation operator. The

martingale property is needed so that the resulting family of conditional expectation oper-

ators obeys the Law of Iterated Expectations. It insures consistency between the operators

defined using M̂t+τ and M̂t for expectations of random variables that are in the date t condi-

tioning information sets. Moreover, with this (multiplicative) construction of a martingale,

the process remains Markov under the change in probability measure.

I present a method for long-run approximation, which is quite distinct from log-linear

methods that approximate around a steady state. Instead a martingale component of M is

used to change the probability measure, and approximation can proceed using tools from

the study of Markov processes with stable stochastic dynamics. The stability condition is

presumed to hold under the distorted or twisted probability distribution.

Theorem 5.4. Given a multiplicative functional M , suppose that e and ρ satisfy equation

(26) and that X is stochastically stable under the ·̂ probability measure. Then

E [Mtf(Xt)|X0 = x] = exp(ρt)Ê

[
f(Xt)

e(Xt)
|X0 = x

]
e(x).

Moreover,

lim
t→∞

exp(−ρt)E [Mtf(Xt)|X0 = x] = Ê [f(Xt)ê(Xt)] e(x)

provided that Ê [f(Xt)ê(Xt)] is finite where ê = 1/e.

It follows from Theorem 5.4 that once we scale by the growth rate ρ, we obtain a one-

factor representation of long-term behavior. Changing the function f simply changes the
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coefficient on the function e. Thus the state dependence is approximately proportional to

e as the horizon becomes large. For this method to justify our previous limits, we require

that f ê have a finite expectation under the ·̂ probability measure. The class of functions f

for which this approximation works depends on the stationary distribution for the Markov

state of the ·̂ probability measure and the function ê. The resulting functions f of the

Markov state have transient contributions to valuation since for these components:

lim
t→∞

1

t
logE [Mtf(Xt)|X0] = ρ(M).

Definition 5.5. For a given multiplicative functional M , a function f(X) is transient if X

is stochastically stable under the probability measure implied by the martingale component

and Ê[f(Xt)ê(Xt)] is well defined and finite.

The family of f ’s that define transient processes determines the sense in which the principal

eigenvalue and function dominate in the long run. How rich this collection will be is problem

specific. As we will see, there are important examples when this density has a fat tail which

limits the range of the approximation. On the other hand, the process X can be strongly

dependent under the ·̂ probability measure.

As I noted previously, there is an extensive set of tools for studying the stability of

Markov processes that can be brought to bear on this problem. For instance, see Meyn

and Tweedie (1993) for a survey of such methods based on the use of Foster-Lyapunov

criteria. See Rosenblatt (1971), Bhattacharya (1982) and Hansen and Scheinkman (1995)

for alternative approaches based on mean-square approximation. While there may be

multiple representations of the form (21), Hansen and Scheinkman (2008) show that there

is at most one such representation for which the process X is stochastically stable.

Recall that in example 5.3 we found two solutions for α2 by solving the quadratic

equation (28). As an implication of the Girsanov Theorem, associated with each solution

is an alternative probability measure under which

dWt =

√
X

[2]
t (F ′ +B1

′α1
′ +B2

′α2)) dt+ dŴt.

where Ŵt is a multivariate standard Brownian motion under the twisted measure. The

implied twisted evolution equation for X [1] is:

dX
[1]
t = A11X

[1]
t dt+ A12(X

[2]
t − 1)dt+

(
B1F

′ + |B1|2α1

)
X

[2]
t dt+ dŴt,
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and for X [2] is

dX
[2]
t = A22(X

[2]
t − 1)dt+

(
B2F

′ + |B2|2α2

)
X

[2]
t dt+

√
X

[2]
t dŴt

= ±
√
|B2F ′ + A22|2 − |B2|2 (|F −H1(A11)−1B1|2 + 2H2 − 2H1(A11)−1A12)X

[2]
t dt

−A22dt+

√
X

[2]
t dŴt,

where in the second representation I have substituted from solution (29). I select the

“minus” solution to achieve stochastic stability.

5.4 Long-run unusual behavior of multiplicative martingales

As I have shown, the martingale component M̂ is valuable as a means of changing the

probability measure and studying approximation as the time horizon becomes large. The

martingale is useful provided that implies a stochastic evolution that is stochastically sta-

ble. This change of measure is what makes a multiplicative martingale valuable analytically

valuable as a means of long-term approximation. From another perspective, however, the

multiplicative martingale can have degenerate or unusual behavior in the limit. This behav-

ior does not resemble the central limit approximation I deduced for an additive martingale.

Since a multiplicative martingale is positive, it is bounded from below. By the Martin-

gale Convergence Theorem, M̂ converges to a limiting random variable that I denote M̂∞.

While

E
(
M̂t|X0 = x

)
= 1

for all t, it may be that E
(
M̂∞|F0

)
≤ 1 and is often zero. For instance, it is zero in the

log-normal example 3.3. While the martingale induces an alternative “twisted ” probability

measure, it does so in a way that is not absolutely continuous in the limit as t becomes

arbitrarily large. The twisted probability of limit events may assign positive probability to

events that previously had measure zero. The multiplicative martingale remains valuable

as a change of measure when the stochastic dynamics are stable even though the martingale

itself may converge to zero.

I obtain a more refined characterization of the behavior following an approach initiated

by Chernoff (1952).23 Specifically I bound a threshold probability by taking expectations

23See Newman and Stuck (1979) for a continuous-time Markov version of this formulation.
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of a dominating function:

1

t
logPr

{
M̂t ≥ exp(b)|X0 = x

}
≤ 1

t
logE

[
(M̂t)

a|X0 = x
]
− ab

t
≤ 0

for any 0 ≤ a ≤ 1 and any real number b. Provided that the left-hand side limit is strictly

negative, I have an exponential bound on the threshold probability for the multiplicative

martingale as the horizon is extended. This bound may be optimized by the choice of a.

Notice that M̂ a is itself a multiplicative functional (in fact a multiplicative supermartingale)

and can be studied using the methods described in this paper. Such bounds give a precise

sense in which large positive movements in M̂ over long horizons are unlikely. Notice

that as the horizon gets large the contribution of b to the bound on the right-hand side

becomes inconsequential. The limiting exponential decay rate does not depend on the

chosen threshold. Thus while M̂ is used productively as a change in probability measure

used in long-term approximation, the process itself can become small. For this reason,

I find (21) most interesting as a DVD, than as a directly interpretable factorization of

a multiplicative stochastic process.24 In particular, the martingale gives an alternative

probability measure that is convenient to represent risk premia and prices over alternative

payoff horizons.

5.5 Transient model components

I now suggest what it means for there to be temporary growth components or temporary

components to stochastic discount factors. I focus on a stochastic discount factor pro-

cess implied by an asset pricing model, but there is an entirely analogous treatment of a

stochastic growth functional.

Consider a benchmark valuation model represented by a stochastic discount factor,

M = S, or the product of a stochastic discount functional and a reference growth functional

M = SG. I ask: what modifications have transient implications for valuation? The tools I

described in this section give an answer.

Given an M implied by a benchmark valuation model, recall our multiplicative factor-

ization (21):

Mt = exp(ρt)M̂t
e(X0)

e(Xt)
.

24See Alvarez and Jermann (2000) for its use as a direct decomposition of a stochastic discount factor
process.
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Moreover, suppose that under the associated ·̂ probability measure X satisfies a stochastic

stability condition 5.1. Consider an alternative model of the form:

M∗
t = Mt

f̂(Xt)

f̂(X0)
(30)

for some f̂ where M is used to represent a benchmark model and M∗ an alternative model.

As argued by Bansal and Lehmann (1997) and others, a variety of asset pricing models

can be represented like this with the time-separable power utility model used to construct

M . Function f̂ may be induced by changes in the preferences of investors such as habit

persistence or social externalities. I will illustrate such representations in section 7. In light

of (30), a candidate factorization for M∗ is:

M∗
t = exp(ρt)M̂t

e(X0)f̂(Xt)

e(Xt)f̂(X0)
.

The exponential and martingale components remain the same as for the factorization of

M . This gives me an operational notion of a transient change in valuation.

Definition 5.6. The difference in the semigroups associated with M∗ and M is transient if

their multiplicative factorizations share the same exponential growth (or decay) component:

exp(ρt) and the same martingale component: M̂ for which the process X is stochastically

stable under the implied change in probability measure.

When the difference between the semigroups associated with M and M∗ is transient,

long-term components to the factorizations are the same. The principal eigenfunctions,

however, can be different. For instance, the principal eigenfunction for M∗ given by (30)

is: e∗ = e/f̂ .25 The difference between e and e∗ alters the family of transient functions

because for f to be transient for M∗:

Ê
[
f(Xt)ê(Xt)f̂(Xt)

]
<∞.

In particular, this restriction depends on f̂ . Thus the collection of functions for which the

long-term approximation methods are applicable is altered. Moreover, even if f is transient

25My reference to e∗ as an eigenfunction is a bit loose because I have not prespecified a space of functions
that it resides in. Instead I use the formalization of Hansen and Scheinkman (2008) that defines an
eigenfunction using a martingale approach.
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for both M and M∗, the (state dependent) coefficient for the hyperbolic approximation

differs whenever:

Ê [f(Xt)ê(Xt)] 6= log Ê
[
f(Xt)ê(Xt)f̂

]
− log f̂(x).

What have I established in this section? I have a constructed a factorization of a

multiplicative functional first to characterize how a DVD converges to its long-term limit,

and second to reveal when alternative economic models have the same long-term limiting

valuations.

6 Perturbation

Derivatives computed at a baseline configuration of parameters reveal sensitivity of a val-

uation model to small changes in a parameters. For instance, in Hansen et al. (2008a) the

pricing implications of a parameterized family of valuation models depend on the intertem-

poral elasticity of the investors. They compute derivatives as an alternative to solving the

model for the alternative parameter configurations. A risk price is also a derivative. It is a

marginal change in a risk premium induced by a marginal change in risk exposure. Thus a

key to constructing a risk price is to parameterize the risk exposure of a hypothetical cash

flow.

In both of these applications, the multiplicative functionals used in constructing the

semigroup depend on a model parameter. Thus I consider M(ε) as a parameterized family

of multiplicative functionals and analyze value implications in the vicinity of ε = 0. The

parameter can be a preference parameter as in the work of Hansen et al. (2008a), or it

can be a parameter that governs the exposure to a source of long-term risk that is to be

valued. My specific aim is to study how risk-premia associated with alternative investment

horizons depend on the parameter ε. In the Hansen et al. (2008a) application, the stochastic

discount factor process is depicted as S(ε) and M(ε) = S(ε)G where G is the stochastic

growth component of a hypothetical or real cash flow. In the applications I consider in

section 7, ε parameterizes the long-run risk exposure of a hypothetical cash flow. In this

case M(ε) = SG(ε) and the derivative of risk premium gives a risk price for the respective

horizon.

With a perturbation analysis, it is possible to exploit a given solution to a model in the

study of sensitivity to model specification. Changing the parameter ε of M(ε) allows me to
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perturb the valuations associated with this process. My choice of a scalar parameterization

is made for notational convenience. The multivariate extension is straightforward.

In my applications in section 7, G(ε) is a parameterized family of multiplicative martin-

gales. I use martingales in order to feature the role of pricing dynamics, since the trajectory

of expected cash flows will be identically equal to one when G(ε) is a multiplicative mar-

tingale. I feature diffusion models, so G(ε) can be expressed as

logGt(ε) =

∫ t

0

ξ(Xu; ε)dWu −
1

2

∫ t

0

|ξ(Xu; ε)|2du.

The respective risk price is:

risk price = − d

dε

1

t
logE[StGt(ε)|X0 = x]

∣∣∣∣
ε=0

. (31)

By exploring alternative parameterizations of risk exposures, I can infer which directions are

of most concern to investors as reflected by pricing implications of an underlying economic

model.

The mathematical finance literature includes calculations of the local sensitivity of prices

of derivative securities to underlying parameters. The finite horizon risk prices that interest

me have the same structure as some of the calculations in this literature.26 The specific

calculation that interest me can be obtained by adapting a formula in Fourni et al. (1999).

Imitating the calculation in their Proposition 3.1, construct

∆t =

∫ t

0

Dξ(Xu; 0) · [dWu − ξ(Xu; 0)′du] (32)

where Dξ(Xu; ε) is the partial derivative of ξ with respect to ε. Notice that ∆ is an additive

functional. I use this functional to represent the derivative of interest:27

d

dε
logE [StGt(ε)f(Xt)|X0 = x]

∣∣∣∣
ε=0

=
E [StGt(0)f(Xt)∆t|X0 = x]

E [StGt(0)f(Xt)|X0 = x]
. (33)

The results in Fourni et al. (1999) have been extended to include some specifications of

jumps in Davis and Johansson (2006) with the corresponding modifications of the additive

26Such derivatives are often referred to as the “Greeks” in the option pricing literature.
27Fourni et al. (1999) derive this formula after imposing some regularity conditions that I do not repeat

here. Their regularity conditions are sufficient conditions and turn out not to satisfied for some of my
examples. For these I examples, however, I can perform direct calculations of the sensitivities.
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functional ∆.

To study limiting properties, I first solve the principal eigenvalue problem for ε = 0 and

use the solution to construct a probability measure ·̂ as we described previously. Recall

that in the stochastic evolution under the twisted probablity measure, dWt becomes a

multivariate standard Brownian motion with an explicit drift distortion that depends on

the Markov state. With this change of measure,

d

dε
logE [StGt(ε)f(Xt)|X0 = x]

∣∣∣∣
ε=0

=
Ê
(
f(Xt)
e(Xt)

∆t|X0 = x
)

Ê
(
f(Xt)
e(Xt)
|X0 = x

)
where e is the principal eigenfunction for the semigroup constructed from M = SG(0).

In the remainder of this section I will show that the limiting derivative is:

d

dε
ρ(ε)|ε=0 =

1

t
Ê∆t (34)

which can be evaluated for any choice of t including choices that are arbitrarily small.

Notice that ∆ is an additive functional. Thus, I obtain the derivative of ρ by computing the

average of the average trend growth of additive functional ∆ under the twisted ·̂ probability

measure. While many readers may just prefer to accept this formula including the limiting

version as the investment horizon becomes small, for completeness I give a (heuristic)

derivation.

6.1 Long-term limiting behavior

Let M(ε) = SG(ε), and recall the decomposition:

Mt(ε) = exp [ρ(ε)t] M̂t(ε)
e(X0; ε)

e(Xt; ε)

where I have used our parameterization ofM and the fact that parameterizingM in terms of

ε is equivalent to parameterizing the components. Consider first the martingale component.

Here I borrow an insight from maximum likelihood estimation. Note that

E
[
M̂t(ε)|X0 = x

]
= 1
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for all ε. The derivative of this expectation with respect to ε is necessarily zero. Thus

Ê

[
d

dε
log M̂t(ε)|ε=0|X0 = x

]
= E

[
d

dε
M̂t(ε)|X0 = x

]
= 0.

Many readers familiar with statistics will have a feeling of familiarity. This argument is

essentially the usual argument from maximum likelihood estimation for why a score vector

for a likelihood function has mean zero where d
dε

log M̂t(ε) evaluated at ε = 0 is the score

of the likelihood over an interval of time t.

Now use the decomposition and differentiate logMt(ε)

d

dε
logMt(ε) = t

dρ(ε)

dε
+

d

dε
log M̂t(ε)−

d

dε
log e(Xt; ε) +

d

dε
log e(X0; ε).

Take expectations and use the fact that X is stationary under the ·̂ probability measure to

obtain
dρ(ε)

dε

∣∣∣∣
ε=0

=
1

t
Ê

[
d

dε
logMt(ε)

∣∣∣∣
ε=0

]
. (35)

This argument was not specific to diffusions there it applies to models with jumps as

well. In the special case of a diffusion it agrees with (34).

6.2 Using the local evolution

I now make formula (35) operational by studying the limiting version as t declines to zero.

Under the ·̂ change of measure, I let ξ̂(Xt)dt denote the drift of the Brownian motion W

implying that new drift for X is

µ̂(x) = µ(x) + σ(x)ξ̂(x).

I let

η̂(dy|x) = exp[χ̂(y, x)]η(dy|x)

denote the new measure used to capture local evolution of the jump component to the

Markov process. Recall that this conditional measure encodes the jump intensity and the

jump distribution conditioned on a jump taking place.

The functional logMt(ε) is an additive functional, and its derivative is as well. Recall
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the continuous time model of Y we specified in equation (3):

Yt(ε) =

∫ t

0

β(Xu; ε)du+

∫ t

0

ξ(Xu; ε) · dWu +
∑

0<u≤t

χ(Xu, Xu−; ε)

and form M(a) = exp[Y (a)]. It is most convenient to take limits of (34) as t → 0. This

entails computing an average local mean under the distorted distribution:

d

dε
ρ(ε)|ε=0 = Ê

(
d

dε

[
β(Xt; ε) + ξ(Xt; ε) · ξ̂(Xt)

]∣∣∣∣
ε=0

)
+Ê

[∫
d

dε
χ(y,Xt; ε)

∣∣∣∣
ε=0

exp[χ̂(y,Xt)]η(dy|Xt)

]
(36)

where we have used the fact that the Brownian motion has ξ̂(Xt)dt as the drift under the ·̂
distribution and used the conditional measure exp[χ̂(y,Xt)]η(dy|Xt) to construct the ·̂ the

jump intensity and the jump distribution conditioned on the current Markov state.

I have been a bit heuristic or cavalier about taking derivatives. Formal treatments

do currently exist in the applied mathematics literature. For example Kontoyiannis and

Meyn (2003) (see their Proposition 6.2) consider smoothness of parameterized families of

operators in their formal development of large deviation results for Markov processes.

6.3 Convergence

Will the hyperbolic convergence extend to the risk prices? It carries over the in example

economies that I consider, and there are good reasons to expect that a more general analysis

is possible. From formulas (33) and (34),

d

dε
logE [StGt(ε)f(Xt)|X0 = x]

∣∣∣∣
ε=0

− t d
dε
ρ(ε)|ε=0 =

Ê
[
f(Xt)
e(Xt)

(
∆t − Ê∆t

)
|X0 = x

]
Ê
[
f(Xt)
e(Xt)
|X0 = x

] .

For simplicity, suppose that f = e, and consider the limit:

lim
t→∞

Ê
(

∆t − Ê∆t|X0 = x
)
. (37)

Recall that ∆ is an additive functional, and Theorem 3.2 gives a martingale decomposition

of such a functional. It is the decomposition under that change of measure that interests

me. Subtracting the mean of ∆t in expression (37) removes the linear trend component,
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and the conditional expectation of the martingale component is zero. Thus

Ê
(

∆t − Ê∆t|X0 = x
)

= −Ê [ĝ(Xt)|X0 = x] + ĝ(x)

where ĝ is the g of Theorem 3.2 for ∆ under the change of measure. Thus

lim
t→∞

Ê
(

∆t − Ê∆t|X0 = x
)

= −Êĝ(Xt) + ĝ(x).

More generally, that is when f 6= e, I expect the martingale component of ∆ to contribute

to this limit and an additional computation is required.28

7 Applications

In my study of asset pricing, I consider two limits. One reproduces the local risk prices

familiar from asset pricing theory by taking limits as the investment horizon shrinks to zero,

and the other constructs long-term risk prices as limits when the investment horizon is made

arbitrarily large. Intermediate time frames form a “term structure” of risk prices between

these two limits. These dynamics are conveniently characterized using the properties of

the twisted Markov transition described in section 5.

I have already characterized long-term risk premia in the presence of stochastic growth

using the formula:

ρ(G) + ρ(S)− ρ(SG).

In what follows, I let G be a multiplicative martingale as a way to abstract from cash

flow dynamics. For such a G, ρ(G) = 0 because there is no expected cash flow growth.

A reader may object by claiming that I have now eliminated growth altogether. Even

worse almost all of the sample paths of G may converge to zero. Consider, however, a

more general multiplicative specification of a cash flow. Typically it is the martingale

component that determines the long-term risk prices and not the transient component.

Moreover, fluctuations in growth are embedded in the martingale component, and the

deterministic exponential growth component does not alter risk premia or prices at any

horizon.29 Instead of extracting martingale components from initial multiplicative growth

28Potentially, the limit calculation could exploit Properties P2 and P6 of Malliavin calculus described in
Fourni et al. (1999).

29While multiplicative martingales may have degenerate long-run behavior, we could apply Theorem 3.2
and eliminate the trend term in logarithms. This allows for central-limit-type behavior for long horizons,
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processes, I will build them directly and explore the resulting pricing implications. I use

the construction of risk prices given in section 6 by computing derivatives of the form (31).

In this section I ask: what are the long-term implications for alternative models of the

stochastic discount factor? Among the models I consider are those designed to enhance

short-term risk prices and induce variation in these prices over time. I use the apparatus

described in previous sections to explore the implications for long-term risk prices, and I

provide revealing comparisons across some models that are currently featured in the asset

pricing literature. The calculations abstract from production, but they provide a dynamic

characterization of a) the impact of risk aversion over alternative investment horizons,

b) impact of risk prices on risk premia. These calculations will deliberately extrapolate

value implications beyond the support of the data by looking at pricing implications for

hypothetical cash flows at different horizons. In this sense, I will be using the models as

“structural”. These pricing calculations are of direct interest and they are informative

for welfare cost calculations using the methods in Hansen et al. (1999) and Alvarez and

Jermann (2004).

7.1 Stochastic discount factors

Multiplicative representations pervade the asset pricing literature. Various changes have

been proposed for the familiar power utility model. There is menu of such models in the

literature featuring alternative departures. Consider an initial benchmark specification that

emerges when investors have preferences represented using discounted power utility:

St = exp(−δt)
(
Ct
C0

)−γ
.

Many alterations in this model take the form:

S∗t = St
f̂(Xt)

f̂(X0)
.

Transient components in asset pricing models have been included to produce short run

fluctuations in asset prices. As argued by Bansal and Lehmann (1997), these fluctuations

may take the form of habit persistence or as an extension of the power utility model of

investor preferences.

and it does not alter the implied risk premia and corresponding risk prices.
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7.2 Models without consumption predictability

In this subsection I explore a simple model of consumption dynamics under which the

power utility model has transparent implications. My aim is to reveal how risk prices

change across horizons for alternative models.

Suppose that consumption is a geometric Brownian motion:

d logCt = µcdt+ FcdWt,

where Ct is aggregate consumption. I allow the Brownian motion {Wt : t ≥ 0} to be

multivariate.30

Construct S in accordance with the power utility model:

St = exp

(
−δt− γtµc − γ

∫ t

0

Fc · dWu

)
.

where 1
γ

is intertemporal elasticity of substitution and δ is the subjective rate of discount.

For risk pricing, I introduce a growth functional that is a martingale:

Gt = exp

(∫ t

0

Fg · dWu −
t

2
|Fg|2

)
for the reasons I stated at the outset of this section.

In what follows I will make comparisons between a model with investors that have pref-

erences represented by discounted, time-separable, power utility (a Breeden model) and

a model in which a temporally dependent social externality is introduced in the manner

proposed by Campbell and Cochrane (1999). In terms of my previous notation, S is the

stochastic discount factor for the power utility model and S∗ is the stochastic discount factor

for a decentralized Campbell and Cochrane (1999) model. The reference to decentraliza-

tion is important because internalizing the social externality alters the stochastic discount

factor. A social planner would internalize this externality and this would be reflected in

the stochastic discount factor.

I will provide a precise formula for S∗ subsequently, but I first describe the results. If

the power parameter γ is held fixed across the model specifications, the local risk prices

30Here I allow for W to generate a larger filtration that the underlying Markov process X. What is critical
for me is that the Markov dynamics are not altered with this more refined filtration. As emphasized to me
by Eric Renault, this can be appropriately formulated as a statement that additional Brownian increments
to be priced do not Granger-cause the underlying Markov process.
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are known to be be very different as I will illustrate. Not only are they systematically

larger with the consumption externality, they vary over time. What happens as we change

horizons? To address this, I study the limit prices. Specifically, I characterize the limiting

risk premia:

risk premium = ρ(S∗) + ρ(G)− ρ(S∗G)

and see how they change as I alter the risk exposure. The risk prices are the derivatives of

the risk premium with respect to Fg used to represent stochastic growth.

By construction, ρ(G) = 0. The long-term risk price vector for the Breeden (1979)’s

model is γFc. I will show that the long-term risk prices for the Campbell-Cochrane model

remain the same as those in the Breeden (1979) model with a very important proviso.

There is a discontinuity when Fg = 0. Specifically, I will show that

risk premium = γFc · Fg + r − r∗. (38)

where r is the riskless rate of interest for the power utility model and r∗ is the corresponding

rate for the Campbell and Cochrane (1999) model for the same value of the subjective rate

of discount.31 This discontinuity is depicted in figure 2 in which we depict the risk premia

when investors care about external habits and when they do not. Typically the risk premia

converge to zero as Fg converges to zero, but in fact the limiting risk premium is the

differential in the risk-free rates between the the Campbell and Cochrane (1999) model

and the Breeden (1979) model. In figure 2 this discontinuity is sizable. It is the distance

on the vertical axis between the circle and the dot. While this discontinuity is only present

in the limit, it is indicative that risk prices are large near Fg = 0 for valuation over long

time horizons. Campbell and Cochrane (1999) show that the conditional second moment

of the stochastic factor diverges as the time horizon is extended. Our analysis gives a more

refined characterization of the limiting behavior. The limiting risk premia remain finite

and the limiting risk prices coincide with the Breeden (1979) model except at σg = 0. In

summary, the Campbell and Cochrane (1999) model has risk-premia that remain larger in

the limit as the investment horizon is increased than those in the Breeden (1979) model.

31I do not mean to imply that an econometrician or calibrator would select the same value of δ for each
model. For instance, Campbell and Cochrane (1999) and Wachter (2005) use values of the subjective rate
of discount that are much larger than would be used if the Breeden (1979) model was calibrated to asset
return data. Even if the subjective rate of discount for the Campbell-Cochrane model is to fit interest rates,
the calculation of r using this same subjective rate of discount, although counterfactual, is a revealing input
into the risk-premia formula for the Campbell-Cochrane model.
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The nonlinearity in this model induces an infinite risk price when evaluated at the point

at a which there is no exposure to growth-rate risk.

Next I use a specification of consumption externalities proposed by Santos and Veronesi

(2006). Santos and Veronesi (2006) imitate the increase in local prices that are present in

the Campbell-Cochrane model, but the term structure of risk prices is different. The limit

prices are the same as in a corresponding Breeden economy and as consequence are small.

Given the dramatically larger local risk prices, I study the dependence of these prices on

the investment horizon. Figure 3 gives the risk price trajectory for the Santos-Veronesi

model and shows the pull towards the Breeden model. The change of measure induced by

the martingale dictates the transitional dynamics of the risk prices. In this model there is

a state variable that measures private consumption relative to a social habit stock. The

trajectories depend on this state variable. As is evident in this figure, the sensitivity of

the risk prices to the Markov state vanishes much more quickly than the convergence to

the limit prices. This initial convergence is dictated by the Markov process under the

twisted evolution. As I argued previously the convergence of the risk premia trajectories

is eventually hyperbolic in the investment horizon (see formula (24)), and the same is

typically true of the risk-price trajectory. Figure 3 includes a hyperbolic function as a

reference curve, and the trajectories starting from different Markov states converge to this

hyperbolic function.32 Later in this section, I show how the coefficient for this hyperbolic

function depends on the stationary distribution under the twisted Markov law.

Figure 3 also illustrates the importance of state variability in the prices for shorter

investment horizons. The figure considers initializations at the .25 and .75 quantiles of

the stationary distribution for the Markov state. The sizeable differences in local prices,

eventually vanish but the when the state is set at the .25 quantile, there is a hump shape

to the risk-price trajectory.

7.3 Models with consumption predictability

Suppose now that consumption evolves according to the stochastic evolution of example

3.4 where

d logCt = µcdt+HcX
[1]
t dt+

√
X

[2]
t FcdWt (39)

32A special feature of this asset pricing model is that the approximating hyperbolic function does not
depend on the Markov state.
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Figure 2: Risk premia as function of risk exposure. The vertical axis is scaled by one
hundred so the risk premia are in percent. The dot-dashed line denotes the implied premia
when investors have “external habits”, and the solid line denotes the implied premia when
investors have expected utility preferences. The parameter values for the state evolution
are: Fc = 0.0054 and µc = .0056. I set γ = 2, and for the model with investors that have
external habits I set θ = 0 and ξ = .035. The parameter ξ is continuous time counterpart
to the corresponding parameter in Table 1 of Campbell and Cochrane (1999).
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Figure 3: Risk price as a function of the investment horizon. The horizontal axis is given
in quarterly time units. The bottom solid line denotes the implied prices when investors
have expected utility preferences and the upper line depicts the hyperbolic function that is
constructed using the invariant distributions under the twisted measures used to approx-
imate the limiting behavior of the long-term prices when investors have external habits.
The dashed line gives the risk-price trajectory obtained by setting x at the .75 quantile
of its stationary distribution, the dash-dotted gives this same trajectory when x is set at
the .25 quantile of its stationary distribution. The parameter values for the state evolution
are: Fc = 0.0054 and µc = .0056. I set γ = 1, and for the model with investors that have
external habits ξ = .04, κ = 80 and µx = .7. These parameters are taken from Table 1 of
Menzly et al. (2004) adjusted to a quarterly time scale.
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Consumption growth is predictable as captured by HcX
[1]
t , and consumption volatility is

state dependent as captured by X
[2]
t . As a point of reference, consider first the Breeden

(1979) model. Thus the stochastic discount factor is

St = exp

(
−δt− γµct− γ

∫ t

0

HcX
[1]
u du− γ

∫ t

0

√
X

[2]
u FcdWu

)
.

Consider a growth functional constructed as a martingale:

Gt = exp

(
−1

2
|Fg|2t−

1

2

∫ t

0

|Fg|2(X [2]
u − 1)du+

∫ t

0

√
X

[2]
u FgdWu

)
.

I compare the risk price implications for a model in which investors have power utility

(a Breeden model) to a counterpart model with recursive utility using a the risk-sensitive

parameterization of Kreps and Porteus (1978) preferences in which the elasticity of in-

tertemporal substitution is unity.33 The Kreps-Porteus investors care about the intertem-

poral composition of risk in contrast to investors in the Breeden model. In order that the

limiting risk prices are the same, I set the risk aversion parameter for the Kreps-Porteus

specification to coincide with that of the power used in the Breeden model. I justify this

claim in subsection 7.5 where I show formally that the stochastic discount factor S∗ for the

recursive utility model

S∗t = exp(−ρ[r]t)St

(
e[r](Xt)

e[r](X0)

)
(40)

for some scalar ρ[r] and some function e[r]. This is a limiting result as the subjective rate

of discount in investor preferences tends to zero. As a consequence of (40), M∗ = S∗G and

M = SG will share the same martingale component but not the same decay or growth

rate in a factorization of the form (21. The shared martingale shows that the long-term

risk return tradeoff is the same for the two models. On the other hand, the presence of ρ[r]

in formula (40) implies that the long-term interest rates is different for the two models. I

expect this because the elasticity of intertemporal substitution is different for the investors

in the two models.

For both models it is straightforward to compute the “term structure” of risk prices. I

depict the risk-price trajectories in figure 4 for a three-shock (three independent Brownian

motions) version of the consumption dynamics given in equation (39). These trajectories

33See Schroder and Skiadas (1999) for a continuous-time formulation of the consumption-portfolio prob-
lem for an investor with such preferences.
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Figure 4: Risk prices indexed by investment horizon. The horizontal axis is given in
quarterly time units. The upper solid line denotes recursive utility model, and dashed line
the expected utility model. The lower solid line gives the the hyperbolic approximation
for the expected utility model. The parameter values for the state evolution are: A11 =
−.025, A12 = 0, A22 = −.075, B1 = [0 .00038 0], B2 = [0 0 − .19], Hc = [1 0],
Fc = [0.0047 .00076 0]. The risk prices are by localizing around G = C. For illustrative
purposes I set γ = 10. See Hansen et al. (2008b) for estimation of the parameter values
for this model. How to “calibrate” γ is an interesting question in its own right, a question
that much has already been written on. I personally like the discussion in Hansen (2007).

To construct these plots I set X
[1]
0 = 0 and X

[2]
0 = 1.
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give the risk prices as a function of the payoff horizon. Each panel corresponds to a different

shock. A positive realization of the first shock increases the realized consumption growth;

(a positive realization of) the second shock increases the growth rate in consumption, and

(a positive realization of) the third shock diminishes consumption volatility. Shocks two

and three have persistent consequences because growth rates and volatility are modeled

as first-order autoregressions (see Example 3.4). The impulse-response function for the

logarithm of consumption depicted in the top panel of figure 1 is for the second shock.34

The formulas for risk-price trajectories are given in appendix C.

In the Breeden (1979) model, the local (instantaneous) risk price is negligible for shock

two and zero for shock three as displayed in panels two and three of figure 4. The risk

prices increase with horizon as the impact of the shocks on consumption becomes more

magnified over longer horizons. There are two forces behind the convergence. Growth

rates and volatility are highly persistent even under the change of measure. Moreover,

as I have already argued, the eventual convergence to the limiting prices is hyperbolic in

the investment horizon. This is reflected in the second and third panels, where I plot the

hyperbolic function derived for the limiting approximation.

Investor preferences are forward looking in the recursive utility model, and this is evident

in the nonzero local risk prices for shocks two and three as depicted in the panels two

and three of figure 4. The forward-looking component to these prices is reflected in the

continuation values for the consumption plans. The resulting enhancement of the local price

of the growth rate shock illustrates the pricing mechanism featured by Bansal and Yaron

(2004). The similarity of the risk prices over long horizons between the Breeden (1979)

model and the recursive utility model illustrates a finding in Hansen et al. (2008a).35 The

risk-price trajectory is literally flat for the first shock and the two models imply the same

risk prices. (See the first panel of 4.) The coincidence of the pricing trajectories for the

two models of investor preferences illustrates a point made by Kocherlakota (1990). While

stochastic volatility induces variation in local risk prices, the shock to volatility, like the

direct shock to consumption commands a relatively small risk price at all horizons. Note

34The top panel plots the function Hc

A1
[exp(tA11)− 1]B1 for the parameter values given in figure 4. In

the moving-average representation there is a scaling by the square root of the conditional variance process

X [2] evaluated at the appropriate calendar date. The mean-square norm of
√
X

[2]
t is one for its stationary

distribution, and thus I have not distorted the magnitude of the impulse responses. See Gallant et al.
(1993) for a discussion of impulse-response functions in nonlinear environments.

35The Hansen et al. (2008a) of consumption dynamics is different. They abstract from stochastic volatility
and they use a discrete-time vector autoregressive model of consumption and corporate earnings to model
the consumption dynamics.
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the range in the third panel is one half that of the other two panels.

In the remainder of this section, I provide the details of the calculations of risk premia

and prices. Uninterested readers can skip this material.

7.4 Risk prices in the absence of consumption predictability

I consider formally the implications of three different models of investor preferences.

7.4.1 Model of Breeden

For the benchmark S model and the martingale specification of the growth process G, the

martingale factorization is:

StGt = M̂t exp

[
−δt− γµct+

t

2
| − γFc + Fg|2 −

t

2
|Fg|2

]
,

where

M̂t = exp

[∫ t

0

(Fg − γFc)dWu −
t

2
| − γFc + Fg|2

]
.

It follows that

ρ(SG) = −δ − γµc +
γ2

2
|Fc|2 − γFc · Fg.

By setting Fg = 0,

ρ(S) = −δ − γµc +
γ2

2
|Fc|2.

Thus

ρ(G) + ρ(S)− ρ(GS) = γFc · Fg

The long-term risk prices can be computed by differentiating the right-hand side with

respect to the risk exposure vector Fg, and are thus equal to: γFc.

The dynamics of pricing for this example is degenerate, and in particular the local risk

price vector is also equal to γFc. Specifically, the local expected rate of return is given by

− lim
t↓0

1

t
logE [GtSt|X0 = x] = δ + γµc +−γ

2

2
|Fc|2 + γFc · Fg. (41)

By setting Fg = 0 notice that the instantaneous risk-free interest rate is constant and

identical to the long-term counterpart: −ν(S) = δ+γµc− γ2

2
|Fc|2. The vector of risk prices

obtained by differentiating the local risk-premium with respect to the risk-exposure vector
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Fg is γFc, which is identical to the long-run counterpart. This link between the short-run

and long-run prices follows because of the separability and absence of state dependence in

preferences of the investor and the lack of predictability in aggregate consumption. Later in

this section I will relax the underlying assumptions and explore the short-run and long-run

consequences.

In the calculations that follow, I will use the multiplicative martingale M̂ as a change

of measure. As a result the process W is no longer a standard Brownian motion but is

altered to have a drift −γFc + Fg. This is an application of the Girsanov Theorem, which

is used extensively in mathematical finance and elsewhere.

7.4.2 Campbell and Cochrane model

Campbell and Cochrane (1999) modify the Breeden asset pricing model with power utility

by introducing a stochastic subsistence point process C∗ that shares the same stochastic

growth properties as consumption. In the language of time series, this process is cointe-

grated with consumption. The process C∗ could be a social externality, which justifies its

dependence on consumption shocks. Alternatively, it is a way to model exogenous pref-

erence shifters that depend on the same shocks as consumption. The resulting stochastic

discount factor process is:

S∗t = exp(−δt)
[

(Ct − C∗t )−γ

(C0 − C∗0)−γ

]
We may rewrite this as:

S∗t = St

[
(1− C∗t /Ct)−γ

(1− C∗0/C0)−γ

]
.

In what follows let

Xt + b = − log(1− C∗t /Ct),

which we model as a process that exceeds zero. Notice that adding a positive constant b

to Xt preserves the positivity and it does not alter the pricing implications. It does alter

investor risk aversion (see Campbell and Cochrane (1999) or the appendix B). Using this

notation, write:

S∗t = St

[
exp (γXt)

exp (γX0)

]
.

In light of the discussions in section 5.5, I expect the differences between the valuation

implications for Campbell-Cochrane model and the Breeden model be transient. As I will
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show, however, a substantial qualification is required to make this conclusion.

Following Campbell and Cochrane (1999) and Wachter (2005), assume that

dXt = −ξ(Xt − µx)dt+ λ(Xt)FcdWt (42)

where I restrict λ(0) = 0. Squashing the variability at zero prevents the process X from

being attracted to zero. After the imposing the change of probability measure obtained

from the Breeden model, the law of motion for this equation is:

dXt = −ξ(Xt − µx)dt+ (Fg − γFc) · Fcλ(Xt)dt+ λ(Xt)FcdŴt. (43)

We use this evolution to compute the counterpart to (41):

lim
t↓0

1

t
logE [GtS

∗
t |X0 = x] = lim

t↓0

1

t
logE [GtSt exp[γ(Xt −X0)]|X0 = x]

= −r − γFc · Fg − lim
t↓0

1

t
Ê [exp[γ(Xt −X0)]|X0 = x]

= −r − γFc · Fg + γξ(x− µx) + γ(Fg − γFc) · Fcλ(x)

+γ2λ(x)2|Fc|2

2
(44)

where r is the risk-free rate from the Breeden economy (r = δ+ γµc + γ2

2
|Fc|2) and the last

equality is computed using Ito’s formula.

Consider first the interest rate behavior. Campbell and Cochrane (1999), suppose the

risk-rate is an affine function of the state: r∗+θ(x−µx). With this outcome, the parameter

θ controls the variation in the risk-free rate. To support this functional form the value of

r∗ is

r∗ = r + (θ − γξ)µx.

The volatility function λ is given by

λ(x) = 1− (1 + ζx)1/2

where

ζ
.
=

2(γξ − θ)
γ2|Fc|2

.

(See appendix B.) In order that the term inside the square root be positive, θ < γξ.
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The local risk prices for the Campbell-Cochrane model are the entries of the vector:

γFc − γλ(x)Fc = γ (1 + ζx)1/2 Fc

which follows because (44) is affine in Fg and the risk prices are the negative of the partial

derivative with respect to Fg. By design the local risk prices are state dependent and are

larger than in the power utility model for a given value of γ. Moreover, the state variable

increment dXt responds negatively to consumption growth shocks because λ(x) < 0. By

design, risk premia are larger in bad times as reflected by unexpectedly low realizations of

consumption growth. As demonstrated by Campbell and Cochrane (1999) in their closely

related discrete-time model, the coefficient of relative risk aversion is also enhanced. In

fact it is equal to γ[1− λ(µx)] for µx = x. (See also appendix B.)

Consider next the long-run behavior of value. I use evolution equation (43), and the

formula for the logarithmic derivative of the density for a scalar diffusion:

d log q

dx
=

2 drift

diffusion
− d log diffusion

dx
(45)

where the drift coefficient (local mean) is −ξ(x−µx) under the original measure or −ξ(x−
µx) + (Fg − γFc) · Fcλ(Xt) under the twisted measure. The diffusion coefficient (local

variance) is λ(x)2|Fc|2.
The limiting behavior is dominated by the constant term:

lim
x→∞

d log q

dx
= − γ2ξ

γξ − θ
< 0. (46)

As a consequence the process X is stationary under the twisted probability measure and

under the original probability measure as reflected by (42) and (43) respectively. It remains

to study what functions have finite moments under the twisted evolution.

When γξ > θ > 0, exp(γXt) has a finite expectation under the twisted stationary

density because the limit in (46) is strictly less than −γ. In contrast, when θ < 0 this

expectation will be infinite. Thus when θ > 0 the contribution to preferences will be

transient, but not when θ < 0.

When θ = 0, a more refined calculation is required because log q behaves like a positive
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scalar multiple of −γx for large x. This leads me to study,

lim
x→∞

√
x

(
d log q

dx
+ γ

)
= −2

(
Fg · Fc
Fc · Fc

)
ζ−1/2 = −Fg · Fc

|Fc|

√
2γ

ξ
.

For the modification in the stochastic discount factor to be transient, this term must be

negative because twice this limit is the coefficient on
√
x in the large x approximation of

log q(x) + γx. While this term is zero when Fg is zero, it will be negative provided that the

shocks to logGt and logCt are positively correlated.

I now characterize the limiting risk premia:

risk premium = ρ(S∗) + ρ(G)− ρ(S∗G).

By construction, ρ(G) = 0. When θ > 0,

risk premium = ρ(S∗)− ρ(S∗G) = γFc · Fg

as in the Breeden (1979) model. When θ = 0 and Fc ·Fg > 0, ρ(S∗G) is the same as in the

Breeden (1979) model:

ρ(S∗G) = −δ − γµg − γFc · Fg +
γ2

2
|Fc|2,

but ρ(S∗) differs and is given by the implied real interest rate r∗. This justifies formula

(38) and figure 2.36

I have just shown that the case in which θ = 0 has special limiting properties. Campbell

and Cochrane (1999) feature this case. The instantaneous interest rate is constant and equal

to r∗. The long-term interest rate is the same. Interestingly, when θ = 0, exp(γx) is a

strictly positive solution to the eigenvalue equation:

E [St exp(γXt)|X0 = x] = exp(−r∗t) exp(γx).

It is one of two such solutions since

E [St|Xo = x] = exp(−rt).
36Presumably, the risk prices evaluated at Fg = 0 are finite at any finite horizon, but they become

arbitrarily large as the valuation horizon is extended inducing a discontinuity in the limit.
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The multiplicative martingale

M̃t = exp(rt)St
exp(γXt)

exp(γX0)

implies a change in measure, but under this change of measure the process {Xt} is stochas-

tically unstable. See Appendix B.

What do I make of this? I constructed two alternative martingales related to the

stochastic discount factor process S and hence S∗. Each martingale was built using a

positive eigenfunction. Only one implies stable stochastic dynamics for X. As shown by

Hansen and Scheinkman (2008), this uniqueness is to be expected.

When θ = 0 the multiplicative martingale M̃ is the pertinent one for pricing discount

bond whereas the martingale M̂ for pricing growth rate risk over long horizons. The

discontinuity in the long-term risk premia as a function of Fg as expressed in (38) reflects

the separate roles of the two martingales in pricing. When θ > 0, only the multiplicative

martingale M̂ is pertinent to pricing.

7.4.3 Santos and Veronesi model

Santos and Veronesi (2006) consider a related model of the stochastic discount factor. The

stochastic discount factor has the form:

S∗t = St

(
Xt + 1

X0 + 1

)
.

In this case
C∗t
Ct

= 1− b(Xt + 1)−
1
γ

for some positive number b. Changing b alters the relationship between C and C∗, but not

the stochastic discount factor.

The process for X is a member of Wong (1964)’s class of Markov processes built to

imply stationary densities that are in the Pearson (1916) family. Wong (1964) characterizes

solutions to stochastic differential equations with a linear drift and a quadratic diffusion

coefficient. One such process is the one used by Santos and Veronesi:

dXt = −ξ(Xt − µx)dt+ λ(Xt)FcdWt, Xt > 0
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where

λ(Xt) = −κXt

and µx > 0.37 The specification of local volatility is designed to keep the process X above

unity. As in the Campbell-Cochrane specification, the process X responds negatively to a

consumption shock.

The local risk prices are now given by

γFc +
κx

x+ 1
Fc.

In addition to being state dependent, they exceed those implied by the power utility model

since the second term is always positive and they vary over time.

To study long-term pricing, we again use the twisted evolution equation (43) but with

this new specification of λ. The twisted law of motion for X is

dXt = −ξ̂ (Xt − µ̂x) dt− κXtFc · dŴt

where

ξ̂ = ξ − γκ|Fc|2 + κFc · Fg
µ̂x =

(
ξ

ξ̂

)
µx

This process remains in the class studied by Wong (1964). To explore its long-term

implications, formula (45) is again informative. The logarithmic derivative of the density

is
d log q̂(x)

dx
= −2

[
ξ̂(x− µ̂x)
κ2|Fc|2x2

− 1

x

]
.

As a consequence, the right tail behaves like x−ς where

ς = 2

(
ξ̂

κ2|Fc|2
+ 1

)

The twisted density q̂ has a finite first moment provided that ξ̂ is positive. The mean is

37This process is the F process of Wong (1964).

61



given by µ̂x. Thus provided that the mean reversion parameter ξ is sufficiently large

ξ ≥ γκ|Fc|2 − κFc · Fg. (47)

When inequality (47) is satisfied for an open set of values of Fg that includes zero, the

long-term risk prices agree with the power utility model.

A convenient feature of this Santos and Veronesi (2006) model is that the risk prices

can be more fully characterized by “paper and pencil”. In particular, the logarithm of the

expected return for horizon t is:

−1

t
logE [GtS

∗
t |X0 = x] = γFc · Fg −

1

t
log Ê (Xt + 1|X0 = x) +

1

t
log(x+ 1).

Moreover,

Ê (Xt + 1|X0 = x) = 1 +
[
1− exp

(
−tξ̂

)]
µ̂x + exp

(
−tξ̂

)
x

Thus the hyperbolic approximation to the risk premia trajectory is:

risk premium ≈ γFc · Fg −
1

t

[
log(1 + ξ̂) + log(1 + x)

]
The risk prices for a finite horizon are obtained by differentiating the risk premia with

respect to Fg.

In summary, provided that the mean revision parameter ξ is sufficiently large, the

behavior of the long-term risk prices for the Santos-Veronesi models are quite different

from those that arise in the Campbell-Cochrane specification. Their transient nature is

more evident, and there is no discontinuity at Fg = 0.

7.5 Risk prices in the presence of consumption predictability

In what follows I characterize formally the local prices and their long time horizon limits for

the Breeden model and the Kreps-Porteus model. Thus I justify what happens at both ends

of the “term structure” of risk prices, and I produce the corresponding twisted measure.

I specify the preferences for investors in the two models so that the long-term risk prices

are the same. To support this claim, I show that the martingale components used in the

changes of measure are the same for both models, and I produce the corresponding twisted

probability measures. By borrowing insights from the literature on robust control, I also

argue that risk prices for the Kreps-Porteus model can be interpreted in part as model
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uncertainty prices using recursive versions of investor preferences that reflect a robust

concern about model specification.

7.5.1 Risk prices for the Breeden model

The local risk price for dWt is √
X

[2]
t γFc.

Let

dYt = d logSt + d logGt,

and let

H1 = −γHc

H2 = −1

2
|Fg|2

F = −γFc + Fg

ν = −δ − γµc −
1

2
|Fg|2

Then this specification of Y is a special case of example 3.4. Applying formulas (36) and

(32), the long-term risk price is the expected drift under the twisted measure induced by

M̂ of

FgX
[2]
t dt−

√
X

[2]
t dWt

where

dWt =

√
X

[2]
t

[
F ′ + (B1)

′α
[b]
1 + (B2)

′α
[b]
2

]
dt+ dŴt

where Ŵ is a multivariate standard Brownian motion under this alternative measure. I

denote the positive eigenfunction by exp(α
[b]
1 · x1 + α

[b]
2 x2). Thus the long-term risk price

vector is:
Ê
(
X

[2]
t

)
[ γFc − (B1)

′α
[b]
1 − (B2)

′α
[b]
2 ]

local growth volatility

By construction X [2] has mean one under the original probability distribution. The

twisted distribution alters this mean because under the distorted probability

dX
[2]
t = A22(X

[2]
t − 1)dt+B2

[
F + (B2)

′α
[b]
2

]
X

[2]
t dt+

√
X

[2]
t dŴt

with Ŵ a multivariate standard Brownian motion. Rearranging terms in the drift coefficient
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gives

dX
[2]
t = Â22

(
X

[2]
t − µ̂2

)
dt+

√
X

[2]
t dŴt

where

Â22 = A22 +B2

[
F ′ + (B2)

′α
[b]
2

]
µ̂2 =

A22

Â22

= Ê
(
X

[2]
t

)
.

The twisted probability distribution will alter the X [1] dynamics as well.

I now interpret some of the contributions to this price vector. The term:

Ê
(
X

[2]
t

)
γFc

averages the local risk prices scaled by

√
X

[2]
t using the twisted distribution. The remaining

terms are induced by the predictability in the consumption growth rate and consumption

volatility. For instance,

−Ê
(
X

[2]
t

)
(B1)

′α
[b]
1 = −γÊ

(
X

[2]
t

)
(B1)

′[(A1)
′]−1(Hc)

′ (48)

reflects the temporal dependence in the growth rate of consumption, as featured in the long-

term pricing calculations by Hansen et al. (2008a). The third term reflects the temporal

dependence in volatility.

7.5.2 Pricing with risk-sensitive recursive utility

I now explore a limiting version of a specification of investor preferences that is known to

alter local prices. This limit allows me to explore the intersection between two literatures,

the literature in economics on recursive utility and the literature on risk-sensitive control

theory.

Discounted version of risk-sensitive control typically solves the date zero problem of the

investor (see Whittle (1990) for a discussion of the role of discounting). Hansen and Sargent

(1995) give a recursive utility version of risk-sensitive control that also accommodates

discounting, and Hansen et al. (2006) study this formulation in continuous time. Under this

specification, there is risk-sensitive adjustment to the future continuation value of future

consumption processes as in Kreps and Porteus (1978) and Epstein and Zin (1989) and it

64



avoids some of the pitfalls of the standard specification of risk-sensitive control. In what

follows I use a parameterization of Tallarini (2000) in which the elasticity of intertemporal

substitution is unity. This restriction facilitates analytical characterization. I will take

limits of the stochastic discount factor as the subjective rate of discount converges to

zero. Since consumption grows stochastically, this will push me outside the risk-sensitive,

undiscounted, ergodic control studied by Runolfsson (1994). In the discounted version of

recursive preferences, the stochastic discount factor is;

S∗t = exp(−δt)
(
C0

Ct

)
V̂t (49)

where V̂ is a martingale component of

{(
Vt
V0

)1−γ
: t ≥ 0

}
and V is the stochastic process

of continuation values.38

The process V and hence V̂ are constructed from the underlying consumption dynamics.

I use a homogeneous of degree one specification of the utility recursion to construct the

continuation value process V implying that any common scaling of current and future

consumption results in the same scaling of the continuation value. In formula (49) for a

stochastic discount factor, δ continues to be the subjective rate of discount and the inverse

ratio of consumption growth reflects the unitary intertemporal elasticity of substitution in

the preferences of the investor.

For this recursive utility model of investor preferences, the continuation value V and

consumption C share the same growth components. Their ratio Vt
Ct

can be expressed as a

function f̃ of the Markov state, and f̃ solves the equation:

δ log f̃(x) = lim
t↓0

E

[(
Ct
C0

)1−γ
f̃(Xt)|X0 = x

]
− f̃(x)

t
. (50)

The solution gives a formula for
(
Vt
Ct

)1−γ
= f̃(x) from which I solve for Vt

Ct
.

To study the relation between the stochastic discount factor S∗ and the stochastic

discount factor S for the power utility model, I take limits as δ tends to zero. While the

continuation value process becomes infinite, the ratio Vt
V0

remains well defined in the limit for

38The martingale component is obtained by removing the locally predictable component of{(
Vt

V0

)1−γ
: t ≥ 0

}
as in (20) and Ito and Watanabe (1965) and verifying that the local martingale is

in fact a martingale.
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all t as δ declines to zero. Call the resulting multiplicative process Ṽ . Similarly, construct

C̃ in the same fashion by dividing Ct by C0. The limiting stochastic discount factor can be

represented as:

S∗t =
V̂t

C̃t

where V̂ is a multiplicative martingale.

I will show that it is the martingale component of C̃1−γ in this limiting case. Equation

(50) ceases to have a solution when δ = 0. Instead I look for a positive eigenfunction

associated with the multiplicative functional C̃1−γ. Then(
Ṽt

C̃t

)1−γ

∝ e[r](Xt) exp(−ρ[r]t).

where e[r] is a positive eigenfunction and ρ[r] the corresponding principal eigenvalue associ-

ated with the multiplicative functional C̃1−γ.39 The dependence on t is necessary to allow

the continuation value ratio Ṽ to grow at a different rate than the consumption ratio C̃.

The eigenfunction and value are chosen so that the implied martingale induces a change of

measure with stable stochastic dynamics for X.

Recall that I constructed Ṽ to be one at date t = 0. As a consequence,

(Ṽt)
1−γ = exp(−ρ[r]t)

(
e[r](Xt)

e[r](X0)

)
(C̃t)

1−γ

The right-hand side is the multiplicative martingale component of C̃1−γ. Thus by extracting

the martingale component of (C̃)1−γ, I obtain the martingale V̂ = Ṽ 1−γ for the stochastic

discount factor S∗ in formula (49).

With this computation, I turn to studying the relation between S and S∗. Write

V̂t = exp(−ρ[r]t)

(
Ct
C0

)1−γ
e[r](Xt)

e[r](X0)
.

As a consequence,

S∗t =

(
C0

Ct

)
V̂t = exp(−ρ[r]t)St

(
e[r](Xt)

e[r](X0)

)
39Even though we have introduced stochastic growth in consumption, there is direct counterpart to ρ[r]

and e[r] in Runolfsson (1994)’s analysis of stochastic risk sensitive control in the absence of discounting.
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The stochastic discount factors for the Breeden model and the Kreps-Porteus model have

the same martingale components, although the decay rates are different. This represen-

tation suggests that the adjustment to preferences induces transient modifications of risk

premia while altering the long-run risk free rate. I expect the interest rate differences to

exists because the elasticity of substitution differs for the two models of investor prefer-

ences. The long-term risk price calculation given in (48) continues to apply to this model

even though the local prices are different from the Breeden (1979) model.40

I next consider the local or instantaneous prices for the recursive utility model. The

eigenvalue ρ[r] and eigenfunction e[r] capture the differences in the instantaneous interest

rate and the eigenfunction e[r] alters the local risk prices vis a vis the Breeden (1979) model.

These prices are given by √
X

[2]
t [γFc − (B1)

′α
[r]
1 − (B2)

′α
[r]
2 ].

The term

√
X

[2]
t [γFc is local price vector in the Breeden (1979) model. In the recursive

utility model, it is modified because of predictability in consumption growth and volatility.

The role of consumption predictability is:

−
√
X

[2]
t (B1)

′αr1 = (1− γ)

(√
X

[2]
t

)
(B1)

′[(A1)
′]−1(Hc)

′.

and is familiar from the analysis in Bansal and Yaron (2004), Campbell and Vuolteenaho

(2004) and Hansen et al. (2008a). It is a recursive utility enhancement of the local risk

prices based on predictability in consumption growth rates. The term

−(B2)
′α

[r]
2

gives an adjustment for the predictability of volatility and is analogous to an adjustment

in Bansal and Yaron (2004). There are counterparts to both of these adjustment in the

long-term risk prices given in formula (48).

As I remarked previously, there is an alternative interpretation of the risk-sensitive

model of investor preferences. Under this interpretation, V̂ is a martingale induced by

solving a penalized “worst-case” problem in which the given specification of consumption

40Hansen et al. (2008a) make this observation for a discrete-time log-linear model abstracting from
stochastic volatility. Thus distorted expectation in (48) plays no role in their analysis.
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dynamics is used as a benchmark model. The “robust” adjustment is made to this bench-

mark probability specification by solving a minimization problem that penalizes changes in

the probability law. For example, see Petersen et al. (2000) and Anderson et al. (2003).41

Associated with V̂ is a change in probability and this change alters the instantaneous

interest rate and the local prices relative to model in which investors use discounted log-

arithmic utility to rank consumption. Thus my calculations show formally how investor

concern about robustness induces approximately the same (as δ becomes small) long-term

risk prices as a model in which investors are endowed with a power utility with relative risk

aversion γ and no concern about robustness.

The preceding analysis exploits two important restrictions on investor preferences. The

intertemporal elasticity of substitution is unity and the subjective rate of discount is zero.

A natural extension is to compute two additional “derivatives” as a device to study the

impact of changing investor preferences. For the long-term risk premia, this can be done by

applying the perturbation method described in section 6. Hansen et al. (2008a) have used

this method to explore changes in the intertemporal elasticity of substitution.42 Perturbing

risk prices requires the computation of additional cross derivatives since a risk price is itself

a derivative.

7.6 Other models of asset prices

The examples that I have studied feature the role of investor preferences. A similar anal-

ysis applies to some equilibrium models with market frictions. The solvency constraint

models of Luttmer (1992), Alvarez and Jermann (2000) and Lustig (2007) have the same

multiplicative martingale components as the corresponding representative consumer models

without market frictions. While suggestive, a formal study of the type I have just presented

for other models would reveal the precise nature of this transient adjustment to stochastic

discount factors induced by solvency constraints and other forms of market imperfection.

Applying these methods to the disaster-recovery models of Rietz (1988), Barro (2006)

and Gourio (2008) will expand on the comparisons made across specifications of the con-

sumption dynamics. Gourio (2008) shows that adding recoveries following disasters has an

important impact on local (one-period) risk premia. Recoveries make the consequences of

41These papers explore stochastic perturbations in contrast to the original paper of Jacobson (1973) who
developed the link to a deterministic version of robust control.

42In the case of the subjective rate of discount, the “derivative” will depend on which of the alternative
models of investor preferences is entertained, recursive utility as in Kreps and Porteus (1978).
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disasters “transient” so that the specification changes explored by Gourio (2008) will have

important consequences for the entire term-structure of risk prices.

8 Conclusion

Decompositions of additive functionals have proved valuable in macroeconomic time se-

ries as an aid in identifying shocks and quantifying their impact. The increments to the

martingale components of these decompositions are the permanent shocks. In this paper

I have considered an alternative decomposition. To support a dynamic value decompo-

sition (DVD), I featured multiplicative factorizations of stochastic discount and growth

functionals. These factorizations allowed me to

a) characterize a long-term risk-return relation;

b) construct risk prices for alternative investment horizons and characterize their long-term

behavior;

c) compare implications for valuation of alternative structural economic models.

The methods I described require a “structural” model because they extrapolate value

implications by featuring the the pricing of synthetically constructed martingale cash flows.

Valuation of such cash flows reveals the dynamics of risk prices. While local prices are fa-

miliar to the literature on asset pricing, my aim was to explore the entire term structure

of such prices. Thus I produced risk-price trajectories that can be viewed as the valuation

counterpart to impulse response functions commonly used in economic dynamics. The an-

alytical methods that I proposed here and in the antecedents, Hansen et al. (2008a) and

Hansen and Scheinkman (2008), characterize what happens at longer horizons. A central

part of this analysis is the extraction of martingale components used to transform the

underlying probability measure. This change of measure provides a more refined charac-

terization of risk-price trajectories and supports DVD’s more generally. I suggest two ways

to make model comparisons based on DVD’s. One classifies when the implications of two

alternative valuation models are transient. The other considers a parameterized family of

valuation models and computes derivatives of long-term risk premia with respect to this pa-

rameter. These derivatives measure the sensitivity of value implications to a small change

in the parameter.
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While I have focused on risk-price dynamics, the methods I described can also be applied

to study the dynamics of risk exposure in the presence of stochastic growth. Consumption

or cash flows will typically have different risk exposures at alternative investment horizons.

The methods suggested here give a model-based way to measure the resulting cash-flow

duration as it contributes to measures of value. A single period return to equity with cash

flows or dividend that have stochastic growth components can be viewed as a bundle or

portfolios of holding period returns on cash flows with alternative payout dates. (See Lettau

and Wachter (2007) and Hansen et al. (2008a).) Even though the pricing is “local”, the

risk exposure of the composite securities depends on how far into the future the primitive

payoff will be realized. The methods described here can be adapted to study how cash flow

dynamics are reflected in single-period returns of infinitely-lived securities or cash flows.

To conclude I want to be clear on two matters. First, while a concern about the role of

economics in model specification is a prime motivator for this analysis, I do not mean to

shift focus exclusively on the limiting characterizations. Specifically, my analysis of long-

run approximation in this paper is not meant to pull discussions of transient implications

off the table. Instead I mean to add some clarity into our understanding of how valuation

models work by understanding better which model levers move which parts of the complex

machinery. As I showed in examples from the asset pricing literature, the initial points

in the risk price trajectories, the local risk prices, can be far from their limits. Thus

the hyperbolic approximations I suggested provide an important refinement, and transient

model components contribute to these approximations. Moreover, the outcome of the

analysis is informative even if it reveals that some models blur the distinction between

permanent and transitory model components.

Second, while my discussion of statistical approximation has been notably absent, I do

not have to remind time series econometricians of the particular measurement challenges

associated with the long run. Indeed there is a substantial literature on such issues. In

part my aim is to suggest a framework for the use of such measurements. But some of the

measurement challenges remain, and I suspect the prior information about the underlying

economic model will be required for sensible applications. Also, some of the same statistical

challenges with which we econometricians struggle should be passed along to the hypothet-

ical investors that populate our economic models. When decision-making agents within an

economic model face difficulties in making probabilistic extrapolations of the future, the

associated ambiguities in statistical inferences may well be an important component to the

behavior of asset prices.
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A A static max-min problem

In this appendix I develop further the static problem discussed in section 4.4 using results

from the applied mathematics literature. Let D+ denote the strictly positive functions in D,

and let Q denote the family of probability measures Q on the state space E of the Markov

process. Let B be the generator of the semigroup. Following Donsker and Varadhan (1975),

Donsker and Varadhan (1976) and Berestycki et al. (1994), I study the following max-min

problem:

% = sup
Q∈Q

inf
f∈D+

∫ (
Bf
f

)
dQ. (51)

Let B be the generator of the multiplicative semigroup. Split this generator into two

components:

Bf(x) = β∗(x)f(x) + Af(x)

where43

β∗(x)
.
= B1(x)

Af(x)
.
= Bf(x)− β∗(x)f(x).

Notice that by construction Af = 0 when f is a constant function. Suppose that A
generates a semigroup of conditional expectations for a Markov processes. This requires

additional restrictions, but these restrictions are effectively imposed on B. I refer to β as

the local growth or decay rate for the semigroup.

Consider the first the inner minimization problem of (51). Split the objective and write:

inf
f∈D+

∫ (
β∗ +

Af
f

)
dQ.

Notice that the infimum over f does not depend on β∗. This in part leads Donsker and

Varadhan (1975) and others to feature the optimization problem:

J∗(Q) = sup
f∈D+

[
−
∫ (

Af
f

)
dQ

]
(52)

The function J∗ is convex in Q since it can be expressed as the maximum of convex (in

43While the function 1 does not vary over states the outcome applying B to 1 will typically vary with x
and hence the notation B1(x).
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fact linear) functions of Q. Moreover, it can be justified as a relative measure of entropy

between probabilities when the process implied by A possesses a stationary distribution.

The measure is relative because it depends on the generator A of a Markov process and

measure discrepancies from the stationary distribution of this process.

I use this representation of the solution to the inner problem to write the outer maxi-

mization problem as:

sup
Q

[∫
β∗dQ− J∗(Q)

]
,

which is the problem posed in (4.4).

Suppose that the solution to the max-min problem is attained with probability measure

Q∗. Consider again the inner optimization problem (52) and suppose that the supremum is

attained at f ∗. Let g be any other function in the domain of B such that f ∗+ rg is strictly

positive for some r. For instance, if f ∗ is strictly positive and continuous, then it suffices

that g be continuous, sufficiently smooth and have compact support in the interior of the

state space. The first-order conditions are:∫ [
Ag
f ∗
− g(Af ∗)

(f ∗)2

]
dQ∗ = 0.

Let f = g
f∗

, and rewrite this equation as:

∫ [
A(f ∗f)

f ∗
− f(Af ∗)

f ∗

]
dQ∗ = 0. (53)

This first-order condition for r has a probabilistic interpretation. The operator

A∗f =
A(f ∗f)

f ∗
− f(Af ∗)

f ∗

=
B(f ∗f)

f ∗
− f(Bf ∗)

f ∗
(54)

generates a distorted Markov process, and the first-order condition justifies Q∗ as the

stationary distribution of the distorted process.

To show the relation between the optimization problem and the principle eigenvalue

problem, suppose that

ρe = Be

for e in D+. Construct a twisted generator using algorithm (54) with f ∗ = e, and suppose
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this generates a stochastically stable Markov process with stationary distribution Q∗. In

particular, it satisfies (53). Notice that

inf
f∈D+

∫ (
Bf
f

)
dQ ≤ ρ

because e is in D+ and ρ is an eigenvalue. Thus

sup
Q∈Q

inf
f∈D+

∫ (
Bf
f

)
dQ ≤ ρ.

When Q = Q∗, provided that e is the only solution to the inner minimization problem up

to a scale factor, the upper bound is attained. As a consequence, ρ = % and this static

problem gives an alternative construction of the principal eigenvalue.

B Reconsidering the Campbell-Cochrane Model

In this appendix I give some more details of my analysis of the Campbell-Cochrane model.

Part of this discussion will be familiar to careful readers of Campbell and Cochrane (1999).

I include some repetition because I parameterize their model in aa different (but equivalent)

way.

The instantaneous interest for the Campbell and Cochrane (1999) model is:

− lim
t↓0

1

t
logE [S∗t |X0 = x] = r − γξ(x− µx)− γ2λ(x)2|σc|2

2
+ γ2|σc|2λ(x),

which follows from (44) by setting σg = 0. They suppose the risk-rate is an affine function

of the state: r∗ + θ(x− µx). Thus

r∗ + θ(x− µx) = r + γξ(x− µx)− γ2λ(x)2|σc|2

2
+ γ2|σc|2λ(x). (55)

I infer the value of r∗ by setting x = 0:

r∗ = r + (θ − γξ)µx
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Substituting this formula into (55), by a simple complete-the-square argument:

(θ − γξ)x− γ2|σc|2

2
= −γ

2|σc|2

2
[λ(x)− 1]2 .

Thus

λ(x) = 1− (1 + ζx)1/2

ζ
.
=

2(γξ − θ)
γ2|σc|2

Campbell and Cochrane (1999) propose that the risk exposure of C∗t be zero when

Xt = µx. The idea is that C∗t is locally predetermined. To understand the ramifications of

this, recall that

C∗t = Ct − Ct exp(−Xt − b)

where we now will determine the coefficient b. The coefficient b is important in quantifying

risk aversion. The familiar measure of relative risk aversion is now state dependent and

given by

risk aversion = γ exp(Xt + b).

The local risk exposure for C∗t is

Ct[1− exp(−Xt − b)]σcdBt + Ct exp(−Xt − b)λ(Xt)σcdBt.

Thus we require that

1 + exp(−x− b)[λ(x)− 1] = 0,

or

1− λ(x) = exp(x+ b)

for x = µx. Squaring the equation and multiplying by exp(−2µx)

exp(−2µx)

(
1 +

[
2(γξ − θ)
γ2|σc|2

]
µx

)
= exp(2b)

which determines b. At this value of b, the relative risk aversion measure is γ[1 − λ(µx)]

when x = µx.

As an extra parameter restriction, they suggest requiring that the derivative of the risk
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exposure with respect to x be zero at x∗:

exp(−µx − b)[1− λ(µx)] + exp(−µx − b)λ′(µx) = 0,

or
1

2

(
[λ(µx)− 1]2

)′
= λ′(µx)[λ(µx)− 1] = [λ(µx)− 1]2.

Thus
γξ − θ
γ2|σc|2

= 1 +

[
2(γξ − θ)
γ2|σc|2

]
µx,

which is the restriction on the underlying parameters. Specifically,

µx =
1

2
− γ2|σc|2

2(γξ − θ)

Notice that we may now express λ as:

λ(x)− 1 = −
(

1 +

[
2(γξ − θ)
γ2|σc|2

]
x

)1/2

= −
(
γξ − θ
γ2|σc|2

+

[
2(γξ − θ)
γ2|σc|2

]
(x− µx)

)1/2

= −
(
γξ − θ
γ2|σc|2

)1/2

[1 + 2(x− µx)]1/2 .

as derived in Campbell and Cochrane (1999).

Finally, I consider the change measure implied by the martingale:

M̃t = exp(rt)St
exp(γXt)

exp(γX0)

It implies an alternative distorted evolution:

dXt =
[
−ξ(Xt − µx)− γλ(Xt)|σc|2

]
dt+ λ(Xt)σcdŴt

=
[
−ξ(Xt − µx)− γλ(Xt)|σc|2 + γλ(Xt)

2|σc|2
]
dt+ λ(Xt)σcdW̃t

=
[
−ξ(Xt − µx) + γ(1 + ζXt)|σc|2 − γ(1 + ζXt)

1/2|σc|2
]
dt+ λ(Xt)σcdW̃t

=
[
ξXt + ξµx + γ|σc|2 − γ(1 + ζXt)

1/2|σc|2
]
dt+ λ(Xt)σcdW̃t

where

dŴt = γλ(Xt)
2σcdt+ dW̃t
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and W̃t is a standard Brownian increment under the probability measure implied by M̃ .

Given the strong pull of the drift to the right for large Xt, this evolution results in unstable

stochastic dynamics.

C Risk premia for finite payoff horizons

In this appendix I give differential equations I solve to compute the risk-price trajectories

for the model with consumption predictability. The analytical tractability is familiar from

the literature on affine models (e.g. see Duffie and Kan (1994)).

Consider Example 3.4 and continued in Example 5.3. The additive functional is:

dYt = νdt+H1X
[1]
t dt+H2(X

[2]
t − 1)dt+

√
X

[2]
t FdWt.

Form

Mt = exp(Yt).

My aim is to compute

Mt1(x) = E [Mt|X0 = x]

where the left-hand side notation reflects the fact that operator is evaluated at the unit

function and this evaluation depends on the state x. I use the following formula for this

computation.

BMtf =
d

dt
[Mtf(x)] (56)

Guess a solution

Mt1(x) = E [Mt|X0 = x] = exp [α(t) · x+ %(t)]

where x =

[
x1

x2

]
and α(t) =

[
α1(t)

α2(t)

]
. Notice that

d

dt
exp [α(t) · x+ %(t)] = exp [α(t) · x+ %(t)]

([
d

dt
α(t)

]
· x+

d

dt
%(t)

)
.

Moreover,

B exp [α(t) · x+ %(t)]

exp [α(t) · x+ %(t)]
= ν +H1x1 +H2(x2 − 1)

+x1
′A11

′α1(t) + (x2 − 1)[A12
′α1(t) + A22α2(t)]
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+
x2

2
|F + α1(t)

′B1 + α2(t)B2|2.

First use (56) to produce a differential equation for α1(t):

d

dt
α1(t) = H1

′ + A11
′α1(t).

by equating coefficients on x1. This differential equation has as its initial condition α1(0) =

0. Similarly, by equation coefficient on x2,

d

dt
α2(t) = H2 + A12

′α1(t) + A22α2(t) +
1

2
|F + α1(t)

′B1 + α2(t)B2|2

This uses the solution for α1(t) as an input. The initial condition is α2(0) = 0. Finally,

d

dt
%(t) = ν −H2 − A12

′α1(t)− A22α2(t).

The initial condition is %(0) = 0.
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