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The last few years have seen an explosion of two types of financial transactions. First, the

volume of derivative instruments that are purchased and sold has ballooned. To give just one

example, the face value of “credit derivative swaps” may have reached $60 trillion by May

2008.1 Second, a vast number of intermediaries that call themselves hedge funds have been

created. While hedge funds vary a great deal in the transactions they pursue, many are quite

active in derivative markets. These hedge funds borrow from a set of financial intermediaries

while simultaneously acquiring claims on other intermediaries. Because many hedge funds

transact with a multitude of parties, the financial system has become quite interconnected.

This raises the obvious question of whether this interconnectedness strengthens or weakens

the financial system as a whole. Within this broad question, the current paper focuses on a

narrower one, namely whether this interconnectedness exacerbates the difficulties that firms

have in meeting their obligations in periods where the volume of assets that is acceptable

for this purpose is reduced.

The financial obligations that firms have vis-a-vis one another require these firms to make

payments. To focus on the problems caused by insufficient liquidity, I abstract from solvency

issues and consider firms whose required payments are no larger than the amount that each

firm expects to receive from its debtors. These payments should thus present no problem

if firms can borrow freely: any borrowing that a firm makes to settle its obligations is then

extinguished as soon as its debtors pay their own obligations.

This situation can usefully be contrasted with one where loans for the purpose of settling

pre-existing obligations are difficult or impossible to obtain. To honor their required pay-

ments on their obligations firms must obtain acceptable (or “liquid”) assets in some other

manner. The payments that firms receive from their debtors are an obvious source of funds

for this purpose. Indeed, the ability of firms to use funds they receive from their debtors to

pay off their creditors implies that a dollar of acceptable liquid assets in the financial system

can be used to settle more than a single one dollar obligation. Nonetheless, I show that the

interconnectedness of the financial system impairs the system’s capacity to use liquid assets

1See Reguly (2008) who also discusses the relationship of this volume to hedge funds.
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multiple times. As a result, more interconnected financial systems require more liquidity

(from sources outside the financial system) to settle a given volume of debt.

To gain intuition for this result, it is useful to start by noticing that the partial payments

of debts generate a pecuniary externality when firms have multiple creditors. A firm whose

liquid assets are currently smaller than its outstanding obligations may have to choose the

subset of its creditors to whom it will make payments. Some firms care about this choice

even though their influence on this choice is likely to be negligible. This is true, in particular,

of the firms that have claims on the original firm’s creditors. If firm i has claims on firm j, it

cares a great deal whether firm k uses its limited liquidity to pay off j or whether it chooses

to pay off a fourth firm ` instead.

From the point of view of the financial system as a whole, this choice may not be im-

material either. Imagine, in particular, that firm ` has no further outstanding obligations

perhaps because it started out with sufficient liquid assets to pay off all its creditors. Then,

firm k’s decision concerning whether it should pay off firm ` or firm j (which then pays k)

also affects the total volume of debts that is extinguished with the given supply of liquidity.

As the financial system becomes more interconnected, debtors with limited funds face

a larger array of potential recipients for these funds. It then becomes easier to envisage

situations where these funds go to firms that either have no further obligations themselves,

or that have creditors with no further obligations. There thus exist “worst case scenarios”

where the existing liquidity settles many fewer obligations than is theoretically possible. By

way of contrast, this problem does not arise when each firm has only one creditor. Firms

then have no choice regarding whom they pay and this reduces the scope for “wasting”

payments on firms that have no further obligations left. This lends credence to the idea

that the difficulties caused by periods of scarce liquidity are exacerbated when there exists

a larger set of debt connections among firms.

Because I am concerned with the capacity of solvent firms to settle their obligations in

situations where interconnectedness differs, the paper focuses on a system where all firms

have current claims that equal or exceed their current obligations. This is not to suggest that
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interconnectedness does not matter in other settings. Indeed, there is a literature studying

what happens in interconnected systems when some firms have total current liabilities that

exceed their current assets. This literature includes the studies by Allen and Gale (2000),

Freixas et al. (2000), Eisenberg and Noe (2001), Cifuentes et al (2005) and Nier et al (2007).2

This literature suggests that interconnectedness has two mutually opposing effects on the

extent to which the financial system is able to withstand the failure of one institution. Inter-

connections appear to have the potential both of spreading the failure of a single institution

but also of cushioning its impact (by ensuring that a single institution has only a modest

effect on any given other institution).

In common with Eisenberg and Noe (2001), Cifuentes et al (2005) and Nier et al (2007),

the current paper uses graph-theoretic techniques. One difference, though, is that I use

numerical techniques sparingly, with most of the results being established analytically. The

cost of this, of course, is that I am able to do this only for relatively simple environments.

My focus on solvent institutions that are subject to trading frictions leads the model to be

closely related to the literature that analyzes interbank payment systems. In such systems,

banks send messages telling one another that they wish to make a payment. In “real time

gross settlements” (RTGS) systems, this message is supposed to lead to an immediate debit

to the paying bank (and a credit to the receiving bank). If the paying bank lacks funds and

does not receive a loan, these debits and credits are not possible in a pure RTGS system,

and one solution is to put them on hold. This was the solution adopted by the Swiss SIC

2Current obligations can exceed expected receipts from assets either because the firm is insolvent long
term or because, as in the Diamond and Dybvig (1983) model, contracts are written in such a way that firms
can only meet their short term commitments if a subset of the agents who are entitled to withdraw funds do
so. This latter situation is often described as one of illiquidity, and it is useful to note the similarities and
differences between this notion of illiquidity and the problems of liquidity faced by the firms in my model.
What is similar is that, in both cases, firms have difficulty converting their existing claims into assets that
can be used to pay their current obligations. The difference is that, in the Diamond and Dybvig (1983)
setup, there is no role for liquid assets during a crisis, and the crisis persists even if there is a competitive
centralized market for assets at this time. By contrast, my focus is on a situation where the distinction
between liquid and illiquid assets is crucial during the crisis itself, and liquid assets play a role precisely
because there is no centralized mechanism for settling obligations. It is also worth noting that Freixas et
al. (2000) use the term “gridlock” to describe an equilibrium where depositors at numerous banks decide to
withdraw their deposits prematurely in a variant of the Diamond and Dybvig (1983) model. This term is
used for a different purpose below.
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system in the period 1987–1999, when it offered no loans to banks (see Martin 2005).

This solution seems inefficient when, using the terminology of Bech and Soramäki (2001),

there is “gridlock” in that bank A lacks X dollars that it wishes to pay to bank B, who lacks

X dollars that it wishes to pay to bank C, who in turn lacks X dollars that it wishes

to pay to bank A. In such cases, it is more efficient to “net” the positions of these three

banks. Some settlements systems, such as CHIPS, are designed to look for sets of payment

messages that can be netted. These systems clear these sets of payments as soon as they

are found. A common alternative, used both by the Fedwire (the U.S. Federal Reserve’s

settlements system) and the Swiss system after 1999, is to simply offer loans (“daylight

overdrafts”) to banks that lack sufficient funds to complete their desired payments.3 The

study of settlements systems thus shows that “netting” and the provision of liquidity can be

substitutes for dealing with gridlock.

The current study is related to this literature because it considers situations where, since

all firms have claims that are at least as large in value as their obligations, the financial

system would operate smoothly if there were extensive netting. My analysis, however, is

more applicable to firms like investment banks and other “nonbank” actors in the financial

system, who are not members of either a settlements systems with netting like CHIPS or a

settlements system with access to daylight credit from a central bank. They thus rely on

their own liquidity to settle their obligations. A key issue I study, then, is how extensive this

liquidity has to be to avoid gridlock.

The paper proceeds as follows. Section 1 is designed so that it can be skipped. Its purpose

is to contrast the more standard view where intermediaries are modeled as channeling funds

from ultimate borrowers to ultimate lenders (see Diamond (1984) for a classic example) with

a setting where there are debt “cycles” among intermediaries. A simple cycle would be a

situation where a bank B lends to hedge fund A, which acquires claims on a financial firm

3In the case of Fedwire, Mengle (1985) notes that these daylight overdrafts came into existence because
Fedwire regulations only required paying banks to have sufficient funds “at the end of the day.” In the case
of the Swiss system, the performance of the system without central bank liquidity provision was evidently
unsatisfactory.
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C, which in turn uses its funds to lend to B. Such cycles emerge easily when financial firms,

such as hedge funds, borrow from one firm while holding derivatives that impose financial

obligations on another. To complete the cycle, the bank financing the hedge fund must also

have a contract that obligates it to make payments to the hedge fund’s counterparty. Section

2 then presents a more complex model of interconnected lending and shows that the degree

of interconnectedness increases the number of firms that must be provided with liquidity if

all debts are to be settled.

Section 3 endogenizes the debt structure of Section 2. The purpose of this is to demon-

strate a pecuniary externality that arises at the stage at which firms decide to whom they

wish to extend loans. When a financial firm decides not to lend to another, this can easily

reduce the interconnectedness of the financial system (since the second firm may well be

forced to curtail its lending as well). This means that a firm’s decision not to lend can

increase the ease with which other firms settle their obligations in times where liquidity is

short. Thus, the equilibrium degree of interconnectedness can be excessive from a social

point of view.

Section 4 considers a setting where there is an exogenous limit on the number of times that

a unit of liquidity can be used to settle obligations within a period. This may constitute a step

towards realism relative to the case of potentially infinite chains of payments considered in

section 2. This limitation on payments implies, in particular, that a larger volume of liquidity

is needed to settle a larger volume of debt, even if interconnectedness is held constant. The

earlier result that interconnectedness makes it more likely that a financial system with limited

liquidity finds itself unable to settle all obligations is shown to carry over to this case as well.

Section 5 offers some concluding remarks.

1 Setting the stage: Vertical lending versus debt cycles

A simple, and standard, view of financial intermediaries is that these channel funds from

ultimate lenders to ultimate borrowers. As ultimate borrowers repay their obligations, in-

termediaries are able to repay their obligations to ultimate lenders as well. If contracts are
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simple and intermediaries have claims on borrowers that equal their liabilities to lenders, the

capacity of all ultimate borrowers to repay all their debts assures that all intermediaries are

able to settle their own obligations as well. To see this, start with a simple example where

a lender has a claim of z against an intermediary, who in turn has a claim of z against a

borrower. When the borrower repays the z that he owes, the intermediary is able to fulfill

his obligation as well.

This result readily extends to other situations where claims are “vertical,” so that any

firm A that must repay funds to a firm B is acting as a channel from ultimate borrowers to

firm B itself. To show this, I briefly consider a setting where there are two layers of potential

intermediaries, with layer 2 being restricted to receive funds from ultimate borrowers. Layer

1 is restricted to receiving funds directly from ultimate borrowers or indirectly through a firm

from layer 2. Let there be I ultimate lenders indexed by i and J ultimate borrowers indexed

by j. There are also two types of intermediaries. The N type 2 intermediaries indexed by

n can only have claims on ultimate borrowers, and the claim of firm n on final borrower j

equals c2B
nj . By contrast, the M type 1 intermediaries indexed by m can have claims on both

ultimate borrowers and on type 2 firms, with the size of firm m’s direct claims on borrower j

and on firm n being denoted by c1B
mj and c12

mn respectively. Lastly the size of the direct claims

of lender i on firm m, firm n and borrower j are denoted by cL1
im, cL2

in and cLB
ij respectively.

As suggested in the Introduction, I focus on situations where firms are solvent. A fairly

strict version of this holds for each of the two types of intermediaries if

∀m ∈ {1, . . . , M},
I∑

i=1

cL1
im ≤

N∑
n=1

c12
mn +

J∑
j=1

c1B
mj (1)

∀n ∈ {1, . . . , N},
I∑

i=1

cL2
in +

M∑
m=1

c12
mn ≤

J∑
j=1

c2B
nj (2)

Firms of type 2 are assumed to pay their debts whenever they can. Equation (2) then im-

plies that, if the final borrowers pay their obligations, firms of type 2 pay all their obligations

to both the ultimate borrowers and to firms of type 1. Equation (1) then implies that firms

of type 1 are able to pay all their creditors as well. Thus, in this vertical case, nondefault
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by ultimate borrowers implies trivially that all debts are settled. As long as the vertical

structure is maintained, this result does not depend on the number and type of creditors (or

debtors) acquired by the agents.

As we shall see, these variables do matter when there are “horizontal” ties across financial

intermediaries. Before demonstrating this, it is worth showing that such horizontal ties can

create cycles. If firms 1 owes z to firm 2, who owes z to firm 3, who owes z to firm 1, all

three firms are “solvent” but none is an ultimate borrower. Without any outside source of

liquidity, these firms are unable to settle their debts. In this particular case, the needed

liquidity can be obtained by inserting one of them into a vertical lending relationship. This

is depicted in panel (a) of Figure 1, which can be seen as combining the cycle I just described

with a debt of z from B to 1 and a corresponding debt of z from 1 to L. Now, when B repays

his debt, firm 1 can first repay firm 2, which repays firm 3, which then makes z available to

firm 1 so that it can repay L. Thus, all debts can be settled by the simple device of giving

firm 1 access to liquidity from outside the system consisting of {1, 2, 3}.
While this device can be effective, it is not infallible. Its success requires, in particular,

that firm 1 repay firm 2 before it repays L. In this simple case, it may seem obvious that this

is in firm 1’s interest. However, consider the simple variant depicted in panel (b) of Figure 1.

Here, firm 1 does not owe funds to an identifiable ultimate lender L but to firm 4 who in turn

owes funds to L. If firm 1 does not know the creditors of firm 2 and 4, he may sometimes

pay firm 4 before he pays firm 2. It might then be necessary to give firm 1 additional sources

of liquidity to guarantee that all debts are settled. This example demonstrates that, when

there exist horizontal debt ties, full repayment by ultimate borrowers is no longer sufficient

to ensure the settlement of all debts.

One potential way to proceed at this point might be to consider more general debt

patterns that include both vertical relationships and cycles. Because the analysis becomes

intractable quickly, I follow a simpler route. I consider more complicated debts among the

firms that lend to one another (the insiders of the financial system) and then ask about the

properties that liquidity provision from outside this set must satisfy for all debts to be settled.
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One conclusion from this analysis is that, as financial firms become more interconnected,

ensuring that one firm has access to outside liquidity may no longer be sufficient for settling

all debts.

2 A settlement model with long payments chains

Consider an economy populated by N financial institutions (or firms) indexed by i ∈
[0, 1, . . . , N − 1] and let these firms be arrayed in a circle so that firm N − 1 is followed

by firm 0. At the start of the settlement period these firms have debts that they are ex-

pected to repay. Each firm starts out by being expected to pay z dollars to the firms whose

index is i + j with j ≤ K where the addition is taken modulo N . Notice that, since each

firm owes zK and is owed zK, this combination of debt and assets leaves each firm solvent.

Some firms, in fact, also receive an endowment of a “liquid” asset. What makes this asset

liquid is that it is acceptable by firms that expect to receive a payment of z. One obvious

question is what set of assets passes this test. The main reason an asset is acceptable as

payment to firm j is that firm j expects it to be acceptable to its own creditors. Thus, as

emphasized by Kiyotaki and Wright (1993) and Wright (1997), extrinsic beliefs on whether

an asset is acceptable can influence whether an asset is in fact acceptable in equilibrium.

A “liquidity crisis” may thus be thought of as a situation where only a small set of assets

remains acceptable for payment. Firms may, for example, become barred from using their

own IOU’s as methods of repaying others (or, what may be equivalent, from using their own

IOU’s to quickly raise funds with which to pay others).

Even in a liquidity crisis, some assets are likely to remain acceptable for payment, if

for no other reason than the existence of legal tender laws that force lenders to accept

currency for this purpose.4 It thus seems useful to analyze how the financial sector settles

its inter-firm obligations when it has a finite but reduced supply of such liquid assets. If

all these obligations need to be settled simultaneously with liquid assets, the problem is not

4In practice, many government-issued securities appear to maintain this role even when other assets
become unacceptable.
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be very interesting. For full settlement to occur in this case, each firm needs an to have an

endowment of liquid assets that equals its total debt zK. It is more realistic, however, to

suppose that that some liquid assets can be used more than once in the same period because

firms can use the liquidity they receive as payment to pay some of their debts in turn.

One way of capturing this idea is to imagine that debts must be settled by the end of a

period of discrete length and that multiple rounds of payments can take place within this

period. This fits to some extent with the practice of dating obligations by calendar date with-

out also specifying the precise time-of-day in which they are due. To allow this mechanism

to be as useful as possible, I suppose that any firm that finds itself simultaneously with some

liquid assets and some obligations transfers liquidity to creditors so as to reduce its debts as

much as possible. Aside from the transfer of liquidity, no other form of communication is

allowed. In practice, the process of consummating, verifying and recording payments does

take some time, so there may be a finite upper bound R to the number of payments that

can be made within the period using a single unit of liquidity. Below, I consider the case

where the upper bound R is binding. I start with an even simpler case where each payment

is processed so rapidly R is effectively infinite.

To model the consequences of the finiteness of the supply of liquidity, I sequentially endow

the financial firms with units of liquidity and study the resulting outcomes. One can think of

this endowment as arising, as in section 1, from transactions with agents outside the system.

Transactions with outsiders might also drain liquidity from the financial system. However,

as a first pass, this is ignored and left for further research. This considerably simplifies the

analysis, as does the assumption that financial firms receive their endowments of liquidity

sequentially.

After one firm receives some liquidity, it uses it to make payments, and the recipients

of these payments make payments in turn. No further liquidity is injected into the system

until the existing units of liquidity can no longer be used to settle existing obligations.

When no further units of liquidity are introduced, and when all the existing liquidity can

no longer be used to satisfy obligations, the settlement period ends. A firm i that still has
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open obligations at this point must pay a cost c. This section focuses on the number of

(sequential) distributions of liquidity from outside the financial system are needed to settle

all the debts.

Under certain additional conditions, a somewhat surprising result emerges from this

setup. This is that the minimum amount of liquidity that is needed to settle all debts

is arbitrarily small and that it is enough that one firm be endowed with this minuscule

amount of liquidity. To demonstrate this result, it is helpful to notice that one can represent

the claims that firms have against one another with a directed graph G where the vertices

represent firms and where there is an “edge” going from vertex i to vertex j whenever i owes

z to j. The graph G thus has N vertices and NK edges. Because each of these N vertices

has K edges emanating from it and K edges pointing towards it, I use the symbol CK
N to

denote it.

In graph theory, the in-degree of a vertex is the number of edges that end at this vertex

while the out-degree of a vertex is the number of edges that originate at the the vertex.

Further, a directed graph is connected if one can travel from any vertex to another by going

along a series of edges, where travel always goes from the origin to the destination of the

edge. When traveling in this way, a cycle denotes a set of edges that constitute a path from

one vertex back to the same vertex. An Eulerian cycle is a cycle that traverses every edge

of the graph once, and does so in the direction of the edge.

A graph is Eulerian if it has an Eulerian path. One elementary result in graph theory is

that a graph is Eulerian if it is connected and each vertex has an in-degree that equals its

out-degree. A second result that is relevant for this paper is that an Eulerian graph can be

decomposed into cycles which are edge-disjoint so that these cycles do not have any edges

in common while the union of all these cycles contains all the edges of the graph. In the

current model, both the in-degree and the out-degree of each vertex equal K. Moreover, the

graph is connected since one can always reach vertex j from vertex i by traveling to i + 1,

i + 2 and so on until one reaches j (by passing vertex 0 if j < i). Since the in-degree equals

the out-degree of each vertex and the graph is connected, it is Eulerian.

10



Proposition 1. Let firm i be endowed with an arbitrarily small amount of liquidity w. Using

just this liquidity, a path of payments can be found such that all debts in CK
N are settled within

the period.

Proof. Let Ĉi = {i, j, k, . . . , i} be an Eulerian cycle originating at i. Suppose first that

w < z. Then let i give w to j to settle part of his debt with him, let j use these funds to

pay part of his debt to k, and so on along the Eulerian path until these funds reach i. At

this point, everyone’s outstanding debt towards its K creditors is z − w. If this exceeds w,

i once again pays w to j and so on along the Eulerian path. When enough Eulerian cycles

of payments have been completed that everyone’s outstanding debt z̃ is less than w, i pays

z̃ to j who passes it on to k, and so on, until all debts are settled. This last case covers the

case where w ≥ z as well.

While the particular graph considered in this proposition is special, it is clear from the

proof that the condition that is required is that the graph of debt obligations be Eulerian.

As long as all financial firms are connected to one another, this will be true if each firm’s

total obligations to other financial firms are equal to its total claims from such firms. Since

the model neglects the connections of financial firms with ultimate borrowers and ultimate

lenders, this is an automatic consequence of supposing that financial firms are solvent. Sol-

vency would remain sufficient to guarantee this condition if, as in panel (a) of Figure 1,

financial firms that owe funds to ultimate lenders have equal claims on ultimate borrowers.

In practice, these claims are probably unequal for many firms, so solvency does not imply

an Eulerian graph of debts among financial firms.5 Nonetheless, the basic implication of this

proposition, that a small amount of liquidity provided from outside the financial system (by

ultimate borrowers, for example) is sufficient for the financial system to settle all its debts,

may well carry over to this case.

This proposition can be taken to mean that this sector of the economy this economy

needs very little liquidity to settle its debts. Unfortunately, however, this result relies on

5If vertices corresponding to ultimate lenders and ultimate borrowers are included in the graph, the graph
is obviously not Eulerian, since the in-degree and out-degree are not equal for these vertices.
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payments taking a very particular path. It requires, in particular, that these payments move

along an Eulerian cycle. With full information regarding everyone’s debts, such cycles can

be computed so that a central planner could force payments to proceed along such a path.

An individual firm, however, has no reason to know the Eulerian path (in part because, in

practice, no firm is likely to know the full range of debts of any firm other than itself). In

addition, the model forbids the communications that would allow a firm to provide incentives

to another to make payments along an Eulerian path.

In this paper, I study mostly paths that, at least in a certain sense, require as much

liquidity as possible. The purpose of this analysis is to understand how much liquidity

might be required to settle all debt under relatively adverse circumstances. To define these

circumstances, some additional analysis is required.

Suppose that liquidity endowments are of size z (this assumption is relaxed later). As

endowments are used to make payments of z, obligations get extinguished. One can thus

think of the graph that describes these obligations as changing over time, with the edge from

i to j being deleted whenever i pays z to j to settle a debt. When a firm neither has claims

on others nor owes any firm any payments, its vertex can be removed as well. Consider the

initial graph CK
N and give an endowment of z to i. An important property of the model is

that these funds continue to remove edges from the graph until i has no further obligations.

At that point, i’s vertex can be removed as well and i’s liquidity endowment is back in his

hands. The return of liquidity to the firm that originally obtained it follows from the fact

that each firm has the same number of debts as it has claims on other firms. This implies

that, whenever a firm j with no endowment receives z as payment, j still has a debt that it

can extinguish by paying z to yet another firm. As a result, any unit of liquidity with which

i is endowed continues to be used for payments until it is back in the hands of i himself. As

long as firm i still has obligations, it makes further payments and this implies that payments

continue until i has settled all its obligations and is in possession of its initial endowment.

Let Gt denote the graph that is left after t firms have each been given an endowment of z

and made all the payments that this endowment facilitates, with G0 = CK
N . Let di

t represent
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the total obligations of firm i at t, with di
0 = zK. Suppose that, at stage t, there still exists

a firm i such that di
t > 0. I consider the following twin assumptions regarding the sequential

distribution of endowments and the paths of payments.

Assumption A. If firm j receives an endowment when the graph of obligations is Gt,

the path followed by its first payment follows one of the shortest cycles in Gt that includes

j. If at any vertex i of this cycle (including the origin j) there is more than one shortest

path back to j, the one that is chosen is the one that maximizes z where the edge {i, i + z}
is included in the cycle. If j still has outstanding debts after earlier payments return to him,

he makes new payments. These are chosen in a like manner. They thus follow the shortest

cycle such that, whenever there is a choice at a vertex i of paths of equal length, it uses the

edge that advances the most from that vertex.

Assumption A is, in a sense at the opposite extreme from Eulerian paths. While those

paths extinguish as many obligations as possible, Assumption A supposes that i’s payments

settle as few obligations as possible before returning to i. Assumption A can thus be seen as

an attempt at considering a “bad outcome” where a relatively large amount of liquidity is

needed to settle obligations. This conservatism is counteracted to some extent by Assumption

B:

Assumption B. If a firm j receives an endowment after t firms have received theirs (and

made all possible payments), dj
t ≥ dk

τ for all k between 0 and N − 1.

The purpose of Assumption B is to ensure that liquid endowments go to the firms that

need them the most (because they have the largest debts). The reason to make this as-

sumption is that, without it, it is easy to waste massive amounts of liquidity by giving it to

firms that have already settled all their obligations in the past. It does not seem reasonable

to compute the minimum amount of liquidity needed by the system while allowing large

amounts of liquidity to be wasted in this manner.

Proposition 2. Under Assumptions A and B, the minimum number of firms that must be

provided with liquidity to settle all obligations in G0 = CK
N is K.

Proof. Start by giving z to firm i. The K shortest cycles starting at i on CK
N start at i + j,
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1 ≤ j ≤ K, then go to i + j + K, i + j + 2K and so on, until they reach {i−K, . . . , i− 1},
at which point they return to i (where all these numbers are modulo N). These K cycles

are edge-disjoint and the full set of them touches each vertex once. Once the edges that are

part of these cycles are removed, one can remove vertex i as well since i is left with no debts

or claims. This leaves the graph G1 which is given by CK−1
N−1 . In this graph, each vertex has

dj
1 = K − 1.

Assumption B implies that one of these remaining firms receives the next unit of en-

dowment. By the argument above, Gt is thus CK−t
N−t for all t ≤ K − 1. After K − 1 firms

have been given an endowment, the graph is C1
N−K+1. Denoting the K’th firm that receives

an endowment by i, this firm pays i + 1, who pays i + 2 and so on until all the debts are

cleared.

This proposition shows both that giving K separate firms an endowment is enough to

clear all debts and that, under assumptions A and B, giving endowments to fewer firms

leaves some firms unable to settle their obligations. Indeed, if only K − 1 firms are given

an endowment, only K − 1 firms clear their debts and the remaining N + 1 −K firms are

unable to do so. This shows that an increase in the interconnectedness of firms increases the

liquidity that is needed to settle all debts under assumptions A and B.

To simplify the presentation, the size of individual endowments and the size of bilateral

obligations have both been set equal to z. This is not essential, however. Let the size of

individual endowments be ze, which is not necessarily equal to z, instead. Then:

Proposition 3. The number of debts that are cleared under assumptions A and B by giving

k firms an endowment of ze is independent of the size of the bilateral obligations z.

Proof. Consider any cycle of payments that takes place when ze = z. If ze > z, this cycle

of payments is still feasible so that the same sequence of payments clears the same debts as

are cleared when the endowment is z. If ze < z, let q equal z/ze when this ratio is rounded

down and let zr = z− qze. Then replace each cycle of the cycle of payments that takes place

when ze = z by q + 1 cycles, where the first q transfer ze each and the last transfers zr.
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This proposition also implies that z, and thus the total size of debts, does not affect the

minimum amount of liquidity needed. Only the interconnectedness of debts K matters when

R is sufficiently large.

To gain intuition for the model and its behavior consider the simple case shown on Figure

2 where N = 6 and K = 1. Suppose that only firm 0 starts out with liquidity equal to z,

perhaps because it is the only one involved in a vertical lending chain like the one depicted in

panel (a) of Figure 1. Within the financial system, this firm has no one to pass this liquidity

to other than firm 1, who passes it on to firm 2 and so on until firm 5 returns it to 0. In the

process, all debts are settled. Figure 2 also makes it clear that this result does not depend

on N being equal to 6: no firm has a choice as to whom to pay when K = 1, so all payments

complete a full circle before returning to firm 0.

This can be contrasted with Figure 3 where N = 6 and K = 2 and the left panel shows

C2
6 . The middle panel shows an Eulerian cycle. In this cycle, 0 makes a second payment

after the funds it has advanced first get returned to him. Suppose that the first payment is

given by the dashed arrows so that the vertices it reaches, in order, are {0, 2, 4, 5, 1, 3, 5, 0}.
The second payment then follows the solid arrows so that its path is {0, 1, 2, 3, 4, 0}. When

all these payments have been made, all obligations have been settled. Note that it is crucial

for this particular Eulerian path to be completed that 5 first pass to 1 and only later pass

to 0. The right panel shows a less happy outcome where the first of 0’s payments follows

{0, 2, 4, 0} so that 4 passes immediately to 0, while the second payment follows {0, 1, 3, 5, 0},
so that 5 passes to 0 at his first available opportunity. The multiplicity of choices faced by

each firm in the case K = 2 makes it easier to construct paths of payments such that giving

liquidity to just one firm is insufficient to settle all debts. As K is increased further, this

multiplicity can be exploited so that even more firms must be given liquidity.

So far, this section has only considered the fully symmetric graph of obligations CK
N . To

study whether firms make optimal decisions when they acquire claims and debts, however,

one must study what happens when one firm has fewer assets and liabilities. It is, of course,

impossible to reduce only one firm’s obligations since eliminating i’s obligation to j means
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that j is unable to pay off as many obligations as before. If j responds by reducing its

obligations to k, firm k must further reduce its own debts. This logic implies that, starting

with the graph CK
N , at least one cycle must be removed for i to have one fewer obligation

while ensuring that all firms still have the same number of claims as they do debts. Consider

then, the graph Gi = CK
N − Ci where Ci is a cycle that passes through i.

Intuition would suggest that, since there are fewer debts to settle, complete settlement of

all debts can be accomplished by providing fewer firms with liquidity when debts are given

by Gi than when they are given by CK
N . This can be seen graphically for a special with N = 6

and K = 2 in Figure 4. In this Figure, one cycle has been removed from C2
6 , namely the

cycle given by {1, 3, 5, 1}. Inspection of the Figure shows that giving a liquid endowment to

any of the firms with two debts (0, 2 or 4) is enough to clear all debts because these firms

first make a payment that travels along the dashed arrows and then make a second payment

that travels along the solid ones.

Using numerical methods, it is readily shown that the basic conclusion from this example

extends to other values of K and N . I have, in particular, considered a range of values

for these parameters and constructed Gi by subtracting a shortest cycle from CK
N . In other

words, I subtracted a cycle such that all but one of its edges went from a vertex with index i

to a vertex with index i + K, while the remaining edge went from a vertex with index i to a

vertex with index i + r where r is the remainder in the division of N by K. I then assigned

endowments using Assumption B and chose paths of payments consistent with Assumption

A. When a firm receives an endowment, Assumption A uniquely determines these paths. By

contrast, Assumption B does not uniquely determine which firm receives an endowment from

among all the firms that have the maximum total debt. In the case of CK
N , this ambiguity

was not important because all firms were symmetrically placed after an endowment had

been used as much as possible for payments. In the case where one cycle is removed from

CK
N , however, firms are not as symmetric. The numerical analysis reveals that, as a result,

the total number of firms that must be given liquidity to settle all the debts depend on the

identity of the particular firms that are given liquidity. While I did not study this dependence
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exhaustively, many possible allocations were considered and, in all cases, fewer than K firms

had to be given liquidity to settle all debts.

3 A model of multilateral claims acquisition

To show the effect of interconnectedness on the amount of liquidity that might be needed

for settlement, one can treat the level of obligations as exogenous, and this is the course

pursued in the Section 2. This analysis leaves open, however, whether the interconnections

that are observed in equilibrium are excessive or not. To show that the equilibrium degree of

interconnectedness need not be socially optimal, this section develops a very simple model of

claims acquisition. This model is somewhat unusual both in the way that it creates demands

for securities and in the centralized mechanism that it postulates for determining who holds

claims on whom. It tries to capture two fairly conventional forces, however. The first is that

firms differ in the claims that they wish to hold. The second is that financial intermediaries

have an incentive to maximize the volume of intermediation.

One reason why people and firms may wish to hold different portfolios from one another

is that they differ in the returns that they expect from different securities. Models where

people differ in their equilibrium beliefs are somewhat complex, however, and I thus opt for a

simpler approach that relies on “tastes.” In particular, firm i is assumed to derive utility u(j)

from holding a claim of z on firm i− j. Claims smaller than z yield no utility, and neither

does utility rise if the size of claims is increased above z. This extreme concavity leads firms

to be unwilling to lend more than z to anyone and this fits with the common tendency of

many financial market participants to limit their exposures to individual counterparties as

a method to manage their counterparty risk (see Corrigan, Theike et al. 1999, p. B1 for

a description and discussion). I let u(j) be decreasing in the index j so that firms have

an intrinsic preference for holding the claims of firms that are close to them when going

in the direction where the firm index falls. There is an extensive literature demonstrating

that people and firms’ portfolios contain relatively large proportions of claims on “local”

creditors, and the model is partially faithful to this effect by giving firms a preference for
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claims whose indexes are close to their own.

Explicit modeling of a decentralized system where individuals have something to gain by

arranging trades by third parties is also beyond the scope of this paper, even though the issue

occupies a central role in the financial services industry. I postulate instead a centralized

mechanism whose aim is to maximize financial transactions on the basis of messages sent

by participating firms. The message sent by firm i consists of the integer `i. This integer is

interpreted as the number of firms that i is willing to lend to if it has the resources to do so.

Because i is known to have a preference to lend to local firms, the message is taken to mean

that i is willing to lend resources to all firms whose index is i− j where 1 ≤ j ≤ `i and the

subtraction i− j is modulo N .

On the basis of these messages, the mechanism determines the matrix X whose element

Xji is equal to 1 if firm i lends z to j and equals zero otherwise. The ith column thus

indicates the firms to whom i lends funds, while the jth row indicates all the firms that lend

resources to j. Letting ι represent a vector of N ones, the requirement that each firm’s total

loans be equal to its total obligations can be written as

Xι = X ′ι (3)

where X ′ is the transpose of X, so the sum of the elements of a row is equal to the sum of

the elements of the corresponding column. The centralized mechanism maximizes the total

value of claims ι′Xι subject to two constraints. The first is (3) and the second is that Xji

can only equal zero or one, and can take the latter value only if i− j ∈ {1, . . . , `i}. Letting

` denote the full set of messages, the solution to this optimization problem is the matrix

X∗(`). The matrix X∗ is the adjoining matrix of a directed graph, since it has zeros on the

diagonal while some of its off-diagonal elements equal one. Since X∗
ij is equal to one when i

owes funds to j, and since this debt contract requires i to pass z units of liquidity to j, X∗

is in fact the adjoining matrix for the settlements graph described in the previous sections.

From the perspective of firms i, it is useful to decompose ` into the message sent by i

himself, `i and the messages sent by all other firms `i. Firm i then chooses `i to maximize
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his own utility, which is given by

Ui =
i+N−1∑
j=i+1

u(j − i)Xij − Pi(X
∗)c

where Pi(X
∗) is the probability that firm i will be unable to settle one of its obligations given

the debts represented by the matrix X∗. An equilibrium, then, is a set of messages `i that

maximize Ui while taking `i as given. I focus on symmetric equilibria where all firms send

a message `i = ¯̀. Given such symmetric messages, the centralized mechanism sets K = ¯̀

and thereby reproduces the debts considered in the previous section. Assuming that ¯̀ firms

chosen sequentially according to Assumption B are given endowments of liquidity and that

settlements proceed according to Assumption A, Pi = 0. These probabilities are higher if

Assumptions A and B govern who gets liquidity and how it is used but the number of firms

that receive liquidity has a positive probability of being smaller than ¯̀.

For a symmetric equilibrium to exist, no firm must want to unilaterally deviate from

sending a message of ¯̀. When a single firm deviates by setting `i above ¯̀, X∗ is unaffected.

Since the mechanism limits the loans of all other firms to ¯̀, firm i does not have the resources

to increase the number of its loans beyond this. The ineffectiveness of a message that is above

that of all other firms implies that firms cannot gain or lose from sending messages that are

above the consensus message ¯̀. This indifference could justify assuming that firms send

messages of ¯̀ whenever they believe that other firms do so, even if all firms preferred to

make loans to more firms. This could then rationalize equilibria with arbitrarily small (and

even zero) loans. Such equilibria are not robust, since they hinge on reacting to indifference

in a very particular way. They are also unattractive because firms appear impotent to change

their loan volume, which does not seem consistent with the active interest that firms seem

to take in their loan exposures.

I thus center my attention on symmetric equilibria where firms are indifferent with respect

to reductions in `i. A reduction in `i below ¯̀, on the other hand, does affect equilibrium

lending because it prevents the centralized mechanism from giving firm i claims on ¯̀ firms.

Indeed, (3) requires a reduction also in the number of firms that lend to i and in the loans
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of at least some of the firms to whom i would have lent if `i had been set equal to ¯̀.

Consider then, a deviation where `i = ¯̀− 1. Because i can end up with at most `i claims

and obligations, the resulting X∗ must feature at least one less cycle passing through i than

the graph C
¯̀
N . Since the mechanism seeks to maximize the number of edges remaining in X∗,

it removes a shortest cycle. As discussed in the previous section, this implies that endowing

¯̀− 1 firms with liquidity is sufficient to settle all debts under assumptions A and B.

The aim of this section is only to demonstrate that the acquisition of claims need not

be optimal. I thus proceed to construct a special case where private and social interests

diverge, with the hope that it provides some intuition that is more generally valid. Suppose

that assumptions A and B hold, that it is certain that at least K̄ − 1 firms will receive

endowments of liquidity and that there is a probability µ that K̄ firms will do so. I now

consider a sufficient condition for an equilibrium to exist such that all firms set `i equal to

K̄.

At such an equilibrium, all debts are settled with probability (1−µ). With the remaining

probability, N − K̄ + 1 firms are left with one unpaid debt, while K̄ − 1 firms settle all their

debts because they receive an endowment of liquidity. This means that a firm i that deviates

from the proposed equilibrium by setting `i = (¯̀− 1) increases its probability of settling

all its debts from (1 − µ + µ(K̄ − 1)/N) to one. It thus avoids the expected default costs

µc(N − K̄ + 1)/N . Since the firm loses u(K̄) by doing so, it is indifferent with respect to

this deviation if

u(K̄) =
µc(N − K̄ + 1)

N
(4)

Condition (4) ensures that there is an equilibrium with ¯̀= K̄. Symmetric equilibria with

smaller numbers of loans also exist if all firms set `i to smaller values. What is less appealing

about these equilibria is that all firms prefer to have more debts, so their existence relies on

firms sending the message ¯̀ rather than ¯̀+ 1 only because they are sure that it will make

no difference. To see this, consider an equilibrium with ¯̀= K̄ − 1. If firm j thought that it

stood a chance of obtaining K̄ debts and assets by sending a message of K̄, it would do so.

Its benefit from doing so would be u(K̄). Its loss, meanwhile, would be µc(N − K̄ + 1)/N if
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every other firm sent a message of K̄. If fewer firms did so, but nonetheless enough of them

did it for firm j to end up with K̄ debts and assets, Assumption B ensures that firm j would

have a greater than (K̄ − 1)/N probability of being a recipient of a liquidity endowment. It

would then be assured of settling its debts even if only K̄− 1 receive an endowment. It thus

stands some chance to gain, and no chance to lose by sending a message of K̄.

For equilibria with even lower values of ¯̀, a single firm is strictly better off if sending a

message of ¯̀+1 leads it to acquire ¯̀+1 debts and assets. At these lower levels of indebtedness,

all debts are settled with probability one, so that the firm simply gains u(¯̀+1) if it succeeds

in increasing the size of its balance sheet.

I now study the social consequences of having firm i reduce `i from K̄ to K̄ − 1. For a

certain number of firms, this reduces the number of their debtors and creditors by one. Given

that the mechanism maximizes total debts, the number of firms thus affected is N/K if N

is divisible by K and is otherwise 1 + N/K. These firms all lose u(K̄)− µc(N − K̄ + 1)/N

so that they neither gain or lose anything. For the rest of the firms, there is a net gain

of µc(N − K̄ + 1)/N since their debts are now settled for sure. To obtain the total social

gain, one multiplies this individual gain by (N − N/K̄) when N is divisible by K̄ and by

(N −N/K − 1) otherwise. The reason these social gains exist is that Assumption A implies

that liquidity is not used in its most socially efficient manner. This means that reducing a

few firms’ liquidity requirements allows many other firms to take advantage of the liquidity

that is thus freed up.

4 Short payments chains

There are several reasons to be interested in situations where there are limits to the number

of payments that can be settled by a unit of liquidity. One might suppose, for example, that

the processing of each payment takes a discrete amount of time τ while the length of the

trading day is itself limited and equal to T . It is then impossible to use a unit of liquidity for

more than T/τ payments on a given calendar day and this may affect the amount of liquidity

that one needs to settle the debts that come due on that day. As one firm is paying a second

21



during a particular time interval, a third firm might be able to learn that it will receive the

resulting funds later on. This third firm may thus be both able and willing to make a nearly

simultaneous payment to a fourth firm using funds raised though a “daylight” loan. This

parallel processing of payments may allow a unit of liquidity to be used more than T/τ in a

given day.6

Nonetheless, there may well be limitations on the process of making payments in advance

of receiving liquidity. One of these is that, when a bank’s daylight loan is repaid, the bank

receives liquidity. This liquidity can only be used to settle more debts if the bank lends it

anew. If the bank fails to do so, only the original cascade of payments using the system’s

actual liquidity continues unabated.

This section thus takes up the case where the maximum number of times that a unit of

liquidity can be used, R, is smaller than N −K so that the paths of payments considered in

Section 2 are infeasible. One immediate consequence of this is that the total liquidity that

is needed to settle all debts now depends on the volume of debt in addition to depending

on the number of interconnections among firms. To see this, imagine a pattern of liquidity

endowments that settles all debts when each firm owes z to each of its creditors. If each

bilateral debt is of size λz (so that the total debt is multiplied by λ), it can be settled

by the same sequence of endowments, as long as each endowment is multiplied by λ as

well. Conversely, if one multiplies every bilateral debt by a sufficiently large λ, the original

distribution of liquidity endowments will be insufficient to settle all debts.

When R is small enough that it prevents liquidity from returning to the firm that was

originally endowed with it, Assumption A becomes inappropriate. Because one role of this

assumption was to prevent payments from following Eulerian paths, which were even longer,

it might be desirable to leave payment paths unconstrained when they are already being

limited by the size of R. At least some of the analysis in this section is valid for such

arbitrary paths. Still, some of the proofs of this section rely on tracing out the effects of

6If these loans are costly, firms would prefer to pay with cash that they have already received, and this
might dampen the use of this borrowing. See Angelini (1998) for a model where priced intraday credit leads
firms to postpone their payments until they have cash on hand.
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particular sequences of liquidity endowments and these effects do hinge on the way firms use

the liquidity they receive. For this reason, I consider a simple modification of Assumption

A, which maintains the idea that payments are made along edges that advance the index as

much as possible. This is:

Assumption A’. If firm j receives an endowment when the graph of obligations is Gt,

and the shortest cycles that include j are longer than R, then each firm i that is able to

make a payment to a creditor based on j’s endowment makes this payment to the creditor

whose index is furthest from i.

Assumption B, on the other hand, does not require modification in the sense that the

total debt of each firm is still well-defined at each stage so that one can give liquidity to one of

the firms with the largest outstanding obligations. Unfortunately, imposing a limitation on

the size of payment paths implies that firms with the same total debt can be quite differently

situated in other ways. Some, for example, may have creditors with debts while others may

have creditors that have already repaid theirs. By the same token, the maximum length

of the payment chains originating from one firm may be quite different from that of chains

originating from another.

A consequence of the fact that firms end up being quite asymmetrically placed after some

units of liquidity have been used to make payments is that it seems difficult to study the

general properties of CK
N . I thus start by analyzing in detail the special case where N = 6 and

K is equal to either 1, so that the required payments are given in Figure 2, or 2, so that the

required payments are depicted in the left panel of Figure 3. After these cases are analyzed

in detail, I show that some of the basic results concerning the effect of interconnectedness

generalize. To demonstrate the importance of interdependence, the total debt of firms d is

made independent of K and set equal to 2z.

This raises the immediate question of how large are the endowments that are sequentially

distributed according to Assumption B. One possibility is to distribute this liquidity in small

increments. I show that, when these increments are sufficiently small, interconnectivity

among firms does not affect the minimum amount of liquidity that is needed to settle all
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the debts. By contrast, if liquidity is distributed in large doses, this interconnectivity does

matter. The case of large doses may be more realistic because it captures the idea that certain

firms have ample access to liquidity (because they receive it from ultimate borrowers, for

example) while other firms do not (because, continuing with the example, they deal only

with other financial firms). The analysis shows that in this case, interconnectedness does

make it more likely that the economy will suffer costs as a result of insufficient liquidity.

Interconnectedness also does not matter in the related special case that we have already

seen, namely when R = 1 so that each unit of liquidity can only be used once. As we saw, the

complete settlement of all debts then requires that each firm start out with a liquidity equal

to its total debt. This case is not particularly interesting, however, because the capacity

of firms to make payments with funds that they receive on the same day appears to be

important in practice. The simplest model where this is possible has R = 2, and much of

the analysis in this section is focused on this case.

To demonstrate the importance of the size of the liquidity endowments that firms receive,

I compare the case where each firm that receives exogenous liquidity receives z units to the

case where the size of the sequentially distributed endowments is 2z. In the former case, we

have

Proposition 4. When R = 2, liquidity endowments of size z = d/2 are distributed sequen-

tially according to Assumption B, and debts are given either by C1
6 or by C2

6 , the minimum

number of distributions to clear all debts is 6 and the maximum is 8.

Proof. See Appendix.

The logic of this proposition implies that the same total amount of liquidity is needed

if the distributions are equal to d/2n where n is an integer. It suffices to distribute these

endowments in n rounds, each of which follows the sequence of endowments considered

Proposition 4. This proposition demonstrates that K does not matter very much when

the endowments are distributed gradually while always going to firms that need them most

acutely. The degree of interconnectedness does matter, however, when the endowments of
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individual firms cover all their obligations, so that they equal 2z. To see this, the next two

propositions show the amount of liquidity that is needed to settle all debts for the cases of

C1
6 and C2

6 respectively.

Proposition 5. Let the initial pattern of debts be given by C1
6 while R = 2 and liquidity

distributions equal d = 2z. Under assumptions A’ and B, the smallest number of liquidity

endowments that leads all debts to be settled is 3 while the largest is 5.

Under the further assumption that the endowment of liquidity is received with equal proba-

bility by all firms that satisfy Assumption B, the probability that 3 endowments of liquidity are

sufficient equals 1/4, the probability that exactly 4 are needed equals 17/24 and the probability

that 5 are necessary equals 1/24.

Proof. See Appendix.

This result can be contrasted to the analogous one when K = 2.

Proposition 6. Let the initial pattern of debts be given by C2
6 while R = 2 and liquidity

distributions equal d = 2z. Under assumptions A’ and B, the smallest number of liquidity

endowments that leads all debts to be settled is 4 while the largest is 6.

Under the further assumption that the endowment of liquidity is received with equal proba-

bility by all firms that satisfy Assumption B, the probability that 4 endowments of liquidity are

sufficient equals 1/4, the probability that exactly 5 are needed equals 2/3 and the probability

that 6 are necessary equals 1/12.

Proof. See Appendix.

These propositions point to several important contrasts between the case of K = 1 and

the case of K = 2. First, the minimum number of firms that need to receive an endowment

for all debts to settle is smaller when K = 1. Second, the maximum number of firms that

need to be given an endowment is also smaller when K = 1. Lastly, the distribution of

the amount of liquidity that is needed under C2
6 stochastically dominates the corresponding
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distribution under C1
6 . The first two of these results can be generalized somewhat, as the

following propositions show.

Proposition 7. Let each of N firms have a total debt equal to d and be owed d by others.

Suppose that N is divisible by R > 1 and that liquidity endowments are equal to d. Then,

under assumptions A’ and B, the minimum number of liquidity endowments needed to clear

all debts when these are given by C1
N equals N/R while this number is strictly larger if they

are given by CK
N with K > 1.

Proof. See Appendix.

The proposition suggests that settling all obligations is more complex when K > 1. When

K = 1, it suffices to space the recipients of exogenous liquidity so that their indices differ

by R. By contrast, when K > 1 so that each firm makes payments to a variety of firms,

the early endowments lead many firms to have their debts reduced slightly. This means that

later endowments debts cannot be used to settle as many debts so that more firms must be

given endowments if all debts are to be settled.

Proposition 8. For debts that can be described by C1
N , the maximum number of liquidity

endowments of size d needed to clear all debts is N −R + 1. If K > 1 and R = K then, for

N large enough, the maximum number of endowments of size d needed to clear all debts is

N .

Proof. see Appendix.

A building block for this result is that the first endowment clears R debts when K = 1

whereas only one debt is cleared by this endowment when K > 1. Perhaps more important

than the difference in the maximum number of firms that need to be given an endowment

is that this maximum number requires a very particular distribution of endowments when

K = 1. Indeed, there is only a single sequence that accomplishes the upper bound in

Proposition 8 when K = 1. By contrast, while a specific sequence is used to demonstrate

the upper bound for K > 1 in proposition 8, the proof makes it clear that several similar
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sequences would serve the same purpose. Thus, the outcome where every firm needs liquidity

when K > 1 does not appear to have a vanishing probability. The reason is that the payments

made by firms when K > 1 are much more fragmented throughout the economy. It is thus

easier to find firms with considerable debts that make payments only to firms that either

have lots of debts themselves (so that they do not finish settling their debts) or to firms that

have already finished settling all their own debts.

5 Conclusions

We have seen that limits on the amount of liquid assets that are available to the financial

system for the payment of debts can lead to more defaults when the web of debts is more

densely interconnected. It might be tempting to read this as implying that governments

should be more prepared to lend resources for the purpose of debt settlement when debts are

interconnected. This conclusion does not entirely follow from the current analysis, however.

To isolate the effect of trading frictions that require firms to settle their debts with liquid

assets, the model supposes that all firms have claims that are at least as large as their

obligations. By assumption, then, a program of lending to all firms so that they can cover

their obligations does not make losses. This raises the question, which is not explored in

the current paper, of why private firms do not lend and thereby eliminate the difficulties I

discuss. One possibility is that periods of liquidity problems also involve genuine credit risk.

A proper evaluation of a government lending program would then have to take into account

the potential for financial losses.

The lack of private lending also has a potential alternative explanation which is closer to

the spirit of this paper. This is that the resources of individual private lenders are limited

so that no single firm has sufficient lendable assets to guarantee that the entire financial

system settles its debts. As demonstrated in section 3, the existence of an upper bound on

the number of payments that can be made with a unit of liquidity implies that a firm that

makes a payment on its debts cannot be sure to receive a payment back on the claims that

it has on other firms. By the same token, an institution that lends liquidity to a firm so
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that it can pay its obligations cannot be sure that the firm will be able to pay it back with

funds recovered from its debtors. This suggests that limitations on the amount of liquidity

that any one firm can lend might make it possible for all firms to be too afraid to lend.

Given that an increase in debt interconnections raises the amount of liquidity that may be

needed to clear all debts, it may also increase the likelihood that firms become too afraid to

lend to one another. Lending by a government with larger resources than those available to

individual firms might then be justifiable.

To simplify the analysis, the model assumes a great deal of symmetry, and much of the

analysis involves firms that have to pay the same quantity z to the same number K other

firms. This symmetry allows me to be somewhat silent concerning the maturity of the debts

involved. One can interpret z as the coupon on a long term debt (so that each firm’s debt

is expected to be unchanged when the period is over) or as principal plus interest on short

term debt (so that firms are massively reducing their exposure to one another). In the latter

case, z is obviously much larger for a given market value of total debt so that more liquidity

is needed if payment chains are limited in length. The model thus suggests conditions under

which more liquidity is needed when the maturity of inter-firm debts is shorter.

It is easy to see that the model would be more realistic if it involved less symmetry, as

well as if it incorporated explicitly firms’ vertical debt relations with borrowers and lenders

outside the financial system itself. It is important to stress, however, that considerable

care will have to be employed when generalizing the model in these directions to maintain

analytic tractability. To get an idea of the vast distance that separates what can be proven

analytically for related graphs when the interconnectivity parameter K is varied and the sort

of conjectures that experts regard as plausible, the reader is referred to Alon et al (1996).
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Appendix: proofs of some propositions

Proof of proposition 4

The size of the system’s total debt is 6d = 12z for both C1
6 and C2

6 . Since each endowment

of z can only be used twice, the theoretical minimum number of endowments needed to clear

all debts is 6. In the case of C1
6 , this minimum can be obtained by first giving endowments to

firms 0, 2 and 4 in sequence (thereby leaving each firm with a debt of z) and then repeating

this sequence.

In the case of C2
6 , the minimum can be obtained as follows. First give an endowment to

firm 0. Using Assumption A’, this removes the edges (0, 2) and (2, 4). Then give an endow-

ment to firm 1, removing the set of edges {(1, 3), (3, 5)}. Follow this with an endowments

to 4 and 5 (in either order), thereby removing the edges (4, 0), (0, 1), (5, 1) and (1, 2). Then,

end by giving endowments to 2 and 4 (in either order) to clear the edges (2, 3), (3, 4), (4, 5)

and (5, 0).

Examples can also be found where sequences of 8 endowments of liquidity are needed to

clear all debts (so that cutting one of these sequences short would lead some firms to be in

default). In the case of C1
6 , a sequence with this property involves giving units of liquidity

to 0, 2, 4, 0, 5, 4, 3 and 2. The last four of these endowments are used only once because

they are given to firms whose creditors have already settled all their debts. In the case of

C2
6 , a sequence with this property involves giving liquidity to 0, 3, 1, 4, 5, 4, 2 and 1. Once

again, the last four of these endowments are used only once each.

I now show that more than 8 allocations of liquidity are not needed. Given that total

debts equal 12z, only four debts of z each are left if the first four endowments can settle

two debts of z each. This implies that one does not need more than 8 units of liquidity if

the first four units clear two debts. By enumerating all possible sequences of the initial four

endowments that satisfy Assumptions A’ and B, one can observe that they each allow these

units of liquidity to be used twice.

Consider first the case of C1
6 . If 3 is given a unit of liquidity after 0, Assumptions A’ and

B imply that the next units of liquidity must go to 2 and 5 (in either order). All four of these
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units are used twice. If 5 is given a unit of liquidity after 0, firms 2, 3, and 4 are left with 2

debts of z each and this means that one of the next two units of liquidity must be given to

2 while the other goes to either 3 or 4. In either case, they are each used twice. Lastly, if

either 2 or 4 are given a unit of liquidity after 0, the next unit goes to the other member of

this pair. This leaves every firm with a debt of z, so that the next unit of liquidity can go

to any firm, and will be used twice.

Now consider the case of C2
6 . If firm 1 is given a z units of liquidity after firm 0, the

next endowments of liquidity must go to firms 4 and 5 (in either order) because they each

have 2z of debts remaining. If firm 3 is given an endowment after 0, the next endowments

go to firms 1 and 4 in either order. If firm 4 is given an endowment after 0, the next ones go

to 1 and 3 in either order. Lastly, if firm 5 receives an endowment after 0, the next two go

to firms 3 and 4 in either order. In each of these cases, the first four endowments are used

twice.

Proof of proposition 5

Since total obligations equal 12z, each endowment equals 2z and can be used at most to

make 2 payments, a minimum of 3 endowments is needed to settle all debts. This minimum

is achieved by giving endowments to firms 0, 2 and 4 in any order. Each of these firms passes

its endowment to the firm with an index just above their own, and this firm in turn passes

these funds to its own creditor.

The first endowment, which goes to firm 0 by convention, clears the debts of two firms so

that it leaves obligations of 8z. Given that both debts and endowments equal 2z, any subse-

quent endowment clears at least 2z worth of debts. This implies that, at most, 4 additional

firms have to be given endowments of 2z. Four firms are indeed needed if endowments are

received in the sequence {5, 4, 3, 2}, which is consistent with Assumption B.

Suppose now that all firms that satisfy Assumption B are equally likely to get liquidity.

After 0 has used his liquidity and this has gone to firms 1 and 2, the 4 firms in this sequence

are left with a single debt of 2z each and have a probability 1/4 of obtaining liquidity at

this stage. The sequence that leads 5 firms to need liquidity starts by giving an endowment
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to firm 5, then gives an endowment to firm 4 (which has a probability 1/3 of occurring after

5 receives the first unit) and then gives an endowment to firm 3 (which has a probability

1/2 of occurring after 5 and 4 have received theirs). Thus, the probability of this outcome

is (1/4)(1/3)(1/2)=1/24.

To ensure that it is sufficient to give liquidity to 3 firms, firms 2 and 4 must be given

endowments after 0, with the order that they receive it in being unimportant. If firm 2

receives an endowment after firm 0, this firm pays off 3, which settles its debt with 4. Thus,

only 4 and 5 are left with debts and there is an equal probability that each will receive the

next unit of endowment. The sequences {2, 4} and {4, 2} thus each have a probability 1/8

(since 2 and 4 each have an initial probability of 1/4).

Proof of proposition 6

Start again with the arbitrary assumption that 0 is the first firm to receive an endow-

ment. Letting this firm’s payments follow the paths implied by Assumption A’, the graph

of remaining obligations is given by panel (a) in Figure 5. This leaves 3, 4, and 5 with two

debts each so that one of these firms receives the next endowment of liquidity. Panels (b),

(c), and (d) of Figure 5 display the debts that remain after giving liquidity to 3, 4 and 5 re-

spectively. It is immediately apparent from inspecting these figures that there is no method

for extinguishing the remaining debts by giving liquidity to just one additional firm.

If all endowment distributions satisfying Assumption B are equally likely, panels (b), (c)

and (d) of Figure 5 each have a probability 1/3 of representing the graph of obligations after

the second round. From panel (d) of Figure 5, it follows that giving liquidity to firm 5 after

firm 0 leads 5 units of liquidity to be required to settle all debts regardless of whether firm

3 or 4 is given liquidity after firm 5 (and these are the only possibilities consistent with

Assumption B). The extreme cases where 4 or 6 units of liquidity are required thus involve

giving liquidity to either firm 3 or 4 after giving it to firm 0.

If firm 4 receives liquidity after firm 0, panel (c) describes the outcome and, Assumption

B guarantees that firm 3 is given liquidity next. There is then a probability 1/2 that the

next unit of liquidity goes to firm 1, which leads all debts to be settled with just four units
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of liquidity. The overall probability of this sequence is thus 1/6.

Now consider panel (b) in Figure 5, which is the result of following the endowment to

firm 0 with an endowment to firm 3. Starting from this point, there is a probability 1/2

that the next endowment goes to either firm 1 or firm 4. Having gone to one of these firms,

there is a 1/2 probability that the following endowment goes to the other. There is thus a

1/4 conditional probability that all debts are settled with four units of liquidity. The total

probability of needing just 4 units of liquidity to settle all debts is thus 1/6+(1/3)(1/4)=1/4.

Also starting in panel (b), there are several sequences in which all four firms with out-

standing debts must receive endowments for all debts to settle (so that the total number

of firms that must receive an endowment equals 6). These sequences require that firm 1

receive an endowment before an endowment is given to firm 2 while firm 4 receives an en-

dowment before firm 5 receives one. One example of this is the sequence {0, 3, 2, 1, 5, 4}.
Starting at the stage described in panel (b), the probability that the next endowment will

go to either firms 2 or 5 equals 1/2. Conditional on this occurring, there is a 1/2 probability

that the other of these two firms will receive an endowment before firms 1 or 4 do. Thus,

the overall probability that six firms need to receive an endowment to settle all debts is

(1/3)(1/4)=1/12.

Proof of proposition 7

In the case of C1
N , it suffices to give endowments to firm with indices given by iR with

i = 0, . . . , N/R to clear all debts. For the provision of d units of liquidity to N/R firms to be

sufficient to settle all dN debts, liquidity endowments of d must on average settle dR debts.

Since dR is the maximum amount of debt that an endowment can settle, every liquidity

endowment must settle this amount of debt.

Now consider the case where K > 1 and R > 1. The first firm that receives a liquidity

endowment has a debt of d outstanding and makes payments of d/K to K firms. According

to Assumption A’, each of these K firms make a payment to a firm whose index is K larger

than their own, and the same is true for the recipients of these payments. This implies that

all subsequent payments are received (and made) by distinct firms. As a result, the first
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liquidity endowment reduces the outstanding debt of Q = 1 + K(R − 1) firms. Thus, N/Q

is the maximum number of firms that can be given liquidity at a point where their total

obligations still equal d. Because R > 1 and K > 1, Q > R, so that providing liquidity to

N/Q firms is not enough to settle all debts. Providing liquidity to more firms implies that

some firms receive liquidity when their obligations are smaller than d, so that less than dR

debts are settled with the liquidity they receive. Thus, giving liquidity to N/R firms is also

insufficient.

Proof of proposition 8

In the case where K = 1, the first liquidity endowment clears the debts of R firms and no

endowment given to any firm thereafter clears less than one debt. So, N−R+1 endowments

are sufficient. A particular sequence that requires this many endowments consists of first

giving an endowment to firm 0. This is followed by giving endowments to firms N−1, N−2

and continuing, backwards one by one, until one reaches firm R.

In the case of K > 1 and R > K, a sequence of endowment distributions has the property

that every single firm must be given an endowment for all debts to be extinguished if each

individual distribution extinguishes only the debts of the recipient of this distribution. I now

describe such a sequence, demonstrating along the way that each distribution extinguishes

only one debt. To describe it, it is useful to let Ij represent the index of the firm which is

given liquidity at the jth step of this sequence. As always let the first firm that is given

liquidity be firm 0 so I1 = 0. As long as K > 1, this distribution extinguishes only the

debts of firm 0. Under Assumption A’, it leads all firms with indices between 1 and K2 to

receive a payment, though only firms with indices between 1 and (K−1)K make a payment

themselves (so that they reduce their obligations by d/K).

For j between 2 and K, let Ij = N − 2K +3− j (so that the first of these firms receiving

an endowment has index w0 = N − 2K + 1 and the last one has index w1 = w0 −K + 2).

Notice that the first of these endowments leads all firms between w0 + 1 and N − 1 to

make one payment, and also leads firms with indices between 1 and [1 + (K − 1)(K − 3)]

to make payments. If K > 2, the second of these endowments also leads several firms with
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indices between 1 and (K − 2)(K − 4) to make payments. This number is smaller than

the corresponding number in the case of the first of these endowments because I3 < I2 and

because the firms between w0 and (K − 2)(K − 4) have made payments already, so that the

edges that capture the payments based on the second of these endowments are shorter.

When they receive payments based on the endowment given to IK , the firms with indices

between w0 and N − 1 have already received and made K − 2 payments, so that they make

payments to firms whose index exceeds their own by 2. This implies that the last firm to

make payments based on this endowment has an index of w0−K +2+K +2(K−2) = N−1.

This firm makes a payment to the firm with index 1. At this stage, no one owes this firm

anything, but this firm still has an obligation of d/K outstanding (to firm 2). Note also that

the endowment given to IK also leaves the firms with indices between w and N − 1 with one

obligation each, since they have been able to make K − 1 payments with the endowments

given to the firms between I2 and IK . At this stage, none of the firms whose indices are

between K(K − 1) + 1 and w−K − 3 = N − 3K + 3 has made any payments, and there are

M = N −K2 − 4K + 3 such firms.

For N large enough, one can find two integers m0 and m1 such that

M = m0K(K − 1) + m1(1 + K(K − 1))

since m1 can be set equal to the remainder in the division of N by K(K − 1). For K <

j ≤ K + m0, set Ij = w1 − (j − K)K(K − 1). For K + m0 < j ≤ K + m0 + m1, set

Ij = w1−m0K(K−1)−(j−K−m0)(1+K(K−1)). To see the effects of these endowments,

start with IK+1 = w1 −K(K − 1). The firm with this index makes payments to all K of its

creditors. The payments received by the (K−1) firms whose index is closest to IK+1 lead to

K−1 additional payments because w1−K(K−1)+r+(K−2)K is less than w1 for all r smaller

than or equal to K−1. The payment that firm w1−K(K−1) makes to firm w1−K(K−1)+K

only leads to K−2 additional payments because, w1−K(K−1)+K +(K−2)K is equal to

w−1, and this firm has already received an endowment. The effect of this endowment is thus

to eliminate the debts of IK+1 while leaving all firms with indices between IK+1 and IK with
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one less obligation. By the same logic, the endowments to firms Ij with K +1 < j ≤ K +m0

eliminate the debts of one firm and reduce the debt of K(K− 1)− 1 firms by one obligation.

This logic also implies that the endowments to firms Ij with K + m0 < j ≤ K + m0 + m1

eliminate the debts of one firms while reducing the debts of K(K− 1) debts by d/K (as was

the case of the endowment given to firm 0).

After these endowments, firms with indices between 1+(K−1)(K−3) and w1 have either

completed all their payments (if they have received an endowment) or made one payment of

d/K so that they have K−1 obligations outstanding. If an endowment is now given to w1−1,

this firm’s payments to its remaining K−1 creditors do not lead to any subsequent payments.

The reason is that these go to firms with indices between w1 and w1 + K − 1 = w0 and all

these firms have already received endowments. So, let IK+m0+m1+1 = w1 − 1. Consider next

the firm w1 − 2. Unless it has received an endowment already, it has K − 1 creditors, all of

whom have already received an endowment. Thus giving an endowment to firm w2− 2 leads

only this firm to become free of all obligations. One can now proceed to give endowments one

by one to firms by reducing their indices all the way until one reaches firm 1. By proceeding

in this way, the number of obligations of the firms that receive endowments is falling over

time (consistent with Assumption B), and each endowment clears only the debts of the firm

receiving it. After this is done, one gives endowments to the firms whose indices are between

N − 1 and w0 moving backwards one by one. Each of these firms has one obligation and, if

one proceeds backwards, the recipient of their payment has already received an endowment

so that he is incapable of making further payments.
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Figure 1: An example combining vertical lending with a cycle

Figure 2: An example with K = 1
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Figure 3: An example with K = 2

Figure 4: An example with K = 2 and a missing cycle
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Figure 5: Remaining obligations of C2
6 when R = 2
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