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ABSTRACT

Recent analyses of the gains to policy coordination have focussed on the

strategic aspects of macroeconomic policymaking in a static setting. A major

theme is that noncooperative policy making is likely to be Pareto inefficient

because of the presence of beggar—thy—neighbor policies. This paper extends the

analysis to a dynamic setting, thereby introducing three important points of

realism to the static game. First, the payoffs to beggar—thy—neighbor policies

look very different in one—period and multiperiod games, and thus so do the

gains to coordination. Second, we show that policy coordination may reduce eco-

nomic welfare if governments are nyopic in their policy making, as is sometimes

claimed. Third, governments act under a fundamental constraint that they cannot

bind the actions of later governments, and we investigate how this constraint

alters the gains to policy coordination.
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I. Introduction

In an earlier essay (Oudiz and Sachs, 19814) we investigated the quanti-

tative gains to international policy coordination in a static environment. In

this paper, we begin to extend the analysis to a dynamic setting. However,

because of several new methodological issues, this first step is more theoretical

than empirical. The extension to dynamics introduces three important points of'

realism to the static game. First, the payoffs to beggar—thy—neighbor policies

may look very different in one—period and nultiperiod games, so that the need

for policy coordination may be different in the two games. Second, it is often

claimed that governments are shortsighted in macroeconomic planning, and

support for this view has come from the literature on political business

cycles.1 We should therefore investigate whether international policy

coordination is likely to exacerbate or meliorate this shortsighted behavior.

Third, governments act under a fundamental constraint that they cannot bind the

actions of later governments (or even of themselves at a future date). In

principle, therefore, optimizing governments mist take into account how future

governments will behave in view of the economic environment that they inherit.

We study the implications for policy coordination of this inability to bind

future governments.

Let us consider these three points in turn. In the static game,

uncoordinated macroeconomic policy—making is typically inefficient because of a

prisoner's dilemma in policy choices. Consider, for example, two countries that

are attempting to move optimally along a short—run Phillips curve. It may be

that each country will choose contractionary policies no matter what the other

country selects, though the policy pair (expand, expand) is better for both
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countries than the non—cooperative equilibrium (contract, contract). As we

showed in our earlier study, this situation arises naturally under flexible

exchange rates, since by contracting while the other country is expanding, a

country can appreciate its currency and export some of its inflation abroad. It

is this beggar—thy—neighbor action that gives rise to the prisoner!s dilemma.

Cooperation, say in the form of a binding international commitment to expand,

may be useful in moving the countries to the efficient equilibrium.

The question arises whether the payoff structure in a niiltiperiod, or

infinite—horizon game will look the same. The reason for doubt is simple.

In almost all macroeconomic models, policies which lead to a short—run real

appreciation also lead to long—run real depreciation, or at least a return to

the initial real exchange rate. In this circumstance, farsighted players would

understand that a short—run beggar—thy—neighbor appreciation is less attractive

than it looks, since it will be reversed in the long run, at which point the

country reimports the inflation that it earlier sent abroad. To this extent,

the beggar—thy—neighbor policy loses its appeal, and the need for coordination

is reduced.

The second theme introduced in a rinltiperiod setting is the nvopic

behavior of governments. In considering public welfare in a nnltiperiod game,

it is natural to consider a payoff of the form:

(1) = ETt(T1)

Here, U is the intertemporal utility of country i as of time zero. u(T) is

the instantaneous utility of the country at time t, as a function of a vector

of macroeconomic targets T. is a pure rate of time preference, with S C 1,
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so that the future is discounted relative to the present.

In view of the evidence on political business cycles, in which governments

attempt to nanipulate T in conjunction with upcoming elections, it seems

natural to suggest that if (i) is the "true" social welfare function, the

government's social welfare function takes the form:

(2) =

where C T and C S. That is, its planning horizon is shorter than the

econort,r's, or its discounting of the future is higher.

In this view, the public is partly a hostage of a self—serving government.

The policy choices reflect the incumbent government's goals, and not the

public's. If this is so, we can ask whether international policy coordination

is likely to improve or worsen this sub—optimal situation. At an abstract

level, the arguments seem to fall on both sides. Some critics, for example,

have characterized policy coordination as a cartel of the incumbents, in which

each policymaker helps the others to nanipulate the political business cycle.

As an example of this, policymakers may have a short—run expansionary bias if

expansion shows up as output today and as inflation only many years in the

future. To some extent, the fear of currency depreciation following a

unilateral expansion keeps this bias in check. That is, the flexible exchange

rate provides discipline on the shortsighted government. With policy

coordination, the fear of currency depreciation can be removed by a commitment

of all countries to expand. In this way, policy coordination may give incumbent

governments a free hand to undertake overly inflationary policies.
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On the other hand, we can think of circumstances in which policy

coordination ties the hand of incumbents, and thus prevents such self-serving

policies. An international gold standard, for example, might impose discipline

on governments that would not exist in each country alone. To analyze this

possibility fully we would have to examine each government's incentive to stick

with a particular rule, and the extent to which internationally certified rules

are more or less durable than rules undertaken unilaterally. For example, each

country on its own could adopt a gold standard. What, if anything, is added by

a nulticountry commitment?

The third theme introduced in a nultiperiod setting is that of "time—

consistency" of optimal plans. Even in circumstances in which the current

government (or current administration) has the public's interest at heart, its

ability to nuximize social welfare nay be limited by its inability to pre—coinmit

the actions of (well—meaning) future governments. In these circumstances, the

current government must choose its optimal policy taking as given the policy

rules that will be pursued in the future. That is, it mast optimize today,

assuming that future governments will optimize under the assumption that yet

future governments will optimize, and so on. In general this constrained

optimization yields a lower level of social welfare than does the case in which

the government can choose not only its own policies but those of future

governments as well.

Many authors, including Barro and Gordon (1983) and Rogoff (1983), have

given examples in which the inability to bind future policies imparts an

inflationary bias to the econorw. In these examples, wage setters set wages
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before macroeconomic policy is set. Once the wages are set, policymakers have

an incentive to expand the econonv to reduce real wages, and raise output. Wage

setters anticipate these policies, and choose inflationary wage settlements in

anticipation. If the government can pre—commit to avoid inflationary policies,

the econOnw can get the same ex post output levels at a lower rate of inflation.

Unfortunately, such a pre—coinmitment is not credible since the government has an

incentive to renege on it after the wages are set.

As Rogoff stresses, this time consistency problem nay have important

consequences for international policy coordination. If the inability to bind

future policies leads to an inflationary bias, international policy coordination

may further exacerbate this bias by eliminating each country's concern about

currency depreciation. Thus, even when a sequence of governments within each

country is trying to maximize that country's true social welfare function,

policy coordination nay make the situation worse rather than better.

We consider later on several factors that tend to weaken this pessimistic

conclusion. First, in infinite—horizon games, governments nay be able to invest

in a "reputation" in order to overcome the time—inconsistency problem (as

illustrated in Barro and Gordon (1983)). In other words, a government's

credibility may be judged by its willingness to honor a program laid down by an

earlier government, so nuch that it continues the policy rather than

reoptimizing during its incumbency. We will provide an example of this

solution to the time inconsistency problem. Second, to the extent that the time

inconsistency problem revolves around the exchange rate, policy coordination nay

actually eliminate the problem. In examples later in the paper, optimal
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coordinated policies in our a two—country nrdel turn out to be time—consistent.

The plan of the paper is as follows. In the next section we set out a

simple dynamic macroeconomic model characterized by flexible exchange rates and

perfect foresight on the part of the private and public sectors. In

Section III, we describe various equilibria in a one—country version of the

model, to highlight the implications of time inconsistency. Next, in Section

IV, we describe the various equilibria in the two—country version of the game,

including the welfare gains or losses from policy coordination. Extensions and

conclusions are discussed in a final section.

II. k Simple Dynamic Macroeconomic Model

We consider a simple model of the sort explored by Dornbusch (l9J6). The

home country produces output Q, at price F, and trades with a foreign country,

which produces Q* at price P. The domestic exchange rate E measures units of

home currency per unit of foreign currency, so that the relative price of the

home good is F/EP*. Demand for the home good is a decreasing function of P/EP*

and of the real interest rate, and an increasing function of Q*• Letting lower

case variables p, q, and e represent the logarithms of their upper—case

counterparts, we write demand for home goods as:

(3) = — o[i_(p+1_ptfl + yq

Here, i is the nominal interest rate, and i — the home real interest

rate at time t (p1 is the expectation of at time t). Under the perfect

foresight assumption, which we hereafter maintain, p1 = for all t 0.

The money demand equations take the standard transactions form:
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() m
— = aq — ci

For convenience, we will invert this equation and write

=
I4q

—
P(Ifl—p)

with = a/c and p = 1/c. Following Dornbusch, we assume perfect capital

mobility, so that uncovered interest arbitrage holds:

(6) e+1_eit_i
Again, assuming perfect foresight, we solve for equilibria with e1 =

for all t.

It remains to specify wage and price dynamics. First, the (log) consumer

price index (nc) is written as a weighted average of home (p) and foreign

(p*+e) prices:

(7) p = Xp + (l_X)(p+e)

Home prices are written as a fixed markup over wages:

(8)

Finally, nominal wage change, w+1 — w1, is made a function of lagged nominal

price change, p — p1, output, and output change:

(9) t+l-t = + + 6

Note that since w1 — is a function of lagged rather than contemporaneous

price change, the system will display typical Keynesian features, particularly

the non—neutrality of with respect to contemporaneous and future anticipated

changes in tnt. This is the standard presumption in the Dornbusch model that the
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labor market clears more slowly than the asset markets.

In the next section, we will introduce corresponding equations for the

second country, in order to construct a two—country model. Here, we focus on

the one—country case by making the small—country assumption for the home economy

that p, i, and q* are given for all t 0. By doing so, we can write the

one—country model as a four—dimensional difference equation system as in (10):2

t+l Pt *
c c Pt

Pt Pti
(10) A +Bm -i-C

(It-i t
e e
t+l t

In any given period, p1, and are given by the past history of the

econoritr. These are the "pre—detennined" variables of the economy. rn and

indeed the entire sequence of m, is chosen as a policy variable. p, i, and

are exogenous forcing variables of the system from the point of view of the

home economy.

As is typical of perfect foresight models, an asset price such as e is

determined not by past history but by forward—looking behavior of asset holders.

In particular, for given values of p1 , and given sequences of p,

ii', and q* from t to infinity, there is typically a unique value of e such that

the exchange rate does not grow or collapse explosively (technically, this

unique value of e puts the economy on its stable manifold). Such a unique

value of e exists as long as the eigenvalue associated with e in the A matrix is

is outside of the unit circle, and the remaining eigenvalues are on or within
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the unit circle. In the simulations reported below, this condition is always

satisfied.

The goal of economic policy in our model will be to naximize a social

welfare function as in (i) or (2), subject to the constraint in (10). The

assumption that e is always such as to keep the econonw on the saddlepoint path

(or stable innifold) requires that economic agents have complete knowledge as to

the path of future policies. In this sense, the government is like a

Stackelberg leader with respect to the private sector, choosing monetary policy

with a view to affecting e and thereby more basic economic targets, while e is

chosen taking as given the future sequence of m. This is not to say, however,

that governments can necessarily choose any sequence of m that they desire. A

large part of the discussion that follows describes the "admissible" sequences

of policies.

As a concrete example of this model, we will suppose that instantaneous

utility u(T) is a quadratic function of inflation, = p — p1, and the

deviation of output from full employment q. That is, u = —(lI2)(q +

Thus, intertemporal utility is

(11) U0 = _(l/2)E0t(qF$it)
Note that t is a parameter reflecting the weight attached to relative to q.

is the discount factor. We have written the utility function with an infinite

horizon, and we will point out shortly some special features of the problem that

arise with such a formulation.

We now turn to the optimal policy for m. It may seem straightforward to
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maximize (11) subject to (io), but as Phelps and Pollak (1968) first explained,

and Kydland and Prescott (1917) further elucidated, the maximization is quite

problematic. Here we sketch the problem, and treat it in greater detail below.

Suppose that we apply optimal control techniques to the problem of

maximizing U0 subject to (10), taking as given p0, p, q1. For simplicity,

we set p = i = = 0 for all t 0. The result of this straightforward

control problem will be an infinite sequence m0,m1,..., denoted hereafter

that maximizes U0. Let us write this optimal choice of monetary policy as

We have already noted that e0 will in general be a function of p0, c1, q1

and the entire sequence fii}0. The first step of this sequence is

Given %, e, p0, c1, and q1, we can use (io) to find p, p0, q0. Suppose

now that at time 1 the policymakers reoptimize, in order to maximize U 1subject

(io). Once again, a simple control problem will yield a sequence nrm2.... now

denoted as {rn}1. In general, will not equal rn for t > 1, so that the

government at time 1 will not want to carry on with the optimal plan as of time

zero. If the government at time 1 is not bound (e.g. by a constitution) to

carry out the earlier plan will be scrapped.

As Kydland and Prescott stressed, we cannot simply assume away this

problem by letting the initial government choose %, the next choose m1, etc.;

i.e. by letting each succeeding government optimize anew, using the optimal

control solution (this is close to what Buiter (1983) proposes, incorrectly we

believe, as discussed below). The problem is iruch deeper, for the following

reason. The choice is optimal only under the assumption that it is followed

by th1,th2,... It has no particular attractiveness given that it will be

followed by m1 and other * for t > 2. Moreover, the exchange rate e0
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will be a function not of , as the original government's solution assumed,

but rather of the actual m that will be selected.

Phelps and Pollak, and Kydland and Prescott, provided the answer to this

difficulty. Unless the original government can act to bind all future

governments, it nust optimize with the full knowledge that all future

governments will be free to optimize. A time consistent equilibrium is one in

which each government optimizes its policy choice taking as given the policy

rules (or specific policy actions) that future governments will use. With a

finite time horizon, such an optimization is easy to carry out. Let

xT represent the inherited state of the econonzr in the final period T. In our

example xT would be the vector <PT' Given XT it is easy to find

the best policy =
fT(xT) that maximizes LT sTij. At time T—l, the

penultimate government knows that its successor will follow =
fT(xT). It

is then an easy task to maximize ET Tu subject to (10) and the constraint

= This second optimization will yield the nile =

By backward recursion, every government could thereby find a policy rule fjx.)

that is optimal given the rules that succeeding administrations will follow.

Such rules will be credible to the private sector (e.g. the asset holders in the

foreign exchange market) because each government is doing the best that it can

given the freedom of action of future governments.

In an infinite—horizon setting, the solution of the time—consistency issue

is a bit nore complex, as we shall soon see. The problem is that there is

likely to be a multiplicity, perhaps an infinity, of policy rules that have the

property that they are optimal given that future governments will also choose
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the rule. There is an embarrassing abundance of time—consistent policies. Not

only is it hard to find all of these solutions, but it is not necessarily

straightforward to choose among them.

In summary, there are typically two types of equilibria in imltiperiod

planning problems. The first type assumes that the initial government can

pre—commit to an entire sequence of moves, or to a policy rule. For this type

of problem, optimal contrcl suffices. The second type of problem nore

realistically assumes that each government can nake its "move," but cannot bind

the hand of future governments. It must therefore optimize, taking as given the

freedom of choice of future governments. Before proceeding to the imiticountry

setting, it is useful to study some more technical aspects of these two

approaches.

Pre—commitnient Equilibria

There are two types of pre—conmitment equilibria. In the first, the

government selects an entire sequence jm} that by assumption will be carried

out at all future dates. In the second, the initial government selects a rule

= that is also assumed to bind all future governments. The

first equilibrium is termed an open—loop solution, and the second, a closed—loop

solution. Both solutions will tend to be time—inconsistent, except in special

cases, in the sense that future governments will want to deviate from the

original sequence (in the open—loop case), or the original rule (in the

closed—loop case), even if they believe that other governments would abide by

the original plans.
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We now calculate the optimal open—loop equilibrium in order to pinpoint the

source of the time inconsistency. Starting with (io), we write the elements of'

the A matrix as the B matrix as b1. and the C matrix as cj (the specific

values of and are given in the footnote preceding equation (io)).

Tin fact C can be ignored under our simplifying assumption that p = = i = 0

for t 0. Thus = a11P + a12p 1
+ a131 ÷ a1e + b11m while

similar expressions hold for p, q, and e+1. The goal is to choose the

sequence Julio that maximizes U0 in (11) subject to (io). To solve this problem,

we write down the Lagrangian £ as follows:

(12) max £ = (1/2)tj [q +
{ m}

+ lt+l
+ 2,t+l Ia2ip+a22p_i+a23%_l+a2et+b2imt_P]

+ 3 ,+l [a3lpt+a32P l+a33_l+a3Let+b3lmt_

+ ,t+l
As is well known, p2,0'

and 1130 are shadow values which describe how

U0
is affected by different inherited values of p0, C1, and q1. In particular,

=
au0jap0; p2,0

=
aU0/3pC1; and

p3,0
=

au0/3q1.

By analor, equals 3U0f3e0; that is I1}40 measures the change in

intertemporal utility for a small change in e0. Unlike p0, c1, and

however, the policymaker does not inherit e0, but rather determines e0 as a

function of the policies that are selected. Because e0 is a policy choice, a

necessary condition of the optimization must therefore be that aU0/3e0 =

=0. At the optimum, 4t will equal zero at t = 0.
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The time consistency problem arises because along the optimum sequence

will (in general) not always equal zero. (p will follow

a difference equation of the form described in the Appendix). Since will

tend to rrcve away from iero, reoptimization at any t when * 0 would lead to

a new sequence of m such that would again start at zero (a necessary

condition of the optimization). From a technical point of view, the open—loop

sequence is time consistent if and only if the equation for can be

satisfied with 0 for all t ) 0. If this condition is met, then future

governments will choose at all dates t even if they are not bound by the

original government. If the condition is not satisfied, the open—loop solution

makes sense only if future governments are not allowed to reoptimize.

Consider a simple illustration using our ttdel. We select simulation

values for the key parameters of the rrndel, as shown in Table 1. The econorw

inherits a ten—percent domestic inflation rate, and lagged full employment

(i.e. p0 = 0.10; p1 = 0.0; = 0.0; q1 = o.o). With a constant exchange

rate (e0 = o), CPI inflation will equal ten percent in period zero (i.e.
= 0.10),

while a currency appreciation can reduce the initial CPI inflation rate. Given

our parameter values, the optimal sequence jmn}0 is sharply contractionary at

t = 0, so that output is pushed below zero, with the goal of reducing inflation.

The real exchange rate p0 — e0
— p appreciates at t = 0, !47 percent above its

long run value, with the currency appreciation helping to export inflation

abroad. Figure 1 shows the optimal paths of inflation, output, and the real

exchange rate. (19814 is taken as t = o).

Consider the behavior of p14 ' as shown in Figure 2. After t = 0, ji
turns



Table 1. Parameter Values

a = 1.00

= O.T5

y = 0.00

5 = 1.50

= 0.50

o = 0.30

A = 0.75

o = 1.50

= 0.10

= 2.00

—I5—
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Figure 1. Open-Loop Control in the One—Country Model
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positive, meaning that an increase in e would raise welfare. From the point of

view of the government at time t = 3 (1987), for example, the original plan is

too contractionary, since a currency depreciation would raise welfare. A new

optimization at t = 3 would lead to a new sequence jrn}0, with in3 >

This is shown in Figure 3, where we superimpose j?4 and Loosely speaking,

the initial government, at t = 0, has an incentive to announce a stern set of

future monetary policies in order to induce a currency appreciation at t =0,

and thereby to reduce 1l (which is otherwise very high). Of course, e0 can be

reduced by extremely low in0 and higher in for t ) 1, or by more ncderate and

somewhat lower rn for t ) 1. The optimal policy is to opt for nderate and

low future in, rather than extremely restrictive in0, since the approach with

restrictive future m achieves the same currency appreciation with a somewhat

lower loss of initial output, q0.

Thus, from the perspective at t = 0, it is worthwhile to commit future in to

low values for the sake of e0. However, from the perspective of future

governments, e3 is a bygone, and in should reflect tradeoffs in the present and

future, not the past. Thus, by the tine a future government assumes office,

part of the original incentive to keep in low has disappeared, and the new

optimization in period t consequently yields a higher value of in.

It is interesting to note that there is a single special case in which the

open—loop policy is also tine consistent, and that is when a = 0 in the original

model (i.e. output is not affected by the real interest rate). In that case,

E 0 satisfies the equation for derived in the Appendix.3 From an

economic point of view, when a = 0, only the exchange rate e0, but not the
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sequence of future m, affects and so that there is no reason to prefer

one path of m over another as long as they both lead to the same e0. The same

is true about all future e. This property allows the original government to

specify a path that all future governments will be content to honor.

The open—loop equilibrium is the best pre—commitment equilibrium available.

It is sometimes argued, however, that while governments cannot credibly

pre—commit future governments to a sequence of policy nnves, they nay be able to

pre—commit governments to a specific policy rule for m. Such a closed—loop

rule might not be as good as the open—loop result, but it might be better than

no rule at all. There is some merit to this argument, as we shall soon see.

The rule can of course be of varying complexity. We illustrate this case by

choosing a simple rule, which links rn to the current state of the economy, as

described by the vector x q1>. Such a rule is termed memoryless, in

that the past history of the economy, in arriving at <PtPtiQl>, is not

permitted to affect In. We simplify further by specifying ni as a linear

function of t't—l' and

(13) ni = + lt ÷ B2p1 +

Our method of solution is straightforward. A solution of the form (13) is

guessed. Using (10) and the assumption that e0 places the economy on the stable

manifold, we find U3 as a function of the rule. Implicitly then

U0 = u0(0,1,e2,3). Using a standard numerical optimization technique, we

then proceed to maximize U0 with respect to o'l'2'3' to arrive at the

optimal rule 1% = + + + 3q1. Given our assumed parameter

values for the structural ncdel, we find:
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(lu) = —.038 Pt + 1.027 p1 + 0.322

Note that this is the optimal linear nile for a given x0 =
<p0, pC1 q.> =

<0.1, 0.0, 0.0>. For a different starting point, we would find a different rule.

Time—Consistent Equilibria

The previous equilibria depend on the unsatisfactory assumption that future

governments can be bound by rules made at an earlier date. Some writers have

suggested that macroeconomic policies must therefore be formulated as

constitutional rules, in order to bind successfully at a later date. For many

reasons, including conflicting views about the correct rules, unwillingness to

tamper with a constitution, and the realization that even constitutions can be

amended at a later date, there is little likelihood the macroeconomic policy

will soon be etched in constitutional stone. In practice, therefore,

governments nust operate with the knowledge that future governments have freedom

to change course and will have incentives to do so, relative to the open—loop

or closed—loop optimum, even when the future governments share the goals of the

earlier governments.

In this circumstance, we can reformulate the policy problem as a game among

an infinite number of players (i.e., governments), who are identified by the

time period in which they act. The initial nove is made by the government at t

= 0 (hereafter G0), then by G1, and so on. The payoff functions for Gt is

- t i
Eit Ut(T), and the move is m.

Now, we can think of various types of' Nash equilibria among these

governments. In analor to the pre—commitment case, we can think of Nash
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equilibria in which each government takes as given the moves of other

governments, or Nash equilibria in which each government takes as given policy

rules of other governments. A Nash equilibrium in moves will be called

"open—loop," and a Nash equilibrium in strategies or policy rules will be called

"closed—loop."

Consider first the case of open—loop Nash equilibrium. Let {zn} t denote

the sequence of moves before and after, but not including, period t:

open—loop Nash equilibrium is a sequence

Nw N
{m }, with the property that for all governments, in is optimal taking as

given

(15) {mgris an open—loop Nash equilibrium if and only if for

N
all t, tn maximizes Z.t U. subject to (io) and given jm

In performing the optimization at period t, the government assumes that e

adjusts to keep the econon on the stable manifold, given the past history of m,

the current policy choice xn, and the assumed future path

With this definition, the problem with the precommitment equilibrium is

that the resulting path is not a Nash equilibrium among the infinite sequence of

governments (this was verified in Figure 3). Taking as given that other

governments will play \ (the open—loop sequence), only the initial government

will want its part of the sequence (i.e. For all other governments (in

general), there will exist a superior choice of policy.

Now, consider the "closed—loop" version of Nash equilibrium, in which

we assume that plays a rule (or strate,r) f, which maps to
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rather than just a move tnt. As before, define the sequence !i_ as
f0,

1••••tl Now, we define a Nash equilibrium in this strategy space

as follows:

(16) is a closed—loop Nash equilibrium if and only if for all t,

= naximizes E.S U subject to (10),

and given

In general, there will be r.ny such Nash equilibria, some of which (as we shall

see) are not very desirable.

ks is typical in such circumstances, we further refine the nature of the

equilibrium to include only Nash perfect equilibria. A strategy sequence

is said to be a perfect equilibrium if for any history of the econonbr from time

o to t (even histories not resulting from a Nash equilibrium during periods

o to t), strategies {f} constitute a Nash equilibrium in the sub—game

from t to . We now define time consistency:

(17) (f} time consistent if and only if is a Nash

perfect equilibrium.

In general, open—loop Nash equilibria, as in (15), will not be perfect

equilibria. Suppose, for example, that the sequence nz.1,rn2,... has the Nash

property. In most models, including those in our paper, the sequence

will not be subgame Nash (starting at period 2), if m1 is set

differently from m1. Thus, from this point on, we restrict our search for

time—consistent equilibria to closed—loop Nash equilibria, in which governments

take as given the policy rules of other governments.

Unfortunately, even the perfectness concept does not eliminate the problem
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of a multiplicity of equilibria. There will in general be many truly time—

consistent equilibria. To narrow the search, we begin with the simplest case,

in which m is a function of the current state x

alone (see Maskin and Pirole (1983) for some justification for restricting our

search to such "memoryless" strategies). Thus, we are searching for a function

= f(x) such that:

(18) = r(x) maximizes

subject to (10) and to the restriction that

= f(x.) for all i * t.
1 1

(Note that in this case the government at time t does not actually care about

the rules up to time t, since the past is fully summarized in xv). Implicit

throughout is the assumption that e is always such as to keep the economy on

the stable manifold. In practice, this means that along with f there is another

function h linking e and x : e = h(x ).t t t t
Our strategy is to search for f among the class of linear functions.

klthough we cannot prove that the resulting function is the unique menoryless,

time—consistent equilibrium, we suspect that it is in fact unique, in view of

the linear—quadratic structure of the underlying problem. Consider the

necessary conditions for a time—consistent optimum. Let m = lo +
11P

+

+ Y31 be a candidate solution (call it the 1—rule). Plugging this rule into

(io), we can also determine a unique linear rule e = h0
+

h1p
+

h2p°
+ h 1

t t t_ 3t1

that keeps the econonw on the stable manifold. Now, suppose that these rules hold

t
for all t > 1. It is possible to calculate Ei as a function of the rule

and the state of the econonr at t = 1, i.e. x1. Let us call the value of the
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utility function VI(xi), where V1 denotes the dependence of utility on the

rule 1•

th t
At time zero, the 0 government wants to YTaximize Et_O8Ut, which equals

U0 + 6V(x1) under the assumption that future governments will use the 1—rule.

Note that x1 = <p1,p,q). Specifically, the initial government solves the

following:

(19) max U0 +

'no

Subject to:

(a) e1 = h0
+

h1p1
+ h2p + h3q

(b) p1 = a11p0
+

a12p 1
+

a13q1
+ albeO +b11m0

(c) p = a21p0
+

a22p01
+

a23q
+ a2e0 +

(d) =
a31p0

+
a32pC1

+
a33q1

+
a3beo

+

(e) e1 = a1p0 + ab2pl + a3q1 + abeo +

(f) U0 = —kg +.Tg)

(g) ppcq and V given

In this optimization problem, (a) is determined by the candidate 1—rule.

(b)—(e) are the structural dynamic equations summarized in (io). (r) is the

instantaneous utility function (note that = p — pt). Finally, (g) defines

the state of the econov for the initial government.

The optimization is straightforward. Using (a) and (e) we can write

e0 = (l/abb)IhO +
h1p1

+
h2pg

+ h3o
— a1p0 -

a2pc1
— a3q1 — b1nol. Now

using (b), (c) and (d) together with the new equation for e0, we have four
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equations that irake e0, pg, a, and p1 linear functions of m0 and the

predetermined variables p0. I?1, q1. Let us write this system as:

(20) e0 = d11p0
+

d12pC1
+

d13q1 ÷ d1m0

p = d21p0
+

d22pC1
+

d23q1
+ d2n0

=
d31p0

+
d32pC1

+
d33q1

+
d3m0

p1 = d1p0 + d2pC1 + d3q1 + dm0

Now simply impose the first—order condition that

÷ i3V(pip.k)]/dmo equals zero. By direct substitution we have:

(21) 0 =
_2d3(d31p0+d32pC1+d33q1+d3j4m.0)

—2$ d2 (d21p0+d22pC1+d23q1+d2m0_pC1)

-i-8(av/ap)d2

This gives us a linear rule for as a function of p0, p, q1 and implicitly

(through v) the I rule:

(22) =
[1/(d314÷d)l t(d314d31+$d2d21)p0

+
(d34d32+cd2d22)pC1

+

+ l/2(3V/3p1)d + l/26(3VI/3p)d2
+

l/2S(3V/3q0)d3)
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Under our assumptions, the partial derivatives of are linear functions of

p p and q1 (though not easy to write down analytically!). Thus, in0 is a

linear rule in p0. p, and

(23) = 6 + + 62Tl +
63q1

As long as (23) is the same as the y rule, we have found a stationary,

time—consistent rule. That is, for 6 = 10, '1 = 11, 2 = 2' 63 = 13 the y

rule is validated as a time—consistent policy. Starting at !flLperiod t and any

state t, the tth government will choose the I rule given that all future

governments will make that choice.

In general, the time—consistent rule nust be found numerically (see Cohen

and Michel (1984) for an elegant treatment of the one—dimensional case for the

state vector x, for which an analytical solution is found). To do so, we start

with a finite—period problem, in which Eo3tut. It is then easy to find the

optimal final period rule 1% = fT(XT). Given TT' T—1 is readily found by the

ty-pe of backward recursion just described. For each T, we can readily compute

f0(x0). Denote this rule as f(x0) to denote the dependence of the rule on the

periods remaining. Then it is a simple matter to find the limiting value of

f(x0) as T + . The rule f(x0) = lim f(x0) can then be verified directly to

have the time—consistency, Nash equilibrium property for the infinite—horizon

game. We provide details of this method in the Appendix.

Using the parameter values described earlier, the time—consistent rule is

calculated to be:

(2k) zn = —.032 Pt + 1.032 + .275

As is shown in the Appendix, the open—loop optimal policy can be written as a
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linear function of the state variables and

(25) m = —.019 Pt ÷ 1.019 p1 + .272 + .389

Starting, as before, with 10 percent inflation, we can compute the path of output

and inflation for the time—consistent policy, for comparison with the open—loop

pre—cornmitrnent equilibrium. In Figure a, we compare the inflation performance

in the two cases; in Figure 14b, we compare the exchange rates; and in Figure 1c,

we compare the output paths. We have already seen that the open—loop control

holds future governments to an over—contractionary policy relative to the one

that they would select upon reoptimization. Since the time—consistent policy

explicitly allows for (expansionary) reoptimization in the future, it is

not surprising that the real exchange rate is less appreciated in the time—

consistent (Tc) case than in the open—loop (OL) case. Simply, agents recognize

that future governments will select more expansionary m, and e is an
increasing function of the entire sequence of m. Thus, < 1t, via the

exchange rate effect. In general, q < qTC in the early periods, as

governments In the OL case pursue a steady, contractionary policy. After a

certain period (shown as t in Figure be), the inequality is reversed. Both

policies reduce the inherited inflation to zero in the long nan.

Before turning to a welfare ranking of the various policies, we must note a

key feature of the disinflation process (pointed out earlier in Buiter and

Miller (1982) and elsewhere). The price equation is:

= _) + +

Also =
Pt

+ (l_X)(piet_pt) =
Pt ÷ (l_X)r, where r( = p-s-e—p) is the real

exchange rate. Thus,
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(26) tl—t = t—tl + (l_A)(r_r1) + +

Suppose an economy inherits an inflation rate of Aç = p0
— p1, with r1 = q1 = 0.

By simple forward integration of (26) from t = 0, we have

(27) t+l—Pt) = + (l_A)r + *:1=01 +

Now, for all of the equilibria so far considered, —
Pt equals zero in the

long run (i.e. inflation is eliminated), r returns to zero (i.e. no long—run

change in competitiveness), and returns to zero (i.e. long—run full

employment). Thus, taking limits of (21), we find 0 = A0
+ 4Z. 0q1, or

(28) 0q. =

All policies have the same cumulative output loss, no ratter what is the time

path of exchange rates, money, etc.! Thus, the welfare issue is always one of

timing, rather than the overall nagnitude of lost output.

On purely logical grounds, we can rank the welfare achieved by the three

policies so far studied: open—loop control, closed—loop control (with

pre—coinmitment), and time—consistent control. The open—loop control is clearly

first best, since both of the other solutions reflect the same optimization, but

under additional constraints. The closed—loop, linear feedback rule also nust

produce higher utility than the time—consistent rule. Both the linear rule and

time—consistent solution choose as a linear function of x; the linear rule

is chosen as the best among this class of functions, so in particular it is

better than the time—consistent rule. Thus we know that > u. In

general, the inequalities will be strict, though we bave already noted special

cases (e.g. c = 0) in which all of the policies are identical.
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Buiter (1983) has recently proposed an alternative strate' for finding a

time—consistent linear rule (we describe his approach at length in the

appendix). His reasoning is as follows. Consider the open—loop control

solution, with shadow prices p1, u2, and p3 on the state variables, and on the

exchange rate. At t = 0, the initial government chooses policies so that

p4,0
= 0. For t > 0, we know that will tend to deviate from zero. Each

government in period t would like to reset hu144 = 0. Baiter proposes,

therefore, that a time—consistent solution is found by assuming that E 0

for all t, and dropping the open—loop dynamic equation for When this

procedure is followed, we obtain the following linear rule:

(29) m = .237 p + .763 p1 + .229

There are two counts against this proposed solution. Most important,

it is simply not time consistent. If all governments for t > 1 adopt the Baiter

rule, the government at t = 0 would not choose this rule. By following the

procedures described earlier (for calculating the best rule at t = 0 for a given

rule at t ) 1) we find that the initial government would choose:

(30) m0 = —.147 p0 + 1.147 c1 + .309

The logic underlying the Buiter solution seems problematic as well. The

merit for a government to choose p = 0 comes if the sequence of in

corresponding to = 0 will in fact be carried out by future governments,

But, by construction, each succeeding government alters the chosen sequence of

m. There is simply no attraction to choosing = 0 if the government knows

that its plans will not be carried forward. The private sector understands this

point perfectly, by setting e to correspond to the actual sequence of in rather
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than to the sequence planned by each government. In a nutshell, Buiter's

government is naive in assuming that future governments will carry out its

open—loop optimum, at the same time that the private sector is completely on top

of the policy—making process, and knows that future governments will reoptimize.

Reputation and Tinae—Cnsistency

In the previous section we simplified our search for a time—consistent

policy to "memoryless" rules. Such rules nake m a function of the

contemporaneous state vector but not of the past history of x and m. Many

policies in the real world depend on the history of a game as much as the

current state. In competitive environments, for example, aggressive behavior by

one player at time t—l might bring forward retaliation by others at period t, as

in "tit—for--tat" strategies. Game theorists have long understood that such

history—dependent strategies can help competing players to achieve rmre

efficient outcomes than those obtainable from memoryless strategies alone.

It turns out that similar complex strategies can help a sequence of

governments to achieve a better equilibrium than the one obtained by the

memoryless rule m = 1(x). Consider a compound rule of the sort:

(31) (a) Government t chooses its policy according to = (x) as long as

all governments j C t have also selected policy this way;

(b) If any government j C t selects m * g(x), then government t selects

= 1(x). where f is the menoryless, time—consistent rule.

Suppose now that the rule (x) is better than 1(x) in the sense that if' all
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governments t ) 0 choose g(x) they achieve utility > U. Also, suppose that

itself is not time consistent in the sense of (19): If all governments

t >1 are known to choose (x), it is not optimal for the government at t = 0 to

select g(x0).

The surprising result is that while (x) is not time consistent, a

compound strategy like (3l)(a)—(b) can be time consistent with the result that

all governments end up playing g(x) leading to higher social welfare. In the

memoryless time—consistency problem, each government takes as given the choice

of policy rule followed by future governments. If future governments are going

to choose m = g(x), the current government nay have no particular incentive to

choose g. With a compound rule as in (31), the government at time t knows that

it affects the policy rule selected by future governments. It takes as given

the two—part decision mechanism (a)—(b), but it recognizes that if it is the

first government to deviate from (x) it will cause all future governments to

choose f(x) instead of (x). Since > U1' by assumption, this deviation from

g(x) imposes a cost, which deters the government from deviating from

Thus, each government operates under a "threat" that future governments

will revert to f(x) if the current government fails to play m = (x). Game

theorists have long recognized that such a threat mechanism is viable only if

the reversion to 1(x) is credible. For example, suppose that the rule is "let

money growth obey the open—loop strategy or else each future government lets

money grow by one million percent." If every government takes it as given that

future governments hold this rule, then noney growth will indeed obey the
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open—loop strate' (governments would seek to avoid the hyperinflation that they

fear would otherwise ensue).A true intertemporal Nash equilibrium is obtained,

in which the open—loop sequence is carried out by every government. The problem

here, of course, is that the threat of hyperinflation is not rational. Surely,

if any government does violate the open—loop rule, the next government will not

exercise the threat. Knowing this, no government really has an incentive to

persist in the open—loop path.

Game theorists therefore restrict the threats to actions that would indeed

be carried out if deviations from (x) occur (even if, as in the example, the

threats need never actually be carried out). It is here that the assumption of

perfection of equilibrium becomes important. In the hyperinflation example just

cited, not all subgames are Nash, and thus the proposed equilibrium is not

perfect. To see this, suppose that G0 deviates. Even if G1 assumes that all

future governments will play the hyperinflation threat, it is not optimal for

government 1 to play the threat. Thus the subgame in which government 0

deviates, and all Gt > 1 ) let m grow by 1 million percent per period, is not

a Nash equilibrium. G1 can do better unilaterally, taking as given the actions

of other G.

As long as the reversion is to f(x), i.e. the threat is to return to the

time—consistent rule, the threat is credible. After all, if a government

believes that all future governments will play f(x) it is optimal for the

government itself to play f(x). Every subgame consisting of the infinite

sequence of governments playing f(x) is therefore a Nash equilibrium.

Now we argue that by this nchanism the sequence of governments can sustain
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any linear rule = &(x), as long as the utility from this rule is higher than

the utility from the nemoryless time—consistent rule for any x. We want to show,

therefore, that the following strate for each government constitutes a perfect

Nash equilibrium, in which m = £(x) is always played..

(32) (a) Each government chooses m = t(x) as long as all governments

j < t have also selected this rule;

(b) If any government j < t selects a different nI, then all governments

t select ru = f(x).

Now let us examine the incentive of any government to deviate from =

It knows that all future governments will then play f(x). But knowing

that all future governments will play f(x) it is optimal for the government in

question to choose m = f(x) as well, by the definition of f. In other words,

if a government is going to deviate, the best deviation is simply to revert to

f(x) immediately. Thus, the cost of defecting from the m =£(x) nile is to

revert immediately and permanently to the = f(x) rule. Since utility is

higher under & than f, there is never an incentive to deviate from &. The

equilibrium is perfect, since in any subgaine in which a defection from

= £(x) has occurred, it will be a Nash equilibrium for all governments to

revert to f(x).

For the case 8 = 0.0, we have found a rule = &(x) that has the property

that tJ(x) > U(x). and thus have verified that such reputational equilibria

exist in our model, With U = 0, and all other parameter values as in Table 1,

the time consistent rule is:



= f(x) = —.165 Pt + 1.165

The following rule has higher utility for all

= = —.185 Pt + 1.185 p1

The loss functions corresponding to these rules are:

F 1.726 —1.7261f 1-i I -fU (x ) = —(—)x i i x = —x S xt 2

tLlT26 l.726J
t t

£ 1 (
1.725 —1.7251 -u (xe) = _()xI p x1

=
—xb x

L—1.725 1.725j

Since s1'— S is positive definite, we have for all
xthat

— = (s— st)x > o.

We have not found such an example for S > 0.0.

In an important sense, then, the time inconsistency problem is exaggerated,

in that nany "pre—commitment" equilibria can probably be sustained even in

situations where actions of future governments cannot be bound. The memoryless

time—consistent equilibrium is the lower limit of what can be obtained by a

sequence of governments, not the only outcome. We should stress, however, that

time consistency does impose costs, since the first—best, open—loop strategy

almost surely cannot be sustained as a perfect equilibrium. The reason is as

follows. Suppose that the sequence of governments pursues the open—loop solution

under the threat of reversion to m = f(x) if it ever violates the open loop rule.

We know that it will follow the sequence {frt}1J, to which corresponds a sequence of

states, denoted 1k!0. At each t, we nay calculate the utility of continuing
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with the open—loop sequence, U2'G%), with the utility of reverting to

the time—consistent equilibrium, U(&). The threat of reverting to f will

continue to work only when (x) c U (x). However, at some point this

equality is reversed, and the government at that date actually prefers to revert

to the time—consistent equilibrium. Knowing that such a date will be reached,

earlier governments will also know that the open—loop path cannot be sustained.

OL TC.
This phenomenon is shown in Figure 5, where at each t, we graph U. (x) — U

(x),

with the 1% calculated along the open—loop path. As long as U?(&) —

is positive, the government at t does not have an incentive to deviate. At

time t (here 1987), the government prefers to revert to the time—consistent

solution.

III. Policy Coordination in the Two—Country Model

The first part of the paper has dealt with economic policy in a single

econouzy. We now extend the same set of techniques to a two—country setting.

The goal is to compare "non—cooperative" equilibria (NC), in which each country

optimizes while taking as given the policies abroad, with "cooperative"

equilibria (c), in which binding commitments can be nade between the two

countries. Fornally, we treat the cooperative case as one in which a single

controller chooses the policies of the two countries. As in the early section,

we imist treat two separate types of equilibria: (i) the pre—commitmnent case, in

which the two countries (in NC) or the single controller (in C), can credibly

pre—commit to a rule or to an infinite sequence of actions; and (2) the

time—consistent case, in which no pre—commitment in future periods is possible.

We turn first to the pre—commitment case.
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Figure 5. The Cost of Reversion to Time Consistent Controla
OLA TC
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(One—country model)

aNote that the y—axis has been adjusted by a multiplicative factor for
graphical convenience.
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Open—Loop Control and Policy Coordination

The open—loop case is most easily dealt with. We, firBt append a symmetric

foreign—country model to the home—country model just discussed. The model is

shown in Table 2. In the NC solution, each government at t = 0 solves for an

optimal sequence of monetary policies taking as given the sequence selected from

abroad. In the C solution-, a single controller chooses and jm*}0 to

maximize a weighted average of intertemporal utilities at home and abroad. In

view of the symmetry assumed between the countries, jm}0 will equal {m*} as a

feature of both solutions, with the adjustment paths at home and abroad identical.

The key result is that non—cooperative control leads to over—contractionary

anti—inflation policies relative to the social optimum. Both countries are made

better off by a coordinated policy of less rapid disinflation.

In general, the dimensionality of the control problem is too high to

analyze the NC case analytically. An important special case, however, allows us

to establish analytically the key features of the NC versus C solutions. Since

the findings are insightful, we begin with that special case. In particular, we

first assume that aggregate demand and money demand are not interest sensitive

(a = e = 0 in the original model). This simplification allows us to determine

as a function of the current state vector together with and m, rather

than as a forward—looking variable dependent on the entire future sequence of

policies. Also, to reduce further the dimensionality, we set 0 = 0, so that

wage change depends on the level of output but not its lagged rate of change.

Denoting the real exchange rate as r = + e — p, we can write =
Pt

+ (l_X)r, and = — p' = + (l_X)(r_r1). Therefore, from the
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Table 2. Two—Country Model

Aggregate Demand

= + iq —

= _o(P.1-e_p) + y%— a(i—(p1_p)]

Money Demand

Jilt

—
Pt

= — Ci

— p = ao —

Consumer Price Index

p = Apt
+ (l_A)(p+e)

=
Ap + (1_A)(P_e)

Domestic Price Level

Pt = wt

P =vt

Nominal Wage Change

(w1_w) = iT + +

(w+_w) = w* + +

Inflation
C c

'It =
Pt —Pt_i

c* c*—nt 1_t vt_i

Exchange Rate

e =e +1 -i
t+i t t t
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wage equation, and the fact that Pt = w, we have = + (l_A)(rt+i_r)
+ 4q. Note from this expression that inflation accelerated when r+1 > r or

> 0. In other words, a real depreciation between periods t and t+1 causes

inflation to accelerate, basically because real import prices rise. Carrying

out the same manipulation for the foreign country yields n1 = — (1—A)

(rt+i_rt) + • Note that a real depreciation at home causes inflation to

fall abroad, while an appreciation at home causes foreign inflation to rise.

Here is the nub of the coordination problem: each country may have an incentive

to contract the econonr in order to appreciate the currency and thereby export

inflation abroad at the expense of the other country. Since the exchange rate

effects are bound to cancel out if each country chooses contractionary policies

to appreciate its currency, a coordinated policy can avoid the contractionary

policies, to the inatual benefit of both countries.

It only remains to determine r before solving for the two equilibria.

Subtracting the foreign aggregate demand schedule from the home schedule we

find:

(33) r = a(—q) a = (li-y)/2S > 0

From (33), we see that the key to a real appreciation is to be more

contractionary than one's neighbor. The effort towards contraction leads to the

inefficiency of the non—cooperative outcome.

In any period, Pt and p are predetermined variables, so that the choice

of m and fix and respectively, in view of the nxney demand schedules.

Thus, we may think of the policy authorities as controlling and q4 directly,
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and then use the sequences and {q*}0 to find the paths of prices and

the policies 1% and as Pt + and p + ctn4.

We now write the home countryts optimization problem in canonical form. At

any ncment, there are two state variables, Pt and p1, and we write the

dynamic system in terms of these states:

F J fl —l TI Pt J fla(l_i) + fl a(i_iYJ *

L: 1 L' oj L_iI+Li_ I cLi_iJ
Note that q is the control variable, and q is an exogenous forcing variable

from the point of view of the home country. The objective function is again

a discounted sum of quadratic loss functions in and

(35) U3 = (l/2)ZSt(q+fl2)
Note that = p — pC = (p_pC) +

We set up a Lagrangian £ and take first—order conditions in the standard

way (note that is the co—state variable for Pt, and 2t for

t2 c 2
(36) £ = 2Et=o + s[(p—p) +

+ uE2P — + ÷ a(l—y)(q_q4) —

+ 2ttt + a(i—Y)(q_o4)
— p]

First order conditions are:

= 0 => + $a(1_1)[(p_pl) +

+ ultP + lt1o) + u2a(l_Y) = 0

= 0 => + a(l—i)(q—q)] + &lt — Ilt_l' +
112t

= 0
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= 0 > = 2p — p1 + +

= 0 > p = p + a(1—'i)(q_a4)

3L/3p1 = 0 > + a(1—y)(q—a4)] — — u21I3 = 0

We now invoke a sleight of hand. The foreign country is carrying out an

identical optimization, which by symmetry must yield = q.. Without specifying

the foreign country's problem, we simply invoke this symmetry condition as a

property of the equilibrium, in order to simplify the first—order conditions.

Note that when q = q, p equals p, so that iTt =P - =

Using these facts, we rewrite the first—order conditions as:

(37) + a(l—y)) + ua(i—y) + $a(1_1)w + = 0

— I1lt_1/ + '2t + 4rTr = 0

it
+
L2—1'

+ = 0

IT —iT —ia =0t+l t

By direct inspection of (371(b) and Cc), we can see that the system will satisfy

2t = We now nake that substitution and also substitute for to write

a 2x2 system in lt and

(38)
r lt+lJ r

lf + 2a(1y) -
—

['t+l J =L_*2
1

J

As long as < El—*a(1—y)41, this system has a single root within the unit

circle and a single root outside the unit circle (the condition is sufficient,

though not necessary).5 Denote the stable root as (the superscript N
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denotes non—cooperative case). Thus, the dynamics of inflation are:

(39) =
x5r

Starting from an inherited inflation rate
ito, the two economies converge to zero

inflation, with a mean lag of A'i/(l_A) years.

Now let us consider the cooperative case.
Here, a single controller

chooses and to naximize en average of utilities in the two countries.

Since the countries are identical, we may assume simply that the controller

maximizes domestic utility subject to the constraint that = for all t.

With this constraint, the inflation equation is 11t+l = + $q. The

Lagrangian for the single controller problem is therefore:

(ho) nax £ = _l,2E;0St{ + + + —
{ }

The dynamic equations for the first—order conditions of Ro) are:

(hi)
r 11f r 1/S +

1

[tt+lJ=L_t2 ij L
Note the relationship between (38) and (ni). The cooperative dynamics are

found by Betting a = 0 in (38). a is the parameter which measures how large a

real appreciation is achieved for a given contraction of q relative to q*. It

thus indicates the importance of the "beggar—thy—neighbor" phenomenon, in which

each country (vainly) attempts to keep output lower at home than abroad in order

to export inflation. Since the single controller recognizes the futility of

each country, in a closed system, trying to export inflation, the controller

simply sets a = 0. That is the root of the gain to cooperation.
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The rntrix in (hi) again has a single stable root, this time denoted

x.6 The 'namics of inflation are now

(42) =
X1ir

It is a simple nntter to prove that > for a > 0, so that cooperative

control results in slower disinflation than non—cooperative control.1 Figure 6

illustrates the inflation and output paths of the home econonry under cooperation

and non—cooperation. The faster disinflation under NC is clearly brought about

by increased unemployment (i.e. reduced output) in the early years of the

disinflation process. Remember from our earlier discussion that the cumulative

output loss is the same for all paths that asymptotically reduce inflation to

zero.

Welfare Aspects of Cooperation

Assuming that governments are pursuing appropriate objectives (e.g. that

they use the "right" discount rate), it is easy to show that the cooperative

path, with less extreme disinflation, dominates the non—cooperative path. A

simple argument is as follows (direct computation would also make the same

point). Define the set of pareto efficient (E) pairs of sequences

that have the property that 1J0 is maximized given tJ, and is

maximized given U0. It is well known that the set of pareto efficient

pairs may be found by maximizing wU0 + (l—w)U with respect to q}0 and

for all weights vS [0,11. Every pareto efficient sequence pair maximizes some

weighted average of U0 and U, and every sequence pair that maximizes

wU0 + (1—w)U is pareto efficient.
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Figure 6

A Comparison of Non—Cooperative and Cooperative Control
(Simplified two—country model)
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The cooperative solution, by construction, gives the sequence pair

corresponding to w = 0.5 (i.e. equal weighting of the countries). It is the

unique solution to the problem. Since the non—cooperative solution also

yields a symmetric equilibrium, with U0 = U, it mast be that U < tJ, since

otherwise the non—cooperative solution would pareto dominate a known pareto

efficient solution.

We mentioned in the introduction that some critics of cooperation are

dubious of the assumption that governments tximize the proper social welfare

function. In particular, plausible arguments have been made that the

government's discount rate is less than the "true" B. If so, cooperation

might exacerbate rather than meliorate social welfare. The point is that

cooperation allows governments to pursue a more "leisurely" disinflation.

However, short—sighted governments might already be postponing the necessary

disinflation, in return for short—run gains to output. In an already distorted

policy environment, cooperation might further retard the necessary adjustment.

To examine this view, we computed the open—loop cooperative and

non—cooperative intertemporal utilities for a range of B', holding fixed the

"true" B at (l.l) (we use the simplified version of the two—country model for

these calculations). For each BG, we calculate the two equilibria and then

evaluate the social welfare of the resulting paths using B = (l.l)_l. As seen

from Figure 7 non—cooperation dominates cooperation when B0 is sufficiently

G
smaller than B, and cooperation dominates non—cooperation as long as B is

"close enough" or somewhat greater than B. Of course, for any B0 = B, open—loop

cooperation will necessarily be superior to open—loop non—cooperation. It is
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Figure 7. The Gains from Cooperation with Myopic Governmentsa
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aNote that the welfare scale on the y—axis has been adjusted by a multiplicative
factor for graphical convenience.
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G '3
not the level of but the difference of and which might cause cooperation

to be welfare reducing.

Policy Coordination and Time Consistency

We now leave the case of open—loop control and return to the more realistic

assumption that governments cannot bind their successors. In the

non—cooperative setting we are looking for an equilibrium characterized by rules

= f(x) and m =
f*(Xg)

that have the following property: for the home

country, f is optimal at time t given that all future governments at home play f

and that abroad the contemporaneous and all future governments play fM; while

for the foreign country, 4 is optimal under the analogous conditions. Note

that is the state vector including predetermined variables of both the home

and foreign economy. In particular, = <p, p, t—l 't_l' t—l' _1>

There are two key differences with the open—loop model previously

described. First, of course, is the inability of and to bind the

entire sequence of future moves. Second is the assumption that each government

takes as given the foreign rule rather than the foreign actions, so that optimal

moves today take into account the effects of today's actions on tomorrow's state

vector, and thus on the foreign governments' moves. It would be possible

instead to calculate a time—consistent inilticountry equilibrium in which each

government takes as given the sequence of future moves (i.e. open—loop time

consistency), but we have not pursued that choice here.

As in the one—country case, the time—consistent equilibrium is solved as

the limit of a backward recursion. (For the calculations that follow, we revert
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to the complete two—country model, with non—zero values of a, C, and e). Using

the parameter values of the one—country model, we arrive at the following rules;

(I3) = —.286 + .953 p1 — .132 p* + .21e6 p*1 + .23 +
.O72a4

Figure 8 compares the paths of the home econonw output for the non—cooperative

open—loop and non—cooperative time—consistent equilibria. As in the one—country

model, output losses are smaller in the early periods for TC than OL. The

inability to bind one's successors causes a bias towards more expansionary

policies and thus more rapid inflation, relative to the open—loop solution.

Significantly, it is no longer possible to rank social welfare under

open—loop versus time—consistent policies (for non—cooperative equilibria), as

it was in the one—country model. Remember the argument in the one—country

context. Open—loop control, by definition, picks the optimal sequence;

time—consistent policy, on the other hand, reflects an optimization under

additional constraints and therefore is inferior to the open—loop control. In

the two—country setting, the same logic does not apply. The open—loop sequence

is no longer the optimal sequence. Indeed we have seen that open—loop,

non—cooperative control is typically pareto inefficient. There is no

presumption that adding constraints to the optimization will now lower welfare,

particularly since constraints re being added abroad as well as at home. It is

true that the home country can no longer pre—commit to a sequence of moves, but

now neither can the foreign country. It is true that the home country prefers

an open—loop to time consistent policy assuming that the other country is fixed

at one or the other. With the other country's policy fixed, an open—loop policy
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at home can exactly replicate the time—consistent sequence, and presumably it

can do it better.

There are good economic reasons to believe that the time—consistent policy

may actually dominate the open—loop solution in the non—cooperative game. The

open—loop policy, we know, is over—contractionary relative to the efficient

equilibrium. Moving from open—loop control to time consistency causes policy to

become less contractionary and therefore pushes the econonw towards the

efficient equilibrium.

Now, let us consider the time—consistent cooperative equilibrium. Here we

imagine that a single controller each period sets m and m*, but now subject to

the time—consistency constraint. The single cooperative controller rmist

optimize while taking as giving the actions of single cooperative controllers in

later periods. We should like to determine whether time—consistent cooperation

is superior to time—consistent non—cooperation. As we have noted in several

places Rogoff (1983) has devised an ingenious example where cooperation reduces

welfare. Simply, time—consistency leads governments to be over—inflationary

relative to the open—loop pre—commitment equilibrium. Cooperation further

exacerbates this over—inflationary bias by removing each government's fear of

currency depreciation.

Interestingly, our results run counter to Rogoff's: cooperation is

superior in welfare terms to non—cooperation. While the cooperative solution is

more inflationary (see Figure 9), as we might expect, it is not overly inflation-

ary in a welfare sense. The less rapid disinflation merely corrects the

contractionary bias of the non—cooperative case. The key point here is as
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follows. [n the symmetric country model, the single controller always adopts

symmetric rules so that e = 0 for all t. Since the exchange rate is the sole

potential source of time inconsistency in this model, and since it is always

equal to zero, the cooperative time—consistent solution is also the open—loop

cooperative solution. For a cooperative controller, there is no

time—consistency problem in our model (since the countries are symmetric). The

single controller can reach the first—best optimum solution for open—loop

cooperative control.

tn sum, we have shown examples where cooperative control is more

inflationary than open—loop non—cooperative control and time—consistent

non—cooperative control. In both cases, the cooperative solution is welfare

improving relative to the non—cooperative equilibrium. In view of Hogoff's

example, it will be difficult indeed to set out general principles on the gains

from cooperation under the constraint of time consistency. Comparing our

example with his, the key difference seems to rest on the source of the

time—consistency problem. In Rogoff's case, the problem arises from

forward—looking wage setters and cooperation exacerbates the problem. In our

model, the problem arises from forward—looking exchange market participants, and

cooperation eliminates the problem.

Conclusions

This study represents work in progress on the gains to coordination in

dynamic nacroeconomic models. Our focus has been purely methodological, and

preparatory to attempts at a quantitative assessment of international policy
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coordination. The nEthodological issues arise from the wide variety of possible

equilibrium concepts in nulticountry dynamic games. The gaines can be solved

under the assumption of pre—commitment versus time—consistency; open—loop versus

closed—loop behavior; and non—cooperative versus cooperative decision—making.

These three dimensions are all independent, so any choice along each dimension

is possible.

Moreover, in some cases there nay be m.iltiple eq3lilibria. For example,

there are probably many time—consistent, non—cooperative equilibria that depend

on the "threat—reputation" mechanism outlined in the paper. As yet, we have

made no systematic attempt to search for such equilibria.

This work should now be used to gain empirical insight into the cooperation

issue. For all of the discussion surrounding time consistency, for example,

there is not a single empirical investigation of its importance in the

macroeconomics literature. Similarly, there are no reliable measures of the

gains to cooperation in the simpler, pre—commitment equilibria. Such

quantitative work deserves a high priority.
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Appendix

We shall present in this appendix the derivation of the four policy rules

discussed in this paper. All of these rules are obtained as the stationary

limit of backward recursions using a methodo1or similar to Basar and Olsder

(1982) or Kydland (1975). The only significant difference with these authors is

the fact the followers' actions are represented here by a forwardlooking

variable, the exchange rate.

Let us consider a two—country world. The world econorw is characterized by

an n—dimensional vector of state variables, x and the domestic currency price

of the foreign currency is e. In each country the authorities seek to maximize

a welfare function W, i = 1,2, and can use a set of policy instruments denoted

where is an m.—dimensional vector. The dynamics of the world econonw

can be represented by a system of difference equations.

(Al) x+1 = Ax + Be +
CU

e1 = Dx + Fe +
Gut

where denotes the stacked vector of instruments for the world econorrvf and A,

B, C, D, F and 0 are matrixes of parameters. Note that matrixes A, B, C are

defined differently than matrixes A, B, C in the rest of the paper.

Let us denote by 'it the vectors of targets for each country. and

are linear functions of the state variables, the exchange rate and the values of

the policy instruments:

(A2) 'it = Mx +
L1e + Nil i = 1,2
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where

(Aib) =
(F_H+1B)1(H+iA_D)

= (F_Ht+iBr'iH+ic_G)

The value function of country 1 for period t is defined by:

(A15) V1(x) = Mm _(l/2)tc21T1 + 81Vi+1(x+1), given

Ult

Substituting (Ai3) into (Al) and (A2) leads to the following first order

conditions:

(Al6) [(w11+LiKi)Thi(N1+LiK) + S1(Ci+BKiYS1i(C+BK)lU
= _[(N11+L1K1)i(M1+L1J) +

where Kit and is the submatrixes of Kt and corresponding to 1J1.

k similar set of conditions holds for country 2. We thus obtain:

(All) MMtUt
=

_NNtxt

where MMt is an (rn1+ m2)x(m1+ m2) dimensional matrix and TiNt is an (m+ m2)x n

dimensional natrix.

Let us divide MMt and tNt in submatrixes corresponding to and

r l1t 1l2t
—

(AlB) NN =

L
21t 22t 2t

Then we have:

(A19) =
(N.+L.K.Yl.(N.j+L.Kj)

+

(A20) NNit = (Ni.+L.K.)j(M+L.J) + B.(Ci+BKYS.+1(A+BJt)

These formula hold for period T with and K,1 defined as above and = 0.

Finally we can derive F ,
H and S

t t it
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(A21) =

(A22) = + KtF

(A23) 8it = + i(A+BH÷crtYs1t+1(A÷BH-4crt);
i = 1,2

We have thus obtained both recursion rules and starting values for the set

of natrixes r. and We define as the time consistent solution the

stationary solution to which this system converges for t = 0 as T goes to

infinity. We do not know of any general result concerning the convergence of

this process. However in our empirical applications we have not run into major

problems. Cohen and Michel (1981*) show that in a one dimensional case this kind

of a recursion does have a fix—point.

The Open—Loop Solution

The open—loop solution corresponds to a one—shot game where the authorities

announce at time zero the whole path of their policies. It thus does not by

definition require the use of a backward recursion procedure. The set of

dynamic equations formed by the state variable difference equations and the

first—order conditions corresponding to the optimal control problem of the

authorities could for example be solved explicitly by using the method proposed

in Blanchard and Kahn (1980) or numerically with a nnltiple shooting algorithm

(see Lipton, Poterba, Sachs and Summers (1982)). However, we shall present here

a backward recursion procedure which leads to a simple algorithm.

The optimal control problem faced by the authorities of country i leads to

the definition of the Hamiltonian H
it
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(A2) Hit = (l/2)tt5i.Ti + Br1pjt+i(Axt+Bet4CUt_xt+i)
ti-i

+ .
where is the vector of co—state variables or shadow costs which the

authorities of country i associate with each of the state variables and,

similarly is the co—state variable corresponding to the exchange rate.8

The set of first—order conditions is then:

(A25)
3H.f3tJ.t

= + 5t+i + iYi+i = o

(A26) aHit/3xt = M1iT.t + $Ap + =

(A27) aH./e = L'&2T + + =

Let us first of all derive the recursion equations at period t. One major

difference with the time consistent case is the existence of u, the co—state

variable corresponding to the exchange rate at time t. Since e0 is not

pre—deterruined, it can be set freely by the authorities in the initial period by

announcing a proper path of future policies. Its shadow cost in the first

period, p1, is zero. is thus a predetermined variable equal to zero in the

first period and has to be added to the vector of state variables, x, when the

recursion relations are defined.

More precisely we shall assume that the problem is solved for t+1 and that

the following relations hold:

(A28) e1 = 1t 11 + h1p

(A29) t+l = At 1xti + 6t+lt+l
(A30) = r+1x+1 +

Let us now define the following matrixes:
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= A1 = ?4j&2.; kh =

(A31) 42 = A2 = 1A; Ak = I = 1,2

= 4 = s.D; =r
(A32)

A, =jL°
A11 A12 A13

A1
=

A21 A22 A23

L A31 A32 A33

Equations (A25) to (An) can be rewritten in matrix form:

r - N o —Ut

R3) pt+1
= 0

'2n t+1 + ° 0 Ext

L +l _ - 12
Lt

where '2n and 12 denote identity matrixes of dimensions 2n and 2 respectively.

Then using equations (A28) to (A30) we get:

(A35) e = Jx + kU +

(A36) = B1x +
B2Ut +

(A31) [ :+J = A2

—

p11 +
A3tr

I_'tdJ _pt J L_t

where and are the stacked vectors of targets and CO—state variables

and
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IB2t
0 0

A2 j A+1(C+BKt) +i÷i 0
L

0
12

0

r Bit

A3 =( +i(A4M) o

H
r M1 +L1Jt1 INl+LlKlI 82t=I I B3t=

L M2+L23tJ LN2+L2Kt L2R

= (F_H+tB)3iH+iA_D)

=

=

(A38) = MMMN
[:: I

where:

o o

=A1A J 0 0
'2n

L.
0 0 0

ro 0

NNt =A1A3t —l
0 0

L
0

12

From (A38) we can derive r. At and A where the two last variables

are defined by:
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= Atxt +
AtPt

Lastly we get:

lit = + KtFt +
RtAt

ht = KtYt ÷ RtXt

We now need to obtain starting values for the recursions thus defined. If

we assume as above that the exchange rate stabilizes at time T and that

T+l = 0, we get:

= (l—F)D; Kt = (1—F)G; 3T = 0; t+l = 0; ¶21 =

The open—loop solution is the stationary limit to which this recursion

converges. It should be noted that here the policy rule is not only a function

of the state variables, but also of the costate variables

Let us give a simple example in the case where each country has a single

policy instrument. The policy rule is = Fx + where i is a (2x2) nntrix.

We also have:

= Ax1 + Ap1

which, given the policy rule, yields:

= Axtl +

Thus we finally obtain
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Ut = Yx11Ut_i + y(A_AY)xti + rx
The policy rule appears to be of a more complicated form than the time

consistent rule. it is a function not only of the current state variables but

of the lagged values of these state variables and of the lagged moves.

The Buiter Solution

Buiter (1933) proposes a solution to the time inconsistency problem which

we discuss in the paper. Formally his strate' amounts to setting p equal to

zero and suppressing equations (A37).

tJsing the same notation the set of first order conditions becomes:

-o
I

=

L t÷iJ
where

— jA 11 A12
A1

LA21
A22

Equations (A28) to (A30) become:

(A28) e =11 x
t+l t+l ti-i

(A29) p =A x
ti-i t+l t+l

(A30) =

Then we get:

(A35) e 3x i-KU =Hx
t tt tt tt

(A36) r =
B1x +
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(A37) r A txt
L t+i4

where

r B2t 1 Bit
A2t1

I;A =
a+1(c+Bkt) o

3t

and finally:

(A38) [t1 = MM;1NX

where

Lo a

MMt=AlsA_Lo
i
2n

=

From (A38) we derive r and A which give Ii:

lit = +

The system of recursive equations thus obtained is solved backward from T with

the same starting values as above:

= (l—F)D; KT(l_F)G; AT+l =
0

The Optimal Linear Rule

The problem here is to derive the optimal linear rule, i.e. the constant

feedback rule which yields the higher welfare for the authorities of each

country. It can be divided into two steps. The first step consists in

obtaining for a given rule
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I rJ
1' =1 ii such that

Lr24

U = rx, the value of the welfare for each country, w1(r) and w2(r). Then, in

a second step, the optimal values of and r2 are calculated using a numerical

gradient nethod. We shall not discuss here the second step for which we refer

the reader to Roth (1979). The first step is again solved by backward recursion

which proved nore tractable for the repeated calculations imposed by the

gradient nethod.

Substituting Ut = rx into (Al) yields:

jxt+i1 fl.i-cr B1xt
(A39)

Let+iI=L Fjet
For period T assuming eT+l =

eT yields

(Alto) eT
=

(l_F1'(D+GI')xT
=

Then if we assume: e+1 =

(Aid) e = (F_H+1B)(H+1(A+cr) —
(D+Gr)Ixt

the recursion is thus simply

(Ab2) Mt = (F_H+1B)(a+1(A+cr) — (Dcr)1

which, starting with MT' has a stationary solution for values of the parameters

such that the transition natrix in (A39) has only one eigenvalue greater than

unity. More precisely:
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—1
Urn =

—C22C21

iihere C22 and C21 are subniatrixes of C, the natrix of row eigenvectors of the

transition matrix defined by

C11 C12
nxn nxl

C21 C22
lxn lxi
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Footnotes

1. See, for example, W. Nordhaus, "The Political Business Cycle," Review of

Economic Studies 42 (1915), pp. 169—190.

2.

1+A—(+6)C1(5+ap—aA) —i—(+e )aC' —o i—x+(p+e )a- [6i-a(1—A )!

A 0 0 1—A

—(6+ap—aA)A 0 16(i—A )1A'

p—pC1(o+ap—aX) —aiA1 0 l+pA[iS+c(i_A)]

ap (p+8 )C1

0

—1
apA

—p

1-U— (j+o)C1 I6+a(i—x )I 0 'r(*+e )A
1—A 0 0

I6+a(i—A1A 0

[6+a(1—A)1pC —1 yiA1

where A =

3. Using the notation of the appendix, it is readily checked that if a = 0, C

and
N1

in (Al) are null natrixes, and G in (Al) is equal to -p. This implies

that the rwney stock has no direct effect on either the state variables or on
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the government's targets: output and inflation.. Thus the first—order condition

(A25) reduces to 8t+l = 0.

t. This point is easily proved by considering the following change of variables:

(iTt, 1'lt'
=>

C_c)

where = +

The differential system (38) becomes:

1/8 + n2 2,(ly)$ —1/8

—

l—$a(1—y)4 —*a(l—y)

—
0 0 C -

This system is saddle point stable under the conditions discussed in the

text and has one stable root and two unstable roots A and 1/8. One

variable IT is backward looking while and are forward looking.

Given that 1/8 > 1, it is clear from the third equation that along the stable

path nust always be equal to zero, so that = for all t.

5. The roots of the system can be found by solving the characteristic

equation:

A2 — (w + l/ + 2)A + (l/8)o = 0, where cs = [i -

We assume w > 0. To show that there is exactly one stable root 0 < A < 1 and

one unstable root 1 < X, observe the values of the characteristic equation

0(A) at A = 0 and A = 1. c(o) = (l/8) > 0 and 0(1) = —fl2 - 11/6 -

C 0. Also, for A >> 1, 0(A) > 0. Thus, there is exactly one root between 0

and 1, and one root exceeding 1.
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The stable root is

= (w + l/ + fl)/2 - (1/2)[(w + i ÷ 22

The unstable root is:

= (w + i/S + $ip)/2 + (1/2) [(w + + 2)2 -

6. The roots for the c6operative case can be found by setting a = 0 (i.e.

= 1) in the equations for the roots derived in Footnote 5.

The stable root is

= (if)(i + 1/S + - (1/2)1(1 + 1/5 + .$2)2 -

The unstable root is

= (1f2)(i + 1/8 + fl2) + (i/2)[(l + 1/S + 2)2 -

7. It was shown in footnote 6 that = when a = 0. To prove that

> for a > 0, we need only show that a(A_Af)f3a > 0 for all a. We know

that 3(X)/3a = 0. Consider

= (l/2)(l-y)$I-l + ( - 1/5 + ( + '/ + 22 -

We want to prove that the last expression is negative. We know _itip2/ c 0,

Therefore,

+ w + irs) + b/s2 + (w + 1/5 + fl2)2 C (w + 1/5 + fl2)2 -

or

( - 1/S + $*2)2 ( + 1/5 + fl2)2 - /8.
Taking the square root of both sides and dividing gives

- 1/8 + fl2)j(w + its + ,*22 - w/8}1/2 < i
Substituting into the expression for 3(A7/3a, we see
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C 0 for all a.

Thus (x—x!)/aa > 0 for all a.

8. Note that in the paper the notation is slightly different, with being

the co—state variable corresponding to the exchange rate in the one—country

case.
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