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1. Introduction

This note describes some models that may prove useful in thinking about technolog-

ical change. We think of the technology of an economy as described by a probability

distribution of available costs–in the sense of labor or other resource requirements–

for producing different goods. Kortum (1997) calls such a distribution a technology

frontier. An individual producer is characterized by his current cost level–a random

variable drawn from the frontier distribution–and is also subject to a stochastic flow

of new ideas–new cost levels. When he receives a cost idea that is better than the

one he is now producing with he adopts it and this new cost becomes his state. If he

receives a higher cost idea, or no idea at all, his cost state remains unchanged.

The evolution of a technological frontier in this sense can be decribed by an ordinary

differential equation, the exact form of which depends on the way the flow of incoming

ideas is modeled. We consider two possible formulations. The first is a version of the

basic differential equation for the technology frontier derived in Eaton and Kortum

(1999), under the assumption that the arrival of new ideas is stochastic, described
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by a Poisson process. In the second version, the arrival of new ideas in deterministic.

In both cases, the quality of a new cost idea is modeled as a random variable.

Poisson Idea Arrivals

Consider an economy in which each producer at t has an inherited cost level ex (the
inverse of TFP, say) drawn from a distribution on R+ characterized by

G(x, t) = Pr{ex ≥ x}.

(If this distribution has a density, it is −Gx(x, t).) Each producer receives new ideas

from his own economy, characterized by the entire distribution G(x, t), at a Poisson

arrival rate α and also receives ideas ez from an external source, characterized by

H(x, t) = Pr{ez ≥ x},

at the arrival rate β.

For fixed x, we motivate an ordinary differential equation for G(x, t) with

G(x, t+ h) = G(x, t)× Pr{no lower cost arrives in (t, t+ h)}.

We have

Pr{no lower cost arrives in (t, t+ h)} = Pr{no ideas arrive in (t, t+ h)}

+Pr{one idea > x arrives from G in (t, t+ h)}

+Pr{one idea > x arrives from H in (t, t+ h)}

+Pr{more than one idea > x arrives in (t, t+ h)}

= 1− αh− βh+ αhG(x, t) + βhH(x, t) + o(h)

(where the function o(h) satsfies limh→∞ o(h)/h = 0). Then

G(x, t+ h) = G(x, t) [1− αh− βh+ αhG(x, t) + βhH(x, t) + o(h)] .
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Rearranging, dividing through by h, and letting h→ 0 gives

∂ log(G(x, t))

∂t
= −α[1−G(x, t)]− β[1−H(x, t)]. (1.1)

Deterministic Idea Arrivals

Now consider a very similar economy in which the internal and external source

distributions G and H have exactly the above interpretations. Again, we fix x and

motivate a differential equation for G(x, t) by

G(x, t+ h) = G(x, t)× Pr{no lower cost arrives in (t, t+ h)}.

In this case, we assume that in an interval (t, t + h) a producer gets exactly αh

independent draws from the internal source G and exactly βh draws from the external

source H.

Pr{no lower cost arrives in (t, t+ h)} = Pr{all αh ideas from G exceed x}

×Pr{all βh ideas from H exceed x}

= G(x, t)αhH(x, t)βh

Then

G(x, t+ h) = G(x, t)G(x, t)αhH(x, t)βh

and it follows that

G(x, t+ h)−G(x, t)

G(x, t)h
=

G(x, t)αhH(x, t)βh − 1
h

.

Taking the limits as h→ 0, we have

∂ log(G(x, t))

∂t
= α log(G(x, t)) + β log(H(x, t)). (1.2)

The two equations (1.1) and (1.2) represent two different physical realities: They

are not mathematically equivalent, nor is there any reason to expect them to be
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intimately related. In the rest of this note we develop some of the properties of both

equations. In doing so, we keep in mind the convenience of exponential (or Frechet)

distributions in Eaton-Kortum type trade theory. Section 2 treats equation (1.1)

with an external source only. Section 3 deals with (1.1) with internal sources, and

in general. Section 4 goes over the same ground for equation (1.2). In all cases,

we characterize balanced path solutions completely, and provide conditions on initial

distributions that ensure convergence to balanced path solutions.

2. Poisson Arrivals with an External Idea Source

With α = 0, (1.1) is reduced to

∂ log(G(x, t))

∂t
= −β[1−H(x, t)], (2.1)

where H(x, t) is a given source function. We integrate (2.1) to get

G(x, t) = G(x, 0) exp{−β
Z t

0

[1−H(x, s)]ds}. (2.2)

The following examples illustrate some possibilities.

Example 2.1. Rectangular source distribution.

Let 1 −H(x, s) = x/m, 0 ≤ x ≤ m, for some m > 0. Let G(x, 0) be a truncated

exponential with parameter λ :

G(x, 0) = e−λx if x < m

= 0 if x ≥ m

(That is, the distribution has mass e−λm at x = m.) Then

G(x, t) = 0 for all x ≥ m, t ≥ 0

and for all t, x < m,

G(x, t) = e−λx exp{−β
Z t

0

x

m
ds}

= e−λx exp{−βxt
m
}

= exp{−(λ+ βt

m
)x}
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The truncated exponential is preserved, with parameter

λ(t) = λ+
αt

m
.

Note that mass is piling up near 0; truncation becomes irrelevant. But also note

that
1

λ

dλ

dt
→ 0.

A constant source distribution doesn’t work as engine of growth. To get growth, we

need to build it in. We can do this through the arrival rate α(t) or through the source

distribution H.

Example 2.2. A shifting, rectangular source distribution.

In Example 2.1, the technology frontier is always improving, but at a decreasing

rate. We can get sustained growth by introducing an ever-improving source distribi-

tion, as follows. Let

1−H(x, t) = x/m(t) for 0 ≤ x ≤ m(t)

and 0 otherwise, where

m(t) = m0e
−νt.

In this case Z t

0

[1−H(x, s)]ds =
x

m0

Z t

0

eνsds

=
x

m0

1

ν

¡
eνt − 1

¢
and

G(x, t) = G(x, 0) exp{− α

m0ν

¡
eνt − 1

¢
x}.

Let G(x, 0) be a truncated exponential with parameter λ0 :

G(x, 0) = e−λ0x if x < m0

= 0 if x > m0
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Then for x ≤ m(t),

G(x, t) = e−λ0x exp{− α

m0ν

¡
eνt − 1

¢
x}

= e−λ(t)x

where

λ(t) = λ0 +
α

m0ν

¡
eνt − 1

¢
.

For m(t) ≤ x ≤ m0, the mass at x declines at the rate α from the time at which

m(t) = x. We have
dλ(t)

dt
=

α

m0
eνt

1

λ

dλ(t)

dt
=

∙
λ0 −

α

m0ν
+

α

m0ν
eνt
¸−1

α

m0
eνt

=

∙
1 + e−νt

µ
λ0αν

m0
− 1
¶¸−1

ν

→ ν as t→∞

Example 2.3. Growth in the arrival rate of ideas.

Alternatively, we can get sustained growth by assuming that the rate of arrival of

ideas α (t) grows at a constant rate λ. Consider general stationary external source

distribution of new ideas H (x). Let

α (t) = βλeλt.

In this case,

G (x, t) = G (x, 0) exp

½
−β

Z t

0

λeλs [1−H (x)] ds

¾
= G (x, 0) exp

©
−β

¡
eλt − 1

¢
[1−H (x)]

ª
In a balanced growth path the stationary normalized technology frontier xe−λt
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solves:

lim
t→∞

G
¡
e−λtx, t

¢
= lim

t→∞
G (x, 0) exp

©
−β

¡
eλt − 1

¢ £
1−H

¡
e−λtx

¢¤ª
= exp

(
−β lim

t→∞

1−H
¡
e−λtx

¢
e−λt

)
Using L’Hospital’s rule

lim
t→∞

G
¡
e−λtx, t

¢
= −β lim

t→∞

λH 0 ¡e−λtx¢ e−λtx
−λe−λt

= exp {βH 0 (0)x}

Independently of other features of the external source distribution, the asymptotic

distribution of G (x, t) is exponential with parameter −βH 0 (0) .1

3. Poisson Arrivals with an Internal Idea Source

Here we set β = 0 so that (1.1) is reduced to an autonomous equation in G(x, ·):

∂ log(G(x, t))

∂t
= −α[1−G(x, t)]. (3.1)

We fix x and let y(t) = G(x, t) and y(0) = G(x, 0) = y0. In this case. (3.1) becomes

dy

dt
= −αy(1− y), y(0) = y0.

The unique solution y : R+ → [0, 1] is

y(t) =
y0

y0 + eαt(1− y0)
. (3.2)

In the original notation, the solution is then

G(x, t) =
G(x, 0)

G(x, 0) + eαt(1−G(x, 0))
. (3.3)

We ask whether (3.3) has a “balanced growth path,” which is to say whether there

is a function ϕ and a number ν > 0 such that

G(x, t) = ϕ(eνtx)

1This example is closely related to Proposition 3.2 in Kortum (1997).
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solves (3.3). If so, then

ϕ(eνtx) =
ϕ(x)

ϕ(x) + eαt(1− ϕ(x))
.

Differentiate both sides with respect to t :

ϕ0(eνtx)νevtx = − ϕ(x)

[ϕ(x) + eαt(1− ϕ(x))]2
αeαt(1− ϕ(x))

If we choose ν = α, evaluate at t = 0, and cancel we get

ϕ0(x) = −1
x
ϕ(x)(1− ϕ(x)).

The solution ϕ : R+ → [0, 1] is

ϕ(x) =
1

1 + φx
(3.4)

where φ is a parameter to be determined. Note that for any value of φ, (3.4) defines

a cdf 1 − ϕ(x) on R+.We have a one parameter family of balanced growth paths,

depending on the initial condition, analogous to the balanced paths of an Ak growth

model.

[Where has the distribution (3.4) been seen before? The standard logistic distribu-

tion has the cdf

F (x) =
ex

1 + ex

If y = log(x) has the distribution ϕ in (3.4), the corresponding cdf for y is

K(y) =
φey

1 + φey

So y = log(xφ) is a standard logistic random variable. Is this a useful fact?]

We next ask the stability question: Given an initial distribution G(x, 0), when does

lim
t→∞

G(e−αtx, t) =
1

1 + φx
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for some φ > 0 ? From (3.3),

lim
t→∞

G(e−αtx, t) = lim
t→∞

G(e−αtx, 0)

G(e−αtx, 0) + eαt(1−G(e−αtx, 0))

= lim
t→∞

1

1 + [1/G(e−αtx, 0)− 1] /e−αt

Apply L’Hospital’s rule to get

lim
t→∞

1/G(e−αtx, 0)− 1
e−αt

= lim
t→∞

1/ [G(e−αtx, 0)]
2
Gx(e

−αtx, 0)αe−αtx

−αe−αt
= −Gx(0, 0)x

since G(0, 0) = 1. The term −Gx(0, 0) is the density of G(x, 0) at x = 0. We have

proved

Theorem. Suppose the distribution defined by G(x, 0) has a density −Gx(x, 0) with

φ = −Gx(0, 0) <∞. Then for all x ≥ 0,

lim
t→∞

G(e−αtx, t) =
1

1 + φx
.

The asymptotic behavior of G(x, t) is thus determined entirely by the value of the

initial density at 0. The density function corresponding to (3.4) is

φ

(1 + φx)2
.

It does not have a mean. Its mode, φ, is attained at x = 0.

For completeness, we provide the solution to (1.1) in a system with both internal

and external sources. The basic DE in this case is

∂ log(G(x, t))

∂t
= −α[1−G(x, t)]− β[1−H(x, t)].
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Fix x and let y(t) = G(x, t), y(0) = G(x, 0) = y0, and 1−H(x, t) = u(t). This variable

y satisfies
dy

dt
= −αy(1− y)− βyu(t), y(0) = y0. (3.5)

As before, we use the change of variable z = y−1, so that (3.5) is equivalent to

dz

dt
= −y−2dy

dt

= y−2 [αy(1− y) + βyu]

= αy−1(1− y) + βy−1u

= (α+ βu)z − α

For z(0) = z0, the unique solution z : R+ → [0, 1] is

z(t) = e
t
0 (α+βu(s))ds

µ
z0 − α

Z t

0

e−
s
0 (α+βu(τ))dτds

¶
(3.6)

4. Deterministic Arrivals

We turn to the deterministic arrival case described in (1.2). With an external idea

source only, α = 0, (1.2) is reduced to

∂ log(G(x, t))

∂t
= β log(H(x, t)). (4.1)

where H(x, t) is a given source function. We integrate (4.1) to get

log(G(x, t)) = log(G(x, 0)) + β

Z t

0

log(H(x, s))ds. (4.2)

The following examples illustrate some possibilities.

Example 4.1. Suppose G(x, 0) = exp(−λ(0)x) and H(x, t) = exp(−μ(t)x). Then

(4.2) implies

log(G(x, t)) = −λ(0)x− βx

Z t

0

μ(s)ds,

from which it follows that G(x, t) = exp(λ(t)) where

λ(t) = λ(0) + β

Z t

0

μ(s)ds.
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With an internal idea source only, β = 0, (1.2) becomes

∂ log(G(x, t))

∂t
= α log(G(x, t)). (4.3)

The solution is

log(G(x, t)) = log(G(x, 0))eαt.

If G(x, 0) = exp(−λx) then log(G(x, 0)) = −λx, log(G(x, t)) = −λ(t)x, and

λ(t) = λeαt. (4.4)

Thus exponential distributions are preserved exactly with either external or internal

sources. All exponential distributions with λ(t) given by (4.4) satisfy the balanced

path condition

G(x, t) = ϕ(eνtx)

with ν = α.

We next investigate stability. Under what conditions on the initial distribution

G(x, 0) will it be the case that

lim
t→∞

log
¡
G(e−αtx, t)

¢
= −λx

for some λ > 0? From the solution to (4.3) we have

log(G(e−αtx, t)) = log(G(e−αtx, 0))eαt.

Then

lim
t→∞

log
¡
G(e−αtx, t)

¢
= lim

t→∞
log(G(e−αtx, 0))eαt

= lim
t→∞

log(G(e−αtx, 0))

e−αt

and applying L’Hospital’s rule gives

lim
t→∞

log
¡
G(e−αtx, t)

¢
= lim

t→∞

£
−e−αt

¤−1 ∙−αGx(e
−αtx, 0)e−αtx

G(e−αtx, 0)

¸
= lim

t→∞

∙
Gx(e

−αtx, 0)x

G(e−αtx, 0)

¸
= Gx(x, 0)x
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As in Section 3, we have the

Theorem.2 Suppose the distribution defined by G(x, 0) has a density −Gx(x, 0)

with λ = −Gx(0, 0) > 0. Then for all x ≥ 0,

lim
t→∞

G(e−αtx, t) = −λx.

Again, the asymptotic behavior of G(x, t) is determined entirely by the value of

the initial density at 0.
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