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While death and taxes may be the two most certain elements in one's

life, the date of one's death is surely one of the least certain. Uncertainty

concerning the length of life is obviously of great importance to saving deci-

sions; "taking it with you" is not an option, but immediately consuming all

resources (less an intended bequest) is no alternative either, since with high

probability one will still be alive, but be very poor, in the immediate

future. To avoid the prospect of remaining alive in a state of relative

poverty, risk averse individuals will be cautious about their rate of consump-

tion. The extent of precautionary- saving motivated by life span uncertainty

depends on the availability of market and non—market annuity insurance. Annuity

insurance permits those who live longer than average to share the economic risks

of this outcome with those who live shorter than average. This paper examines

the amount of precautionary savings arising from life span uncertainty by com-

paring saving behavior under perfect insurance arrangements with that arising

under imperfect arrangments, namely when longevity risk can be pooled only

with mbers of one's in family. We consider both intergenerationally

altruistic preferences and selfish (zero bequest motive) life cycle preferen—

ces, determining stochastic steady state wealth levels and wealth distributions

in both models.'
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The central findings of the paper are: (1) perfecting insurance

arrangements can sharply lower savings in both intergenerationally altruistic

and life cycle economies and (2) in intergenerationally altruistic economies

perfecting annuity insurance can greatly influence the degree of inequality;

indeed, in the long run in ir nodel,where everyone has the same endowments,

switching from imperfect family insurance to perfect insurance can nan the dif-

ference between absolute inequality and absolute equality.

There are now several studies that examine the impact of annuity

insurance on saving. Sheshinski and Weiss (1981) were the first to point out

that a fully funded Social Security program could alter household saving

through its provision of annuity insurance, assuming such insurance is not

otherwise available. Hubbard (1983) reaches a similar conclusion in a partial

equilibrium life cycle analysis. Kotlikoff and Spivak (1981) and Davies (1981)

discuss the size of involuntary bequests in life cycle ndels in the complete

absence of Insurance arrangements. Fuller descriptions of life cycle economies

— •Z 1—— —in irie .osnet Oi .ImuiI.y iziu.xi ui.eu uy i 1Iuuw, .iiu

Peled (1983) and Abel (1983). Both papers consider the stochastic steady state

properties of economies in which agents involuntarily leave bequests to their

children.

While each of these papers Indicate that improvements in annuity

Insurance reduces precautionary saving, their specification of bequest beha-

vior In the absence of annuity insurance is either incomplete or rather

arbitrary. For example, Eckstein et.al. and Abel assume that while parents are

selfish and have no interest in their children, they nonetheless involuntarily
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bequeath all their wealth to precisely their own children, extracting no quid—

pro—quo in exchange. An alternative assumption explored by Kotlikoff and Spivak

(1981) is that selfish parents and selfish children Jointly pool longevity risk

in a manner that is imitually beneficial. Kotlikoff and Spivak point out that

longevity risks are substantial as measured by the amount of resources even

mildly risk averse selfish individuals would sacrifice to gain access to fair

annuity insurance. In addition they demonstrate that risk sharing among even

as few as two relatives can provide a large fraction of the gains available

from perfect insurance. Hence, in selfish life cycle models, longevity risk

pooling between parents and children appears well "worth the trouble," with

the gains far exceeding any reasonable transactions costs. In contrast to the

selfish life cycle model, in the altruistic model, the pooling of otherwise

unirisureable longevity risk between parents and children is an immediate

implication of utility maximization since the utility of children is an argu-

ment In the utility function of parents.

Our model of risk sharing arrangements between parents and children

assumes the smallest possible family risk sharing pooi, namely, at most one

parent sharing risk with one child at any point in time. Since family

insurance approaches perfect insurance as the number of family members

increases, this assumption leads to the largest precautionary motive for

saving and provides an upper bound for calculating the potential decline in

savings resulting from perfecting annuity insurance arrangements.2

While at most two relatives are simultaneously alive, risk sharing

in both the altruistic and selfish models also involves all future genera—
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tions. In the altruistic ndel current relatives conciously take into account

the impact of their behavior on their decenderits' inheritances and, therefore,

their levels of expected welfare. As a consequence, altruistic families auto-

matically share any current adverse shocks with future generations by reducing

the bequests they leave to future generations In the life cycle del the risk

sharing arrangments between current parents and children is chosen taking into

account that today's adverse shocks will affect the future bargaining position

of current children when they strike selfish deals with their children. This

future bargaining with the next generation is, in turn, contingent on the

nature of subsequent future bargaining with the succeeding generation, and on

and on .... Hence, the solution to the bargaining problem between living family

members takes account of the infinite sequence of bargains struck by family

descendents.

The next section considers the impact of annuity insurance in an

intertemporal altruistic econonr in which families can borrow the present

value of their certain future labor earnings. Assyxsptotically the distribution

of resources and consumption in this econonr approaches complete inequality with

successively fewer families holding all the econorry's resources and engaging in

all the econo's consumption. Section III considers a presumably re

realistic financial setting in which altruistic families cannot borrow against

the present value of their infinite stream of future earnings. In contrast to

the unconstrained borrowing case in which the altruistic econon,r's savings is

infinitely elastic at a particular interest rate, with borrowing constraints

aggregate savings is a continuous increasing function of the interest rate.
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In addition, the reduction in steady state wealth from introducing perfect

annuity insurance is considerably larger if there are borrowing constraints in

the altruistic econony. The borrowing constraints also lead to a stationary

wealth distribution in contrast to the increasingly unequal, asymptotically

degenerate wealth distribution arising in the altruistic econonr without

borrowing constraints. The fourth section contains our life cycle xmdel of

bargaining in which non—altruistic agents consider the infinite sequence of

selfish bargaining agreements. The calculations in this section suggest a

very sizeable effect of perfecting annuity insurance on long run savings.

The udels in sections II anc IV have four potential periods of life,

while section Ill's model has at zst two periods of life. A minimum of four

periods is necessary to examine selfish life cycle bargaining. While section

III's analysis of liquidity constrained altruistic behavior could be formulated

in the four period framework, simplifying to two periods greatly reduces the

computational costs of solving the problem. To facilitate comparisons of the

predictions of the three dels all illustrative calculatIons are based on a

common utility function and parameters In the two period ndel of section III

are calibrated on the basis of the four period dels' parameterizations. In

the final section, V, there is a summary of the paper's findings and suggestions

for additional research on issues of precautionary savings.

II. The Unconstrainted Intergenerationally Altruistic Model

In this del and that of section IV there are four periods of life.

People live with certainty for the first three periods and survive to the fourth

with probability P. Children are one when their parents are three. Individuals
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are exogenously endowed with labor earnings which they receive during the

first three periods of life. Hence, the present value of earnings for an

altruistic family is certain, and we assume in this section that families can

borrow the present value of the infinite stream of earnings.

The family's utility function is taken as separable in consumption of

the parent (Cf) and the child Cc) over time. Throughout the paper we con-

sider the isoelastic form for utility of consumption at a point in time, TJ(c),

i.e.,

1—i
(1) u(c) = C

where y is the coefficient of relative risk aversion. The utility of children

is assumed to enter the family's expected utility function, with weight e, and

future utility is assumed to be discounted by the tine preference factor ci.

Let stand for the family's total human plus non-human wealth at

time t. The expected utility of a family with a one period old child and a

three period old parent at time t is a function of and is denoted, V(w).

Equation (2) expresses V(w) in terms of the certain utility of the child's

and parent's immediate consumption, the expected utility of their subsequent

period consumption, and the expected utility of the family when the next child

is born. For notational convenience the time subscript, t, is omitted wherever

the time period is implicitly clear. In addition, we set t = 1 initially.

Cl—I Cl_I Cl_I Cl_I
(2) v(w1) = maxi + + apt + s2a + ciV(W3afl
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+ cx(1—p)Ie 2d + av(W3dfll

The first two terms on the right hand side of (2) are, respectively, the

family's utility from the parent's third and the child's first period consump-

tion. The bracketed terms multiplied by P indicate the family's expected

utility in the case the parent lives through the fourth period. The child's

second period consumption in this case is C2 and the family's full wealth

at the time the initial child is a parent is W3
a

In the case the parent

dies early, the child's second period consumption and the family's resources

when the child becomes a parent are, respectively, C
2 d and W. d

The
— S ,

bracketed terms multiplied by a(i—P) express the family's expected utility if

the parent dies early.

The family is constrained in maximIzing (2) by:

(3) W =C +c +R(C +C +w )1 f3 si fl s2,a 3,a

W C + C + R(C + RW ),1 f3 si s2,d 3,d

where B is one divided by one plus the interest rate. These equations simply

relate the ongoing family's full future resources at the time the child becomes

a parent (w or W d to the appropriately discounted difference bet—
3,a

ween initial family resources and total family consumption during the child's

first and second periods. The two constraints correspond to the two possible

outcomes —— the parent dying early and the parent dying late.

Given the functional form for V maximization of (2) subject to (3)

is straightforward. Consider the following as a possible solution ftnctfnV(W):

v(w) = k W
wherek is a constant. Next replace in (2) V(W3) by k
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and v(w3d) by k
3,d

• With this substitution V(w1) is now a homothetic

function of each of the consumption demands plus 1*13 and W3d. Hence, the

solution values for the consumption demands and W3a and W3d are all propor-

tional to 1*11. Inserting these solutions into (2) and collecting constants,

we have:

wi_I Wi_I

() v(w1) = k = g(P,c&,O,R,y,k)

wi-I
where g(P,a,G,R,I,k) is the sum of constants iltipiying after solution

values have been substituted into (2). From (1), k = g(P,cz,O,R,y,k), and this

expression can be used to solve for k.3 Hence, we have a proof by construction

wi-I
that v(w) = k is the form of the value function in (2).

The homotheticity of the value function (2) permits an immediate

characterization of the evolution of full resources for each family through time

and for the aggregate economy. The solution to (2) implies:

(5) W =AW,and
3,a 1

W3d = D
W1,

where A and D are constants depending on the model's parameters P,cL,8,R, and y.

For each family expected resources when the current child becomes a parent,

EW3, are related to initial resources by:

(6) EW3 = 1 A +
(l—P)D1w1.

Since this equation holds for all families regardless of their initial value of

per capita wealth in the economy will remain constant (assuming an arbitrary

large number of families) if and only- if:
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(7) P A + (l—P)D = 1.

Now A and D depend on the interest factor R, as veil as the fixed survival

probability and the fixed preference parameters. Hence, in general

equilibrium R mist adjust until the values of A and D satisfy (7). Since A and

D are xnotonically increasing functions of H, there is a unique value of R that

satisfies (7)) The economy's long run supply of savings is clearly

infinitely elastic at this value of H, since for larger or smaller values of H

full resources (human plus non—human wealth) in the econony either grow indefi-

nitely or decline to zero.

The term A is less than D reflecting the additional demand for fourth

period parental consumption in the case the parent lives to consume Cf.

Since, by (7), the weighted sum of A and D equals unity, we have A < 1, and D

> 1. Hence, when expected future resources equal current resources each

favorable rtality outcome reduces the family's resources, while each unfa-

vorable rtality outcome increases its resources.

The process governing the family's accu.ilaton and decumlat1on of

wealth through time, with time measured in generations, can be expressed as:

(8) = We

where equals log A wit1 probability P and log D with probability 1-P.

Expressing the process in terms of the logarithm of family resources, we have:

(9) log = log W +

The expected value of is negative since:
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(10) E = Flog A + (1—P)log D < log(PA + (1—P)D) = 0,

using the concavity of the logrithmic function and (7). Hence, the logarithm

of family resources is a random walk with a negative drift. Since each fami—

ly's resources follows this process, and, by assumption, all families start

out with the same initial resources, the distribution of each family's resour-

ces as well as the distribution of any functions of family resources, such as

the logarithm, are equivalent to the econoimj wide distributions. The fact

that the logarithm of resources follows a random walk with drift indicates

that there is no stationary distribution of resources in the econoixiy. Although

the ian value of family resources is constant, the distribution of family

resources becomes increasingly unequal through time.

To see this rewrite as = —p + where s i.i.d. with

zero nan and variance a2. The expected logarithm of resources at t+T is

given by:

(11) Elog W+ = log W — Tp, and

the variance of the logarithm of resources at t+T given log W is:

(12) Var(log Wt+T) = Ta2

Equations (ii) and (12) indicate that for each successive generation the distri-

bution of the logarithm of resources has a smaller mean and a larger variance.

Not only are successive resource distributions less equal, as indicated by the

increasing variance of the logarithm, but they are also increasingly skewed.

This is suggested by the fact that the mean of the logarithm of resources falls
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through time at a faster rate than its standard deviation rises. Using

Chebyshev's inequality one can show that the fraction of families whose resour-

ces in the future exceed their current values is bounded by a number that decli-

nes with each successive generation.5 Assymptotically the econony's resource

distribution approaches complete inequality with an infintesimal fraction of

families holding all the economy's resources and the rest holding no resources.

This increasing inequality should be contrasted with the complete equality that

arises in the case of perfect insurance under the same assumption that all fami-

lies have identical initial resources. While each family conciously plans to

pursue a policy that leads to imxniseration with essentially 100 percent probabi-

lity, the process of immiseration can be quite slow.

Table 1 presents calculations of the econonr's reduction in savings

per worker from switching to perfect insurance for a set of illustrative para-

meter values. Given knowledge of the equilibrium interest rate under imperfect

annuity insurance determined in (7), savings per worker is calculated assuming a

Cobb-Douglas production function with a capital share equal to .3; i.e., the

economy's general equilibrium condition is that the rginal product of capi-

tal equals the interest rate, which provides an equation for computing the

econon's stock of savings (capital) per worker. Under perfect insurance the

family's budget constraint is simply that the present expected value of con-

sumption equals the present value of resources. As is well known, in this

case R equals a in the steady state, and this equation plus the rginal pro-

ductivity condition are used to solve for steady state savings per worker

under perfect insurance.6



Table I

The Unconstrained Altruistic Model —

Percentage Savings Reduction from Switching from
Family Insurance to Perfect Insurance

Percentage Savings
Reduction*

Parameter Values
P

—6.9 .86 1 .6

..48.6 .10 1 4 .6
—33.4 .24 1 4 .6
—20.0 .50 1 4 .6

—3.7 .99 1 14 .6
0.0 .99 1 14 .6

—6.1 .86 2 14 .6
—8.6 .86 .5 14 .6

—13.4 .86 .1 14 .6

—26.2 .86 1 10 .6
—.8 .86 1 1 .6
—.8 .86 1 .5 .6

—4.3 .86 1 14 .8

—7.8 .86 1 14 .4
—6.1 .86 1 14 .2

—75.1 .24 .5 10 .5
—62.8 .50 .5 10 .5

*Calculatjons assume a Cobb—Douglas production function with capital's output
share equal to 30 percent.
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In the base case a, the time preference factor equals .86 and F, the

fourth period survival probability equals .6. If we think of each period as

corresponding to roughly 15 years, then the .86 value corresponds to a 1 per-

cent annual time preference rate, and the .6 fourth period survival probabi-

lity is roughly equivalent to a life span of 514 years. We view "children" in

the ImDdel as really young adults who are initially roughly age 20 and who

are parents of adult children at roughly age 50. Hence, the 51.4 year life

span corresponds to a real world adult life span starting at 20 and ending, on

average, at 714. Base case values of y and 0 are 14 and 1 respectively.

Adopting the base case parameters, the altruistic econonr's total

savings is 7 percent larger with imperfect family annuity insurance than with

perfect annuity insurance. This figure is quite sensitive to the time pre-

ference rate. Ceteris paribus, lowering a to .5, which corresponds to a 14.1

percent annual time preference rate, implies a ich smaller stock of savings,

but a 20 percent difference between savings under family and perfect annuity

insurance. For cx equals .214, equivalent to a 10 percent annual time preference

rate, there is a 33 percent savings reduction. The reduction is 149 percent

for a equals .10. Alternatively, assuming a equals .99, there is essentially

no difference between savings under family and perfect insurance

arrangements.7

The sensitivity of savings changes to the weight on the child's uti-

lity, 0, is surprisingly small. As 0 rises nre weight is placed on the con—

sumption of the child, and, in the limit, as 0 approaches infinity, lifespan

uncertainty does not affect utility since families only care about their
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childrens' consumption which is not subject to lifespan risk. ience as 0

rises B approaches a and the savings reduction from perfect insurance goes to

zero. While Table 1 indicates larger precautionary savings the smaller the

value of 0, lowering the value of 0 from 1 to .5 raises precautionary savings

by less than two percent. The precautionary savings response to larger values

of y, the relative risk aversion coefficient, also has the expected positive

sign. The magnitude of the savings difference is quite sensitive to y. For

values of y below 1 precautionary savings is less than .5 percent of the

total; on the other hand, it is 26 percent for y equals 10, assuming base case

values of other parameters. Finally, precautionary savings appears to be

maximized for values of P between •14 and .6. This is also intuitive, since

uncertainty disappears from the del when P equals zero or unity. The bottom

two rows of table I consider combinations of parameters choosen to raise the

level of precautionary savings. For a equals .214, 1 equals 10, and 8 and P

both equal to .5 there is a T5 percent reduction in the econoxj-'s wealth stock

associated with switching from family to perfect annuity insurance. This

figure declines only slightly, to 63 percent, if a equals .5 and the other

parameters take these specified values.

Table II illustrates the transmission o inequality through tine. The

first generation of families is assumed to have identical resources. The table

reports the fraction of resources held by the poorest 10 percent, 30 percent,

50 percent, and 90 percent of families. Since the del's two periods between

generations correspond to toughly 30 years, the resource distribution, after

10 generations corresponds in teal time to roughly 300 years. In the base



Table II

Resource Inequality in the Unconstrained Altruistic Model
after Successive Generations

Generation
1 10 50 200

Base Case

Resource Share of
Poorest 90 Percent .90 .88 .83 .80 .00

Resource Share of
Poorest 50 Percent .50 .245 .314 .30 .00

Resource Share of
Poorest 30 Percent .30 .26 .16 .15 .00

Resource Share of
Poorest 10 Percent .10 .08 .06 .014 .00

Coefficient of
Variation of
Resource Distribution .00 .12 .27 .57

Base Case Except u.5

Poorest Share of .90 .81 .62 .27 .00
Poorest 90 Percent

Poorest Share of .50 .33 .16 .03 .00
Poorest 50 Percent

Poorest Share of .30 .17 .07 .01 .00
Poorest 30 Percent

Poorest Share of .10 .014 .01 .00 .00
Poorest 10 Percent

Coefficient of
Variation of
Resource Distribution .00 .145 1.23 5.13



case the increase through time in inequality is extremely slow, with the

richest 10 percent holding only 20 percent of total resources after 200

generations. The time preference factor, a, appears to be the st critical

parameter for affecting the rate at which inequality increases through time.

The transition to complete inequality is nnich faster if a equals .5 and the

other parameters are held at their base case values. Lowering a to .5 produ-

ces roughly the same degree of inequality within 10 generations that arises

after 200 generations when a equals .86. After 200 generations (6,000 years

in real time) of the a equals .5 process, the 10 percent richest families own

almost three quarters of all resouces. If a equals .2I (a roughly 10 percent

annual time preference rate) the 10 percent richest families own close to 30

percent of all resources after 10 generations. This compares with 19 percent

for a equals .5 and 12 percent for a equals .86. A time preference rate of 10

percent per annual is quite high, but is within the range estimated empirically

(Hausman (1979)). In addition the associated equilibrium interest rate of 8.5

percent computed on a yearly basis, while high, is not implausible.

While risk premiums in uncertainty rdels are not invariant to the

specified number of periods, it iy be of some interest to know the welfare

gain from perfect insurance in this nde1. Assuming base line parameter

values the lack of perfect insurance has a small —— less than 1 percent ——

welfare cost as measured by the percentage increase in resources with family

insurance required to obtain the expected utility level under perfect

insurance. As expected this figure is highly sensitive to the degree of risk

aversion. Ceteris paribus, raising y to 10 raises the equivalent variation to
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almost 16 percent.

To summarize these findings, in the unconstrained intergeneration—

ally altruistic nde1 switching from family to perfect insurance reduces

aggregate savings by either a ndest or a significant amount depending, pri—

manly, on the time preference rate and degree of risk aversion. The time

preference rate is critical for determining the rate at which the resource

distribution becomes re unequal. If one accepts a relatively high time pre-

ference rate, the idel suggests an important potential contribution of imper-

fect annuity arrangments in increasing inequality.
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III. The Constrained Altruistic Model

The solution to the unconstrained altruistic model involves, in the

long run, essentially all families holding close to zero future resources,

meaning they are in debt by an amount equal to the present value of their cer-

tain future labor earnings. In constrast, this section examines the behavior

of the altruistic econon' under the assumption that families cannot borrow

against their future earnings. For this problem the state variable

corresponding to equation (2) is no longer full future resources, rather it is

current non human wealth, At. To simplify the numerical calculations required

to solve this problem we considered a two period version of the section II

model. Each child lives for one period with certainty and survives with pro-

bability P for two periods. Hence, when children are born their parents may

be dead. The family's expected utility in the case the parent is alive, EU,

is given by:

(13) EUa(Ai) = l +

1a + aV(A2a),

where A1 is the family's initial non human wealth. A2a is the value of such

assets at the time the grandchild is born given that the grandfather lives

for two periods. If the parent is dead when the child is born the family's

expected utility, EUd, is:

Cl—I
(i) EUd (A1) =

e sl:d + cxV(A2d),

where A2d is the family's assets when the grandchild is born, given that the

grandfather dies at the end of period 1.
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The expected utility function V(A) is defined by:

(15) v.(A) = P + (i—n)

If the initial father (the second child's grandfather) is alive, the family

maximizes (13) subject to:

(i6) A2a = (A1
—

C2
—

C81 a)R + e, and

C +C (f2 sl,a

In (16) e is the child's first period earnings. The constraint that C2 +
Csi,a

not exceed A1 implies that family assets are never smaller than e. The

corresponding constraint in maximizing (114) is:

(17) A2d = (A1
—

CS1 dL'B + e, and

C (A
sl,d 1

The value function V(A) as well as the consumption demands C C
f2, sl,a

and 1 d
were computed numerically using the contraction properties of the

maximizatIon problem (Denardo (1967))e Specifically, we started with a guess of

the function V(A) and used this function to solve for EU (A ) and EU (A ). Fromal dl
(15) these EU(A1) and EUd(Al) functions provide a new guess of the V(A) func-

tion. This iteration was repeated until the V(A) function converged to its

fixed point solution.

While there is a critical Interest rate above which the econony's

wealth increases without bound, there is a unique distribution of family

assets for each interest rate below this critical value. Corresponding to

each of these stochastic steady state asset distributions is an aggregate

stock of assets. Hence, the introduction of liquidity constraints in the
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altruistic Irxdel produces (1) a supply schedule of aggregate savings that

increases with the interest rate and (2) a non—degenerate wealth distribution.

The equilibrium interest rate in this imDdel is no longer determined solely by

household preferences, rather it is determined by equating the household

supply of savings to firm's demands for savings (capital).

Assuming a Cobb-Douglas production function with a capital share of

.3, a time preference factor a of .742 (corresponding to a 1 percent annual

time preference rate), and values of e and y equal to 1 and 4, respectively,

the constrained econony's equilibrium steady state capital output ratio is

roughly 30 percent larger than in the corresponding unconstrained ndel. For

these parameter values the reduction in aggregate savings from switching to

perfect insurance is 50 percent. This number should be contrasted with the 7

percent figure in the first row of Table I. The percentage reduction in

wealth in this del is highly sensitive to the value of cx. At a equals .25

(a I.7 percent annual time preference rate) the percentage reduction is 95

percent. At a equals .057 (a 10 percent assumed time preference rate) the

percentage reduction is 99 percent. The per capita wealth stock is much more

sensitive to a in the unconstrained perfect insurance version of this model

than in the constrained family insurance version. This is expected since for

values of a above a critical level the family is always constrained, and

assets in each family equal e, their lower bound (see (16) and (17)).

The lower bound on a family's non—human wealth also nans a lower

equilibrium interest rate than with no borrowing constaints. Since families

always save at least as much with liquidity constraints as they do without
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these constaints, an interest rate equal to or greater than the unconstrained

equilibrium value would imply explosive wealth accumulation in the constained

case. The lower equilibrium value of the interest rate in the constained

model reduces the savings incentives of all agents in the econonr, par-

ticularly those with the greatest wealth, and, therefore, reduces the disper-

sion in the distribution of wealth. For the base line parameter values the

richest 10 percent of families hold less than 15 percent of econony—wide

resources. Inequality in wealth, while limited in all our constained econonr

calculations, declines rapidly with increases in cz.
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IV. The Selfish Life Cycle Model

The family insurance mdel where each imber acts solely out of self

interest is re complicated. In this case all transfers that occur are the

result of ex—ante selfish bargains. A four period framework is required here

to permit these intergenerational risk sharing arrangements. When the

bargaining takes place the child is age one and the parent is age three.

The parent has one re period of certain life followed by one period of

uncertain life. The agreement reached by parent and child can be thought of

as the parent buying an annuity from the child. In return for some sxney in

period 3 the child promises to offer a specified level of support for the

parent in period 1 in the event that the parent lives that long.

Equivalently, the deal can be arranged such that the child gives the parent

some money before period 3 in return for being made beneficiary of the will of

the parent. The timing and labelling of payments in these arrangements is not

critical; what is critical is that the child share the risk of the parent's

lfespsn. Both of these arrangements involve such risk sharing. If the

parent dies prior to period 1 the child ends up receiving in present value

more ney than he (she) payè. Alternatively, if the parent dies late the

child pays rre ney in present value than he (she) receives. There is also

no requirement that those risk pooling arrangements be explicitly stated or

written down. Kotlikoff and Spivak (1981) describes mechanisms for enforcing

implicit family annuity contracts.

Both the parent and the child can be made better of f by striking

a bargain. However, there Is an indeterminacy as to how the gains from trade

should be divided. One can imagine an arrangement under which the parent's
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utility in the bargain is just the same as if no deal had been struck, and,

therefore, all of the gains from trade go to the child. Alternatively, one

can arrange the risk sharing such that all the gains from trade go to the

parent. An additional complication is that the child, in striking an arrange-

ment with the parent, considers the 3rd period bargain he (she) will make with

his own child. The expected utility from that future bargain is denoted V and

depends on the child's level of third period wealth (human plus non—human)

w , i.e., V = v(w ). Since we assume that successive children all earn
s3 53

identical amounts with certainty in the first three periods of their lives,

the resources of the grandchild, with whom the child will bargain, is

supressed as an argument of V.

The frontier of the utility possibilities space with intergenera-

tional bargaining is located by solving

Maximize:

1—i 1—y l—y
(18) Cf3 aPC + C51+

l—y 1—y

ad—I
+ 1sa + a2V(W53a))

1—i

+ e(i-p) (52.d + a2(W3))

subject to

(19) Cf3 + C51
+ R(C +

C82 a + R2W83
= +

and
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(20) Cf3 + C1 +
RC52 d

+ d
= + Wf3

As in (2), Cf3 and Cf14 are the parent's certain and contingent consumption

levels in periods 3 and 14. respectively; C1 is the child's first period con-

sumption, and C2a and Cs2d are the child's respective second period con—

su"iption levels contingent upon the parent being alive or dead in period 14.

Children initially have no non—human assets. Each child's certain present

value of labor earnings is W1, and his (her) parent's third period human plus

non—human wealth is W . Finally, W and W are the respective third
f3 s3,a s3,d

period wealth levels of the child, that he or she uses in bargaining with the

grandchild, contingent upon the parent being alive or dead in period 14.

Problem (18) involves n.ximizing a weighted sum of the two

participants' expected utility where the weight 0, applied to the child's

utility, potentially ranges from 0 to . The child considers his or her

consumption in periods 3 and 14 under two eventualities: either the parent dies

early, and the child does not have to pay off on the annuity insurance

agreement (this is reflected in the final term of (18) which is weighted r

the (i—F) possibility of its occurrence), or the parent dies late and,

hence, the child does have to pay off on the annuity insurance (the fourth

term in (i8)). As stated, the v(w) function gives the expected utility the

child experiences from his third and fourth period consumption discounted

to period 3 of his life as a function of his wealth in period 3.

Problem (18) has two budget constraints; total consumption plus

savings for the child's third period equals total initial wealth of the parent

and child under both lifetime possibilities for the parent. The weight 0
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reflects the terms of trade in this bargaining problem. In general one would

expect 6 to be a function of the resources of both the parent and the child,

and W1, respectively. However, since W1 is constant in our analysis, we

express 6 =
O(Wf3).

Solving problem (18) for different values of 0 traces out the uti-

lity possibility frontier for family deals shown in Figure 1. Obviously,

not all values of 0 will generate outcomes that are in the core. We have

labeled as 0 the critical value for 6 for which the parent receives none

of the gains from trade (i.e., the child receives all gains from trade).

is defined symmetrically with the parent getting all of the surplus.

The point T is the threat point, indicating the parent's and child's

expected utility levels if they fail to bargain with each other. As is

clear from problem (18), figure 1 depends on the respective resources of the

father and the son, W and W , and on the function V (.).sl f3 $

Since we consider a stationary environment in which tastes and

endowments of children remain unchanged, we will limit outself to sta-

tionary bargaining solutions. That is, we assume that the V function will

be the same for the bargaining of each successive pair of generations. An

implication of stationarity is that the parent's expected utility in (18)

expressed as a function of his wealth, W3 equals the child's expected

utility function, V, when the child becomes a father. An immediate property

of stationarity is that the child reaches the same deal with his child as

his parent did with him if respective resources are the same. More

forl1y, a stationary solution Is defined as a bargaining function 0(Wf3)

and an expected utility function v(w) such that if C3 Cf are optimal
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values of consumption derived from solving problem (18), where

1 *1_I 1 '1
'1(w3) is substituted for v(w53), then V(Wf3) =1—1C +

aPy—-

Solving problem (18) involves searching for a fixed point

function V and an associated O(Wf3) function that produces outcomes that

are in the core. We consider and compute three solutions to problem (i8).

In the first solution, denoted Os' the child receives all the gains from

trade; furthermore, all successive bargains involve children receiving all

gains from trade. In the second, solution, the initial and all suc-

cessive fathers receive all gains from trade. In the third solution the

gains from trade are always divided between child and son according to John

Nash's (19514) two person bargaining solution.

In the 8 solution parents receive their threat point level of

expected utility. This is the expected utility received by the parent if

he acts on his oin and is given by th solution to (21). Macimize:

1—i
C aPC

+
1—i 1—i

subject to

C3 + R
Cr14 = Wf3

Denote V (w ) as the nximum utility that the parent with wealth W can
5 f3 f3

achieve on his n by solving (21). V(Wf3) is, thus, the indirect utility func-

tion when no deal is struck and is given by:

wi-I
v (w )
8 f3 1—i

where
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1(1:1)
k = R ((i+(p) fIR I )Y

Naturally, V(Wf3) is the minimum the parent is willing to accept in

an annuity bargain with his child. V is also the expected utility func-

tion of the child in the 0 bargain with his on child. Replacing V with V
S *1_I S

in (18) and choosing Os for each value of W such that V5(Wf3) = +

provides a proof by construction that V is a fixed point function for the

problem. In addition the computed values of 8 for different values

of Wf3 determine the function 0(Wf3). While parents, In this 8 bargain,

receive their threat point levels of expected utility, their actual pattern

of consumption differs from what they would choose on their own;

Cf3 is smaller and Cf greater than the respective solution values to

problem (21).

Although the V function was obtained analytically, finding an

analytic expression for V for other bargaining solutions is generally

not possible. For the the 8 and Nash (denoted e) solutions an

iterative technique described below is used to find fixed point func-

tions and their associated 8 functions. Both the 0 and 0 solutions
f n

require specifying the child's threat point. Given our assumption of a

cooperative, efficient solution to parent/child bargaining, the child, if he (she)

fails to bargain with the parent, can credibly assert to the parent that he (she)

will be able to reach a deal with his child. The child's threat point El?,

is the solution to problem (22); it involves the child's consuming C and Csl s2

in his first two periods, respectively, and bargaining with his child

in period 3 based on third period wealth, W3.
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Maximize:

T c;:1 aC 2(22) Eu = +
$ l—y l—y s3

subject to

(23) C +RC +RW =W
si s2 s3 si

In the case of 8 bargaining, V is replaced by Vf in (22) as well

as (18). The solution proceeds by first guessing a. function Vf. Next

we solve (22) to determine the son's threat point utility EUT. Given the

guess of Vf and the derived value of EU', 0 is choosen in (18) such that

the son's expected utility in the solution to (18) equals EUT. This

last calculation is repeated for different values of WfB thereby

generating a function Of(Wf3). In addition to computing a O function

based on the initial guess of Vf the solution to (18) based on Of(Wf3)

determines the father's expected utility in the bargain. The t.xitnizing
*1_I 1—y

values of + P for different values of Wf3 provide an expected

utility function for the parent in the O bargain with the child. This

function is used as the next guess of the Vf function, and the calculations

are repeated. The iteration proceeds until the guess of the V function

equals the parent's expected utility as a function of i.e., until

we have found a function V. which is a fixed point of the napping described.

In the Nash bargaining case a very similar solution technique

is applied. The Nash solution involves choosing 0 in (18) to mximize

the quantity (EUf — EU')(EU9
— EUT), where EUf and EU are the expected

utilities obtained by the parent and child respectively, and EU equals
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V, the parent's threat point. To find V, the Nash fixed point function,

T
we again choose an initial guess of V and solve (22) to find EU. We

also solve (21) to find EU'. Next the guessed value of V is substituted

for V in (18), and U is choosen to ri.ximize (EUf — EU)(EU — EUT).

Repeating this last step for alternative values of W3 generates a

function 6(Wf3) as well as an expected utility function of the father arising

from Nash bargaining. This latter function is used as the second guess

of the Vn function. The iteration continues until we find a fixed point

function V. In this bargaining solution as in the previous

o solution, the 0 (w ) and e (w ) functions calculated in the last
S f f3 n t3

round of the iteration correspond to the correct bargaining functions for

the functions Vf and V, respectively.

The V function is used as the initial guess of the V function

for the 0 and Nash bargaining solutions. In each iteration we computed

the solution to (18) for 80 different values of W13. We then fit a fifth

order polynoxninal in W3 to these points and used the resulting regression

as the guess of V in the next iteration. The iterative procedure for

determining V converged roughly by the 8th iteration;8 12 iterations each

were used for both the 0 and Nash cases.

Savings in the Life Cycle Model under Imperfect Family and Perfect

Insurance Arrangements

As described re fully in Kotlikoff, Shoven, and Spivak (1983), the

stochastic steady state of the life cycle econonr has a stationary and bounded

savings distribution. The distributions and stocks of wealth for each of the

bargaining cases were computed numerically as follows: first, we calculated
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the function a3 (w ) and a (w ) for each of the three solutions to
s ,a 3 s3,d f3

problem (18). These two functions indicate the third period wealth of a child

(when the child becomes a parent) whose parent brings Wf3 to the bargain arid

who dies, resprectively, either early or late. Starting with one hundred

thousand families with the same initial value of Wf3 we randomly assigned

these two functions to each family in each generation according to the proba-

bility P of survival to period 4. The distribution of Wf3 stabilized after

roughly 8 generations. Unlike the case of unconstrained altruistic economies,

there is a non—zero positive lower bound as well as an upper bound on family

resources.9 The degree of inequality in parental asset holdings (Wf3)

generated by this model is rather moderate. The upper bound for Wf3 is only

l.T times the lower bound for our base line parameters under 0 bargaining.

The poorest 50 percent of parents have close to 45 percent of all parental

assets, and the richest 10 percent have 18 percent of all assets. These

figures proved highly robust to a wide range of parameter values.

Table III compares steady state per capita wealth stocks in the dif-

ferent insurance regimes under alternative assumptions about age earnings pro-

files.1° Each of the age earnings profiles has a present value of 10, which is

received with certainty over the course of the first three periods. Since the

child's resources are identical in each of these cases, the consumption deci-

sions of the child and parent are the same for each of these earnings paths.

Hence, the difference in stocks of wealth by row in Table III are simply a

function of the timing of the receipt of labor income. The earnings profile

in the third row appears closest to the shape of real world profiles.
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The percentage reductions in wealth from ving to perfect

insurance reported in Table IV are very large. For the earnings profIle in

the third row the long—run wealth reduction is 59 percent starting from the

(children take all) stochastic steady state. It is 141 percent in the

case of an initial Nash bargaining equilibrium and 35 percent when the ini-

tial equilibrium involves ef (parents take all) bargain.

In contrast to the altruistic models of sections II and III, a najor

factor explaining the savings reduction In this model is the implicit interge-

nerational transfer associated with providing perfect annuity insurance. In

the family insurance equilibrium the expected inheritance of children is posi-

tive since children would not otherwise be willing to accept the additional

consumption risk arising from the parent—child annuity arrangement. Once per-

fect Insurance is available, parents as a collective group, will consume what

they would otherwise have bequeathed, on average, to their children. This

negative resource transfer from younger children to older parents reduces

the economy's savings because the parents, with shorter life spans, have

higher narginal consumption propensities than have their children. This

intergenerational transfer explains why savings falls significantly in the

life cycle model from introducing perfect insurance regardless of the value of

y. Recall that in the altruistic model of section II, introducing perfect

insurance lowers savings only very slightly for I < 1.

The values in Table III are highly sensitive to the shape of the

age earnings profile. The smallest percentage wealth reduction arises when

all earnings are received in the first period; in this case wealth falls by
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20.1 percent starting from the Os bargain and by 13.9 percent starting from

the O bargain.

The percentage change in wealth appears relatively insensitive to

variations in the degree of relative risk aversion, y. For example,

reducing I from 14 to 1.5 lovers the percentage decline in wealth under row

3's earnings profile and initial 0 bargaining from 59.3 percent to 50.7

percent. Raising y to 8 increases the value to 63.2 percent. Under Table

III's first age earnings profile the percentage wealth reductions starting

from 6 economies are 15.1, 20.1, and 22.9 for values of y equal to 1.5, 14,

and 8, respectively.

There is considerably more sensitivity to changes in the fourth

period survival probability P; however, the sensitivity depends on the

choice of earnings profile. For example, lowering P from .6 to .3, which

reduces the expected age of death from roughly 714 to roughly 69, converts

the 59.3 percent 8 reduction (row 3, Table iii) to 83.6 percent. The same

reduction in P raises Table III's row 1, 0 value from 20.1 percent to only

23.14 percent.

Unlike the previous two sections the analysis here is partial

equilibrium, i.e., the wage and interest rate are assumed fixed. Since the

wealth reduction from introducing fair annuity insurance would increase rates

of return and depress wages which stimulates savings, the general equilibrium

differences between family and perfect insurance are likely to be considerably

smaller than these partial equilibrium differences.

The large differences In wealth stocks in partial equilibrium bet—
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veen the perfect insurance and family insurance regimes suggests that steady

state welfare could actually be lower in the case of perfect insurance. This

is indeed possible. Under (children take all) bargaining and assuming y

equals 1.5, the expected utility of even the child of the poorest parent

exceeds the uniform, steady state expected utility under perfect insurance.

Starting from a situation of zero insurance, achieving the perfect insurance

expected utility level requires a 7 percent increase in resources; achieving

the expected utility of the child with the poorest parent in the e stochasic

steady state requires an 8 percent increase in life—time resources, starting

from this benchmark regime. Attaining the level of welfare of the child whose

parent in the steady state has the nEximum potential wealth requires a

corresponding 12 percent increase in resources.

Another question raised by Table III is the extent to which imperfec-

tions in annuity nErkets can fully explain observed intergenerational

transfers. Kotlikoff and Summers (1981) invoked the assumption of perfect

insurance arrangements in estimating that roughly 80 percent of private

U.S. wealth corresponds to accumulated inheritances of those currently

alive. This assumption that annuity insurance is fairly well developed in

the United States can be defended by pointing to social security and other

government annuities, private pensions, old age labor earnings that are

partly contingent on survival, and the potential for family risk sharing

involving multiple nmbers. Still, it is interesting to ask how their

calculation turns out when it Is applied to the two member family insurance

econon described above. Their technique involves subtracting accumulated
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consumption from accumulated earnings for each cohort and then summing

across cohorts to get a total wealth stock. This "life cycle" wealth is

then compared with actual wealth holdings. If agents in the econoiy are

selfish and annuity arrangements are perfect or very- close to perfect, com-

puted and actual aggregate wealth will be identical or extremely close to

one another.

The two person family regime is, however, quite far from that of

perfect insurance. As described here, this imperfection produces a

stochastic steady state in which observed consumptior profiles often exceed

what could be financed from one's own labor earnings even under perfect

insurance. Hence, in this econony, subtracting, for all cohorts, accumu-

lated consumption, part of yhich is financed by past intergenerational

transfers, from accumulated earnings produces an underestimate of the

econony' actual wealth. For the 0 bargain, with y equals 4 and with Table

III's row 3 earnings profile, the underestimate is close to 90 percent

of actual wealth. Since Kotlikoff and Summers' calculation understates

U.S. wealth by 80 percent, imperfections in annuity- markets appear poteri—

tially capable of fully explaining actual U.S. intergenerational

transfers.
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V. Summary and Conclusions

This paper has explored the impact of perfecting annuity insurance

on savings and inequality using two standard neoclassical models —— the

Intergenerationally altruistic model and the non—altruistic life cycle model.

While the modeling is intentionally structured to produce the maximum pre-

cautionary savings, the results are, nonetheless, quite surprising. Partial

equilibrium calculations based on the life cycle model suggest very substan-

tial reductions in national wealth associated with improving annuity

insurance. Indeed, in the life cycle model the reduction in savings from the

annuity insurance associated with social security could be larger than the

savings reduction arising from social security's "pay as you go" method of

finance. In addition, imperfections In annuity insurance appear potentially

capable of explaining a sizeable fraction of observed intergenerational trans-

fers in the U.S..

In the intergenerationally altruistic model perfecting annuity

insurance can also significantly lower national savings, but the results here

are imich more sensitive to precise parameter values as well as assumptions

about liquidity constraints.

In the presence of family annuity insurance each of the models pro-

vides a theory of the distribution of resources. While the life cycle model

suggests a rather limited dispersion in family resources in the stochastic

steady state, the altruistic model, absent liquidity constraints, generates

increasing inequality through time. Assymptotically the altruistic model's

resource distribution is completely skewed. In the long run virtually all



families hold close to zero resources and an infinitesimal fraction of fami-

lies hold all of the econoxrr's wealth.

The results of this analysis suggest the importance of studying

other ntives for precautionary savings such as uncertainty with respect to

future earnings and future health status. A variety of government programs,

including disability and unemployment insurance, welfare, and progressive

taxation may be greatly affecting the extent of precautionary savings in the

econosy. To the extent that such savings Is highly responsive to government

Insurance programs, the government may wish to offset their adverse savings

effects not by- reducing Its provision of insurance, but by using alternative

policy instruments that raise savings without increasing economic uncertainty.
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Footnotes

1. Our discussion of behavior in the life cycle model draws heavily

on Kotlikoff, Shoven, and Spivak (1983).

2. See Kotlikoff and Spivak (1981). This statement assumes inde-

pendent morality probabilities across family members.

3. The formula for g( ) is:
g(P,a,0,R,y,k) =

y—l 1—1 1—].

+ 1/YR )' [P(a+u1 R1k1h1)1 + (1_p)(01/1+ah/YRYkh/1)YlYJhIY

where a = (i+e'). For each set of particular values considered

in the paper there is a unique value k satisfying k = g( ).

14• A and D are given by:

A = R2(l_(M/a)_1h)(1_(k/a)_hul)

D R2(a_(N/6)_hu1)(1_(k/a)1)

where

a (1+01/1)1 M = ta1'' + (aR_1v)l1R]1, and

N = + (aR_1v)1')huh1R11.

5. Actually Chebyshev's theorem provides an even stronger statement

about changes in the distribution of family resources through time. Let c

be an arbitrary constant. Then the probability at time t that log exceeds e

is bounded by a number that declines with t if loW. is less than or equal to C.
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If log W exceeds c, the bound on the probability that log W + exceeds c declines

log W_c
t t

with t for I • In other words the bound of P(log Wt+1 c) monotonically

declines with t if the process has already reached c; and if not, it declines

monotoriically once the process has had enough time to drift down to c. More

formally, from Chebyshev's theorem we have:

P(log w log W — + A /To) ijx,

where A is a positive constant. Choose I such that c = log W — +

then:

c—logW+IP
P(log ) c ( 1/A , where A = —Ito

Since Tp > log W — c, > 0 and 3(1/A) < o.

6. The intuitive explanation here is that as the time preference

factor approaches unity families become increasingly indifferent between their

own welfare and that of their far distant, indeed infinitely distant descen—

dents. At the limit, when a equals 1, current family members are completely

Indifferent between consuming now and saving everything for the future consump-

tion of their desceridents. They are also indifferent with respect to allo-

cating consumption at any point in time between children and parents, i.e.,

eliminating parental consumption and thereby the entire concern with life span

uncertainty, is a tter of indifference to families when a equals 1. Since

lifespan uncertainty becomes an increasingly less important issue as a rises,

it is not surprising that for a equal to .99, savings with imperfect insurance

is equal to savings with perfect insurance.
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7. By "rough convergence" we an that economic choice variables

were identical to at least the second digit between iterations. For a range

of intermediate values of W3 the calculated consumption terms are identical

to five digits between iterations. While we believe re accurate values of

the V and V functions could be obtained, the computation costs of achieving

the additional accuracy is considerable; solving (18) for any one of the 80

values of Wf3 in any one of the 12 iterations requires rather extensive com-

putation.

8. The explanation for the upperbound is the following: As suc-

cessive parents continue to die early their children bring nre, but not pro—

portionatelyuxre resources into their own third period. When the parent dies

early, his or her child enjoys an increase in non—human wealth, but no change

in human wealth. Hence, when the child's non—human wealth rises by a given

percentage, his or her total wealth rises by- a smaller percentage. Hence,

even if a two period old child increased his (her) W3 proportionately in

response to an increase in total resources available at the beginning of

period 2, the increased non—human wealth received in period 2 would lead to a

less than proportional increase in Wf3.

9. The absolute size of these economies' wealth stocks may appear

small in comparison to the level of earnings or income in a particular period.

However, such stock—flow ratios must be adjusted for the fact that flows in

this idel are received over a period that corresponds to roughly 15 years.

In the case of the third and probably the st realistic earnings profile in
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Table IV, the ratio of wealth to one—fifteenth of a period's labor earnings is

6.9 in the case of the 6 bargain. A wealth—to—earnings ratio of 6.9 is

somewhat greater than that observed in the United States.
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