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1 Introduction

This paper studies the output and price measurement of the lottery sector using an
economic approach. Perhaps as a result of the accumulating effects in jackpots when
there are no major prize winners in previous weeks, lottery industries in Canada
and elsewhere are growing steadily. In 1997, according to the Survey of Household
Spending (SHS), 68.4% of all households in Canada bought government-run pool and

∗Lakehead University, e-mail: Kam.Yu@lakeheadu.ca. The author wishes to thank Lottery
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lottery tickets, with the average expenditure per household equals to $238, which
translates to 0.3% of total expenditure. Expenditure in gambling, however, has been
found to be consistently under-reported in the SHS. The actual amount of money
spent on gambling, according to revenue reported by the government, is three times
the amount reported by households (Marshall, 1998, p.31). Therefore the lottery
industry has become a significant part of the GDP, and a more accurate method
of measuring its output is needed. Moreover, prices in any game of chance are not
currently included in the consumer price index (CPI). If we are able to calculate the
real output of lottery, then an implicit price index can also be computed. This price
index can be used both as a deflator in the national account and as a subindex in
the CPI.

In the theory of consumption under uncertainty, the typical consumer is tradi-
tionally assumed to follow an optimal statistical decision rule with risk-averse prefer-
ences. This leads to the well known expected utility hypothesis (EUH), in which the
risk averseness is often assumed to be decreasing in wealth. A wealthy person is more
willing to invest in a risky but high yield portfolio than an average person. The EUH
has been successfully applied to problems in insurance and financial investment. Its
linear structure, however, also implies that a risk-averse expected utility maximizer
will never buy lottery tickets unless the payout prizes are exceedingly large. In re-
ality we observe that consumers who are fully insured in their houses and cars also
engage in a variety of gambling activities. Therefore we need a different approach
other than the EUH. In the past two decades new theories on economic uncertainty
have been developed. For example, Diewert (1995) shows that the real output of a
simple gambling sector can be measured using implicit expected utility theory. It
successfully models consumers’ risk-averseness involving large portion of their wealth
and at the same time captures the risk-seeking character involving small amount of
money. In this paper, Diewert’s model will be generalized from a simple two-outcome
lottery to an N -outcome one (the 6/49 lotto has 6 outcomes with different payouts).
The functional form of the estimating equation will be derived and estimated with
Canadian data.

The portion of government output in the national accounts of industrialized coun-
tries has been increasing over the past several decades. There has been an ongoing
debate on the concept and practice of measuring government output. Due to the
absence of market prices in government services, statistical agencies traditionally use
total factor costs as a proxy for the output. This practice has become less acceptable
as the government sector has expanded. The Inter-Secretariat Working Group on
National Accounts (1993)1 recommends that government output should be measured
directly whenever possible. In fact, the statistical bureaus in Australia, U.K. and the
Netherlands have switched to various forms of direct methods recently. In the case of
government lotteries, the price of a lottery ticket is not the market price in the sense

1This manual is often referred to as SNA93.
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of quantity measurement. Therefore the total factor cost is usually taken as a proxy
for output. This paper proposes a direct method of measuring government services
in lotteries. Our results show that by using a direct utility approach, the measured
output of Lotto 6/49 in Canada is three times higher than the official statistics. The
estimated price elasticity of demand is found to be very similar to those of other
countries.

The structure of the paper is as follows. Section 2 examines the classical and
new economic theories of uncertainty and some of their applications. In section 3,
we briefly discuss the gambling sector in Canada and apply the new theory to the
economics of lottery. A money metric measure of the real output of the sector will
be derived. In practice, a two-parameter equation is estimated using a nonlinear
regression. The next step is to use the Canadian Lotto 6/49 as an example to test
the feasibility of the model. The results are presented in section 4. Finally, section 5
concludes.

2 The Economic Analysis of Uncertainty: A Brief

Review

2.1 The Expected Utility Hypothesis

The classical analysis of economic uncertainty begins with Friedman and Savage
(1948) and von Neumann and Morgenstern (1953). Their writings form the basis
for what is generally known as expected utility hypothesis (EUH). The EUH has
been successfully applied to a number of economic problems such as asset pricing
and insurance. It has also been used as the premise in statistical decision theory.2

In the basic model, the uncertainty is represented by a set of simple lotteries L
over a set of outcomes C. A simple lottery L ∈ L in the discrete case can be
represented by a vector of outcomes and a vector of probabilities, that is, L =
(p1, p2, . . . , pN) where

∑N
i=1 pi = 1. Therefore outcome Ci ∈ C will occur with

probability pi, i = 1, . . . , N . A consumer or a decision maker is assumed to have a
complete and transitive preference structure % on L. In addition, the preferences
are supposed to be continuous and independent. The latter assumption means that
for all L, L′, L′′ ∈ L, and 0 < α < 1, we have

L % L′ if and only if αL + (1− α)L′′ % αL′ + (1− α)L′′.

Therefore, the ranking on L and L′ remains unchanged if we mix the lotteries with
another one to form compound lotteries. Together, the continuity and independence

2See, example, Luce and Raiffa (1957) and Pratt, Raiffa, and Schaifer (1995).
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assumptions imply the existence of an expected utility function U : L → R such that

U(L) =
N∑

i=1

uipi, (1)

where ui, i = 1, . . . , N are utility numbers assigned to the outcomes Ci ∈ C respec-
tively. Therefore,

L % L′ if and only if U(L) ≥ U(L′).

The independence assumption, which gives rise to the linear structure of the expected
utility function, has been controversial from the beginning. Samuelson (1952) defends
the independence axiom by arguing that in a stochastic situation, the outcomes Ci

are mutually exclusive and therefore are statistically independent. Consequently
U(L) must be additive in structure. Moreover, using a theorem by Gorman (1968),
Blackorby, Davidson, and Donaldson (1977) show that continuity and independence
imply that the utility structure under uncertainty is additively separable.

In spite of its solid theoretical foundation and normative implications, some ap-
plications of the EUH do not conform well with real behaviour.3 The most serious
challenge is the Allais (1953) paradox, which can be illustrated by the following ex-
ample. It involves decisions over two pairs of lotteries. The outcomes are cash prizes
(C1, C2, C3) = ($2, 500, 000; $500, 000; 0). In the first pair, the subjects are asked
to choose between L1 = (0, 1, 0) and L′

1 = (0.10, 0.89, 0.01). That is, L1 is getting
$500,000 for sure, while L′

1 has a 10% chance of winning $2,500,000, 89% chance of
winning $500,000, and a 1% chance of winning nothing. The second part involving
choosing between L2 = (0, 0.11, 0.89) and L′

2 = (0.10, 0, 0.90). Allais claims that
most people choose L1 and L′

2. This contradicts the EUH since if we denote u25, u05,
and u0 to be the utility numbers correspond to the three prizes, then L1 � L2 means
that

u05 > 0.1u25 + 0.89u05 + 0.01u0.

Adding 0.89u0 − 0.89u05 to both sides of the above inequality gives

0.11u05 + 0.89u0 > 0.1u25 + 0.9u0.

This implies people should choose L′
1 instead of L′

2.
The linear structure of the EUH also implies that a risk averse consumer will

never gamble, even for a fair game, no matter what the degree of risk aversion the
consumer has.4 Friedman and Savage (1948) try to correct this problem by proposing
a utility function u with concavity varying with wealth level. This ad hoc fix does

3See, for example, Machina (1982), Rabin (2000), and Rabin and Thaler (2001).
4See Diewert (1993), p. 425. Rabin and Thaler (2001) provide numerical illustrations on the

absurdity of some implications of the EUT. Also see comments by Watt (2002) and the response
from Rabin and Thaler.
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not solve the problem for small gambles because both the normal wealth level and
the payout prizes are far out in the concave section of u, given the insurance buying
behaviour of the typical consumer. Cox and Sadiraj (2002) propose a new expected
utility of income and initial wealth model, which assumes that the outcomes are
order pairs of initial wealth and income (prize). Their model may have applications
in other areas but they concede that ‘the empirical failure of lottery payoffs is a failure
of expected utility theory’ (p. 16). The EUT may be a good theory in prescribing
what people should behave, but it fail as a model to describe what people actually
behave. Therefore in order to model a small gamble like the Lotto 6/49, we need a
preference structure more flexible than the EUH.

2.2 Non-expected Utility Theories

Most of the theories developed to resolve the Allais paradox involve replacing or
relaxing the independence axiom.5 For example, by taking a general approach to
the idea of a mean function, Chew (1983) replaces the independence axiom with
the ‘betweenness’ axiom. Instead of discrete probabilities on events in C, let L
now denotes the set of probability distribution functions. The betweenness axiom
assumes that for all F and G in L, F ∼ G requires that

αF + (1− α)G ∼ F, 0 < α < 1, (2)

where F ∼ G means F % G and G % F , that is, the consumer is indifferent between
the lotteries F and G. This means that if a consumer is indifferent between lotteries
F and G, then every convex combination of F and G is indifferent to them as well.
As a consequence, the indifference curves are still straight lines. The EUH, on the
other hand, can be characterized as

F ∼ G ⇒ αF + (1− α)H ∼ αG + (1− α)H, 0 < α < 1, (3)

for any H ∈ L. We can see that (3) reduces to (2) if H = F . The involvement of a
third lottery H in (3) implies that the indifference curves are parallel straight lines.
This additional restriction gives rise to the Allais paradox. The betweenness axiom
together with other regularity conditions imply that preferences can be represented
by a general mean function M : L → R such that6

M(F ) = φ−1

(∫
αφdF∫
αdF

)
(4)

where φ is a strictly monotonic and increasing function and α is a continuous and
non-vanishing function, both on the domain of F . In (4), φ is similar to the von

5For surveys of the non-expected utility theories see Epstein (1992), Machina (1997), and
Starmer (2000).

6For details see Chew (1983), Dekel (1986), and Epstein (1992).
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Neumann-Morgenstern utility function u in (1), while α is an additional weighting
function. The mean function M can be interpreted as the certainty equivalent of F .7

This two-parameter generalization of the EUH is less restrictive and can be used to
resolve the Allais paradox.

Other developments in non-expected utility theory include, for example, Kahne-
man and Tversky’s (1979) prospect theory, Gul’s (1991) theory of disappointment
aversion, and rank-dependent utility theory.8 In Gul’s analysis, for example, a lot-
tery is decomposed into an elation component and a disappointment component. A
weak independence axiom is defined in terms of the elation/disappointment decom-
positions of lotteries. The combination of disappointment aversion and a convex
von Neumann-Morgenstein utility function may represent preferences that are risk
averse to even chance gambles and gambles with large loss with small probabilities,
but risk loving to gambles winning large prize with small probability. Basically this
provides the ‘fanning out’ effect to avoid the Allais paradox (Machina (1997)).

Using the contingent commodity approach of Arrow (1964) and Debreu (1959),
Diewert (1993c) develops an implicit utility function as follows:

N∑
i=1

piφu(xi)− φu(u) = 0 (5)

where φ : R2 → R is function of the utility u and xi. In this formulation xi = f(y1)
where yi is a choice vectors in the state of nature i, i = 1, . . . , N , and f is the
consumer’s certainty utility function.9 The function u = F (y1, y2, . . . , yN) is the
consumer’s overall state contingent preference function. Notice that u is implicitly
solution of (5). For aggregation purpose, if we assume that the consumers have
homothetic preferences, (5) reduces to

N∑
i=1

piγ(xi/u)− γ(1) = 0 (6)

where γ is an increasing and continuous function of one variable.
A common property of non-expected utility theories is that they can represent

consumers with first order risk aversion, which implies that the risk premium of
a small gamble is proportional to the standard deviation of the gamble.10 For a
consumer with an expected utility function, on the other hand, second order risk

7In the context on equation (1), the certainty equivalent µ(L) of lottery L is defined as u(µ(L)) =
U(L). For a risk averse decision maker, the risk premium of L is the difference between the expected
value of L and µ(L).

8For example, Yaari (1987), Chew and Epstein (1989a), Quiggin (1993), and Diecidue and
Wakker (2001).

9The function f is the counterpart of the von Neumann-Morgenstein utility function.
10See Segal and Spivak (1990) and Epstein (1992).
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Figure 1: First and Second Order Risk Aversion

aversion is exhibited, where the risk premium is proportional to the variance of the
gamble. The difference can be illustrated graphically for the case N = 2. In figure 1,
x1 and x2 represent the monetary outcome of states of nature 1 and 2 respectively.
We assume that p1 = p2 = 1/2 so that the indifference curves are symmetric about
the 45 degree certainty lines. First order risk aversion is represented on the left with
a kink at the certainty line, whereas second order aversion is represented by the
smooth indifference curve on the right.11

2.3 Applications of the New Theories

The EUH has been applied to many areas in economics involving uncertainty. Since
observed behaviour and experimental results sometimes contradicts the theory, it
is interesting to see whether the non-expected utility theories can be successfully
applied to those areas. In this section we review some applications of the newly
developed theory to intertemporal consumption analysis, asset pricing, and output
analysis in insurance and gambling.

Chew and Epstein (1989b) first extend the implicit expected utility to an ax-
iomatic analysis of a two-period intertemporal preferences. They find that in order
for the new theory to be admissible, one of the two axioms (consistency and timing in-
difference, which imply the EUH) has to be relaxed. The application is later extended
to the case of multiple-period consumption-saving decision with a recursive structure
(Chew and Epstein (1990) and Epstein (1992)). In traditional consumption-saving
analysis, the use of a one parameter utility function cannot separate intertemporal
substitution and the degree of risk aversion. For example, a typical intertemporal

11Machina(2001) provides a detailed discussion of kinks on an indifference curve.
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utility function is

U(c0, p) = f(c0) + βE

∞∑
t=1

βt−1f(ct)

and

f(c) =

{
c1−α/(1− α), 0 < α 6= 1
log c, α = 1

where ct is the consumption expenditure in period t, t = 0, 1, . . . ,∞, p is the probabil-
ity measure of the future (uncertain) consumption vector (c1, c2, . . .), and β ∈ (0, 1)
is the discount factor. Here α serves both as a relative risk aversion parameter and
the reciprocal of the elasticity of substitution. By modifying the recursivity axiom,
Chew and Epstein (1990) show that the two conceptions can be untangled by a
class of utility functions that exhibits first order risk aversion, for example, the one
suggested by Yaari (1987, p. 113). If the recursivity axiom is not assumed, however,
then preferences may be inconsistent; that is, a consumption plan formulated at
t = 0 may not be pursued in subsequent periods. The situation can be modelled as
a non-cooperative game between the decision maker at different times and a perfect
Nash equilibrium is taken to describe the behaviour.

Using a similar approach, Epstein and Zin (1989) develop a generalized intertem-
poral capital asset pricing model (CAPM). This model is used to study the equity
premium puzzle in the U.S., which has a historical average value of 6.2%. Using cal-
ibration of preferences by simulation technique, empirical results by Epstein and Zin
(1990) show that the use of non-expected utility function can explain at least a part
(2%) of the equity premium. Epstein and Zin (1991) also apply the intertemporal
CAPM to update the permanent income hypothesis of Hall (1978). In this study the
utility function takes the form

Ut = W (ct, µ[Ũt+1|It])

where µ is the certainty equivalent of the recursive utility Ũt+1 at period t + 1 given
the information It in period t. The separation of intertemporal substitution and risk
aversion makes the model more realistic. The resulting estimating equation is the
weighted sum of two factors: a relation between consumption growth and asset return
(intertemporal CAPM), and a relation between the risk of a particular asset with
the return of the market portfolio (static CAPM). They conclude that the expected
utility hypothesis is rejected, but the performance of the non-expected utility model
is sensitive to the choice of the consumption measure (non-durable goods, durable,
services, etc.). Average elasticity of substitution is less than one and average relative
risk aversion is close to one.

Using the implicit utility function as described in (5), Diewert (1993, 1995) out-
lines simple models for measuring the real outputs of the insurance and gambling
sectors. Here we describe the model of a two-state lottery game. This simple model
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will be extended in the next section into a six-state lottery. The two-state lottery is
L = (p1, p2), with p2 = 1− p1. The corresponding outcomes are

x1 = y − w, x2 = y + Rw (7)

where y is the consumer’s income, w is the wager, and R is the payout ratio. As-
suming homothetic preferences, the implicit utility function φu can be written as γ
in (6):

φu(z) = γ(z/u).

In order to provide a kink in the indifference curve, we employ the following func-
tional form for γ:

γ(z) =

{
α + (1− α)zβ, z ≥ 1
1− α + αzβ, z < 1

(8)

where 0 < α < 1/2, β < 1, β 6= 0. The implicit expected utility in (5) for this game
is

p1φu(x1) + p2φu(x2)− φu(u) = 0. (9)

Substituting γ in (8) into (9) as φu, we have, for x1 < x2,

u = [δxβ
1 + (1− δ)xβ

2 ]1/β (10)

where δ ≡ p1α/[p1 + (1 − p1)(1 − α)]. Putting (7) into (10), the consumer’s utility
maximization problem is

max
w

[δ(y − w)β + (1− δ)(y + Rw)β]1/β

where 0 ≤ w ≤ y. The first order condition is

y + Rw∗

y − w∗ =

[
1− δ

δ
R

] 1
1−β

=

[
(1− p1)(1− α)R

p1α

] 1
1−β

≡ b.

Solving for the optimal w∗ we have

w∗ =
y(b− 1)

b + R
.

Since y, R, and w∗ are observable, we can calculate b in each period. Then α and
β can be estimated with a regression model. Having estimated α and β, we can
calculate the consumer’s utility level without gambling:

u0 = [δyβ + (1− δ)yβ]1/β = y.

9



Similarly, the utility level with gambling is

u∗ = [δ(y − w)β + (1− δ)(y + Rw)β]1/β.

The real output of the gambling service is then

Q = u∗ − u0.

3 Modelling the Gambling Sector

3.1 Gambling Sectors in Canada

The gambling industry in Canada has been growing in size and in revenue over the
last decade. For example, revenue increased from $2.7 billion in 1992 to $7.4 billion
in 1998, while employment grew from 11,900 from 1992 to 39,200 in 1999. In 1992,
government lotteries were the major component in all games of chances, representing
90% of all gambling returns. They peaked at $2.8 billion and have been declining at a
moderate rate. On the other hand, video lottery terminals (VLTs) and casinos have
grown rapidly. In 1998 revenue from the latter has overtaken government lotteries
as the dominant player (Marshall, 2000).

Government lotteries are administered by five regional crown corporations, namely,
Atlantic Lottery Corporation, Loto-Québec, Ontario Lottery and Gaming Corpora-
tion, Western Canada Lottery Corporation, and British Columbia Lottery Corpora-
tion. Most of these corporations offer their own local lottery games. The national
games, Lotto 6/49, Celebration (a special event lottery), and Super 7, however,
are shared by all the corporations through the coordination of the Canadian In-
terprovincial Lottery Corporation, which was established in 1976 to operate joint
lottery games across Canada. Lotto 6/49 games are held twice a week on Wednes-
day and Saturday. Forty five percent of the sales revenue goes to the prize fund. The
fifth prize, which requires matching three numbers out of the six drawn, has a fixed
prize of $10. The prize fund, after subtracting the payout for all the fifth prizes,
becomes the pool fund. This pool fund is divided among the other prizes by fixed
shares as shown in Table 1. The prize money is shared equally among the winners
of a particular prize category. If there is no winner for the jackpot, the prize money
will be accumulated (rollover) to the prize fund of the next draw. About 13.3% of
the sales revenue is used as the administration and retailing costs. This portion is
used by Statistics Canada as the output the Lotto 6/49 game in the GDP.

3.2 The Output of Government Lotteries

In this section we extend Diewert’s (1995) simple model to the measurement problem
of a common lottery sector. A typical game of lottery, for example Lotto 6/49 in

10



Table 1: Prizes of Canadian Lotto 6/49
Prize Rule Probability of Winning, πi Share of the Pool Fund
Jackpot 6 numbers 0.0000000715 50%
Second 5 numbers + bonus 0.000000429 15%
Third 5 numbers 0.00001802 12%
Fourth 4 numbers 0.0009686 23%
Fifth 3 numbers 0.01765 $10

Canada, involve choosing six numbers out of 49. Five prizes are awarded according
to the rules listed in Table 1.12 For example, the probability of winning the jackpot
for one single ticket is 1/C6

49 = 1/13, 983, 816 = 0.0000000715, a one in 14 million
chance. The probability of the second prize is 6 times the probability of the jackpot,
that is 6/13, 983, 816 = 0.000000429, and so on.13 The following notation is used in
the model:

w = wager
pi = probability of winning the i-th prize, i = 1, . . . , 5
p6 = probability of not winning any prize
xi = state contingent consumption, i = 1, . . . , 6
y = real disposable income
Ri = payout for the i-th prize, i = 1, . . . , 6.

Buying more than one ticket increases the chance of winning, therefore

pi = wπi, i = 1, . . . , 5, (11)

where πi is the probability of winning the i-th prize for one single ticket. Also, we
have

p6 = 1−
5∑

i=1

pi = 1− w
5∑

i=1

πi (12)

and
xi = y + Ri − w, i = 1, . . . , 6. (13)

We assume a representative consumer with homothetic preferences so that her state
contingent preference function u = F (x1, . . . , x6, p1, . . . , p6) can be defined implicitly
in (6). Using the kinked functional form (8), (6) becomes

5∑
i=1

pi

[
α + (1− α)

(xi

u

)β
]

+ p6

[
1− α + α

(x6

u

)β
]
− 1 = 0.

12See Ziemba (1986).
13For details of computing all the probabilities see Hoppe (1996).
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Solving for u and using (11), (12), and (13), we have

u(w) =

[
(1− α)w

∑5
i=1 πi(y + Ri − w)β + α

(
1− w

∑5
i=1 πi

)
(y − w)β

α + (1− 2α)w
∑5

i=1 πi

]1/β

(14)

The consumer’s utility maximization problem is to maximize u(w) subject to the
constraint 0 ≤ w ≤ y. For notational convenience, we define the following variables
as

d = y − w

p =
∑5

i=1 πi

q =
∑5

i=1 πi(y + Ri − w)β−1

r =
∑5

i=1 πi(y + Ri − w)β

(15)

The first order condition can be written as

α(1−α)r−βq(1−α)[α+(1−2α)wp]w−αβ(1−wp)[α+(1−2α)wp]dβ−1−α(1−α)pdβ = 0.

Rearranging terms we get a quadratic equation in w:

[βp(α(1−2α)pdβ−1−(1−α)(1−2α)2q)]w2+[αβ(αpdβ−1−(1−α)q−(1−2α)pdβ−1)]w

+ α[(1− α)r − αβdβ−1 − (1− α)pdβ] = 0.

Solving for this quadratic equation give us the optimal level of wager:

w∗ =
{
−αβ(αpdβ−1 − (1− α)q − (1− 2α)pdβ−1)

±
[
{αβ(αpdβ−1 − (1− α)q − (1− 2α)pdβ−1)}2 −

4α[(1− α)r − αβdβ−1 − (1− α)pdβ]

[βp(α(1− 2α)pdβ−1 − (1− α)(1− 2α)q)]
]1/2

}
/2

{
βp(α(1− 2α)pdβ−1 − (1− α)(1− 2α)q)

}
(16)

Equation (16) is the estimation equation for the parameters α and β, given the data
in the other variables. Notice that w appears in the right hand side of the equation
through (15). But the effects of w on d, q, and r are negligible since the disposable
income y and the sum of y and payout prizes Ri are much larger than w. Another
functional form, the kinked quadratic generating function

γ(z) =

{
z + α(z − 1) + β(z − 1)2, z ≥ 1
z, z < 1

was attempted in addition to (8) but the analysis yielded no explicit solution for w.
The output of services provided by Lotto 6/49 is equal to the difference between

utility level with the lotteries and utility without lottery using (14), ie,

Qt = u(wt)− u(0) (17)

12
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Figure 2: Monthly Sales of Lotto 6/49, 11/97 to 11/01

where wt is the observed wager in period t. An implicit price level can also be obtain
as

P t = wt/Qt (18)

The resulting price index is an implicit cost-of-living index and can be included as a
subindex in the CPI.

4 Estimating the Output of Government Lotteries

4.1 Data

Data on the winning numbers, payout prizes, and sales volume provided by Lottery
Canada are available from November 11, 1997 to November 3, 2001 for Lotto 6/49,
a total of 419 draws. Monthly data on the CPI and annual data on the number
of households, personal disposable income, and participation rates in government
lotteries are available from Statistics Canada. The sales volume of each draw is
divided by the number of participating households, which gives the average wager per
participating household, wt. The average personal disposable income per household,
adjusted by the CPI, is used as a proxy for yt.

Figure 2 depicts the number of ticket sales for the sample period. We see that
there is a downward trend in sales, reflecting the switch from government lotteries to
other games like VLTs and casinos. Table 2 summarizes the average sales, number
of winners and the payouts prizes of the observed draws. The biggest jackpot during

13



Table 2: Descriptive Statistics of Canadian Lotto 6/49, 11/11/1997 to 3/11/2001
Sales Jackpot Second Third Fourth Fifth

Average No. of Winners 16,717,385 1.12 7.13 299 16036 292604
Expected No. of Winners 1.20 7.17 308 16199 293287
Prize (dollar) 3,249,108 133,903 1,976 68 10

the sample period was $15 million, won by a single ticket on September 30, 2000.
In Table 2 we also calculate the expected average number of winners using the
probabilities in Table 1. We see that in each prize the observed average number of
winners is slightly smaller than the expected number. One possible explanation of the
difference is that some players pay more than one dollar for the same numbers, which
often happens in lottery pools. Of the 419 draws, 151 end up with a rollover, which
is 36%. Given that the expected number of jackpot winners is 1.2 on the average,
this rollover percentage seems high. In fact this agrees with previous observations in
Canada (Ziemba (1986), Stern and Cover (1989)), the U.S. (Chernoff (1981)), and in
the U.K. (Walker (1998), Simon (1999)) that people have ‘conscious selection’ (Cook
and Clotfelter (1993)), that is, some numbers are on the average more popular than
the others.14 For example, the six most popular numbers of Lotto 6/49 in Canada
are 3, 5, 6, 9, 12, and 13 in 1986. One possible reason is that a lot of people use their
birthdays as their choices. Therefore numbers starting from 32 onward are among
the most unpopular numbers.

A lot of attention is concentrated on the jackpot prizes, particularly when there
are rollovers and the pool fund becomes very big. Figure 3, however, shows that the
average expected value is highest for the smallest prize. In the figure, EV1 to EV5 are
the products of the payout prized and their respective probability of winning from
March 4 to June 17, 1998. EV5 is constant because the payout is fixed at $10. EV2 is
higher than EV5 only in one draw, and EV1 is higher than EV5 in several occasions.
The fifth prize has a high expected value because of the relatively high probability
of winning. The pleasure and thrill from buying a lottery ticket, nevertheless, comes
from big jackpot, which has a extremely low probability of winning. This is why
a non-linear expected utility theory is needed to capture the risk-loving side of the
consumers.

4.2 Estimation and Results

The parameters α and β in (16) are estimated by a non-linear regression equation
using the maximum likelihood method. Theoretically, demand depends on the ex-
pected values of the payout prizes R1, . . . , R4, which in turn depend on the sales
volume. The actual payout prizes, however, are used in the estimation. Following
Walker (1998, p. 371), we invoke the rational expectations assumption, which implies

14For a general discussion see also Haigh (1997).
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Figure 4: Sales and Expected Values of Lotto 6/49

that consumers do not make systematic mistakes in forecasting the sales. Figure 4
is a scatter plot of the sales volume against the ex post expected value of a ticket.
It clearly shows the positive relation between the two. The estimated values of α
and β are 0.10458 and -31.986, with standard errors equal to 0.003165 and 5.9527
respectively, which implies t-ratios of 33 and −5.4. The estimated values satisfy the
constraints 0 < α < 1/2, β < 1, β 6= 0 in (8). These estimated values are then used
to calculate the money metric utility u(wt) and the output level Qt of the lottery
using (14) and (17) respectively for each draw. Outputs are aggregated into monthly
results before the implicit price P t is calculated using (18). A fixed base price index
is then calculated using the price level of November 1997 as the base. Figure 5 and
6 show the monthly price index and output of the Lotto 6/49 using this procedure.
In Figure 6 the factor cost (13.3% of sales revenue) is also included for comparison.
Notice that the estimated output using the economic approach is much higher than
the official GDP at factor cost but the former has a steeper downward trend. The
average monthly output using the economic approach is $57.7 million, compared to
the official total cost approach of $19.4 million.

We also estimate the elasticity of demand for the lottery using a simple log-linear
model:

log Q = log P + log y + T

where T is a trend variable, which is included to capture change in taste over time.
The resulting price elasticity of demand is -0.672 with a standard error of 0.017.
This result is comparable to the values of -0.66 estimated by Forrest et al (2001),
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Figure 6: Output of Lotto 6/49
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who use a two-stage OLS estimation with the difference between the ticket price
and the expected value as the effective price of lottery. Using a similar approach,
Gully and Scott (1993) estimated the price elasticities of four state-operated lottos
in the U.S., with results ranging from -0.40 to -2.5. Farrell and Walker (1999) used
cross-sectional data to study the demand for lottery in the U.K. using the Heckman
selection model. Their estimated price elasticity was -0.763. Also, Beenstock and
Haitovsky (2001) study the demand for lotto in Israel using time series data, with
the estimated long-run price elasticity equal to -0.65. It is surprising that these
results, although differing in methods, nature of data, and countries, show very close
estimates of price elasticities of demand.

5 Conclusion

The classical expected utility hypothesis fails to capture a consumer’s risk averse
behaviour in facing big losses with small probabilities and the risk loving behaviour
involving large gain with small probability. New non-expected utility theories have
been developed to overcome the difficulty. In this paper we have applied the implicit
expected utility theory to the problem of measuring outputs of lotteries. The results
show that output levels of Lotto 6/49 in Canada is almost three times higher than the
official statistics, which uses the total cost of providing the service approach as output
measurement principle. This kind of direct economic approach is recommended
by SNA93 for government and non-profit organization output measurement. The
method developed here can be potentially applied to other games of chance.15 The
estimated price elasticity of demand for lottery in Canada is close to that of the U.K.
and Israel in previous studies.
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