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1 Introduction

Between August and November 1997, forest fires engulfed large parts of Indonesia, destroying

over 12 million acres. Most of the fires, which were concentrated on the islands of Sumatra

and Borneo (Kalimantan), were started intentionally by logging companies and palm oil

producers clearing land to plant new crop.1 Because of the dry, windy conditions caused

by El Niño, the fires burned out of control and spread rapidly. In November, rains finally

doused the fires.

While the fires were burning, much of Indonesia was blanketed in smoke. This paper

examines fetal, infant, and child mortality caused by the episode of poor air quality (specif-

ically, high levels of particulate matter). Daily satellite measurements of airborne smoke at

locations across Indonesia provide information on the spatial and temporal patterns of the

pollution. The outcome is fetal, infant, and child mortality before age 3—hereafter called

early-life mortality—and is inferred from “missing children” in the 2000 Census, overcoming

the lack of mortality records for Indonesia and the small samples in surveys with mortality

data.

The paper finds that higher levels of pollution caused a substantial decline in the size

of the surviving cohort, and that exposure to pollution during the last trimester in utero

was the most damaging. The fire-induced increase in air pollution is associated with a 1.2%

decrease in cohort size. This estimate is the average across Indonesia for the five birth-month

cohorts with high third-trimester exposure to pollution; it implies that 15,600 child, infant

and fetal deaths are attributable to the fires. Indonesia’s under–3 mortality rate during this

period was about 6%; if the estimate is driven mainly by child and infant deaths (rather

than fetal deaths), this represents a 20% increase in under-3 mortality.

The paper also finds a striking difference in the mortality effects of pollution between

richer and poorer places. Pollution has twice the effect in districts with consumption below

the sample median compared to those above the median. There are a number of possible

1The Indonesian Minister of Forestry estimated that “[commercial] plantations caused some 80% of the
forest fires,” and that small farmers caused the remainder (Straits Times, September 3, 1997). Rabindran
(2001), using satellite data on land use, finds that the 1997 incidence of fires on plantations was higher than
the “natural” level (based on a benchmark from conservation areas), but the incidence of fires on small farms
was at its natural level.
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explanations for this finding. Individuals in poorer areas could be more susceptible to pollu-

tion because of lower baseline health, more limited options for avoiding the pollution, or less

access to medical care. Another possibility is that people exposed to indoor air pollution on

a daily basis suffered more acute health effects from the wildfires because they received a

double dose of pollution. Consistent with this view, the estimated effects are larger in areas

where more people cook with wood-burning stoves. Surprisingly, mother’s education does

not seem to play a role. While these correlations do not pin down causal relationships, they

provide some suggestive evidence on why the poor are especially vulnerable to the adverse

health effects of pollution and add to our understanding of the socioeconomic (SES) gradi-

ent in health (Marmot et al. 1991, Smith 1999). An open question in the literature is how

much of the health gradient is due to low-SES individuals being more likely to suffer adverse

health shocks and how much is due to a given health shock having worse consequences for

the poor (Case, Lubotsky, and Paxson 2002, Currie and Hyson 1999). This paper provides

some evidence for the second mechanism: People faced a common environmental-cum-health

shock, and the consequences were much worse for the poor.

This study examines an extreme episode of increased pollution, which has advantages

for empirical identification. In particular, the abruptness and magnitude of the pollution

are useful for identifying when in early life exposure to pollution is most harmful. In utero

exposure is found to be especially important, suggesting that targeting pregnant women

should be a priority of public health efforts concerning air pollution. The extreme level of

pollution, however, also means that one must be cautious about extrapolating the effect size

to more typical levels of pollution.

That being said, rampant wildfires are not uncommon in Indonesia and other countries,

mainly in Southeast Asia and Latin America, where fire is used to clear land. Most cost

estimates of the 1997 Indonesian fires have focused on destroyed timber, reduced worker

productivity, lost tourism, and the like and are in the range of $2 to 3 billion (Tacconi 2003).

This study shows that the health costs of the fires are likely much larger: Assuming a value

of a statistical life of $1 million, the early-life mortality costs alone were over $15 billion.2

2This value of a statistical life (VLS) is calculated by using $5 million in 1996 dollars as the value in
the U.S. from Viscusi and Aldy (2003), Murphy and Topel (2006), and the U.S. Environmental Protection
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This excludes health costs among survivors, which may also have been sizeable.3 The costs

of the fires very likely overwhelm the benefits to firms from setting them; the annual revenue

from Indonesia’s timber and palm oil industries at this time was less than $7 billion.

The remainder of the paper is organized as follows. Section 2 provides background on

the link between pollution and health and on the Indonesian fires. Section 3 describes the

data and empirical strategy. Section 4 presents the results, and section 5 concludes.

2 Background

2.1 Link between air pollution and early-life mortality

Related literature

Recent work on air quality and infant mortality includes that by Chay and Greenstone

(2003b) who use geographic variation across the United States in the extent to which the

1980–81 recession lowered pollution. They find that better air quality reduced infant deaths.

Chay and Greenstone (2003a) also find that air pollution abatement after passage of the

Clean Air Act of 1970 led to a decline in infant deaths.4 Currie and Neidell (2005) use within-

zipcode variation in California over the 1990’s and find that exposure to carbon monoxide

and other air pollutants during the month of birth is associated with infant mortality.5

In addition, there have been studies on the adult health effects of Indonesia’s 1997 fires.

Emmanuel (2000) finds no increase in mortality but an increase in respiratory-related hospi-

talizations in nearby Singapore. Sastry (2002) finds increased mortality for older adults on

the day after a high-pollution day in Malaysia. Frankenberg, McKee, and Thomas (2004)

compare adult health outcomes in 1993 and 1997 for areas in Indonesia with high versus low

exposure to the 1997 smoke. They find that pollution reduced people’s ability to perform

Agency (2000), and applying an income elasticity of a VSL of 0.6 from Viscusi and Aldy (2003) and the fact
that Indonesia’s per capita gross domestic product was one tenth of the U.S’s.

3Recent work suggests that the health costs could include long-term consequences among surviving fetuses
(Barker 1990, Almond 2006).

4Other natural experiments used to measure health effects of air pollution include the temporary closure
of a steel mill in Utah during a labor dispute; the reduction in traffic during the 1996 Olympics in Atlanta;
and involuntary relocation of military families (Pope et al. 1992, Friedman et al. 2001, Lleras-Muney 2005).

5For research on pollution and infant mortality outside the U.S., see for example Bobak and Leon (1992)
on the Czech Republic, Loomis et al. (1999) on Mexico, and Her Majesty’s Public Health Service (1954) on
the 1952 London “killer fog” (smog) episode.
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strenuous tasks and other measures of health. The data set used by Frankenberg, McKee,

and Thomas (2004) covers only 321 of the 4000 subdistricts in Indonesia, and only one of

Kalimantan’s four provinces is in their sample. Thus, one advantage of this paper is its

broader geographic coverage, which allows one to explore heterogeneous effects across house-

holds and nonlinearities in the health impact of pollution, for example. The most important

advance of this paper over previous work is its use of both the sharp timing and extensive

regional variation of the pollution; one can then identify causal effects while allowing for

considerable unobserved heterogeneity across time and place.

Physiological effects of pollution

Smoke from burning wood and vegetation, or biomass smoke, consists of very fine particles

(organic compounds and elemental carbon) suspended in gas. Fine particles less than 10

microns (µm) and especially less than 2.5 µm in diameter are considered the most harmful

to health because they are small enough to be inhaled and transported deep into the lungs.

For biomass smoke, the modal size of particles is between 0.2 and 0.4 µm, and 80 to 95% of

particles are smaller than 2.5 µm (Hueglin et al. 1997).

There are several pathways through which prenatal and postnatal exposure to air pollu-

tion could affect fetal or infant health. Postnatal exposure can contribute to acute respiratory

infection, a leading cause of infant death. In utero exposure is hypothesized to affect fetal

development, first, because pollution inhaled by the mother and absorbed into her blood-

stream interferes with her health which in turn disrupts fetal nutrition and oxygen flow, and,

second, because toxicants cross the placenta. Several studies find a link between air pollution

and fetal growth retardation or shorter gestation period, both of which are associated with

low birthweight (Dejmek et al. 1999, Wang et al. 1997, Berkowitz et al. 2003).

There is also evidence on the biological mechanisms behind these pregnancy outcomes.

The main toxicant in biomass smoke and other sources of particulate matter is polycyclic

aromatic hydrocarbons (PAH). In utero exposure to particulate matter has been associated

with a greater prevalence of PAH-DNA adducts on the placenta, and PAH-DNA adducts, in

turn, are correlated with low birth weight, small head circumference, preterm delivery, and
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fetal deaths (Perera et al. 1998, Topinka et al. 1997, Huel et al. 1993, Hatch et al. 1990).

Laboratory experiments on rats have confirmed most of these effects (Ridgon and Rennels

1964, MacKenzie and Angevine 1981). PAHs disrupt central nervous system activity of the

fetus, and during critical growth periods such as the third trimester, the disruption has a

pronounced effect on fetal growth. PAHs are also hypothesized to reduce nutrient flow to the

fetus by suppressing estrogenic and endocrine activity and by binding to placental growth

factor receptors (Perera et al. 1999). In utero exposure to PAHs has been linked to increased

risk of infant leukemia as well (Alexander et al. 2001).

2.2 Description of the Indonesian fires

The 1997 dry season in Indonesia was particularly dry. Figure 1 compares the monthly

rainfall recorded at a meteorological station in South Sumatra for 1997 and previous years.

The 1997 dry season was both severe and prolonged: rainfall amounts in June, July, August,

and September were lower than usual, and the rainy season was delayed until November.

The rest of Indonesia experienced similar rainfall patterns as Sumatra.

Fires are commonly used in Indonesia to clear land for cultivation, and the dry season is

considered an opportune time to set fires because the vegetation burns quickly. Industrial

farmers burn forest land in order to replant it with palm or timber trees, and small farmers

use swiddening or “slash–and–burn” techniques in which land is cleared with fire to ready

it for cultivation. In addition, logging companies are thought to have set some virgin forests

on fire in order to degrade the land so that the government would designate the land as

available for logging.

With expansion of the timber and palm oil industries in Indonesia, many tracts of forest-

land have become commercially developed, and logged-over land is more prone to fires than

pristine forest.6 Roads running through forests act as conduits for fire to spread, and with

the canopy gone, the ground cover becomes drier and more combustible and wind speeds

are higher. In addition, because logging firms were taxed on the volume of wood products

6In 1996 forest products accounted for 10% of Indonesia’s gross domestic product, and Indonesia supplied
about 30% of the world palm oil market (Ross 2001).
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that left the forest, they often left behind waste wood, even though it had economic value

as fertilizer or wood chips. The left-behind debris wood made the forest more susceptible to

fast-spreading fires (Barber and Schweithhelm 2000).

In September 1997, because of the dry conditions, the fires spread out of control. The

Indonesian government made some attempt to fight the fires, but the efforts were ineffective.

The fires continued until the rains arrived in November. In southeastern Kalimantan but

not the rest of Indonesia, fires started anew in March 1998 after the rainy season ended.

The fires were concentrated on the island of Sumatra and in Kalimantan. Estimates are

that up to 12 million acres burned, 8 million acres in Kalimantan (12% of its land area) and 4

million in Sumatra (4% of its area). The practice of clearing land with fire is used throughout

Indonesia, and El Niño affected all of Indonesia. What set Sumatra and Kalimantan apart

is that Indonesia’s forests are mainly in these areas. The majority of crop plantations are

located in Sumatra, and plantations are a fast-growing use of land in Kalimantan. Timber

operations are also primarily in these regions.

The location of the smoke generally tracked the location of the fires, though because of

wind patterns, not entirely. Figure 2 shows satellite images of the pollution over Indonesia

between September and November. Fires were concentrated on the southern parts of Sumatra

and Kalimantan, and these two areas experienced the most pollution. On the other hand, the

northern half of Sumatra was strongly affected by smoke while Java was relatively unaffected,

yet neither of these areas experienced many fires.

A common measure of particulate matter is PM10, the concentration of particles less than

10 µm in diameter. The U.S. Environmental Protection Agency has set a PM10 standard of

150 micrograms per cubic meter (µg/m3) as the 24-hour average that should not be exceeded

in a location more than once a year. During the 1997 fires, the pollution in the hardest

hit areas surpassed 1000 µg/m3 on several days and exceeded 150 µg/m3 for long periods

(Ostermann and Brauer 2001, Heil and Goldmammer 2001). The levels of pollution caused

by the wildfires are comparable to levels caused by indoor use of wood-burning stoves. The

daily average PM10 level from wood-burning stoves, which varies depending on the dwelling

and duration of use, ranges from 200 to 5000 µg/m3 (Ezzati and Kammen 2002).
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3 Empirical Strategy and Data

3.1 Empirical model and outcome variable

The goal of the empirical analysis is to measure the effect that air pollution from the wildfires

had an on early-life mortality. Ideally, there would be data on all pregnancies indicating

which ended in fetal, infant, or child death, and the following equation would be estimated:

Survivejt =β1Smokejt + δt + αj + εjt. (3.1)

The variable Survivejt is the probability that fetuses whose due date is month t and whose

mothers reside at the time of the fires in subdistrict j survive to a certain point, such as live

birth, one year, etc. The prediction is that β1 is negative, or that exposure to smoke around

the time of birth reduces the probability of survival.

In practice, mortality records are unavailable for Indonesia, and survey data are not

feasible for the analysis because the samples are too small to examine month-to-month

fluctuations or geographic variation in pollution. For example, the 2002 Demographic and

Health Survey has on average 1 birth and 0.05 recorded child deaths per district-month for

the affected cohorts.7

Thus, the approach I take is to infer early-life mortality by measuring “missing children.”8

The outcome measure is the cohort size for a subdistrict-month calculated from the complete

2000 Census of Population for Indonesia. The estimating equation is

ln(CohortSize)jt =β1Smokejt + β2PrenatalSmokejt + (3.2)

β3PostnatalSmokejt + δt + αj + εjt.

The dependent variable, ln(CohortSize)jt, is the natural logarithm of the number of people

born in month t who are alive and residing in subdistrict j at the time of the 2000 Census.

Smokejt is the pollution level in the month of birth, and the variables PrenatalSmokejt

7The appendix verifies that for more aggregated area-time cells, population counts from the Census move
one-for-one with births and deaths in survey data.

8The literature on “missing women” in developing countries, most often associated with Sen (1992), uses
population sex ratios to infer excess female mortality caused by gender discrimination.
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and PostnatalSmokejt are included to explore the different timing of exposure, as discussed

below. Each observation is weighted by the subdistrict’s population (the number of people

enumerated in the Census who were born in the year prior to the sample period).

The main advantage of inferring deaths by counting survivors is that the data are for the

entire population instead of a sample. Also, the outcome variable measures fetal deaths in

addition to infant and child deaths, albeit without distinguishing between the two outcomes;

most surveys do not collect data on fetal deaths. Finally, population counts may be better

measured than infant and child mortality because of underreporting of deaths and recall

error on dates of deaths.

There are several potential concerns about inferring mortality from survivors, however.

Since the data come from a cross-section of survivors in June 2000, the outcome represents

a different length of survival for individuals born at different times, and the mean level of

survival will differ by cohort, independent of the fires. For a cohort born in December 1997

around the time of the fires, the outcome is survival until age two and a half, while for an

older cohort born in December 1996, the outcome is survival until age three and a half,

for example.9 The inclusion of birthyear-birthmonth (hereafter, month) fixed effects in the

regression will control for any average differences in survival by cohort.

Also, in using ln(CohortSize) as a proxy for the early-life mortality rate, in order to

obtain unbiased estimates of the effect of pollution on early-life mortality, it must be the

case that conditional on subdistrict and month fixed effects, pollution is not correlated

with ln(Births). This seems like a reasonable assumption. First, by using a short panel,

subdistrict fixed effects absorb most variation in the number of women of childbearing age

and other determinants of fertility. Month effects control for fertility trends and seasonality.

Second, although not observing fertility will add noise to the estimates, it seems unlikely

that there were large fluctuations in fertility that coincided with the air pollution both

spatially and temporally. Even area-specific trends could not explain the patterns since the

sample includes control periods both before and after the fires; any omitted fertility shift

causing bias would have to be a short-term downward or upward spike in particular regions.

9One advantage of observing survival more than two years after the due date is that for deaths that occur
around birth, the estimates are less likely to reflect simply short-term “harvesting.”
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Furthermore, section 4.2 directly tests whether demographic shifts could explain the results,

and fluctuations in predicted fertility do not seem to be a confounding factor.

Another concern is that if pollution affects the duration of pregnancies, then missing

children might result from the shifting of births from certain months to other months. For

example, if exposure to smoke induces preterm labor, then one would expect to see an excess

of births followed by a deficit of births. In section 4.2, I examine and am able to reject the

conjecture that the results are an artifact of changes in gestation period.

There are also potential empirical concerns not unique to using ln(CohortSize) as the

dependent variable. First, pollution might affect not only mortality but also fertility. This

would influence the population counts for the later “control” cohorts and could lead to sample

selection problems even if mortality were directly measured. In order that the control cohorts

are uncontaminated by fertility effects, I restrict the sample to births occurring no more than

eight months after the outbreak of the fires. The last individuals in the sample are those born

in May 1998. Second, an implicit assumption in the empirical model is that it is exposure

to pollution just before or after birth that affects mortality. The motivation for this model

are findings from previous research that exposure to air pollution near the time of birth has

significant health effects. However, exposure to pollution earlier in a pregnancy or later after

birth also could affect health. If the control cohorts are in fact also treated, though less

intensely, then the results would underestimate the true effects.

A third important concern arises from the fact that individuals are identified by their

subdistrict of residence in 2000 rather than the subdistrict where their mother resided during

the end of her pregnancy or just after giving birth. If families living in high-smoke areas with

children born around the time of the fires were more likely to leave the area (either during

or after the fires), then cohort size would be smaller in areas more affected by pollution.

Fortunately, one can directly examine this concern by analyzing data at the district level since

the Census collects the district of birth and the district of residence in 1995. As discussed in

section 4.2, the results are identical using birthplace, current location, or mother’s location

in 1995.

Table 1 presents the descriptive statistics for the sample. The sample comprises monthly
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observation between December 1996 and May 1998 (18 months) for 3751 subdistricts (ke-

camatan). Of this starting sample size of 67,518 observations, 64 observations are dropped

because the cohort size for the subdistrict-month is 0.10 There are on average 96 surviving

children per observation. The larger administrative units in Indonesia are districts (kabu-

paten), of which there are 324 in the sample, and provinces, of which there are 29.

3.2 Pollution variable

The measure of air pollution is the aerosol index from the Earth Probe Total Ozone Mapping

Spectrometer (TOMS), a satellite-based monitoring instrument. The aerosol index tracks

the amount of airborne smoke and dust and is calculated from the optical depth, or the

amount of light that microscopic airborne particles absorb or reflect. The TOMS index

has been found to quite closely track particulate levels measured by ground-based pollution

monitors (Hsu et al. 1999). Ground monitor data are not available for Indonesia for this

period. The aerosol index runs from -2 to 7, with positive values representing absorbing

aerosols (dust and smoke); for positive values, a higher index indicates more smoke.11

The TOMS data contain daily aerosol measures (which are constructed from observations

taken over three days) for points on a 1◦ latitude by 1.25◦ longitude grid. Adjacent grid points

are approximately 175 kilometers (km) apart. The probe began collecting data in mid-1996,

and the data I use begin in September 1996. For each subdistrict, I calculate an interpolated

daily pollution measure that combines data from all TOMS grid points within a 100-km

radius of the geographic center of the subdistrict, weighted by the inverse distance between

the subdistrict and the grid point. The number of TOMS grid points that fall within the

catchment area of a subdistrict ranges from 1 and 6 and is on average 4. The mean distance

between a subdistrict’s center and the nearest grid point is 50 km. The monthly measure is

10The Census covers 3962 subdistricts which make up 336 districts. For subdistricts dropped from the
sample, either the latitude and longitude could not be determined or there were no enumerated children for
more than 15% of the monthly observations due to missing data or very small subdistrict size. In addition,
I drop four districts that make up Madura since the East Javanese island received a large influx of return
migrants in 1999 (in response to ethnic violence against them in Kalimantan), and also Aceh province where
separatist violence is thought to have affected the quality of the Census enumeration. The results are robust
to dropping Irian Jaya, another area where unrest could have affected data quality.

11Negative values represent non-absorbing particulates such as sulfates.
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calculated as the median of the daily values, and I also consider the mean of the daily values

and the number of days that exceed a threshold value of 0.75.

Whereas there are over 3700 subdistricts in the data, there are only 226 unique pollution

grid points used. Interpolation adds spatial variation at a finer grain, but uncorrected

standard errors would nevertheless overestimate how much independent variation there is

in the pollution measure. Moreover, in addition to the non-independence of the pollution

variable that arises from interpolation, the actual pollution level is spatially correlated.

Therefore I allow for clustering of errors among observations within an island group by

month. There are ten island groups in the sample (Sumatra, Java, Sulawesi, Kalimantan,

Bali, West Nusa Tenggara, East Nusa Tenggara, Irian Jaya, Maluku, North Maluku).12

The estimating equation (3.2) includes pollution in the month of birth (Smokejt) as well

as lags of Smokejt which measure exposure to pollution in utero, and leads which measure

exposure after birth. Note that Smokejt measures both prenatal and postnatal exposure,

with the balance depending on when in the calendar month an individual is born (the Census

did not collect the specific date of birth, only the month). It becomes difficult to separately

identify each lag and lead with precision, so the main specification uses an average of the

pollution level for the three months before the birth month (PrenatalSmokejt) and after

the birth month (PostnatalSmokejt). The population-weighted mean values of Smoke,

PrenatalSmoke, and PostnatalSmoke are 0.09, 0.10, and 0.07, as shown in Table 1. On

average, the pollution index exceeds 0.75 on 5% of days.

During the months of the fires, August to October 1997, the mean aerosol index for

Indonesia was 0.58. For the same months in 1996, the mean was 0.05. Similarly, the mean of

PrenatalSmoke was 0.34 for the most affected cohorts (births in September 1997 to January

1998) while during the same months a year earlier, the mean was 0.04. These gaps are helpful

when interpreting the magnitudes of the regression coefficients and quantifying the impact

of the fires.

The intensity of smoke also varied across Indonesia. Figure 3a shows the coefficients on

12The standard errors are almost identical if the standard errors are clustered on island, suggesting that
serial correlation is not a major concern. Using only 10 clusters is not advisable since “the cluster approach
may be quite unreliable except in the case where there are many groups,” (Donald and Lang 2007, p. 229).
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island-specific month fixed effects for Kalimantan and Sumatra, which were the hardest hit

regions. The pollution was most severe during August to October 1997, both for Indone-

sia as a whole and in relative terms for Kalimantan and Sumatra, as shown. Kalimantan

experienced another episode of smoke in early 1998 after the rainy season ended.

Figure 3b plots the corresponding island-specific month effects with log cohort size as the

outcome variable. Intuitively, the identification strategy is to test whether in the areas most

affected by the pollution, the size of cohorts that were born around the time of the pollution

is abnormally low. The regression analysis uses not only this between-island variation but

also within-island variation. Even using just this coarse variation, one can see in the point

estimates the decline in cohort size for the affected island-months.

3.3 Other variables

Several other variables are used in the analysis either as controls or to examine differential

effects of pollution, i.e., as interaction terms. First, I construct a measure of the financial

crisis that hit Indonesia in late 1997. Cross-sectional variation in the crisis is measured as the

1996 to 1999 ratio of the median log food consumption per capita in a district. The variable

is constructed so that it is larger in areas hit harder by the crisis. The consumption data are

from the National Socioeconomic Survey (SUSENAS), a large household survey conducted

annually by the national statistics bureau. The survey is representative at the district rather

than subdistrict level, so data are aggregated to the district. The data appendix describes

in more detail how the consumption measure is constructed. The national consumer price

index for food is from the central bank and is used as a measure of temporal variation in the

crisis. The interaction of these two variables is the crisis measure.

The cross-sectional measure of consumption in 1996 is interacted with the pollution

variables to examine how the effects of pollution differ for richer and poorer areas. Measures

of the health care system, such as the number of doctors and maternity clinics per capita,

as well as the type of fuel people cook with are also used. These variables are from the 1996

Village Potential Statistics (PODES), a census of community characteristics. The PODES

has an observation for each of over 66,000 localities which I aggregate to the subdistrict level.
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In the analyses that use data from the PODES or SUSENAS, the sample size is 63,158 since

some Census subdistricts could not be matched to the surveys.

To measure the extent of fires (as opposed to pollution) in an area, daily data on the

location of “hot spots” are used. The data are from the European Space Agency which

analyzed satellite measurements of thermal infrared radiation to locate fires. In addition, to

control for rainfall I use monthly rainfall totals from the Terrestrial Air Temperature and

Precipitation data set and match each subdistrict to the nearest node on the rainfall data

set’s 0.5◦ latitude by 0.5◦ longitude grid. Finally, I use additional variables from the Census

including mother’s education and whether a locality is rural or urban.

4 Results

4.1 Relationship between exposure to smoke and mortality

Table 2, column 1, presents the relationship between cohort size and exposure to smoke. The

independent variables are Smoke, which is pollution in the month of birth, PrenatalSmoke

which is pollution in the three months before birth, and PostnatalSmoke which is pollution

in the three months after birth. The results suggest that prenatal exposure to pollution

decreases the survival rate of children. PrenatalSmoke has a coefficient of -0.035 that is

statistically significant at the 1% level. The coefficient for Smoke is very close to 0, while the

coefficient for PostnatalSmoke is -0.014 though statistically insignificant. Standard errors

are clustered within an island-month.13 In column 2, when PrenatalSmoke is the only

variable in the regression (besides fixed effects), the coefficient is similar to that in column

1.14

The regressions are weighted by population, but as a specification check, the unweighted

regression is shown in column 3. The results are similar, with coefficients and standard errors

that are larger in magnitude. The larger standard errors suggest that, given heteroskedas-

13The standard error is 0.014 if one clusters on island instead of island-month.
14See Table A1 in the appendix for an instrumental variable estimate of the effect of PrenatalSmoke on

cohort size. The instrument for PrenatalSmoke is a dummy for Kalimantan or Sumatra interacted with a
dummy for September 1997 to January 1998. This difference-in-differences estimate, which uses only coarse
variation in pollution attributable to the fires, is -0.037.
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ticity, weighting by population improves efficiency. The other rationale for weighting is that

the dependent variable measures proportional rather than absolute changes in cohort size.

Columns 4 and 5 consider alternative monthly pollution measures, first, the mean rather

than median of the daily pollution values and, second, the proportion of days with high

pollution (aerosol index above 0.75). Mean pollution gives nearly identical results as the

median value, with postnatal exposure now having a negative impact on cohort size that is

marginally significant. For the proportion of days with high pollution, the point estimate

implies that when there are 3 additional high-smoke days in a month (an increase of 10

percentage points), cohort size decreases by 0.85%.

Exposure to pollution in utero is associated with a decrease in fetal, infant, and child

survival. To assess the aggregate magnitude of the effect, note that PrenatalSmoke was

higher by 0.30 during September 1997 to January 1998 compared to the same calendar

months a year earlier; this five-month period are the cohorts for whom PrenatalSmoke

includes a month during the fires. Multiplying that gap by the coefficient of -0.035 implies

that the fires led to a 1.1% decrease in cohort size. A more precise way to estimate the total

effect is to use the coefficient for PrenatalSmoke and calculate what the population would

have been for each subdistrict if during the period during and immediately after the fires,

PrenatalSmoke had taken on its value from 12 months earlier. Aggregated over the five

months for the 3751 subdistricts, this calculation similarly implies a population decline of

1.2%, or 15,600 missing children.15 Indonesia’s baseline under-3 mortality rate was roughly

60 per 1000 live births at this time.16 If the effect of pollution was due exclusively to infant

and child deaths, the estimates would represent a 20% effect; if half of the effect was due to

fetal deaths, the coefficient would imply an 10% effect on infant and child mortality.

The welfare implications of pollution-induced mortality depend on the counterfactual of

how long individuals otherwise would have lived. About 1% of children in Indonesia who

survive until age 3 die by age 5. Thus, if one wanted to attribute the 1.2% effect of the fires

15The estimates using high-smoke days imply a 1.0% aggregate effect. (The mean of the prenatal high-
smoke variable is 0.131 during the 1997-8 episode and 0.006 for the same calendar months a year earlier, and
the coefficient in Table 2, column 4, is -0.085.)

16The government estimates of under-1 and under-5 mortality rates at this time are 5% and 7%, respec-
tively. I assume that half of deaths between age 1 and 5 occur before age 3.
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to “harvesting,” all deaths between age 3 and 5 would have to have been pushed forward to

the time of the fires. Moreover, by most standards, the shortening of children’s lives by even

a few years is a significant welfare loss.

Figure 4 shows the nonparametric relationship between third-trimester exposure and

cohort size. The effect of pollution is linear for the most part. There appears to be a

somewhat steeper relationship at high levels of pollution, but the data are sparse in this

region. The nonlinearities are statistically insignificant when estimated parametrically with

a spline or quadratic term.

The next regressions use the pollution level in each of the three months preceding and

following birth, rather than aggregated for a quarter. Table 2, column 6, reports the re-

sults using the median pollution level. For prenatal exposure (lags of Smoke), the effect is

strongest two months before the month of birth. For postnatal exposure (leads of Smoke),

the effect is strongest immediately after birth, though the estimates are imprecise. The next

two columns repeat the exercise using the month’s mean pollution and the proportion of

days that have high pollution. The general pattern of the point estimates for postnatal

pollution remains the same, but the pattern for prenatal exposure is a bit different. For

the mean pollution level or number of high-smoke days (columns 7 and 8), exposure in the

month immediately before the month of birth now has the strongest negative relationship

with cohort size. One interpretation is that at different points during gestation, fetuses are

more vulnerable to sustained exposure to pollution versus extreme levels of pollution. A

more likely interpretation is that there is not enough precision to determine at this level of

detail how the timing of exposure affects survival.17 Thus, for the rest of the analysis, I focus

on the three-month measures of prenatal and postnatal exposure. The results are similar

using two-month measures.

17The month-by-month patterns, unlike the results with the three-month measures, are somewhat sensitive
to using a different sample period or a different threshold for high-smoke days, for example.
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4.2 Effect of smoke on mortality versus alternative hypotheses

The results in Table 2 suggest that exposure to smoke in utero causes early-life mortality.

This section considers other possible explanations for the results.

Migration

The Census identifies respondents by their subdistrict of current residence, but exposure to

pollution depends on where the family resided during the fires. Migration could be a reason

that cohorts with the highest prenatal exposure to pollution are smaller. Women who were in

the third trimester of pregnancy during the fires could have been especially likely to migrate

away from affected areas, either while pregnant or after giving birth. Fortunately, the Census

collects information on the district (though not subdistrict) where an individual was born

and where he or she lived five years earlier that enables one to probe this concern.18

To examine the extent of pollution-induced migration that occurs after birth, I repeat

the main analysis by district of birth. Cohort size is aggregated to the district level, and the

pollution measure for the district is a population-weighted average of the subdistrict measure.

The regression is weighted by the district population in the year preceding the sample period.

For comparison, column 1 of Table 3 presents results by district of residence, and column 2

presents results by district of birth. The results are nearly identical to each other, as well as

to the subdistrict-level analysis, in terms of both point estimates and precision. Between-

district migration after the birth of the infant is not the likely explanation for the relationship

between pollution and cohort size.

This finding does not rule out pollution-induced migration that takes place before the

infant is born. If some women spent most of their third trimester of pregnancy in the hardest-

hit areas but migrated away before giving birth, then neither place of residence in 2000 nor

place of birth would accurately reflect the fetus’s location during the fires. While the Census

did not ask respondents where they resided in August to October 1997, it did ask where

they lived in 1995. As long as people do not migrate across districts repeatedly, this measure

should be a good proxy for where pollution-induced migrants lived at the time of the fires.

18For 9% of the sample, district of residence differs from district of birth, for 7% it differs from mother’s
residence five years earlier, and for 12% it differs from one or the other.
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To test for migration that occurs before birth, I match infants to their mothers as described

in the data appendix and repeat the estimate by the district where the mother resided in

1995. The results, shown in column 3, are unchanged from the earlier estimates. In sum,

migration, either before or after birth, cannot easily account for the negative relationship

between exposure to pollution and cohort size.19

Fertility

The empirical approach interprets decreases in ln(CohortSize) as increases in early-life

deaths, but there would also be fewer survivors if the number of births decreased. It seems

unlikely that conceptions declined nine months before the fires with a spatial pattern match-

ing the pollution, but this omitted variable concern also can be tested more directly by

constructing a measure of predicted births. First, I measure the percentage of women of

each age who give birth, using a time period not in the sample (namely, the youngest co-

horts in the Census, those born in 1999 and 2000). I then apply these birth rates to the

demographic composition of each district-month in the sample. This gives a predicted num-

ber of births based on demographic shifts. (See the data appendix for further details.) Table

4, column 1, shows the results when ln(PredictedBirths) is included as a control variable.

The coefficient of survivors on births is predicted to be slightly less than 1. Because the mea-

sure is noisy especially after conditioning on subdistrict and month indicators, the estimate

is likely to suffer from attenuation bias. The estimated coefficient on predicted births is less

than but statistically indistinguishable from 1. More importantly, the coefficients on the pol-

lution variables are essentially unchanged with this control variable included. Fluctuations

in fertility, at least those caused by demographic shifts, do not appear to be a confounding

factor in the analysis.20

19Within-district migration is unlikely to be driving the results since there is very little within-district
variation in pollution, and most of it derives from interpolation so is noisy. In a model with district-month
fixed effects, the coefficient for PrenatalSmoke is -0.013, smaller than in the main specification (Table 2,
column 1), and imprecise, suggesting that between-district variation is dominant in the main estimates.

20Table A2 addresses another potential concern about fertility, namely that the seasonality of births or
deaths could differ for areas more affected by the pollution, generating a spurious result. As shown in
columns 4 and 5, the results are robust to restricting the sample to the months with high PrenatalSmoke
plus the same calendar months one year earlier.
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Preterm births

Another concern is that the missing children are not deaths but instead reflect changes in the

duration of pregnancies. In particular, exposure to pollution may have induced preterm deliv-

ery which is often associated with traumatic pregnancies. The reason this mechanism could

conceivably generate the results is that it is prenatal exposure that has a strong negative

relationship with cohort size. Consider August 1997, the month the fires started. Pollution

levels were high in August but the value of PrenatalSmoke in August is low since there

was no significant smoke in May, June, or July. In September, in contrast, PrenatalSmoke

is high since it incorporates the pollution in August. If infants due in September were in-

stead born in August, then births would have shifted from a high-PrenatalSmoke month to

a low-PrenatalSmoke month, generating a negative relationship between PrenatalSmoke

and cohort size that is unrelated to mortality. To test the preterm-birth hypothesis, I repeat

the analysis excluding August 1997 from the sample. If the above hypothesis were correct,

the coefficient on PrenatalSmoke would become less negative (and the coefficient on Smoke

would become more negative) compared to the baseline results. As shown in Table 4, column

2, this does not occur. The coefficients are nearly identical between the full sample and the

subsample, contrary to what one would expect if the pollution had induced preterm births

but had not affected infant survival.21

According to the results of this test, the effect of pollution on cohort size is not due to

preterm births instead of being due to fetal and infant deaths. However, pollution may have

caused infant deaths precisely by inducing premature births (which put infants at greater

risk of death); that is, preterm delivery is potentially an important channel through which

exposure to pollution led to mortality.

Financial crisis

The Indonesian financial crisis began shortly after the 1997 fires, as shown in Figure 5, so

a concern is that the analysis is attributing to air pollution deaths that were caused by the

21Table A2 restricts or expands the sample to other time periods, and the results are robust to this change.
One noteworthy finding is that the estimated effect of PrenatalSmoke is smaller when the window extends
more than 8 months after the fires, suggesting that the fires may have reduced fertility.
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crisis. To test this alternative hypothesis, a measure of the financial crisis is added to the

model. No monthly subdistrict-specific data on the crisis were collected, to my knowledge, so

I construct a measure of the crisis by interacting a cross-sectional measure, the inverse ratio of

median income (consumption) at the height of the crisis in 1999 to median income before the

crisis in 1996, and a time-series measure, the consumer price index for food. The regression

results can be anticipated by noting that the cross-sectional correlation between the crisis

measure and pollution in September 1997 (peak of the fires) is 0.03; the spatial patterns

of the crisis are not similar to the spatial patterns of pollution. For regressions that use

variables from the SUSENAS or PODES surveys, a slightly smaller sample of subdistricts is

used due to data availability. Table 4, column 3, shows the regression results for the baseline

model without additional regressors and confirms that the subsample is similar to the full

sample, with a coefficient on PrenatalSmoke of -0.032. Column 4 shows the results when the

crisis variable contemporaneous to the month of birth is included as a control variable. The

estimated effect of PrenatalSmoke remains -0.032. The crisis measure has been normalized

to have a mean of zero and standard deviation of one for the sample, so the coefficient implies

that a one standard deviation increase in the crisis is associated with a 4.9% smaller cohort,

though the coefficient is statistically insignificant (and moreover could be due to migration

rather than mortality).22,23

Effect of pollution versus effect of fires or drought

Another interpretation of the results is that they represent reduced-form mortality effects of

the fires rather than effects of specifically air pollution from the fires. The regressor is the

pollution level, but the smoke affected places nearby the sites of fires, and the fires could

have caused mortality through income effects, degraded food supply, and other channels. To

separate the effect of pollution from other effects of the fires, I use data on where precisely

the fires occurred. I calculate the number of fire-days occurring in or near a subdistrict based

22Since the crisis accelerated a few months after the fires, I also estimated models that control for the
crisis measure for the three months following the month of birth. This generates more variation in the crisis
measure during the period of interest. The estimated effect of PrenatalSmoke remains unchanged.

23Rukumnuaykit (2003) finds a 3% increase in infant mortality in 1997-8 in the Indonesia Family Life
Survey, which is interpreted as due to the financial crisis, drought and smoke.
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on satellite data on “hot spot” locations and durations. Fire-days is the duration of each

fire summed over all fires within 50 km of the subdistrict center. First, I examine the effects

of pollution in areas that did not experience extensive fires. In essence, the identification

comes from fires in neighboring areas and which way the winds blew the pollution. In Table

4, column 5, the sample is restricted to subdistricts where fewer than 20 fire-days occurred

over the sample period, which eliminates 22% of subdistricts, predominantly in Kalimantan

and Sumatra.24 The coefficient on PrenatalSmoke on log cohort size remains -0.035 for

these areas which experienced only the pollution from the fires. Next, I include measures of

fire prevalence as regressors. The number of fire-days is a highly skewed variable, so I use

two indicator variables, one for whether there were any fire-days in the subdistrict-month

(sample mean of 0.16) and a second for whether there were intense fires, defined as at least

10 fire-days during the month (sample mean of 0.03). In column 6, the fires variable and

intense fires variable in the month of birth, averaged over the three months before birth

(prenatal exposure), and averaged over the three months after birth (postnatal exposure)

are included as regressors. The effect of PrenatalSmoke is -0.032, nearly identical to earlier

estimates, which supports the interpretation that air pollution is the cause of the increase in

early-life mortality. There is also some evidence that intense fires in the month of birth are

associated with a decrease in cohort size, suggesting that fires may have an additional effect

on survival (or migration) through channels besides pollution. The effect size is relatively

small. The intense fires variable is larger by 0.09 during the 1997 episode compared to a

year earlier, so the coefficient of -0.028 implies that intense fires are associated with a 0.25%

decrease in cohort size.

Another hypothesis is that the effects are due not to pollution but to drought. There was

below-normal rainfall throughout Indonesia in 1997, not just in areas affected by pollution,

so given that month fixed effects are included, drought seems unlikely to be driving the

results. One can test directly for the effects of drought conditions, and I do so in a way

that stacks the cards in favor of finding that drought is driving the results. Monthly rainfall

24Because of measurement error in the hotspot data, eliminating any subdistrict with at least 1 fire-day
would eliminate over two thirds of subdistricts, which is inconsistent with the actual geographic extent of
the fires. Fewer than 22% of subdistricts were probably affected, so the results shown are conservative. They
are similar if other thresholds are chosen.
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for the subdistrict is measured relative to the 1990–5 average for that calendar month, and

I construct the subdistrict-level mean for the months of June to November 1997, when the

drought occurred. The mean of this variable is 0.48. I then control for this measure of

rainfall interacted with an indicator for being in a birth cohort between September 1997

and January 1998. In other words, the drought is assumed to affect specifically the cohorts

that I find are harmed by the pollution. As shown in Table 4, column 7, the coefficients

for the pollution variables are largely unaffected when the rainfall variable is included as a

control. The coefficient for rainfall is statistically insignificant and quantitatively small. The

results are similar controlling for contemporaneous rainfall in the month or rainfall with a

one to nine-month lag. One particular concern is that drought might reduce fertility, but

the drought began only in June, and the affected cohorts were conceived by April. That

said, when rainfall nine months prior to birth is added as a control variable, again, rainfall

has a small and insignificant effect on cohort size, and the effect of prenatal pollution is

unchanged. The changes in cohort size do not seem to be due to rainfall shortages.25

4.3 Effects by gender and income

Gender

This section examines how the mortality effects of pollution vary across groups. I first test

whether there are differential effects for boys and girls. Table 5, column 1, reports results

for a model in which the number of surviving boys and girls are totaled separately, each

observation is a subdistrict-month-gender, and the three pollution variables are interacted

with a dummy for male. The coefficients are imprecise but follow an interesting pattern.

The male interaction terms are positive for contemporaneous and postnatal smoke, but

negative for prenatal smoke. The more negative effect for boys in utero (30% larger effect) is

consistent with findings in the literature that male fetuses are less physiologically robust than

female fetuses and have more delayed lung development (Hassold, Quillen, and Yamane 1983,

25Most of the variation in rainfall is absorbed by the month fixed effects. The results show that the residual
variation in rainfall cannot explain the “missing children,” but the findings should not be interpreted as
showing that rainfall has no effect on fertility or mortality. The 1997 drought may have had an Indonesia-
wide effect.
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Jakobovits 1991). The more negative effect for girls in the month of birth and after birth

could reflect physiological differences, but it is also consistent with gender discrimination. If

parents are more likely to take steps to minimize a newborn son’s exposure to pollution or to

seek medical treatment for his respiratory infection, for example, then one would expect the

effects of postnatal pollution to be stronger for girls. However, these interpretations should

be treated with caution since the gender differences are not statistically significant.

Income

The next estimates test whether the effects of pollution are more pronounced in poorer

places. This type of heterogeneity could arise if the poor effectively are exposed to more

pollution, for example because they spend more time outdoors doing strenuous work or are

less likely to have temporarily evacuated the area. It could also arise if the same amount of

effective pollution leads to bigger health effects for the poor, for example because they have

lower baseline health, making them more sensitive to pollution or have less access to health

care to treat the health problems caused by the pollution.

Column 2 of Table 5 uses food consumption as a proxy for income to examine this hy-

pothesis, interacting the pollution measures with a dummy variable for whether the district’s

median log consumption in 1996 is above the 50th percentile among all subdistricts. All three

of Smoke, PrenatalSmoke, and PostnatalSmoke are associated with smaller cohorts for

the bottom half of the consumption distribution, and the interaction terms for the top half

of the distribution are large and positive. The model estimated in column 2 appears to

be misspecified, however. The weighted average of the coefficients for the bottom and top

halves of the distribution would be more negative than the average effect found earlier. The

reason is that month effects vary significantly with income. As has been documented in the

demography literature, seasonality in fertility tends to be stronger and qualitatively different

in poorer areas (Lam and Miron 1991).

Thus, column 3 includes separate month fixed effects for the top and bottom halves of the

consumption distribution. The results are qualitatively similar to those in column 2. The

effect of prenatal exposure is large and negative when consumption is below the median.
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In these areas, postnatal exposure is also statistically significant, with an effect size about

60% that of prenatal exposure. Each of the interaction coefficients for districts with above

median consumption is positive, and in the case of PrenatalSmoke, significant at the 1%

level. The effect of a one unit change in PrenatalSmoke is -0.06 for the top half of the

distribution and -0.13, or over twice as large, for the bottom half. Average log consumption

is 0.4 log points larger in the top half of the distribution compared to the bottom half, so

another way to view the results is that when consumption increases by 50% (e0.4), the effect

size decreases by 50%.

The fact that seasonal patterns in cohort size differ by income suggests that including

separate month effects for the two halves of the consumption distribution might be the

preferred specification even for estimating the average effect. In addition, for the reasons

explained by Deaton (1995), given the heterogeneous effects the average effect should be

calculated by separately estimating the effect by consumption level and then averaging.

This amounts to averaging the coefficients in column 3, weighted by the population in each

half of the consumption distribution. As shown in column 4, the average effect for prenatal

smoke is then -0.090 and the coefficient for postnatal smoke is -0.035, both considerably

larger than seen earlier in Table 2.

Finally, I further break down the income distribution into quartiles (and include month-

quartile fixed effects). Column 5 shows the separate coefficients by quartile, estimated as

one regression. The point estimate on PrenatalSmoke becomes more negative moving from

higher to lower quartiles. The results are not very precise, though, and the PrenatalSmoke

coefficients for different quartiles are not statistically distinguishable from one another. The

coefficients for the other smoke variables are also imprecise, especially for the bottom two

quartiles, and the point estimates do not monotonically decline with consumption. Above-

versus below-median consumption, as opposed to a linear interaction term, is therefore used

below to parsimoniously characterize the heterogeneous effects by income.

23



Effects by urbanization, wood-stove use, health care, and mother’s education

There are several possible reasons for the income gradient in the effects of pollution, and this

subsection tests some hypotheses. The evidence presented here is merely suggestive since

the measures used could be correlated with omitted variables and since data are available to

test only a limited number of hypotheses.

One possibility is that urban areas experience smaller effects from the fires than rural

areas, and it is this fact that generates the heterogeneity by income. Urbanization would only

be a proximate cause, but one might think that in urban areas, housing stock is less permeable

to pollution, health care is better, there is less outdoor work, or there are more effective

public advisories urging people to stay indoors, for example. On the other hand, pollution

from the fires may have been particularly noxious in cities where it mixed with industrial

pollution from cars and factories. Column 1 of Table 6 interacts the pollution measures with

the proportion of the subdistrict population that lives in urban localities (based on those

born in the year before the sample period). Only the coefficients for PrenatalSmoke and

its interaction terms are reported, but Smoke, PostnatalSmoke and their interactions are

also included in the regressions. The effects of pollution do not vary by urbanization level,

suggesting that the offsetting effects described above may have canceled each other out. In

unreported results, when the sample is divided into infants born to mothers who work in

agriculture, work in other industries, or do not work, it does not appear that children whose

mothers work in agriculture experience larger effects.

Next I test whether the effects depend on the prevalence of wood-burning stoves. If the

health impact of pollution is convex in exposure, those who have daily exposure to indoor

air pollution could suffer more acutely from the wildfires. For each village or town, data are

available on whether the majority of people used wood or other biomass as their primary

cooking fuel in 1996. I construct for each subdistrict the population-weighted average of this

measure, which serves as a crude measure of the proportion of people in the subdistrict who

use wood as their cooking fuel. The mean of the variable is 0.64. As shown in column 2

of Table 6, wood fuel use is strongly associated with more negative effects from any given

level of exposure to the wildfire smoke. A 20 percentage point decrease in wood fuel use
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reduces the net effect of prenatal pollution by 0.03. By comparison, moving from the bottom

half to the top half of the consumption distribution (50% increase in consumption) reduces

the effect of prenatal pollution by 0.07. The obvious caveat to these results is that use of

wood-burning stoves could be proxying for an omitted variable.

I also examine whether the effects vary with the availability of health care in the area. A

good health care system could lead to improved baseline health of mother and child through

prenatal care and to better medical treatment of morbidities caused by the pollution, for

example. Table 6, columns 3 to 4, present the results when interactions of the pollution

measures with maternity clinics and doctors per capita are successively included. The per

capita measures, which are for 1996, have been normalized to be mean 0, standard deviation

1. In areas with more maternity clinics or doctors, pollution has a significantly smaller effect

on cohort size. The net coefficient for PrenatalSmoke is smaller by 0.03 in an area with one

standard deviation above the average number of maternity clinics compared to the average

area, and smaller by 0.05 in an area with one standard deviation above average doctors per

capita. These results are similar to the those of Frankenberg (1995). She examines within-

village changes in the health sector between 1983 and 1986 and finds that infant mortality

decreases when a village acquires more maternity clinics or doctors.

In column 5, the interactions with wood fuel use, doctors, and maternity clinics are es-

timated in a single regression. The effects of in utero pollution continue to be considerably

larger when wood fuel use is higher. In addition, the interaction terms for maternity clin-

ics and doctors remain positive and, for maternity clinics, statistically significant, though

smaller in magnitude than when estimated separately. What is as noteworthy is that these

interaction terms do not fully explain the differential effects by income.

Table 7 examines how the effects vary by mother’s education. Mother’s education is

important per se as a factor that might affect children’s health, and it is also the best

available individual-level (i.e., Census) measure of SES. I match each infant to his or her

mother and create a dummy variable for whether the mother has completed junior high.

The sample mean is 0.38. In column 1, there are two observations for each subdistrict-

month, the number of surviving children for high-education and for low-education mothers.
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The three pollution variables are interacted with an educated-mother dummy, as are the

month and subdistrict dummies. The main effects for prenatal pollution remains negative

and statistically significant. The interaction terms are small and insignificant. Surprisingly,

the mortality effects of pollution do not seem to vary by mother’s education. Next I examine

whether differences in maternal education across areas explain why the effects of pollution

are smaller in richer areas. In column 2, the pollution variables are interacted with the

percentage of children in the subdistrict born to educated mothers. The regression is fully

interacted; that is, month fixed effects are interacted with the subdistrict-level measure of

maternal education. The interaction of the pollution variables with mother’s education are

positive but not large and generally not statistically significant, though there is some evidence

that postnatal pollution has detrimental effects in areas with fewer educated mothers. In

column 3, I also include the pollution variables interacted with a dummy for above-median

consumption, and interact the month effects with this consumption measure. Maternal

education does not seem to be what generates the heterogeneity in effect size between more

and less developed areas.

The factors examined in this section are unable to fully explain why prenatal exposure to

pollution has a smaller effect on mortality in higher income areas. Even after controlling for

wood-stove pollution, access to health care, and maternal education, there remains a positive

coefficient for the interaction of pollution and high consumption. With better measures of

indoor pollution, health care, and parental education, one might be able to explain more

of the heterogeneity by income. There are also several channels not tested here. Mothers

and newborns in poor areas might be less healthy to begin with because of poor nutrition.

Dwellings in poor areas might be more permeable to smoke, allowing pollution from the

wildfires to contaminate indoor air quality. Behavioral responses might differ by income,

with those in richer areas being more likely to stay indoors, avoid strenuous activity or

temporarily evacuate to less affected areas, for example. 26 But regardless of the underlying

26In unreported results, the effect of prenatal smoke is smaller in areas where more houses are constructed
with bricks and concrete (compared to wood, palm leaves, etc.). Worse road quality, which could be a proxy
for higher costs of evacuating, is also associated with larger mortality effects of pollution. Another approach
to measuring evacuation would be to use distance to the nearest low-smoke area, but in practice this variable
is too highly correlated with the pollution level to be useful as an interaction term. Use of surgical masks
might also vary with income. Kunii et al. (2002) surveyed 532 people during the fires and found that use
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reason, the differential effects by income suggest that the mortality costs of pollution are

disproportionately borne by the poor.27

5 Conclusion

Air pollution from land fires that engulfed Indonesia in late 1997 led to over 15,600 child,

infant and fetal deaths, or a 1.2 percentage point decrease in survival for the affected cohorts.

This paper exploits the abrupt timing of the pollution and the spatial variation across In-

donesia to identify these effects. The paper presents evidence on the timing of exposure that

is most harmful: in utero exposure to pollution has the largest effect on survival. At levels

that are common both indoors and outdoors in many poor countries, particulate matter has

a sizeable effect on early-life mortality.

Questions in developing countries sometimes go unstudied because data are not available.

Research on infant mortality effects of air pollution in the United States makes use of linked

natality-mortality records and ground-based pollution monitors. No such data exist for

Indonesia. To overcome this obstacle, this paper uses an unconventional methodology. First,

child, infant and fetal death are inferred from “missing children” in the 2000 Indonesian

Census. While the indirect method could introduce potential problems, the paper is able to

show that migration, changes in gestation length, and other potential concerns do not seem

to be driving the results. Second, smoke data from a satellite-based spectrometer are used

in lieu of ground-monitor pollution data. Because of the satellite’s global coverage, proxy

measures of particulate matter are available for even remote, underdeveloped areas.

There are at least two broader lessons about environmental issues in developing countries

worth highlighting. First, environmental damage—and the accompanying health effects—

are yet an additional consequence of weak governance. Corruption, which is prevalent in

Indonesia as in many low–income countries, was an important factor behind the catastrophic

of surgical masks was associated with fewer respiratory problems, but most medical experts believe that
surgical masks are ineffective at blocking out fine particles.

27The income gradient in health for survivors could go in the same direction or, if the weakest individuals
were “harvested,” in the opposite direction. Also, note that if richer people have less severe health effects
because they are spending more money on health care or smokeless cooking stoves, then the income gradient
in the welfare effects of pollution might be smaller than the income gradient in the health effects.
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fires. The Suharto government turned a blind eye when large firms started fires in violation

of the law. The Minister of Forestry tried to hold firms accountable. In September 1997

he named 176 firms suspected of illegally setting fires. However, he quickly lost his job.

Suharto, in a move that was brazen even by his formidable standards of crony capitalism,

installed his golfing partner Bob Hasan—a timber magnate—as the new Minister of Forestry

in early 1998. Hasan was outspoken in blaming small farmers for the fires and exonerating

large firms, including his own. In virtually no cases were firms punished for starting illegal

blazes.

The findings of the paper highlight a second link between the environment and economic

development: the health burden from pollution seems to fall disproportionately on the poor.

The estimated effect size is much larger in poorer areas than in richer areas. There is

suggestive evidence that the heterogeneity could be because people in underdeveloped areas

use wood-burning stoves and face a compounded effect of indoor plus outdoor air pollution.

Part of the explanation also may be less access to health care. An interesting direction for

further research would be to compare the early-life mortality effects in richer neighboring

countries that were affected by Indonesia’s pollution such as Malaysia and Singapore. Why

the health effects of pollution vary with income remains an open question—and an area to

pursue to better understand how environmental degradation creates unique challenges in

developing countries.
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Appendix 1: Verification that Census counts track infant mortality

This section verifies that the population counts from the Census closely track data on births

and infant deaths from the 2002 Demographic and Health Survey (DHS). The log of the

number of surviving children should increase one-for-one with the log of total births and

should decrease one-for-one with the infant mortality rate (as can be derived with a few

steps of algebra). Thus, I estimate

ln(CohortSize)JT = α + γ1ln(Births)JT + γ2IMRJT + εJT

where J is a province and T is a quarter, Births is the number of children born in the

province-quarter, and IMR (infant mortality rate) is the fraction of those children who

died by June 2000 when the Census was taken. Very few births per subdistrict-month are

sampled in the DHS, so the validation exercise aggregates to provinces and quarters and

uses a longer panel from 1988 to 1999 to gain power.28 Note that ln(Births) varies not only

with the number of births in the province-quarter but also with the DHS sampling rate for

the province. The IMR variable should not be affected by this problem.

Table A3 presents the results of this validation exercise. In column 1, the coefficient

on IMR is -1.3 and the coefficient on ln(Births) is 1.6, which are surprisingly close to the

predictions of -1 and 1, given the crudeness of the exercise. In column 2, each observation is

a province-quarter-gender, and in column 3, a province-month. The coefficients remain on

the order of -1 and 1 but become smaller in magnitude, which is consistent with attenuation

bias from measurement error when smaller and hence noisier cell sizes are used. One cannot

reject that the estimated coefficients are 1 and -1 at standard significance levels. In short,

variation in population counts in the Census indeed tracks variation in the number of births

and, importantly for this study, variation in the infant mortality rate.

28Ideally, the DHS would have recorded pregnancies that ended in fetal deaths. Some of the missing
children in the Census are not among the live births measured by the DHS. Also, ideally, the validation
exercise would use the same unit of observation and sample period as the main analysis, but the survey data
are then too noisy to obtain meaningful results.
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Appendix 2: Data Sources and Description

Census data

Indonesia conducted a Census of its population in June 2000. The dependent variable, the

cohort size for a subdistrict-month, is the count of all enumerated people born in a given

month who reside in the subdistrict. The specific date of birth is not available. The popula-

tion weight for each subdistrict is the total number of people born in 1994 to 1996 enumerated

in the Census.

I link mothers to children for the analyses by mother’s 1995 residence and education and for

constructing the measure of predicted births. Using a household identifier, I link each child

to women who are 14 to 42 years older than the child. When there are multiple matches,

I give preference to household heads or spouses of heads and to women closer to the peak

of the fertility age distribution. To construct predicted fertility, I perform this matching

for children born in 1999 and 2000 (through May) and calculate the mother-child age gap.

Then for each age in months of women between 14 and 42, I calculate the number of children

these women give birth to divided by the total number of women of that age. This gives the

fertility rate (net of infant mortality) for each age. I make two adjustments to the fertility

rate. First, I smooth the distribution using values for the 4 ages in months before and after

each data point. Second, after the age of 38, I replace the estimate with a linear extrapolation

from the estimated value at age 38 to 0 at age 42 to correct for the fact that the matching

process mistakenly assigns grandmothers as mothers in some cases (giving an implausibly

high fertility rate for older ages). The next step is to calculate the number of women by

age for each district in the sample period, and multiply it by the age-specific fertility rate.

Summing across all the ages of women of childbearing age gives the predicted number of

births for each district-month in the sample.

TOMS pollution data

In addition to the information provided in the text, further details on the Total Ozone

Mapping Spectrometer can be found at http://toms.gsfc.nasa.gov.
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Fire location data and rainfall data

The European Space Agency compiles the ATSR World Fire Atlas, a list of “hot spots”

(date, time, latitude and longitude) identified by nighttime infrared measurements by the

ATSR-2 instrument onboard the ERS-2 satellite. A hot spot corresponds to a reading of >

312 Kelvins at 3.7 micron wavelength. For each subdistrict-month, hot spot-days within 50

km of the subdistrict’s center are used to calculate the number of fire-days, or the sum over

discrete fires of the duration of the fire in days.

The rainfall data set, Terrestrial Air Temperature and Precipitation: Monthly and Annual

Time Series, is from the Center for Climatic Research, University of Delaware. The rainfall

measure for each node on a 0.5◦ latitude by 0.5◦ longitude grid is interpolated from 20

nearby weather stations using a spherical version of Shepard’s distance-weighting method.

The rainfall measure for a subdistrict uses the closest node.

SUSENAS data

I use household level data from the 1996 and 1999 SUSENAS core modules which aggregate

item-by-item consumption data to two categories, food and non-food. For each household,

per capita consumption is calculated weighting children by 0.75 and infants by 0.6 compared

to adults who are weighted by 1. The district log consumption measure is the median across

all households of log food consumption per capita. The survey is representative at the district

level, so I use district-level measures.

PODES data

The PODES is a census of all villages and towns in Indonesia. I use the population, fuel use,

and health facilities questions for 1996. One question asks what cooking fuel the majority

of the village uses, where I group the answers as wood fuel (wood plus other biomass)

or other (kerosene and gas). The population-weighted average of this indicator variable

across villages in a subdistrict is the fuel use variable. Health care measures are unweighted

per capita measures for the subdistrict, based on the reasoning that people have access to

facilities throughout the subdistrict.
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Figure 1: Rainfall at Palembang Airport meteorological station, South Sumatra, 1990-97
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Figure 3a: Pollution by month and location

Figure 3b: Log cohort size by month and location

This figure plots coefficients and standard errors for a regression of (a) pollution and (b) log

cohort size on subdistrict and month fixed effects and island-specific month fixed effects for

Kalimantan and Sumatra. The month fixed effects for Kalimantan and Sumatra are plotted.

The vertical lines delineate the (a) three months of highest pollution and (b) six birth cohorts

that experienced high pollution in the month of birth or third trimester in utero.
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Figure 4: Kernel regression of log cohort size on prenatal exposure to pollution

The solid line is the relationship between log cohort size and pollution (PrenatalSmoke).

The dashed lines mark the bootstrapped 95% confidence interval, with errors clustered within

an island-month. The model estimated is a locally weighted non-parametric regression of

log cohort size on pollution conditional on linear year and district fixed effects, following

Robinson (1988). Log cohort size has been offset by a constant so that its value is 1 at an

aerosol index of 0.
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Figure 5: Timing of the fires and the financial crisis
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Table 1
Descriptive Statistics

Mean Std. Dev.
Cohort size variables
Cohort size (for subdistrict-month) 95.6 89.7
Ln(cohort size) 4.8 .8

Pollution variables
Smoke (median daily value for month) .087 .424
Prenatal Smoke (Smoket-1,2,3) .095 .330
Postnatal Smoke (Smoket+1,2,3) .074 .342

Proportion of days with high smoke (aerosol index > .75) .047 .154
Average smoke (daily values averaged for the month) .120 .445
Mean of Smoke for Aug-Oct 1996 .048 .069
Mean of Smoke for Aug-Oct 1997 .578 .791
Mean of Prenatal Smoke for Sept 1996 - Jan 1997 .038 .052
Mean of Prenatal Smoke for Sept 1997 - Jan 1998 .341 .522

Other variables
Fires (any fires) .157 .364
Intense fires (number x duration of fires  >= 10 fire-days) .026 .157
Rainfall for June to November 1997 relative to 1990-95 .480 .241
Ln(median 1996 household food consumption) 10.52 .26

75th percentile 10.71
50th percentile 10.49
25th percentile 10.33

Median HH food consumption in 1996 / Median HH food 
consumption in 1998

.742 .070

National consumer price index (for food) 1.131 .202
Urbanization .57 .39
Wood as primary cooking fuel .636 .413
Doctors per 1000 people .161 .241
Maternity clinics per 1000 people .031 .050
Educated mothers (completed junior high) .386 .215

the month of birth. Fire-days is calculated from European Space Agency hot spots within 50 km of the subdistrict's center. 
Rainfall is measured at the nearest grid point on a 0.5 degree latitude/longitude grid and is the mean of 1997 rain relative to 
1990-1995 for June to November. Urbanization is the subdistrict's percent of births in urban areas based on those born in 1994 
to 1996 and uses an indicator in the Census of whether the respondent's locality is rural or urban. Educated mothers is the 
percent of infants whose mother has completed junior high and is based on matching infants to mothers in the Census. Median 
food consumption is a per capita measure for each district that uses data from the 1996 and 1999 SUSENAS household survey. 
Consumer price index is from the Indonesian central bank. Health care variables are calculated for each subdistrict using the 
1996 PODES (survey of village facilities). PODES and SUSENAS data are available for 63158 observations. 

Notes: The sample consists of 67454 subdistrict-birthmonths from December 1996 to May 1998. Sample averages are weighted 
by population (the number of people enumerated in the Census born in the year before the sample period), except for cohort 
size for which the unweighted mean is shown. Cohort size is the number of people enumerated in the 2000 Census who were 
born in a subdistrict in a given month. Smoke is the monthly median of the daily TOMS aerosol index which is interpolated 
from TOMS grid points within 100 km of the subdistrict's geographic center and weighted by the inverse distance between the 
grid point and subdistrict center. Prenatal and Postnatal Smoke are averages of Smoke for the three months before and after 
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Table 2

Relationship Between Air Pollution and Cohort Size

Dependent variable: Log cohort size

(2) (3) (4) (5) (6)

Smoke -.0005 -.005 -.001 -.010 .001 .018 .035
(.006) (.008) (.007) (.020) (.009) (.014) (.036)

Prenatal Smoke (Smoket-1,2,3) -.035 *** -.032 *** -.048 *** -.032 ** -.085 **

(.012) (.011) (.015) (.013) (.033)

Postnatal Smoke (Smoket+1,2,3) -.014 -.017 -.016 * -.042 *

(.009) (.013) (.010) (.025)

Smoket-1 -.010 -.028 * -.069 *
(.009) (.016) (.040)

Smoket-2 -.023 *** -.006 -.035
(.008) (.013) (.038)

Smoket-3 -.003 -.005 .005
(.013) (.015) (.030)

Smoket+1 -.010 -.019 -.030
(.009) (.014) (.031)

Smoket+2 -.005 -.003 -.034
(.008) (.014) (.034)

Smoket+3 .001 -.001 .010
(.009) (.012) (.031)

Observations 67454 67454 67454 67454 67454 67454 67454 67454
Weighted? Y Y N Y Y Y Y Y
Subdistrict and month FEs? Y Y Y Y Y Y Y Y

Statistic used for smoke measures

(8)

% high-
smoke 
days

% high-
smoke 
days

Median Median Mean Median MeanMedian

(1)

Notes: Each observation is a subdistrict-month. Standard errors, in parentheses below the coefficients, allow for clustering at the island-
month level. *** indicates p<.01; ** indicates p<.05, * indicates p<.10. Observations are weighted by the number of individuals 
enumerated in the Census who reside in the subdistrict and were born in the year before the sample period, except in column 3 which is 
unweighted. 

(7)
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Table 3

Distinguishing between Mortality and Migration

Dependent variable: Log cohort size

District of residence versus

Residence Birthplace Mother's 1995 
residence

(1) (2) (3)

Smoke -.002 .002 .002
(.006) (.006) (.006)

Prenatal Smoke -.035 *** -.037 *** -.038 ***
(.012) (.012) (.012)

Postnatal Smoke -.013 -.015 -.016
(.010) (.010) (.010)

Observations 5829 5829 5829

Fixed effects

birthplace versus mother's 1995 residence

Notes: Each observation is a district-month. Standard errors, in parentheses 
below the coefficients, allow for clustering at the island-month level. *** 
indicates p<.01; ** indicates p<.05, * indicates p<.10. Observations are weighted 
by the number of individuals enumerated in the Census who reside in the district 
and were born in the year before the sample period.

month, district month, districtmonth, district
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Table 4
Alternative Hypotheses

Dependent variable: Log cohort size 

Smoke .001 .001 .002 .002 .003 .004 .0010
(.006) (.006) (.006) (.006) (.011) (.006) (.006)

Prenatal Smoke -.035 *** -.036 *** -.032 *** -.032 *** -.035 ** -.032 ** -.032 **
(.012) (.012) (.011) (.011) (.018) (.014) (.013)

Postnatal Smoke -.014 -.009 -.012 -.012 .016 -.005 -.014
(.009) (.010) (.009) (.009) (.014) (.011) (.009)

Ln(Predicted Births) .875
(.696)

Financial Crisis -.049
(.038)

Any Fires -.004
(.010)

Prenatal Any Fires .007
(.017)

Postnatal Any Fires -.004
(.014)

Intense Fires -.028 *
(.016)

Prenatal Intense Fires -.017
(.025)

Postnatal Intense Fires -.021
(.029)

Rainfall -.023
(.033)

Observations 67454 63703 63158 63158 52646 67454 67454

Subdistrict and month FEs? Y Y Y Y Y Y Y

Control for 
predicted 
fertility

Control for 
financial 

crisis

Notes: Each observation is a subdistrict-month. Standard errors, in parentheses below the coefficients, allow for clustering at the island-
month level. *** indicates p<.01; ** indicates p<.05, * indicates p<.10. Observations are weighted by the number of individuals enumerated 
in the Census who reside in the subdistrict and were born in the year before the sample period. Predicted Births is constructed using the 
fertility rate by age and the number of women of different child-bearing ages within a district, as described in the data appendix.The financial 
crisis variable is standardized to have a mean of 0 and standard deviation of 1 for the sample. Areas without fires are those with fewer than 20 
fire-days over the entire period. Any Fires is an indicator of any fires and intense fires is an indicator of at least 10 fire-days in the month. The 
rainfall variable is subdistrict-level rainfall for the 1997 drought months of June to November divided by the 1990-95 average for those 
calendar months, interacted with a dummy for being in a birth cohort between September 1997 and January 1998.

(7)

Control for 
rainfall

SUSENAS 
and PODES 
subsample

(2)

Excluding 
areas with 

fires

Control for 
fires

Excluding 
August 
1997

(6)(3) (5)(1) (4)

44



Table 5

Effects by Gender and Income

Dependent variable: Log cohort size 

Smoke -.008 -.060 *** -.024 -.013 -.004 -.011 -.028 .002
(.007) (.021) (.016) (.017) (.009) (.010) (.024) (.045)

Prenatal Smoke -.030 ** -.158 *** -.129 *** -.090 *** -.058 *** -.076 *** -.094 ** -.121 **
(.012) (.037) (.028) (.015) (.018) (.017) (.047) (.061)

Postnatal Smoke -.019 * -.158 *** -.047 * -.035 ** -.025 -.040 *** -.046 .009
(.010) (.027) (.024) (.019) (.016) (.014) (.032) (.052)

Male .014 ***
(.003)

Smoke  * Male .016 ***
(.005)

Prenatal Smoke  * Male -.009
(.007)

Postnatal Smoke * Male .010
(.006)

Smoke  * High Consum. .066 *** .017
(.021) (.014)

Prenatal Smoke  * High Consum. .127 *** .072 ***
(.038) (.027)

Postnatal Smoke * High Consum. .161 *** .017
(.026) (.014)

Observations 134734 63158 63158 63158

Fixed effects included

(1)
Top quartile

subdistrict, 
month subdistrict, month*quartile of log consumption

Notes: Each observation is a subdistrict-month. Standard errors, in parentheses below the coefficients, allow for clustering at the island-month level. *** indicates 
p<.01; ** indicates p<.05, * indicates p<.10. High consum. is an indicator that equals 1 if the district's median log food consumption is above the sample median. 
Observations are weighted by the number of individuals enumerated in the Census who reside in the subdistrict and were born in the year before the sample 
period. Column 4 reports the average of the coefficients in Column 3, weighted by the population in each half of the consumption distribution; the standard error 
and the joint significance of the linear combination of coefficients is shown.

3rd quartile 2nd quartile Bottom quart.

(5)

subdistrict, 
month * high 

cons.

<--------------------- one regression ----------------------->

<-------------------   63158   ----------------->

By gender

subdistrict, 
month

subdistrict, 
month * high 

cons.

By income (log consumption) of the district

(2) (3) (4)
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Table 6

Effects By Urbanization, Wood Fuel Use, and Health Care Sector

Dependent variable: Log cohort size 

(2) (3) (4)

Prenatal Smoke -.121 *** .015 -.115 *** -.113 *** -.007
(.028) (.032) (.027) (.028) (.025)

Prenatal Smoke * Urbanization -.013
(.013)

Prenatal Smoke * Wood Fuel Use -.155 *** -.120 ***
(.036) (.026)

Prenatal Smoke * Maternity Clinic .030 *** .011 **
(.009) (.005)

Prenatal Smoke * Doctors .048 *** .016
(.015) (.013)

Prenatal Smoke * High Consum. .071 *** .048 * .058 ** .052 ** .044 *
(.027) (.025) (.025) (.025) (.025)

Observations 63158 63158 63158 63158 63158
Subdistrict and month FEs? Y Y Y Y Y

(5)(1)

Notes: Each observation is a subdistrict-month. Standard errors, in parentheses below the coefficients, allow for 
clustering at the island-month level. *** indicates p<.01; ** indicates p<.05, * indicates p<.10. All regressions also 
include Smoke and Postnatal Smoke and their interactions with the relevant variables for each column. Urbanization 
is the proportion of the population in urban localities and is based on 1994 to 1996 birth cohorts. Wood fuel use is 
an approximate measure of the proportion of people in the subdistrict who cook with wood fuel rather than 
kerosene and gas. Health variables are normalized to be mean 0, standard deviation 1 for the sample. High consum. 
is an indicator that equals 1 if the district's median log food consumption is above the sample median. Observations 
are weighted by the number of individuals enumerated in the Census who reside in the subdistrict and were born in 
the year before the sample period.
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Table 7

Effects by Mother's Education

Dependent variable: Log cohort size 

Smoke .002 -.004 -.013
(.007) (.012) (.017)

Prenatal Smoke -.041 *** -.054 *** -.113 ***
(.013) (.018) (.029)

Postnatal Smoke -.010 -.036 ** -.044
(.012) (.018) (.028)

Smoke  * Educated Mother -.007
(.005)

Prenatal Smoke  * Educated Mother .007
(.008)

Postnatal Smoke * Educated Mother -.010
(.009)

Smoke * % Educated Mothers .003 -.009
(.020) (.020)

Prenatal Smoke * % Educated Mothers .021 -.034
(.029) (.028)

Postnatal Smoke * % Educated Mothers .057 * .053 *
(.034) (.034)

Smoke * High Consumption .018
(.014)

Prenatal Smoke * High Consumption .099 ***
(.026)

Postnatal Smoke * High Consumption .011
(.034)

Observations 134908 63158 63158

Fixed effects included

Subdistrict average

subdistrict, 
month * % 
educated 
mothers

(2)

Measure of mother's education
Individual-specific

(1)

subdistrict * educated 
mother, month * 
educated mother

Notes: Standard errors, in parentheses below the coefficients, allow for clustering at the island-month level. *** 
indicates p<.01; ** indicates p<.05, * indicates p<.10. In column 1, each observation is a subdistrict-month-
education category. Educated mothers are defined as those who have completed junior high. In columns 2 and 3, 
each cell is a subdistrict-month, and % educated mothers is the subdistrict average over the sample period. When 
interacted with month fixed effects, % educated is standardized to mean 0. High consumption is an indicator that 
equals 1 if the district's median log food consumption is above the sample median. 

(3)

subdistrict, month * 
high consum., 

month * % 
educated mothers
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Table A1

Instrumental Variables Estimation

Dependent variable Prenatal Smoke Log cohort size

(1) (2)

.624 ***
(.092)

Prenatal Smoke -.037 **
(.017)

Observations 67454 67454

Fixed effects month, 
subdistrict

F-statistic for instrument

First stage IV

Notes: Each observation is a subdistrict-month. Standard errors, in 
parentheses below the coefficients, allow for clustering at the island-month 
level. *** indicates p<.01; ** indicates p<.05. Observations are weighted by 
the number of individuals enumerated in the Census who reside in the 
subdistrict and were born in the year before the sample period.

(Sumatra or Kalimantan) * 
Sept 97 to Jan 98)

month, 
subdistrict

45.6 n/a
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Table A2

Different Sample Periods

Dependent variable: Log cohort size 

Smoke -.003 -.004 -.009 * -.005 -.021 -.001
(.005) (.005) (.005) (.009) (.042) (.006)

Prenatal Smoke -.043 *** -.036 *** -.049 *** -.026 * -.030 ** -.026 **
(.012) (.012) (.012) (.014) (.014) (.012)

Postnatal Smoke -.023 *** -.012 -.026 *** .025 .038 -.006
(.009) (.010) (.008) (.030) (.032) (.009)

Observations 56220 56201 44967 33684 29933 78703

Subdistrict & month FEs? Y Y Y Y Y Y

Longer period

Notes: Each observation is a subdistrict-month. Standard errors, in parentheses below the coefficients, allow for clustering at the 
island-month level. *** indicates p<.01; ** indicates p<.05, * indicates p<.10. Observations are weighted by the number of 
individuals enumerated in the Census who reside in the subdistrict and were born in the year before the baseline sample period.

3/97 - 
5/98

12/96 - 
2/98

3/97 - 
2/98

(1) (2)

12/96 - 5/98

(6)(3) (4) (5)

Shorter periods Balanced calendar months

11/96 - 2/97 & 
10/97 - 2/98

11/96 - 2/97 & 
11/97 - 2/98

49



Dependent variable: Log cohort size

Level of an observation

Quarter * 
province

Quarter * 
province * 

gender
Month * province

(1) (2) (3)

Infant Mortality Rate -1.34 -.83 -.54
(1.12) (.65) (.41)

Log Births 1.60 1.11 .83
(.29) (.23) (.18)

Male -.01
(.02)

p-value of test that IMR 
coefficient = -1 .78 .79 .27

p-value of test that Log 
Births coefficient = 1 .05 .62 .36

Observations 1248 2496 3742

Notes: The dependent variable is the log of the cohort size enumerated in the 2000 
Census. The independent variables are from the 2002 Demographic and Health Survey. 
Infant Mortality Rate is the number of children who have died by June 2000 divided by all 
children born. Log births is all children born. There are 26 provinces in the sample, and 
the period covers 48 quarters from 1988 to 1999. In column 3, for 2 of the potential 3744 
observations, there are no births. Standard errors allow for clustering within a province.

Table A3
Comparison of Log Cohort Size Variable to Survey Data on Infant Mortality
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