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1. Introduction

Hayashi�s (1982) neoclassical model of investment famously implies that Tobin�s

Q is a su¢ cient statistic for determining a �rm�s investment decision. This impli-

cation has been empirically rejected. Both cash-�ow and lagged-investment e¤ects

have been found in virtually every investment regression speci�cation and data

sample. These results suggest that Hayashi�s model is an inadequate description

of the behavior of investment at the �rm level.

In this paper we search for an empirically successful model of investment.

Instead of using investment regressions as our guide, we estimate three candidate

models. We use the simulated method of moments and focus on means, standard

deviations, persistence, and skewness properties of cash �ow, Q, and investment.

Our estimates are based on �rm-level data for the top quartile of Compustat �rms

sorted by the size of the capital stock in the beginning of the sample. These are

the �rms that Fazzari, Hubbard, and Petersen (1988) (henceforth FHP) use as

their frictionless benchmark because they are unlikely to be a¤ected by �nancial

frictions.

We consider three models driven by stochastic shocks that can be interpreted

as productivity or demand shocks. We assume that these shocks follow a regime-

switching process. This assumption is important, as it generates skewness in cash

�ows, as well as the low correlation between Q and cash �ow that we observe in

the data.

The �rst model, which we call the �generalized Hayashi model,�features de-

creasing returns to scale in production, a �xed operating cost, and quadratic

capital adjustment costs. The conditions for Q to be a su¢ cient statistic for

investment choice are not satis�ed in this model. However, in a single-regime

version of the model, the decision rule for optimal investment can still be very
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closely approximated by a log-linear function of Q. The second model, which we

call the �Hayashi model,� is a version of Hayashi�s (1982) model with quadratic

investment adjustment costs. The third model, which we call the �CEE model�

incorporates adjustment costs that penalize changes in the level of investment, as

proposed by Christiano, Eichenbaum, and Evans (2005). This speci�cation has

gained currency in the macroeconomics literature because it generates impulse re-

sponses to monetary policy shocks that are consistent with those estimated using

vector auto-regressions.

Surprisingly, we �nd that both the Hayashi model and the generalized Hayashi

model �t �rm-level data very well. The CEE model also provides a reasonably

good �t, but it generates excess persistence in investment and insu¢ cient skewness

in investment. These properties result from the fact that the CEE model penalizes

large changes in investment, generating a highly persistent investment series that

exhibits very few investment spikes.

Our results raise an obvious question. If the Hayashi and generalized-Hayashi

models provide a good description of investment behavior at the �rm level, why are

their implications for investment regressions rejected by the data? In the Hayashi

model the investment regression results can stem from measurement error. After

all, the key regressor, Q, is notoriously di¢ cult to measure. In the generalized-

Hayashi model mispeci�cation can also play a role, since the conditions for Q to

be a su¢ cient statistic for investment choice are not satis�ed.

The cash-�ow e¤ect present in our data is likely to be caused by measurement

error and/or model mispeci�cation. We draw this inference because we �nd cash-

�ow e¤ects in our sample, even though it only contains very large �rms that are

unlikely to face borrowing constraints.1

1Several authors suggest that cash-�ow e¤ects can be generated by deviations from Hayashi�s
(1982) assumptions. For example, Schiantarelli and Georgoutsos (1990), Cooper and Ejarque
(2000), Gomes (2001), Alti (2003), and Moyen (2004) study the implications of decreasing re-
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To investigate the role of measurement error and model mispeci�cation we

run investment regressions on data generated by simulating our three models,

adding empirically plausible measurement error to Q. All three models generate

cash-�ow and lagged-investment e¤ects. The generalized Hayashi model generates

e¤ects that are remarkably similar to those we estimate in our data. In this model

these e¤ects emerge both from measurement error in Q and from mispeci�cation

in the investment regression, since Q is not a su¢ cient statistic for investment

choice. The optimal level of investment is a function of three state variables: the

capital stock, the shock, and the regime. So any additional independent variable

that is correlated with the state variables has explanatory power in a regression

equation. As a result, cash-�ow and lagged-investment e¤ects emerge naturally,

even though the model is not designed to produce them.2 These results suggest

that the investment regressions that have received so much empirical attention

are quite fragile and ine¤ectual to discriminate between alternative models.

Our paper is organized as follows. In Section 2 we present the generalized

Hayashi model. In Section 3 we discuss our data and estimation procedure. Sec-

tion 4 presents the results for a version of the generalized Hayashi model in which

the demand or productivity shock has a single regime. We also discuss the e¤ects

of introducing asymmetric investment adjustment costs, investment irreversibility,

variable discount factor, as well as a behavioral bias. In Section 5 we discuss results

turns to scale, while Abel and Eberly (2001, 2005) analyze the e¤ects of growth options. Other
results in the literature suggest that Hayashi�s model is misspeci�ed. Gilchrist and Himmel-
berg (1995) construct a measure of Tobin�s Q using a VAR methodology. When they include
cash �ow as an explanatory variable for forecasting Tobin�s Q, the power of cash �ow to pre-
dict large-�rm�s investment declines, disappearing in some subsamples. Similarly, Erickson and
Whited (2000) test for cash-�ow e¤ects in �rm level data and �nd that, when they go beyond
a classical measurement error speci�cation and instead allow for higher (third) order moments
and heteroskedasticity, evidence of a cash-�ow e¤ect disappears for both large and small �rms.

2For this reason our analysis di¤ers from that of Cooper and Ejarque (2003) who estimate the
parameters of an investment model so as to generate the cash-�ow e¤ects present in Compustat
data.
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for the regime-switching version of the model.3 Section 6 considers the Hayashi

model. Section 7 contains results for the CEE model. Section 8 concludes.

2. The Generalized Hayashi Model

The �rm�s problem is given by the following Bellman equation, where y0 denotes

next period�s value of variable y:

V (K;X; z) = max
I
[zK�X1�� � �X � � [I=K � � � ( � 1)]2K � I

+�

Z
V (K 0; X 0; z0)F (dz0; z)],

K 0 = I + (1� �)K.

The variableX denotes the level of exogenous technological progress. This variable

grows at a constant rate  > 1:

X 0 = X.

The function V (K;X; z) represents the value of a �rm with capital stock K,

technical progress, X, and total factor productivity, z. The behavior of z is

governed by the distribution F (�). We denote the discount factor by �. The
�rm�s output is zK�X1��, so production exhibits decreasing returns to scale in

K. Capital depreciates at rate �. The variable � represents a �xed operating cost

paid in every period.

Investment, denoted by I, is subject to quadratic adjustment costs, which

are represented by the term � [I=K � � � ( � 1)]2K. This formulation has the
property that adjustment costs are zero when the �rm grows at its steady state

growth rate, . The parameter � controls the size of the adjustment costs.

3Since our estimates are based on �rm-level data, this result does not imply that these
features are not useful to understand investment in less aggregated data (e.g. at the plant level
or in smaller �rms).
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We de�ne cash-�ow (CFt) as:

CFt = zK
�X1�� � �X � � [I=K � � � ( � 1)]2K,

so we interpret investment adjustment costs as reducing output or revenue.

We consider two versions of the model. In the �single-regime model�, z follows

a Markov chain where the mean shock is normalized to one and the support is

given by:

z 2 f1� �; 1; 1 + �g .

We assume that the Markov chain for the single-regime model takes the form:

� =

24 p2 2p(1� p) (1� p)2
p(1� p) p2 + (1� p)2 p(1� p)
(1� p)2 2p(1� p) p2

35 .
The �rst-order serial correlation of the shock implied by this matrix is: � = 2p�1
(see Rouwenhorst (1995)).

In the �regime-switching model�the support of z is given by:

z 2
�
�L � �L; �L; �L + �L; �H � �H ; �H ; �H + �H

	
,

where:

�L = 1� ��, (2.1)

�H = 1 + ��,

so that �� governs the distance between the means of the two regimes. Productiv-

ity alternates between two regimes, the low regime (�L��L; �L; �L+�L) and the
high regime (�H � �H ; �H ; �H +�H). The evolution of z is governed by a Markov
chain.

It is useful to rewrite the �rm�s problem in terms of detrended variables, k =

K=X, i = I=X, and v(k; z) = V (K;X; z)=X:
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V (k; z) = max
i;k0
[zk� � �� � [i=k � � � ( � 1)]2 k � i

+�

Z
V (k0; z0)F (dz0; z)],

k0 = i+ (1� �)k.

We solve the model using the value-function iteration method (see Appendix

9.3).

3. Estimation

In this section we �rst describe the data used in our estimation and summarize

some key features using simple regressions. We then describe our estimation

procedure.

3.1. Data

To estimate the model we use a balanced panel of Compustat �rms with annual

data for the period 1981-2003. Using a balanced panel introduces a selection

bias towards more stable �rms which are the intended focus of our study. Our

sample includes 776 �rms and roughly 14; 000 �rm-year observations. We focus our

analysis on the large �rms in our data, de�ned as being those in the top quartile

of �rms sorted by size of the capital stock in 1981. In the beginning of the sample,

the top quartile of �rms represents 30 percent of aggregate private non-residential

investment and 40 percent of corporate non-residential investment. We use data

for the four variables present in our model: investment in property, plant, and

equipment, the physical capital stock, Q , and cash �ow. We exclude from our

sample �rms that have made a major acquisition to help ensure that investment

measures purchases of new property, plant, and equipment. We estimate the
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physical capital stock using the perpetual inventory method. We use the book

value of capital as the starting value for the capital stock and four-digit industry-

speci�c estimates of the depreciation rate. Q is calculated as the market value of

equity plus the book value of debt, divided by the capital stock estimate. Cash

�ow is measured using the Compustat item for Income before extraordinary items

+ depreciation and amortization + minor adjustments. We describe the data in

more detail in Appendix 9.1.

In Table 1 we report summary statistics for the fourth quartile (largest) �rms

in our sample, both for the 1981-2003 period and for two sub-periods, 1981-1992

and 1993-2003. Those statistics correspond to the median across �rms of selected

time-series moments. The median values are 1:3 for Q , 0:15 for the investment-

capital ratio, and 0:17 for the cash-�ow-capital ratio. We report the standard

deviations for both the logarithms and levels of the main variables. Q is the most

volatile variable, closely followed by cash �ow/capital and investment/capital.

The estimates in Table 1 are similar to those reported in other studies that use

Compustat data.

There are important di¤erences across sub-samples. In particular, the mean

and standard deviation of Q and cash �ow in the second sub-sample are signi�-

cantly higher than in the earlier period. All variables exhibit positive skewness,

and there is more skewness in the full sample than in each of the two sub-samples.

The systematic di¤erences across sub-samples lead us to consider a regime switch-

ing model in our estimation strategy. We return to this point when we discuss

estimation and the regime-switching model. Finally, Q exhibits strong serial cor-

relation, while investment and cash �ow exhibit moderate persistence.

In Table 2 we report pooled, time-series-cross-section regressions of the investment-

capital ratio on Q, cash �ow/capital and lagged investment/capital. The coe¢ -

cient on Q is quantitatively small (0:06), but signi�cant, with modest explanatory
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power (R2 = 0:29). Including cash �ow increases signi�cantly the explanatory

power of the regression (R2 = 0:34) and reduces the size (0:03) and signi�cance of

the coe¢ cient on Q. Cash �ow has a large and statistically signi�cant e¤ect on the

investment-capital ratio. As discussed in the introduction, this cash-�ow e¤ect is

surprising since we use data for the top quartile of Compustat �rms, which a priori

are unlikely to face borrowing constraints. We view this e¤ect as stemming from

measurement error and or mispeci�cation. We explore these possibilities in sec-

tions 4 and 5. Adding the lagged investment-capital ratio to the regression leads

to a large improvement in the goodness of �t (R2 = 0:61). Even though much

of the investment literature focuses on the cash-�ow e¤ect, the lagged-investment

e¤ect is more important.

Figures 1 through 3 provide scatter plots that are useful to visualize the relation

between di¤erent variables. Figure 1 shows a scatter plot of investment versus

log(Q). Figure 2 shows a scatter plot of investment and cash �ow. Figure 3 shows

the close correlation between the investment-capital ratio and its lagged value.

3.2. Estimation Procedure

Our solution method does not yield an analytical representation for the population

moments implied by the model. For this reason, we estimate the model using the

simulated method of moments proposed by Lee and Ingram (1991). We �rst use

our data to estimate the vector of moments 	D, as described in Section 3.1. The

objective is then to �nd the parameter vector �̂ which minimizes the distance

between the empirical and simulated moments, 	(�̂).

L(�̂) = min [	(�)�	D]0W [	(�)�	D] . (3.1)

The weighting matrix W is computed using a block-bootstrap method on our

panel dataset (see 9.6 for a description). This estimation method gives a larger

weight to moments that are more precisely estimated in the data
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We solve the minimization problem (3.1) using an annealing algorithm. This

procedure is used to avoid convergence to a local minimum. Finally, the standard

errors of the estimated parameters are computed as


̂ =
(�0W�)�1

n
,

where � is the matrix of derivatives,

� =
@	(�̂)

@�̂
,

which we compute numerically. The estimation method is discussed in more de-

tails in Appendix 9.6.

4. Results: Generalized Hayashi Model, Single Regime

We choose the exogenous rate of technical progress to be  = 1:03. This growth

rate is chosen to match the real annual growth rate of corporate net cash �ows

from January 1981 to January 2004. We also �x the degree of returns to scale to

� = 0:8. This value is the estimate of the average degree of returns to scale across

industries by Burnside (1996). We �x � because we cannot separately identify �

and � using the moments of the data that we consider. Both parameters control

curvature, so when � changes the value of � can be adjusted to restore the �t of

the model.

4.1. Parameter and moment estimates

We report our parameter estimates and standard errors in Table 3. Our estimate

of the adjustment cost parameter, �, is 0:4148 (with a standard error of 0:0035).

This estimate implies that the average investment adjustment cost is 1:2 percent of

sales. Our estimate for the �xed operating cost, �, is 87:07 (with a standard error

of 2:23). This estimate implies annual �xed operating costs that are 18 percent
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of annual sales. We normalize the average shock z to be 1, and the spread is plus

or minus 0:522. As we discuss below, these values allow the model to match the

mean and standard deviation of the cash-�ow to capital ratio in the data.

Table 1 reports summary statistics for a panel of �rms constructed by simu-

lating our model. The moments in bold are included in the 	D vector, so our

estimation algorithm seeks to make these moments as close as possible to those

estimated from Compustat data. The algorithm matches all of these moments

closely. The remaining moments are not �targeted�by the algorithm.

Table 1 shows that the single-regime model matches well the �rst-order serial

correlations of sales, cash �ow, and investment, although Q is signi�cantly less

persistent than in the data. The model generates a much lower standard deviation

and skewness of Q than is found in the data. We add measurement error to our

estimate of Q to match both the standard deviation and persistence of Q from

Compustat. Adding measurement error raises the skewness of Q to a level that

is higher than that found in the data. We generate Qnoise = Q exp("t); where

"t+1 = 0:9"t + 0:17�t+1 and �t v N(0; 1). Since the measurement error is serially
correlated, it cannot be corrected in the investment regressions using instrumental

variables.

4.2. Simulated regression results

To evaluate the performance of our model from a di¤erent angle we estimate

investment regressions on a panel of �rms constructed by simulating our model.

We use as explanatory variables both the state variables, which are only observable

in the model, as well as Q, cash �ow, and lagged investment. We report our results

in Table 2. The �rst column shows that regression investment on the true state

variables of the model (k and the shock, z) using a semi-log speci�cation yields

an R2 of 0:95. This speci�cation proves a very good description of how optimal

10



investment depends on the state variables. We also obtain a very good �t when

we regress investment on log(Q). Therefore, when Q is measured perfectly, it

provides a very good proxy for the two state variables. In this sense, this model

is not much di¤erent from the original Hayashi (1982) model.

Since empirical measures of Q incorporate substantial measurement error, we

create a noisy version of Q that is consistent with the properties of Q in the data.

When we use this noisy version of Q in our investment regressions the R2 falls to

0:08 and the coe¢ cient on Q is 0:037 (compared to 0:466 for the true Q ). When

cash �ow is added to the regression with noisy Q, the coe¢ cient on Q falls below

0:01, cash �ow has a coe¢ cient of 0:08, and the R2 rises to 0:71. The �nal column

reports the results of replacing cash �ow with z in the investment regression. This

substitution yields a coe¢ cient estimate and R2 that are nearly identical to using

cash �ow as a dependent variable. Since there are no frictions in the model, cash

�ow enters signi�cantly in the regression because it is a proxy for z.

One shortcoming of the single-regime model is that it cannot explain the role of

lagged investment in investment regressions. When we include lagged investment

in the model-based regressions we obtain a very small coe¢ cient (0:02, compared

to 0:63 in the data) and a very small increase in explanatory power.

In summary, the generalized Hayashi model can generate a cash-�ow e¤ect

because when Q is measured with error, cash �ow is a proxy for z. We also

�nd that the model is inconsistent with the importance of lagged investment in

investment regressions and with the skewness properties of Q, cash �ow, and

investment. In the next section we show that the performance of the model can

be greatly improved by adding a regime-switching component to the Markov chain

for z.
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4.3. Other model speci�cations

We explored several alternative model speci�cations to identify the features that

are important to replicate the key moments of our data. We considered di¤erent

speci�cations of the adjustment cost function, a time-varying discount factor, as

well as a behavioral bias.

The skewness in investment led us to consider asymmetric adjustment costs,

both in the form of asymmetric quadratic adjustment costs and an irreversibility

constraint. The asymmetric adjustment costs that we considered takes the form:

�1 (I=K � �)2K
�2 (I=K � �)2K

if I=K > �;
if I=K < �.

When �1 > �2, this formulation can match the skewness in investment. It does

not however generate enough skewness and volatility in Q, and cannot explain the

presence of signi�cant lagged-investment e¤ects in empirical regressions.

We studied a version of the model that incorporates irreversibility in invest-

ment. This constraint is irrelevant because it never binds both in our data and

in our model, simulated using the estimated parameter values. This result is not

surprising. Other authors, such as Doms and Dunne (1998) show that aggregating

data for smaller �rms or for individual plants tends to smooth out non-convexities

in investment.

We found that introducing empirically plausible variability in the discount

factor had almost no impact on the implications of our model for the moments of

interest. For this reason, we computed our main results using a constant discount

rate.

Finally, we introduced a behavioral bias into the model. Speci�cally, we as-

sumed that managers forecast fundamentals using the correct Markov chain but

investors forecast future shocks using a distorted Markov chain with higher per-

sistence (larger diagonal values). This speci�cation generated enough volatility
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in Q, but failed to replicate the skewness of Q found in the data. Finally, we

re-estimated the model using a more �exible speci�cation for the shock distrib-

ution that allows for a skewed support. This model can match the skewness of

investment in the data, but it requires skewness in cash �ow that is four times

greater than in the data.

5. Results: Generalized Hayashi Model with Regime Switch-
ing

The regime-switching speci�cation allows for a second regime in the productivity

shock z. The average shock is normalized to one. We separately estimate spreads

across regimes (��, see equation (2.1)) and within regimes (�L and �H). We also

estimate the discount factor, the persistence of the shocks, as well as the switching

parameters in the Markov chain.

5.1. Parameter and moment estimates

We report the estimated model parameters and standard errors in Table 3. Our

estimate for the adjustment cost parameter, �, is 0:9028 (with a standard error of

0:022), which implies that the average investment adjustment cost is 1:2 percent

of sales. The estimated �xed operating cost, �, is 87:81 (with a standard error

of 1:74), which is similar to the value found for the single-regime model. This

implies that annual �xed operating costs are 18 percent of annual sales.

Figure 4 plots the shocks in the two regimes. The high regime has a higher

average productivity, but also a higher standard deviation. It is interesting to note

that the support of the two regimes overlap. In fact, the low shock in the high

regime is lower than the high shock in the low regime. All of these parameters are

precisely estimated. The estimated Markov chain described in Table 4 exhibits

strong persistence: the parameter � is 0:5289. We also estimate the probabilities
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of switching regime from either the middle state or from the state closest to the

alternative regime (e.g., transiting from the highest low state to the high regime, or

from the lowest high state to the low regime). These probabilities are 3:63 percent

and 17:59 percent, respectively. These estimates imply that the (unconditional)

probability of a regime switch is approximately 7 percent per year.

Table 1 reports summary statistics for the panel of �rms simulated using the

regime-switching model. The highlighted moments are included in the 	D vector.

The algorithm matches all of these moments quite closely. These results indicate

that incorporating regime switching improves the �t of the model, particularly

for the higher moments of the data. Compared to the single-regime model, the

standard deviation of Q is substantially higher, and the model generates skewness

in Q and investment that are much closer to the data. The serial correlation

properties are also better than those of the single regime model. Before running

investment regressions, we again match the standard deviation of Q in the data by

adding measurement error. We choose the serial correlation of the measurement

error to preserve the serial correlation in Q.4

In order to better understand the dynamics of the model, we calculate the

elasticity of each moment in the 	D vector with respect to the parameters of the

model. This exercise shows how changes in parameter values a¤ect the model�s

performance. We report this elasticity matrix in Table 5. In the �rst row of the

table we see that average Q in the �rst (low) regime is heavily in�uenced by the

�xed operating cost, �, as well as by the discount factor �.

Since we keep the average shock, z, constant in the model, the average cash �ow

for each of the two regimes is largely determined by the spread � across regimes.

This parameter establishes in turn the mean shocks �L and �H and a¤ects the

average cash �ow in each regime. Similarly, the standard deviation of cash �ow in

4We generate Qnoise = Q exp("t); where "t+1 = 0:865"t + 0:175�t+1 and �t v N(0; 1).
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each regime has a unit elasticity with respect to the standard deviation of shocks

in the regime. The standard deviation of the investment-capital ratio is largely

determined by the adjustment cost parameter �. The spread parameter � is also

an important determinant as it a¤ects the volatility of investment across regimes.

Finally, the skewness of investment is heavily in�uenced by the serial correlation

of the shock.

Figure 5a and 5b plot the value functions and policy functions for each state in

the two regimes as a function of the �rm�s capital stock. The lower bounds of the

support of z in the two regimes (�L��L and �H��H) are very similar. However,
the value and policy functions evaluated at these two lower bounds take on very

di¤erent values. The value of the �rm is higher when the shock is �H ��H rather
than when it is �L��L even though �H��H < �L��L. This property re�ects the
fact that the probability of transiting to the highest value of the shock, �H + �H ,

is higher when the current state is �H � �H than when the state is �L � �L.

5.2. Simulated regression results

We now regress investment on its determinants using simulated data. We use as

explanatory variables both the state variables, which are only observable in the

model, as well as Q, cash �ow, and lagged investment. We report our results in Ta-

ble 2. In the �rst column, we use the model�s state variables to explain investment

using a semi-log speci�cation. As in the single regime model, this speci�cation

provides a good approximation to the policy function for the investment-capital

ratio, with a R2 of 0:97. A regression of investment on Q has a R2 of only 0:56

(compared to 0:95 for the single-regime model), and the Q coe¢ cient is equal

to 0:1278. If we use a noisy measure of Q that matches the empirical standard

deviation of Q, the coe¢ cient on Q falls to 0:0582 and the R2 drops sharply to

0:25. When we control for the regime the R2 rises to from 0:25 to 0:39 while
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the coe¢ cient on Q falls from 0:0582 to 0:0281. The importance of adding mea-

surement error in Q falls signi�cantly in the regime switching model because the

regime-switching disrupts the relation between investment and the shocks.

If we follow the empirical literature and add cash �ow to this regression, the

coe¢ cient on Q falls to 0:0478. Cash �ow enters signi�cantly with a coe¢ cient of

0:0245 and the R2 rises from 0:25 to 0:29. As in the single regime model, we obtain

similar results when we replace cash �ow with z. Cash �ow enters signi�cantly in

the investment regression because it is a proxy for z.

The estimates we obtain for a regression of investment onQ are nearly identical

to those obtained by running the same regression with Compustat data. The

coe¢ cient on Q is 0:0582 (versus 0:060 in the data), and the R2 is 0:25 (0:29

in the data). The results are also comparable when we add cash �ow to the

regression: there is a modest rise in the R2 and a reduction in the coe¢ cient on

Q.

Finally, including lagged investment in the regression improves the �t con-

siderably in both model and data regressions, lowering the coe¢ cients on Q and

cash �ow. The parameter estimates are very similar in model and data regres-

sions. Recall that this similarity is not present in the investment regressions for

the single-regime model. In those regressions lagged investment is driven out by

cash �ow (see Table 2).

The presence of regime switching improves the ability of the model to �t the

moments of the data. It also helps the model match the empirical covariation

and partial covariation among investment, cash �ow, and Q. These results sug-

gest that the presence of regime switching is crucial to understanding investment

regressions. In the data and in the simulation, both the true Q and noisy Q have

relatively poor explanatory power for investment when there is regime switching

(Table 2). Cash �ow improves the �t of the regression, but not nearly as dramati-
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cally as it did in the single regime model, where using cash �ow to proxy the shock

raised the R2 from 0:08 to 0:71. In the regime switching model, the addition of

cash �ow only increases the R2 from 0:25 to 0:29. Figure 6 illustrates this prop-

erty. It plots the investment rate, i=k, as a function of the capital stock for each

value of the shock, z, in the regime switching model. The relation between the

current shock and current investment is non-monotonic. The lowest investment

rates occur on the lowest branch of the graph, when the shock is in the low regime

and z = 0:5957. Investment rates are substantially higher when the shock is in

the high regime and z takes on its lowest value: z = 0:5701. This property results

from the fact that the probability of transiting between regimes is low. Within the

high regime, even when current z is very low, future prospects are bright because

there is a high probability of transiting to a high value of z. In the low regime,

even when current z is high, the prospects for the future are relatively bleak and

thus investment remains low. The transition dynamics within and across regimes

break the monotonic relationship between both investment and z and investment

and cash �ow.

A similar argument explains why the regime-switching model can replicate

the lagged-investment e¤ect present in the data. Since regime changes do not

occur often, last period�s level of investment is a good indicator of the current

regime. In other words, lagged investment acts as a proxy for an aspect of the

shock process (the regime) that is not embodied by cash �ow. In contrast, in the

single-regime model, the close relation between the shock and cash �ow makes

lagged investment redundant in explaining current investment.

6. Hayashi�s Model

In this section we study a version of Hayashi�s model by considering a special case

of the generalized Hayashi model in which returns to scale are constant (� = 1)

17



and the �xed cost of operating is zero (� = 0).

The �rm�s problem is given by the following Bellman equation:

V (K; z) = max
i;k0
[zK � � (I=K � �)2K � I (6.1)

+�

Z
V (K 0; z0)F (dz0; z)],

subject to:

K 0 = I + (1� �)K. (6.2)

We consider a regime-switching process and choose the Markov chain and the

support of z so that the model matches the empirical volatility of the cash-�ow-

to-capital ratio. The support of z is given by:5

z 2
�
�L � �L; �L; �L + �L; �H � �H ; �H ; �H + �H

	
.

We solve the model taking advantage of the fact that the value function is homo-

geneous of degree one (see 9.4 for details).

One interesting �nding is that if we set � = �, this model fails to match even

the most basic moments of the data, such as the average value of Q and the

volatility of I=K. The fact that the model generates in�nite values for V and Q

for many parameter combinations is at the heart of this failure. When the discount

factor is high (i.e. the real interest rate is low) the average values of V and Q

are often in�nity. The value of the �rm is �nite only when the adjustment cost

parameter, �, is very high. However, high adjustment costs imply low investment

volatility. When the discount factor is low (i.e. the real interest rate is high) it

is possible to generate a �nite �rm value with low values of �. However, the low

discount factor produces very low values for Q.

5The performance of this regime-switching version of Hayashi�s model is much better than
that of a single-regime version. To conserve space we do not report results for the single-regime
version.
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We now report results for a version of the model in which we estimate �. Table

3 reports the parameter estimates and standard errors for the Hayashi model with

regime switching. Table 1 compares the implied data moments from the model

to those in the data. The model matches closely the data moments, including the

average level of Q in both regimes, and the overall volatility and skewness of Q.

Since investment closely tracks Q in this model, overall investment volatility and

skewness also match the data. However, the adjustment cost required to match the

data reduces investment volatility within regimes (for example, the volatility of

investment is 0:016 in the low regime, compared to 0:05 in the data) and requires

a large change in investment across regimes (from 0:112 to 0:210 from the low to

high regimes) versus almost no change across regimes in the data. Overall, the

�t is comparable to that of the generalized Hayashi model. In some dimensions

the �t is superior (e.g., the dynamics of Q) in the Hayashi model, while in others

(e.g., investment dynamics) the generalized Hayashi model is a better �t.

6.1. Simulated regression results

Table 2 reports the results of estimating investment regressions on data simulated

from the Hayashi model. The �rst regressions con�rm that Q is a su¢ cient sta-

tistic for investment. The R2 of the regression of investment on (log) Q is 0.98.

Even with regime switching, neither lagged investment nor cash �ow are signi�cant

once Q is included in the investment regression. These results are not surprising

given that the conditions under which Q is a su¢ cient statistic for investment are

satis�ed.

The second set of regressions use a version of the model where Q is measured

with error. As with our previous model, this measurement error process is chosen

so that the resulting Q matches the empirical standard deviation and persistence
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of Q.6 In this version of the model Q is no longer a su¢ cient statistic for the choice

of investment, and cash-�ow and lagged-investment e¤ects emerge. However, these

e¤ects are much weaker than in the data. Regressing investment on noisy Q alone

generates an R2 of 0.78; adding only cash �ow reduces the coe¢ cient on Q from

0.12 to 0.11 with a coe¢ cient on cash �ow of 0.02. Adding lagged investment

raises the R2 further to 0.87, but the coe¢ cient on lagged investment is only 0.44

compared to 0.62 in the data. In this speci�cation the coe¢ cient on Q is �ve

times as large as it is in the data.

7. CEE Model

Many recent macroeconomic models incorporate a form of adjustment costs pro-

posed by Christiano, Eichenbaum, and Evans (2005). In this formulation, adjust-

ment costs depend on changes in the level of investment, so lagged investment

e¤ects are likely to arise naturally in investment regressions. In this section we

study the properties of a version of our model that incorporates CEE-style ad-

justment costs.

The �rm�s problem, written in terms of detrended variables, is given by:

v(k; i�1; z) = max
i;k0

�
zk� � i� �+ �

Z
V (k0; i; z0)F (dz0; z)

�
,

subject to:

k0 = i
�
1� ��(i=i�1 � )2

�
+ (1� �)k. (7.1)

Here i�1 denotes the value of investment in the previous period. The presence of a

third state variable in the value function requires us to adopt a di¤erent algorithm

to solve the model. We describe this algorithm in the appendix.

6We generate Qnoise = Q exp("t); where "t+1 = 0:75"t + 0:125�t+1 and �t v N(0; 1).
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We estimate that the adjustment cost parameter, ��, is equal to 0:88, with a

standard error of 0:022.7 The other parameter estimates, shown in Table 3, are

close to those for the generalized Hayashi model.

Table 1 shows that the �t of the CEE adjustment costs is generally very good.

This �t is comparable to that of the generalized Hayashi model with three ex-

ceptions. First, the CEE formulation generates too much investment persistence.

The �rst-order serial correlation of investment is 0:94 in the model and 0:60 in

the data. The high degree of investment persistence generated by the model is

not surprising since this speci�cation penalizes changes in the level of investment.

Second, the model yields too much volatility in investment (0:063 versus 0:055).

Third, the model does not generate enough skewness in investment (0:21 versus

0:42). This property is a direct consequence of the adjustment cost speci�cation:

an increase in �� reduces both the standard deviation and skewness of investment,

and the estimation procedure cannot �nd a set of parameter values which �ts both

moments.

Table 2 reports the results of estimating investment regressions on data simu-

lated from the model with CEE adjustment costs. This model generates a regres-

sion coe¢ cient on Q that is very similar to the data. The cash-�ow e¤ect is weak

and sometimes negative. The model generates a lagged investment e¤ect that is

stronger than that found in the data. This property re�ects the fact that lagged

investment is a state variable in this model.
7The value of �� estimated by CEE using macro data and a model with a constant returns

to scale in production is 1:24. CEE estimate �00(1) = 2:48, where �00(1) is the second derivative
of the adjusment cost function evaluated at the steady state. In our case the adjustment cost
function is quadractic, so �� = �00(1)=2.
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8. Conclusions

We estimate three models of investment and examine their implications for the

mean, standard deviation, skewness and persistence of investment, cash �ow, and

Q. While all three models can closely match the key data moments, the generalized

Hayashi model and the Hayashi model both replicate the salient empirical features

of investment, cash �ow and value in our sample of large �rms. These models

would nonetheless be rejected by tests based on investment regressions. We �nd

empirically plausible cash �ow and lagged investment e¤ects in data simulated

from these models when we add plausible measurement error to Q. This result

illustrates the importance of going beyond investment regressions when assessing

investment models. The Hayashi-based models that we estimate replicate key

features of �rm-level investment, cash �ow, and value. This property makes these

models a natural point of departure for a quantitative study of classic issues in

corporate �nance, such as the choice of capital structure.
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9. Appendix

9.1. Data Sources and Calculations

Annual data items from the dataset cstsann in the CRSP/Compustat Merged

database, 1981-2003, are �rst listed, followed by the calculations underlying the

constructed variables. Sources for non-Compustat items are given in parentheses.

� I : expenditures on property, plant, and equipment, data 30

� CashF low: income before extraordinary items + depreciation and amor-

tization + minor adjustments, calculated as follows (from the Compustat

manual):

Income Before Extraordinary Items, 123

+ Depreciation and Amortization, 125

+ Extraordinary Items and Discontinued Operations, 124

+ Deferred Taxes, 126

+ Equity in Net Loss (Earnings), 106

+ Sale of Property, Plant, and Equipment and Sale of Investments �Loss(Gain),

213

+ Funds from Operations �Other, 217

+ Accounts Receivable �Decrease (Increase), 302

+ Inventory �Decrease (Increase), 303

+ Accounts Payable and Accrued Liabilities �Increase (Decrease), 304

+ Income Taxes �Accrued �Increase (Decrease), 305

+ Assets and Liabilities �Other (Net Change), 307

= Operating Activities �Net Cash Flow, 308

� inventories: total inventories (end of period), data 3
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� debt: long-term debt (end of period), data 9

� PPE, book value of capital: property, plant, and equipment,

� data 182: PPE - Beginning Balance �check if it is still reported after

1997;

� data 187: PPE - Ending Balance (Schedule V);

� data 184: PPE - Retirements (Schedule V) - not reported after 1997;

� data 185: PPE - Other Changes (Schedule V) - not reported after 1997.

� Pk, price of capital: implicit price de�ator for nonresidential investment,
Economic Report of the President, Table B-3, various years.

� u, investment tax credit: obtained by year for 51 asset classes from Dale

Jorgenson. These data are aggregated to the two-digit industry level using

the BEA historical cost capital �ow matrix (asset by industry by year).

Speci�cally, the weight of asset type n in industry j in year t is calculated

as wn;j;t � In;j;t=
P
n

In;j;t. The investment tax credit applied to industry j in

year t, uj;t, is then constructed as the weighted sum uj;t =
P
n

wj;n;tuj;n;t.

� z, value of depreciation allowances: obtained by year for 51 asset classes from
Dale Jorgenson. These data are aggregated to the two-digit industry level

using the BEA historical cost capital �ow matrix (asset by industry by year).

Speci�cally, the weight of asset type n in industry j in year t is calculated

as wn;j;t � In;j;t=
P
n

In;j;t. The value of depreciation allowances in industry j

in year t, zj;t, is then constructed as the weighted sum zj;t =
P
n

wj;n;tzj;n;t.

� � , corporate tax rate: obtained from King and Fullerton (1984), table 6.4,

and Fullerton and Karayannis (in Jorgenson and Landau (1993)), p. 343,

updated to 2003 by Dale Jorgenson.
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� market value of equity: closing stock price times number of common shares
outstanding (end of period) plus redemption value of preferred stock (end

of period) = prc * shrout/1000 + data56, where,

� prc: closing stock price from msf �le (monthly stock - securities);

� shrout: Common shares outstanding from msf �le (monthly stock -

securities);

� data 56: Preferred Stock - Redemption Value.

� L, useful life of capital goods: by two-digit industry, the useful life of cap-
ital goods is calculated as Lj � 1

Nj

P
i2j

PPEi;t�1+DEPRi;t�1+Ii;t
DEPRi;t

, where Nj is

the number of �rms, i, in industry j. Using the double-declining balance

method, the implied depreciation rate for industry j, �j, is 2=Lj.

� K, replacement value of capital stock: Using the method of Salinger and
Summers (1983) the replacement value of the capital stock is constructed by

�rm from its book value using the recursion: Ki;t =
�
Ki;t�1

PK;t
PK;t�1

+ Ii;t

�
(1� �j),

where the recursion is initialized using the book value of capital.

� Tobin�s Q: [(market value of equity)t�1 + (debt)t�1 - (inventories)t�1]/Kt.
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9.2. Sample Selection

Starting from the dataset cstsann in the CRSP/Compustat Merged database, the

following �lters were applied:

� If the �rm was involved in a merger or acquisition, then delete (using aftnt35:
=�01�as indication of a Merger & Acquisition)

� end-of-period capital (data 187) is not missing

� investment (data 30) is not missing

� operating pro�t (data 178) is not missing

� incorrect capital accumulation (only for data before 1994, due to data184
and data185 not being reported after 1997)

� if disinvestment > end-of-period capital then delete

� if operating loss is greater than end-of-period capital then delete

� if operating pro�t is greater than 2.5 times end-of-period capital then delete

� if q is missing or q<0 then delete

� if investment (data 30) < 0 then delete

� if dis-investment (data107) < 0 then delete
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9.3. Solution Method, Generalized Hayashi Model

We assume that k can only take nk discrete values. We start with a guess for

the value function, V 0(k; z) for each pair (k; z). We compute the policy function

k
0
= h0(k; z)by �nding the value of k0 that maximizes the value of the �rm for each

pair (k; z). The new value function, V 1(k; z) is given by the following equation

with m = 1:

V m(k; z) = max
i;k0
[zk� � �� � f[k0 � (1� �)k] =k � �g2 k � [k0 � (1� �)k]

+�

Z
V m�1(k0; z0)F (dz0; z)].

We use V 1(k; z) to �nd a new policy function k
0
= h1(k; z) and a new value

function, V 2(k; z). We continue to iterate until V m�1(k; z) and V m(k; z) converge

for every (k; z) pair.

In practice, this method is slow to converge. To speed up the procedure in

the context of our SMM estimation, which requires solving the model at every

iteration, we instead adopt a hybrid method. We start with a policy function

iteration approach: we iterate as above until hm�1(k; z) and hm(k; z) converge

for every (k; z) pair. Once this is done, we iterate on the value function, keeping

the policy function constant, until convergence. Not having to �nd a new policy

function at that stage makes this hybrid procedure signi�cantly faster.
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9.4. Solution Method, Hayashi Model

The value function, V (K; z), is homogeneous of degree one in the capital stock.

This property follows from the fact that we can write the value function as a

sum of functions that are homogeneous of degree one. The homogeneity property

allows us to rewrite (6.1) as:

V (1; z) = max
i=k
[z � � (I=K � �)2 � I=K (9.1)

+(I=K + 1� �) �
Z
V (1; z0)F (dz0; z)],

Using the fact that V1(1; z) = V (1; z), we can write the optimal value of I=K as:

I

K
=
�
R
V (1; z0)F (dz0; z)� 1

2�
+ � (9.2)

We solve the model using value-function iteration. We start with a guess for the

value function, V 0(1; z) for each value of z. We use (9.2) to compute the optimal

value of I=K associated with each value of z. We then compute the new value

function, V 1(k; z). This function is given by the following equation with m = 1:

V m(1; z) = max
i=k

"
z � 1

�

�
�
R
V m�1 (1; z0)F (dz0; z)� 1

2

�2
�

�
R
V m�1 (1; z0)F (dz0; z)� 1

2�
+ � + (9.3)�

�
R
V m�1 (1; z0)F (dz0; z)� 1

2�
+ 1

�
�

Z
V m�1(1; z0)F (dz0; z)

�
.
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9.5. Solution Method, CEE Model

We obtain numerical solutions to the model with CEE adjustment costs using the

following algorithm developed in Lkhagvasuren (2006):

1. De�ne a coarse grid for (k; i�1; z);

2. Choose a guess for v(k; i�1; z) and evaluate it on the coarse grid;

3. Choose a �ne grid for i�1;

4. Generate a �ne grid for k compatible with �ne grid for i�1 using the resource

constraint, (7.1);

5. Use bilinear interpolation to evaluate v(k; i�1; z) for every value of z on the

�ne grid for i�1 and z;8

6. Find the optimal value of i for every (k; i�1; z) combination;

7. Save the new value of v(k; i�1; z) evaluated on the coarse grid;

8. Save the policy function for i, i(k; i�1; z), evaluated on the �ne grid;

9. Check whether the value function has converged;

10. If the value function has converged then stop; else go to step 5;

To simulate the model we can use a bilinear interpolation of i(k; i�1; z) evalu-

ated for every z, for every pair (k; i�1) evaluated on the �ne grid. This interpola-

tion procedure avoids k and i�1 having to take values on the real line.

8Bilinear interpolation is an extension of linear interpolation for bivariate functions. Suppose
we know the values of the function f(x; y) evaluated at four points: (x1; y1), (x2; y1), (x1; y2),
and (x2; y2). Then f(x; y) ' f(x1;y1)

(x2�x1)(y2�y1) (x2 � x)(y2 � y) +
f(x2;y1)

(x2�x1)(y2�y1) (x � x1)(y2 � y) +
f(x1;y2)

(x2�x1)(y2�y1) (x2 � x)(y � y1) +
f(x2;y2)

(x2�x1)(y2�y1) (x� x1)(y � y1).
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9.6. Estimation Method

The objective of the simulated method of moments is to �nd the parameter vector

�̂ that minimizes the distance between empirical (	D) and simulated moments

(	(�)):

L(�̂) = min [	(�)�	D]0W [	(�)�	D] . (9.4)

The weighting matrix, W , is obtained using the variance-covariance matrix of the

empirical moments, 
D:

W =
1


D(1 + 1=k)
, (9.5)

where k = length of simulation=length of sample. We estimate the matrix 
D

using a block-bootstrap method as follows: We form m samples. Each sample

consists of data for n �rms drawn with replacement from our data set. For each

of the m samples we compute the vector of empirical moments. We use the m

observations on the vector of moments to estimate the variance-covariance matrix

of the empirical moments, 
D.

We solve the minimization problem (9.4) using an annealing algorithm. The

�rst step consists in choosing initial values for the parameter vector, �, admissible

ranges for the parameters, as well as the �temperature�and the step size. As

we discuss below, the temperature controls the probability that, given the best

parameter vector so far, ��, we accept a parameter vector �0 that yields a worse �t

(L(�0) > L(��)). This procedure is used to avoid convergence to a local minimum.

We start with a high temperature value, so that the algorithm explores di¤erent

regions of the parameter space.

The second step is to generate a new parameter vector, �0, by adding random

shocks to the elements of �� within their admissible range. Next we solve the

model using value-function iteration for the parameter vector �0 and simulate

1940 representative �rms (each with 23 years of data). Since the number of �rms
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in our Compustat sample is equal to 194, this implies that k in (9.5) equals

10. The fourth step consists in computing the simulated moments and L(�0).

If L(�0) < L(��) we set �� = �0. If L(�0) > L(��) we set �� = �0 with

probability exp [� (L(�0)� L(��)) =temperature]. Finally, we reduce the values of
temperature and step size before going back to step two. The vector of parameter

estimates is the one that generates the lowest value of L. We denote this vector

by �̂.

To verify the convergence properties of our estimation procedure, we used a

simple robustness check. Starting with a parameter vector ~�, we simulate a panel

of �rms and compute the simulated moments, 	(~�). We then use the SMM pro-

cedure described above to �t these moments. Ideally, we would like the parameter

estimates �̂ to be as close as possible to the true parameter values ~� (the ones

that generated the data). Failure to do so may indicate that the estimation pro-

cedure is not adequate or that the model parameters are not identi�ed. We �nd

that our procedure can recover reasonably well the true parameter values. This

is also con�rmed by the fact that we obtain similar parameter estimates across

SMM runs with di¤erent starting values.
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Generalized 
Hayashi model

Full Sample Single regime

1981‐2003 1981‐1992 1993‐2003 All Low High All Low High All Low High

Time‐series 
average
Q 1.298 0.950 1.892 1.316 1.240 0.918 1.573 1.411 0.978 1.854 1.284 0.928 1.656

I/K 0.150 0.146 0.161 0.151 0.151 0.120 0.184 0.160 0.112 0.210 0.153 0.124 0.183

Cash Flow/K 0.169 0.155 0.199 0.172 0.161 0.137 0.186 0.187 0.165 0.210 0.164 0.137 0.192

Time‐series 
standard 
deviations
Q 0.625 0.256 0.589 0.157 0.383 0.151 0.239 0.542 0.169 0.418 0.433 0.162 0.294

Q + noise 0.625 0.256 0.589 0.622 0.623 0.393 0.643 0.624 0.255 0.560 0.623 0.393 0.643

ln(Q) 0.420 0.280 0.280
I/K 0.055 0.050 0.046 0.055 0.054 0.036 0.050 0.056 0.016 0.034 0.057 0.044 0.054

ln(I/K) 0.370 0.330 0.300
Cash Flow/K 0.078 0.046 0.089 0.079 0.073 0.043 0.087 0.082 0.050 0.101 0.074 0.044 0.087

Skewness
Q 0.577 0.160 0.350 0.084 0.366 0.672 0.568

Q + noise 0.577 0.160 0.350 1.221 1.326 0.968 1.240
I/K 0.418 0.320 0.330 0.014 0.436 0.432 0.314

Cash Flow/K 0.245 ‐0.040 0.050 ‐0.063 0.601 0.646 0.587

Serial 
correlation
Q 0.838 0.780 0.660 0.426 0.841 0.857 0.860

Q + noise 0.838 0.780 0.660 0.849 0.842 0.829 0.849

I/K 0.600 0.550 0.540 0.397 0.757 0.869 0.938
Cash Flow/K 0.540 0.500 0.370 0.535 0.568 0.552 0.587

*For each variable, we compute the time series average for each firm in the sample, and report the median across firms. 

 “Q” is Tobin’s Q, I is investment in property, plant, and equipment, and K is the capital stock.  

Construction of the variables is described in the text and in the data appendix.

Table 1: Summary statistics, data and model implications

Generalized Hayashi 
model

Median across large firms (4th 
quartile of Compustat firms)*

Hayashi model CEE model

Regime switching Regime switching Regime switchingSubsamples



Regressors 1 2 3 4 5 6 Regressors 1 2 3 4 5 6 7

0.1406 0.219 0.0413 0.0849 0.135 0.1426 0.0853 0.1619 -0.0184 0.0012
(0.0016) (0.0052) (0.0023) (0.005) (0.0003) (0.0004) (0.0018) (0.0016) (0.001) (0.0007)

0.6253 0.8637 0.9054
0.7515 (0.0132) (0.0019) (0.002)

0.06 0.0331 (0.0116) 0.0126 0.1008 0.1221 0.0432
(0.0016) (0.0023) (0.0019) (0.0009) (0.0011) (0.0005)

0.0387 0.017 0.0578 0.0529 0.0172
(0.0024) (0.0020) (0.0007) (0.0008) (0.0003)

R2 0.29 0.34 0.57 0.61 -0.0238 0.0095 -0.0162 -0.0052
(0.0008) (0.0008) (0.0003) (0.0003)

R2 0.29 0.16 0.31 0.17 0.9 0.89

1.490 0.006 0.139 0.299 0.158 0.311 1.0244 0.1301 0.142 0.1227 0.1911 0.1715
(0.003) (0.0002) (0.0003) (0.0006) (0.0002) (0.0002) (0.0011) (0.0002) (0.0002) (0.0003) (0.0011) (0.001) 0.1479

0.02 0.1194 0.049 0.0489 (0.0003)
(0.0029) (0.0001) (0.0005) (0.0005)

0.466 0.1278
(0.0006) (0.0006)

0.037 0.009 0.008 0.008 0.0582 0.0281 0.0478 0.0179
(0.0006) (0.0004) (0.0004) (0.0004) (0.0005) (0.0005) (0.0005) (0.0006) 0.0443

0.079 0.097 0.0245 0.0243 (0.0005)
(0.0003) (0.0004) (0.0005) (0.0005)

‐0.171 ‐0.1211
(0.0004) (0.0001)
0.133 0.109 0.0875 0.044

(0.0002) (0.0003) (0.0001) (0.0007)

R2 0.95 0.95 0.08 0.71 0.73 0.72 R2 0.97 0.56 0.25 0.39 0.29 0.43 0.32

0.1201 0.1277 0.094 0.1583 0.0905 0.0829
(0.0001) (0.0002) (0.0002) (0.0007) (0.0003) (0.0007)

0.0309 0.45
(0.0012) (0.0029)

0.1472 0.1579 0.1537
(0.0001) (0.0001) (0.0002)

0.118 0.1078 0.0672
(0.0003) (0.0004) (0.0004)

‐0.0131 0.0157 ‐0.0129 0.0071
(0.0001) (0.0004) (0.0001) (0.0003)

R2 0.98 0.78 0.98 0.79 0.98 0.87

Constant

It-1/Kt-1

ln(Q)

ln(Q+noise)

ln(Cash Flow/K)

ln(z)

(I/K)t‐1

ln(Cash Flow/K)

ln(K)

ln(Q)

ln(Q+noise)

Dummy high 
regime

ln(Cash Flow/K)

ln(Q)

ln(Q+noise)

ln(z)

ln(K)

Data

Generalized Hayashi model, single regime

Constant

Generalized Hayashi model, regime switching

Table 2: Investment regressions

Dependent variable I/K, standard errors in parentheses

Constant

ln(Cash Flow/K)

ln(Q)

Constant

(I/K)t-1

ln(Cash Flow/K)

Hayashi model, regime switching

CEE adjustment costs, regime switching

ln(Q+noise)

Constant

It‐1/Kt‐1

ln(Q)



Hayashi model CEE model
Hayashi model 
with borrowing 

constraint
Single regime Regime switching Regime switching Regime switching Regime switching

Estimated parameters

Adjustment cost : ξ 0.4148 0.9028 3.9860 0.8793 3.1312
(0.0035) (0.0220) (0.0686) (0.0453) (0.1098)

Adjustment cost : v 0.1170 0.0912
(0.0010) (0.0014)

Fixed cost: φ 87.0700 87.8059 87.1262
(2.2300) (1.7380) (1.5140)

Discount factor: β 0.9514 0.9511  0.9526 0.9508 0.9604
(0.0007) (0.0006) (0.0010) (0.0005) (0.0009)

Shock range: σ 0.5220 0.1581
(0.0028) (0.0040)

Low regime center shock: μL 0.1557 0.2427 0.1496
(0.0011) (0.0022) (0.0009)

High regime center shock: μH 0.2793 0.5732 0.2631
(0.0020) (0.0044) (0.0018)

Low regime shock range:  σL 0.2462 0.0657 0.0536
 (0.0021) (0.0006) (0.0005)

High regime shock range:  σH 0.5880 0.1706 0.1197
(0.0051) (0.0014) (0.0012)

Switching parameter 1 0.0363 0.0589 0.0236 0.0622
(0.0021) (0.0203) (0.0018) (0.0567)

Switching parameter 2 0.1759 0.2985 0.1415 0.302
(0.0056) (0.0805) (0.0005) (0.2065)

Shock persistence: ρ 0.5345 0.5289 0.5583 0.5340 0.5291
(0.0013) (0.0051) (0.0226) (0.0023) (0.0643)

Calibrated parameters
Mean shock: μ 1.00 1.00 1.00 1.00
Returns to scale: α 0.80 0.80 1.00 1.00
Depreciation rate: δ 0.12 0.12 0.15 0.15
Growth: γ 1.03 1.03

Generalized Hayashi model

Table 3: Parameter estimates, standard errors in parentheses



Generalized Hayashi model CEE model

Support of the distribution Support of the distribution

μL - σL μL μL + σL μH - σH μH μH + σH μL - σL μL μL + σL μH - σH μH μH + σH

0.5957 0.8419 1.0881 0.5701 1.1581 1.7461 0.602 0.8542 1.1063 0.547 1.1458 1.7447

Transition matrix Transition matrix

μL - σL μL μL + σL μH - σH μH μH + σH μL - σL μL μL + σL μH - σH μH μH + σH

μL - σL 0.5844 0.3601 0.0555 0 0 0 μL - σL 0.5879 0.1744 0.0494 0 0 0

μL 0.1735 0.6166 0.1735 0.0363 0 0 μL 0.3577 0.6265 0.325 0 0 0

μL + σL 0.0457 0.2968 0.4816 0.1759 0 0 μL + σL 0.0544 0.1744 0.5341 0.0914 0.0246 0

μH - σH 0 0 0.1759 0.4816 0.2968 0.0457 μH - σH 0 0.0246 0.0914 0.5341 0.1744 0.0544

μH 0 0 0.0363 0.1735 0.6166 0.1735 μH 0 0 0 0.325 0.6265 0.3577

μH + σH 0 0 0 0.0555 0.3601 0.5844 μH + σH 0 0 0 0.0494 0.1744 0.5879

Hayashi model

Support of the distribution

μL - σL μL μL + σL μH - σH μH μH + σH

0.09 0.1557 0.2214 0.1087 0.2793 0.45

Transition matrix

μL - σL μL μL + σL μH - σH μH μH + σH

μL - σL 0.6071 0.3441 0.0488 0 0 0

μL 0.1619 0.6172 0.1619 0.0589 0 0

μL + σL 0.0342 0.2414 0.4259 0.2985 0 0

μH - σH 0 0 0.2985 0.4259 0.2414 0.0342

μH 0 0 0.0589 0.1619 0.6172 0.1619

μH + σH 0 0 0 0.0488 0.3441 0.6071

Low Regime High Regime

Table 4: Estimated Markov chains for regime‐switching models

Low Regime High Regime Low Regime High Regime



        

ξ φ σ* σL σH
Switching 
parameter 

1

Switching 
parameter 

2
β ρ

Average q, low regime ‐0.2 ‐3.2 0.1 0.2 ‐0.3 0 ‐0.1 94.4 0
Average q, high regime 0 ‐1 0.3 0.1 0 ‐0.1 ‐0.1 32.2 0.2

Average cash‐flow, low regime 0 ‐0.4 ‐0.3 0 ‐0.1 0 0 4.7 0.1

Average cash‐flow, high 
regime

0 ‐0.2 0.1 0 ‐0.1 0 ‐0.2 ‐1.6 0

Standard deviation of cash 
flow, low regime

0 0.1 0.1 1 0.1 0 0.1 ‐9.5 ‐0.4

Standard deviation of cash 
flow, high regime

0.1 0.1 ‐0.1 0 1 0 0.3 ‐7.4 ‐0.1

Standard deviation, cash flow 0 0.1 0.1 0.2 0.7 ‐0.1 0.1 ‐9.1 ‐0.2

Standard deviation, I/K ‐0.7 0 0.7 0 0.4 ‐0.1 ‐0.1 ‐2.1 0.5
Skewness I/K ‐0.7 0 ‐0.2 ‐0.3 0.9 ‐1 1.6 1 4.8
Serial correlation, q 0.1 0.6 0 0 0 0 0 ‐16.6 ‐0.1
Serial correlation, CF/K 0 0.2 0.4 ‐0.1 ‐0.3 ‐0.2 ‐0.1 ‐4.5 0.6

Table 5: Elasticity of moments with respect to parameters, generalized Hayashi model with regime‐switching



 
Figure 1: Investment (I/K) versus Tobin’s Q 

 
 
 
Figure 2: Investment (I/K) versus cash flow (CF/K) 
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Figure 3: Investment (It/Kt) versus lagged investment (It-1/Kt-1) 
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Figure 4: Regime-switching model, estimated distribution of Z shocks 
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Figure 5a: Regime-switching model, value function by state in each regime  
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Solid lines are high-regime states, dotted lines are low-regime states 
 
 
 

 
Figure 5b: Regime-switching model, policy function by state in each regime 
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Solid lines are high-regime states, dotted lines are low-regime states 



Figure 6: Regime-switching model, investment (I/K) by state in each regime 
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Circles are high-regime states, squares are low-regime states 
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